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Abstract

The accurate prediction of the effect of amino acid mutations for protein–protein interactions (PPI ��G) is a crucial task in protein
engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further
drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework
to predict PPI ��G. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein–protein
complex structures annotated with PPI ��G values. MpbPPI employs a multi-task pre-training technique, forcing the framework
to learn comprehensive backbone and side chain geometric regulations of protein–protein complexes at different scales. After pre-
training, MpbPPI can generate high-quality representations capturing the effective geometric characteristics of labeled protein–protein
complexes for downstream ��G predictions. MpbPPI serves as a scalable framework supporting different sources of mutant-type (MT)
protein–protein complexes for flexible application. Experimental results on four benchmark datasets demonstrate that MpbPPI is a
state-of-the-art framework for PPI ��G predictions. The data and source code are available at https://github.com/arantir123/MpbPPI.

Keywords: protein binding affinity change prediction, equivariant neural network, multi-task pre-training, protein engineering

INTRODUCTION
Protein–protein interactions (PPIs) play a crucial role in many bio-
logical processes, including antibody–antigen binding, cell apop-
tosis and signal transduction [1–3]. Alterations in PPIs can affect
the formation of multi-protein complexes, causing disruption
to both intercellular communication networks and intracellular
signaling pathways, ultimately contributing to the development of
diseases such as cancer and drug resistance [4]. Amino acid (AA)
mutations are a primary cause of PPI alterations, with different
mutations leading to different disturbances in PPIs, and resulting
in different phenotypic outcomes. Understanding the potential
mechanisms by which AA mutations impact PPIs is vital for
developing therapies that target these interactions [5–8]. Although
various experimental methods are available to identify the effects
of mutations, they are often costly and time consuming. To over-
come this challenge, fast and reliable computational alternatives
are necessary [9].

The change in binding affinity caused by AA mutations,
or ��G, represents the difference in binding affinity between
mutant-type (MT) and wild-type (WT) protein complexes [10].
Over the years, numerous computational approaches have been
developed to predict ��G [11]. Early ��G tools mainly employed
physical energies as features to describe PPIs, such as FoldX
[12], Rosetta [13] and BeAtMuSiC [14]. These methods rely on
a (linear) combination of physical energies dominated by van
der Waals interaction, hydrogen bond, electrostatic interaction,
solvation, etc. terms. However, many of these methods faced
several limitations, including insufficient conformation sampling
in the mutation region and conformational efficiency [15].

In recent years, the rapid expansion of experimental data
and computational resources led to the emergence of machine
learning methods, especially those mainly focusing on character-
izing geometric properties of protein structures [16]. The struc-
ture of protein dictates its biochemical function [17], thus the
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combination of fully captured protein structural characteristics
and the powerful non-linear fitting capability of machine learning
methods could provide a more accurate approximation of PPI
��G [18]. For instance, aiming to tackle ��G predictions caused
by AA single-point mutations, Geng et al. [19] developed a ran-
dom forest-based algorithm iSEE to process PPI interface struc-
ture features enhanced by evolutionary conservation and energy-
based information. Based on the specially designed graph-based
structural signatures representing the residue environment, an
online ��G analysis webserver named mCSM-PPI2 was built by
Rodrigues et al. [18]. Furthermore, Wang et al., Liu et al. and Wee
et al. proposed their algebraic topology-based methods, respec-
tively, to produce the simplified physical structural representa-
tions of protein–protein complexes with the consideration of AA
site mutation information. The generated representations were
fed into different ensemble decoders to calculate the final ��G
[1, 20, 21].

In addition to traditional machine learning methods, the deep
learning-based geometric method graph neural network (GNN)
could be a more efficient way for extracting structural repre-
sentations of protein–protein complexes. This is because it can
directly take the geometric graph which can be easily constructed
from raw protein coordinates as model inputs [22]. A typical pro-
cessing pipeline for such methods involves acquiring a protein–
protein complex graph after AA site mutations, then inputting the
WT and mutant protein–protein complex graphs into a GNN to
obtain the respective graph structure representations. The ��G is
then predicted by comparing these two representations using an
independent decoder. However, due to the difficulty in acquiring
mutant complex structure ground truth, corresponding simulated
structures or assumed proxies are usually needed. For example,
Liu et al. [15] cropped the original atom-level WT and computa-
tionally simulated mutant complex graphs based on a pre-defined
distance threshold. They then input these cropped graphs into a
pre-trained GNN encoder, to produce the final low-dimensional
representation that captures the structural difference between
WT and mutant complexes. Jiang et al. [22] designed an end-to-
end GNN framework named DGCddG which takes assumed WT
and mutant graphs equipped with multiple biochemical features
for ��G predictions.

Most machine learning and deep learning methods currently
rely on a combination of energy-based and structural-based fea-
tures to predict the ��G value associated with a given PPI muta-
tion [18]. However, energy-based features can be computationally
expensive, while many existing structural-based features focus on
modeling single residue-wise contact relationships or inter-atom
interactive relationships, which may not capture more complete
geometric relationships between the backbone, side chains and
their interactions within AA residues. The relative positions and
orientations of residues, as well as the interactions between their
side chain and backbone atoms, can significantly impact the
alignment of amino acids within a protein structure and influence
protein–protein interactions.

Moreover, transfer learning, which aims to capture general reg-
ulations of downstream samples through pre-training the model
on more accessible other data (not involving the type of labels in
downstream tasks) [23–25], can help overcome the challenge of
limited experimental mutation datasets for ��G prediction. It is
crucial to ensure that the pre-training dataset is carefully selected
and prevent unintended information leakage to downstream
tasks, which could result in overoptimistic model evaluation
results. Meanwhile, when predicting PPI ��G using machine
learning or deep learning algorithms, it is also important to

consider the impact of amino acid mutations on protein structure
[15]. Mutant structures are able to provide valuable insights into
how the amino acid substitution affects the protein structure,
which can serve as input to these algorithms to predict the ��G.
Many methods are available for generating the mutant structures,
including empirical models (FoldX [12]), homology modeling
(MODELLER [26], SwissModel [27]) and deep learning methods
(AlphaFold2 [28]), among others. Each method has its strengths
and limitations, and the choice of method can affect the accuracy
of the mutant structure and, subsequently, the ��G prediction.
Therefore, it is crucial to carefully evaluate and compare different
methods and choose the most appropriate method for a given PPI
system.

To summarize, a more efficient and sufficient characterization
and learning of comprehensive geometric relationships within PPI
systems (in which the mutant structures are unknown), under
insufficient labeled PPI ��G data, is needed. We solved these
issues by introducing a flexible geometric equivariant graph neu-
ral network framework MpbPPI, for the precise prediction of PPI
��G resulting from single and multiple missense mutations.
Specifically, to capture more comprehensive PPI geometric infor-
mation, we designed two types of residue-level contact graphs
that include the different-scale geometric interactive relation-
ships between residues, between side chain atoms and between
side chain atoms and residue backbone atoms. To better utilize
unlabeled PPI structures to produce low-dimensional protein–
protein complex representations with good generalization for
limited number of downstream samples, we first proposed a geo-
metric equivariant encoder (GEE) contained in MpbPPI to encode
the above contact graphs, and it will learn effective PPI geometric
regulations through our specially designed multitask pre-training
technique performed on a strictly screened pre-training dataset.
Furthermore, MpbPPI serves as a framework compatible with
multiple mutant generation tools, enabling flexible handling of
mutant structures including ones led by multiple missense muta-
tions.

We conducted extensive experiments on MpbPPI to evaluate its
performance in conjunction with three distinct mutation struc-
ture generation tools: FoldX, MODELLER and AlphaFold2. Our
approach achieved state-of-the-art performance on three single
mutation datasets and one more challenging multiple muta-
tions dataset under two realistic evaluation settings. The results
demonstrate that MpbPPI is a promising approach for predicting
protein–protein binding affinity alterations caused by AA muta-
tions.

The rest of the paper is organized as follows. We first provide
the overall description of our proposed framework in Overview of
MpbPPI section. The details of our experiments are given in the
Results section. The analysis about the extension and flexibility
of MpbPPI is elucidated in the Discussion section, and the detailed
model implementation information is laid out in the Methods
section.

RESULTS
Overview of MpbPPI
As an overview (Figure 1), MpbPPI fully learns the geometric
regulations of protein–protein complexes based on the pre-
training dataset (composed of protein complexes sharing both a
low topological similarity and sequence identity to the complexes
in the downstream datasets, details on the data collection can
be found in Supplementary Material), by first generating two
types of residue-level contact graphs that characterize different
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Figure 1. The flowchart of the MpbPPI framework. For each pre-training and downstream sample point, MpbPPI generates the residue-level KNN and
radius contact graphs, which contain different-scale residue backbone and side chain geometric information of the corresponding protein–protein
complex structure (see Methods section for details). In the pre-training phase (A), the proposed GEE encoder learns the geometric regulations of protein–
protein complexes through our defined four geometric property-related denoising/recovery tasks. After that, MpbPPI uses a GBT-based decoder to predict
PPI ��G for a WT–MT complex pair based on their encoded representations (B).

inter-residue geometric interactive relationships. Specifically, for
each protein–protein complex in our strictly screened pre-training
dataset, MpbPPI creates both a residue-level K-nearest neighbor
(KNN) and radius contact graphs that contain both residue
backbone and side chain atom-related geometric information (see
Methods section for details). The graph structure of two contact
graphs is used to model the relatively large-scale residue-level
geometric relationships, while the residue backbone and side
chain atom geometric information within it (as residue graph
node features) are used to sufficiently capture the relatively
small-scale complex interactive relationships between various
atoms in a single residue.

Next, to better facilitate the learning of geometric regulations
of the PPI structures, we devised four pre-training tasks (to be
performed simultaneously) for the protein geometric equivariant
encoder (GEE) of MpbPPI, including (residue) backbone denoising,
side chain denoising, solvent-accessible surface area (SASA) pre-
diction and AA type prediction. Intuitively, multiple pre-training
objectives aiming at learning geometric properties of individual
residues themselves from different perspectives will encourage
the GEE to capture the comprehensive interactive relationships
within a complex, which is ultimately beneficial to generate high-
quality PPI structural representations for downstream analyses.
Based on this intuition, we corrupted the contact graphs of each
pre-training protein–protein complex by adding noise to the 3D
coordinates of the randomly chosen residue backbone and side
chain atoms, and the corrupted graphs were sent to the GEE to
perform the multi-task pre-training.

After the pre-training, MpbPPI first generates the aforemen-
tioned contact graphs for the WT and corresponding mutant
complexes (which are from various mutant generation tools)
of each sample point in the downstream ��G dataset. Based
on employing message passing to propagate different-scale

geometric information within the contact graphs (Figure 2C), GEE
encoder produces the low-dimensional structural representation
for comparing the geometric difference between WT and mutant
complexes. Finally, MpbPPI employs the gradient-boosting trees
(GBT), which is an ensemble predictor specialized at handling
overfitting, to predict the PPI ��G for a WT–MT complex pair
from the generated representation.

The overall diagram further illustrating the data flow of MpbPPI
and how its components are linked is shown in Figure 2, and more
details and explanations of the whole MpbPPI framework can be
found in the Methods section.

MpbPPI yields accurate PPI ��G prediction
To comprehensively compare MpbPPI with other existing advanced
approaches, we considered three single AA site mutation
benchmark datasets, including single-point mutations in the AB-
Bind dataset [29] (S645), non-redundant interface single-point
mutations in the SKEMPI dataset [11] (S1131) and single-point
mutations in the SKEMPI2 dataset [18] (S4169). We also incor-
porated one more challenging benchmark dataset that contains
multiple-point AA mutations (as multiple-point mutations could
bring more complex PPI system conformation changes compared
with single-point mutations): complete sample points of the AB-
Bind dataset [30], denoted as M1101.

Mutation-level cross-validation results
Based on the above four datasets, following the convention, we
first performed the 10-fold cross-validation splitting data based
on mutation sample points and used mean Pearson’s correlation
coefficient (RP) as the main evaluation metric [1]. In other words,
all mutation sample points in each dataset will be uniformly split
into 10 folds for the 10-fold cross-validation. In addition, for each
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Figure 2. Panel (A) illustrates the MpbPPI data flow in the pre-training phase. In this phase, the pre-training protein–protein complex (residue number:
N) represented by the KNN (edge number: EK) and radius contact graphs (edge number: ER) is sent to a five-layer GEE encoder. Based on message
propagation, the encoder outputs updated embeddings of every residue node in current complex, which will be sent to four multi-layer perceptions
(MLPs) specific to different pre-training tasks simultaneously, for guiding the model optimization. The input/output dimensions of each intermediate
layer are shown around this layer. For downstream ��G prediction phase (B), WT and mutant PPI structures represented by the same type of contact
graphs as above are sent to the trained GEE to produce separate residue node embedding sets, which are then sent to the GBT-based decoder to predict
the final ��G for current sample point (see Methods section). Panel (C) illustrates the basic message propagation scheme in each GEE layer, in which
the similar operations will be performed to each (central) residue node in the protein–protein complex.
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Table 1. Comparison of the RP of the baseline methods on downstream PPI ��G datasets (the results of GeoPPI [15], TopNetTree [1],
DGCddG [22], PerSpect-EL [21] are the 10-fold cross-validation results reported in their original papers)

S645 RP M1101 RP

MpbPPI-FoldX 0.615 ± 0.013 MpbPPI-FoldX 0.787 ± 0.002
MpbPPI-MODELLER 0.598 ± 0.006 MpbPPI-MODELLER 0.780 ± 0.001
MpbPPI-AlphaFold2 0.577 ± 0.015 MpbPPI-AlphaFold2 0.765 ± 0.005
DGCddG – DGCddG –
PerSpect-EL 0.590 PerSpect-EL –
GeoPPI 0.650 GeoPPI 0.780
TopNetTree 0.650 TopNetTree –
FoldX 0.271 FoldX 0.273
Flex ddG 0.067 Flex ddG 0.059
MM/GBSA 0.039 MM/GBSA 0.018

S1131 RP S4169 RP

MpbPPI-FoldX 0.865 ± 0.003 MpbPPI-FoldX 0.795 ± 0.004
MpbPPI-MODELLER 0.847 ± 0.002 MpbPPI-MODELLER 0.782 ± 0.005
DGCddG 0.848 DGCddG –
PerSpect-EL 0.853 PerSpect-EL –
GeoPPI 0.850 GeoPPI 0.780
TopNetTree 0.850 TopNetTree 0.790
FoldX 0.423 FoldX 0.326
Flex ddG 0.217 Flex ddG 0.136
MM/GBSA 0.303 MM/GBSA 0.164

The bold data indicate the best result under current evaluation metric and dataset. Due to the high computational cost of AlphaFold2 (the computational cost
analysis of the mutant generation tools is provided in Discussion), we tested performance of MpbPPI-AlphaFold2 based on the relatively smaller S645 and
M1101 datasets.

dataset, we ran such 10-fold cross-validation five times indepen-
dently. For each repeat, the whole dataset was randomly shuffled
to make different mutation sample points enter each fold, and we
reported the average results of these independent runs. Under this
evaluation setting, in order to examine the performance of MpbPPI
based on different mutant structure generation tools, we created
three variants of MpbPPI with different suffixes indicating the
mutant complex source (i.e. MpbPPI-FoldX, MpbPPI-MODELLER,
MpbPPI-AlphaFold2, the detailed description of mutant complex
generation is in Supplementary Material), and compared them
with seven baseline methods for PPI ��G predictions, including
GeoPPI [15], TopNetTree [1], DGCddG [22], PerSpect-EL [21], FoldX
[12], Rosetta macromolecular modeling suite (Flex ddG) [31] and
MM/GBSA [32–34]. The former four methods are representative
advanced geometric-based machine learning methods, while the
latter three are mainstream energy-based methods. The detailed
description of these methods can be found in Supplementary
Material.

Our experimental results are shown in Table 1, in which the
results of GeoPPI [15], TopNetTree [1], DGCddG [22] and PerSpect-
EL [21] were obtained from the original papers. We also reported
more experimental results, including the root-mean-square error
(RMSE) and mean absolute error (MAE) of our method and addi-
tional analysis, in Supplementary Table 2 and Supplementary Fig-
ures 1 and 2. In summary, based on the five times of inde-
pendent runs of the 10-fold cross-validation, MpbPPI (MpbPPI-
FoldX) achieved overall better performance compared with other
competitive methods, while only on the S645 dataset, the second-
best result was achieved. Another important advantage of MpbPPI
is that it can tackle multiple-point mutation cases more easily
because of its flexibly direct input of the mutant structure (graph)
from various sources.

In addition, for MpbPPI (MpbPPI-FoldX), when compared with
GeoPPI, another geometric property pre-training-based method,
under the strict pre-training sample screening and the same

GBT predictor (see Methods), MpbPPI still overall outperformed
it on the relatively larger single- and multiple-mutation datasets.
This further demonstrated the effectiveness of the proposed
different-scale geometric encoding framework and corresponding
pre-training tasks. Interestingly, MpbPPI-FoldX consistently
outperformed MpbPPI-MODELLER and MpbPPI-AlphaFold2, which
indicated that under current PPI ��G prediction benchmark
datasets, FoldX could be a more appropriate tool as the source of
mutant PPI protein–protein structures (the further analysis about
these generation tools are provided in Discussion). Furthermore,
in Supplementary Material, we provided extra experimental
results about (i) directly correlating the difference between
sequence representations of the mutant and wild-type complexes
to the PPI ��G value, and (ii) reproducing results of some
representative baseline methods based on available information
(Supplementary Table 1).

The effectiveness of devised geometric characteristics and
their pre-training tasks
Based on the best-performing model MpbPPI-FoldX, under the
same experimental and evaluation setting as the last section,
we conducted the ablation study to discuss the effectiveness
of our devised geometric characteristics and corresponding
pre-training tasks. Specifically, we compared different vari-
ants of MpbPPI-FoldX, including MpbPPI (Backb+AA), MpbPPI
(Backb+Sidec+AA), MpbPPI (Backb+SASA+AA) and MpbPPI
(Backb+Sidec+SASA+AA), in which the suffixes represent
different combinations of the used geometric characteristics
plus their pre-training techniques (in other words, each suffix
represents the presence of the corresponding residue node feature
and pre-training task). Besides, to demonstrate the effectiveness
of the auxiliary AA prediction task, we removed this prediction
task from MpbPPI (Backb+Sidec+SASA+AA) and also put this
variant into the comparison [denoted as MpbPPI (w/o AA)].
The evaluation results of these variants on each dataset are
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Table 2. Comparison of the RP of five MpbPPI-FoldX variants on
each downstream dataset (the results of MpbPPI-FoldX variants
were reported based on the average of five times of the
independent 10-fold cross-validation executions)

S645 RP

MpbPPI (Backb+Sidec+SASA+AA) 0.615 ± 0.013
MpbPPI (Backb+SASA+AA) 0.575 ± 0.016
MpbPPI (Backb+Sidec+AA) 0.549 ± 0.008
MpbPPI (Backb+AA) 0.507 ± 0.016
MpbPPI (w/o AA) 0.613 ± 0.013

M1101 RP

MpbPPI (Backb+Sidec+SASA+AA) 0.787 ± 0.002
MpbPPI (Backb+SASA+AA) 0.761 ± 0.007
MpbPPI (Backb+Sidec+AA) 0.755 ± 0.005
MpbPPI (Backb+AA) 0.738 ± 0.003
MpbPPI (w/o AA) 0.785 ± 0.002

S1131 RP

MpbPPI (Backb+Sidec+SASA+AA) 0.854 ± 0.002
MpbPPI (Backb+SASA+AA) 0.865 ± 0.003
MpbPPI (Backb+Sidec+AA) 0.848 ± 0.003
MpbPPI (Backb+AA) 0.838 ± 0.003
MpbPPI (w/o AA) 0.831 ± 0.003

S4169 RP

MpbPPI (Backb+Sidec+SASA+AA) 0.793 ± 0.003
MpbPPI (Backb+SASA+AA) 0.795 ± 0.004
MpbPPI (Backb+Sidec+AA) 0.775 ± 0.003
MpbPPI (Backb+AA) 0.766 ± 0.004
MpbPPI (w/o AA) 0.766 ± 0.003

The bold data indicates the best result under current evaluation metric and
dataset.

shown in Table 2 (we also reported the RMSE and MAE results
in Supplementary Table 3).

From the results we found that, compared with MpbPPI
(Backb+AA) that did not use any explicit characteristics depicting
geometric relationships between side chain atoms and between
side chain and residue backbone atoms, the inclusion of side
chain denoising and SASA prediction pre-training tasks (and cor-
responding features, see Methods) i.e. MpbPPI (Backb+Sidec+AA)
and MpbPPI (Backb+SASA+AA) improved the performance.
This clearly demonstrated the importance of our designed two
types of side chain-related geometric learning pre-training tasks
(and corresponding features). Besides, the performance margin
between MpbPPI (w/o AA) and MpbPPI (Backb+Sidec+SASA+AA)
illustrates the effectiveness of the auxiliary AA prediction task.
Furthermore, as for the best-performing combination under the
current experimental setting, it could vary for different datasets
e.g. the combination of Backb+SASA+AA achieved the best result
on S4169, but for S645, M1101 and S1131, the best combinations
were Backb+Sidec+SASA+AA, Backb+Sidec+SASA+AA and
Backb+Sidec+AA, respectively.

The prediction results in the more challenging test scenario
In this section, we further tested the generalization capability of
MpbPPI through a WT protein–protein complex type-based data
splitting setting. Specifically, to better examine the model per-
formance on previously unseen WT protein–protein complexes
(the training and test sample points in the above mutation-level
cross-validation may share relatively more WT protein–protein
complex types), we devised a data-splitting method in which

original sample points were split into five folds and there was
no intersection of WT protein–protein complex types between
any of the two folds. We strived to make the both sample total
number and WT protein–protein complex type number assigned
to each fold to be as close as possible. Furthermore, we performed
5-fold cross-validation based on this data splitting scheme, in this
case, the model cannot see any WT protein–protein complexes
(types) in the test set during the training phase, which enables
model performance examination in the more realistic application
scenario. We performed such data splitting five times, for each
repeat, making different WT protein–protein complex types enter
each fold, and we reported the averaging results of these five
times of independent (5-fold) cross-validation runs. A detailed
description of the above data splitting can be found in Supple-
mentary Material. For performance comparison, we considered
available GeoPPI, FoldX, Flex ddG and MM/GBSA. For GeoPPI, for a
fair comparison, we used its original released pre-trained encoder
and GBT hyper-parameters on S4169 to reproduce the results on
the S4169 dataset based on the same data splitting. In addition, to
investigate the better MpbPPI setting in this challenging scenario,
we included both MpbPPI (Backb+Sidec+SASA+AA) and MpbPPI
(Backb+SASA+AA) since they achieved the best results on differ-
ent downstream datasets in the last section.

Our comparative study showed that [see Figure 3, in which
MpbPPI (Backb+Sidec+SASA+AA) and MpbPPI (Backb+SASA+AA)
were abbreviated as MpbPPI_BSSA and MpbPPI_BSA separately;
the RMSE and MAE results are reported in Supplementary Table 4],
MpbPPI exhibited more accurate predictive capability when facing
previously unseen WT protein–protein complexes, which can fur-
ther demonstrate the effectiveness of our method. Furthermore,
we observed that MpbPPI_BSSA outperformed MpbPPI_BSA on
all downstream datasets (the performance margins were 20, 7.3,
24 and 13% on S645, M1101, S1131 and S4169 for RP, respec-
tively), indicating that the integration of a combination of the
two devised side chain-related geometric characteristics can bring
better model generalization in current task setting. Based on this,
we recommend adopting MpbPPI (Backb+Sidec+SASA+AA) in an
actual application setting.

DISCUSSION
Mutations can alter the formation of protein complexes by
enhancing or inhibiting interactions between proteins. This, in
turn, affects various functions in the body, including catalyzing
chemical reactions, transporting molecules and transmitting
signals. Gaining insights into how mutations influence protein–
protein interactions can help us understand the development
and progression of diseases, ultimately leading to the creation
of more effective treatments (the further example can be found
in the illustrative example of the predicted outcomes of MpbPPI
section of the Supplementary Material).

Computational modeling of changes in binding free energy
(��G) resulting from mutations allows for the prediction and
manipulation of PPIs on a large scale. In this study, to better learn
complete geometric regulations for limited numbers of down-
stream PPI ��G samples from the proper pre-training dataset, we
established a novel pre-training-based computational framework
MpbPPI. MpbPPI can effectively evaluate the impact of single and
multiple missense AA mutations on PPI binding affinity based on
more comprehensive and computationally inexpensive geometric
characteristics and flexible adapt to multiple mutant generation
tools, which could provide valuable insights into the potential
consequences of mutations on protein–protein interactions.
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Figure 3. MpbPPI outperformed other involved methods for PPI ��G prediction under the five-time WT protein–protein complex-based cross-
validations. We reported the experimental results on each dataset based on the main evaluation metrics RP. For the machine learning-based methods,
the results were expressed as mean ± SD, while for the empirical energy-based methods, the results were expressed as the mean value. MpbPPI
(Backb+Sidec+SASA+AA) and MpbPPI (Backb+SASA+AA) were abbreviated as MpbPPI_BSSA and MpbPPI_BSA.

Recent advances in the PPI ��G prediction methods, par-
ticularly the geometric GNN-based methods [15, 22], have sig-
nificantly improved the predictive accuracy and stability. How-
ever, many methods focus on modeling single residue-wise con-
tact relationships or inter-atom interactive relationships, omitting
more comprehensive geometric relationships between different
constituents in protein–protein complexes. Our MpbPPI addresses
this issue by propagating specially designed different-scale geo-
metric interactive information between residues, between side
chain atoms, and between side chain and residue backbone atoms
based on a new geometric equivariant message passing network.
In addition, the scarcity of labeled PPI ��G data presents a
significant challenge. To overcome it, based on a strictly screened
pre-training set for avoiding potential information leakage, we

proposed four pre-training tasks to be performed simultaneously,
which are compatible with the above different-scale geometric
information, to improve MpbPPI’s generalization to unseen down-
stream samples. The robust predictive ability of the proposed
geometric characteristics learning framework and corresponding
pre-training tasks has been extensively validated on four bench-
mark datasets and compared with seven different methods under
two realistic evaluation settings (the further discussion of some
other optional features is provided in Supplementary Material).

Furthermore, accurate prediction of PPI ��G usually requires
the availability of the PPI mutant structure, which can be gener-
ated using various methods. To satisfy this, MpbPPI was designed
to flexibly fit the mutant structures from different sources. In
this study, we used three tools to build mutant structures: FoldX,
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Figure 4. Comparison of mutant PPI structures from various mutant generation tools. An example of the structural differences between WT and mutant
structures (PDB ID: 1AK4). The WT structure and mutant structures generated by FoldX, MODELLER and AlphaFold2 are shown in different colours for
better identification. The mutant amino acid and its neighboring amino acids’ backbone and side chain are represented as sticks, with the mutant
amino acid highlighted in surface style. The Cα RMSD values between the WT and mutant structures were 0 Å for FoldX, 0.3 Å for MODELLER and 3.8 Å
for AlphaFold2.

MODELLER and AlphaFold2. FoldX substitutes and optimizes orig-
inal residue structure based on the given wild-type complex,
MODELLER generates the structure through homology modeling
and AlphaFold2 can predict the protein structure from scratch.
Our research found that when MpbPPI is combined with the
three mutation structure generation tools FoldX, MODELLER and
AlphaFold2, each combination achieves good prediction results.
There is a strong positive correlation between the predicted and
measured PPI ��G values. Specifically, based on the 10-fold cross-
validation, for the smallest single mutation dataset, each combi-
nation of tools achieved a RP greater than 0.57. For the multiple-
mutation dataset, each combination of tools achieved a RP more
than 0.76. These findings further confirmed MpbPPI is a depend-
able and efficient method for predicting PPI ��G. Moreover, it can
serve as a foundational framework and be flexibly combined with
various mutation generation tools to improve the accuracy of PPI
��G predictions.

Our results also showed that the FoldX-based MpbPPI
prediction outperformed the MODELLER-based prediction, with
the AlphaFold2-based prediction yielding the worst results. We
observed that, compared with the WT structures, the mutant
structures generated by FoldX mainly exhibited conformational
changes in the side chain of the mutant residue and their
neighboring residues (Figure 4). Meanwhile, MODELLER-based
mutant structures showed slight alterations in both the side
chain and backbone of the mutant residue and their neighboring
residues (Figure 4). AlphaFold2 displayed the largest variations,
with the Cα root-mean-square deviation (RMSD) between the
WT and AlphaFold2-based mutant structures ranging from 0.7
to 40.6 Å in the M1101 dataset. Among these, the mutation
structures generated by AlphaFold2 exhibit larger conformational
changes, providing a wider learning space for the model. However,
this also increases the prediction complexity, necessitating more
data during training to improve the model’s prediction accuracy.

Besides, for FoldX and MODELLER, a mutant structure usually
can be generated within 1–2 minutes, while AlphaFold2 needs
an average of dozens of minutes. Therefore, when considering
the conformational changes after protein mutations, striking a
balance between the prediction complexity and the amount of
training data is needed to achieve better prediction accuracy.

A future direction of our work is to include more flexible bio-
chemical and evolutionary information compatible with existing
different-scale geometric characteristics and pre-training tasks.
We plan to incorporate the features like the multiple types of
PPI interface information, to make our framework able to better
adapt to some more specific application scenarios, for example,
predicting the PPI ��G in the case that most of the AA mutations
occur at the interface of protein–protein complexes.

METHODS
Generation of the refined residue-level contact
graphs for protein–protein complexes
Before the generation of the residue-level contact graphs, to
ensure that each residue node contains complete atom geometry
coordinate information, we used FoldX to complete all side chains
(based on raw PDB files) in both the pre-training and downstream
sets. At the same time, all H atoms were removed from these PDB
files.

We then modeled a given PPI complex as a residue contact
graph G = (V ,E), where V is the set of residues in the PPI complex
(the position of each residue node is determined by its Cα 3D
coordinate) and E is the set of edges between them. The procedure
for defining E is outlined below:

In order to capture more comprehensive interactive relation-
ships for residue nodes in G (i.e. considering different inter-residue
geometric contact relationships with different edge distributions
[35]), we defined an independent K-nearest neighbor (KNN) graph
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GK = (
VK,EK

)
(where each node i connects other K nodes nearest

to it, based on the Euclidean distance between node position
coordinates) and a radius graph GR = (

VR,ER
)

(where each node i
connects all other nodes within a R-radius 3D sphere centered at
i) for each protein–protein complex. For each GK and GR, K and
R are set to 20 and 10 Å, and every residue node i in both GK

and GR is equipped with two coordinate sets CB
i and CS

i containing
the backbone atom (N, Cα, C, O) coordinates and side chain atom
coordinates (removing H), respectively (for a given residue, in both
KNN and radius graphs, the contained residue nodes and initial CB

i

and CS
i are the same).

Graph node features
In order to generate (initial) residue node and edge features fi and
f(i,j) for G, we first calculated the centroid of G based on its all
raw backbone atom (N, Cα, C, O) coordinates, and preliminarily
normalized all the backbone and side chain coordinate sets by
subtracting the calculated centroid coordinate value (to get CB′

and CS′
, representing all backbone and side chain atom sets in

current G). Next, in order to fully characterize the geometric
relationships between side chain atoms and between side chain
and residue backbone atoms within the residue i from different
perspectives, node features fi were defined by concatenating the
following seven feature sets:

• The centroid of side chain atoms (vector)
• The center of mass of side chain atoms (vector)
• The maximum coordinate value of side chain atoms (vector)
• The unit vector of Cα−side chain geometric relationships

(vector)
• The normalized Cα coordinate (vector)
• Solvent-accessible surface area (SASA) (scalar)
• Residue interface information (scalar)

The detailed calculation description and meaning of these
features are provided in Supplementary Material.

Other than the above seven types of residue node features,
we also added five additional node features for providing AA
sequence information and close neighboring relationships of a
residue, in which Cα

′
i and Cβ

′
i represent the Cα and Cβ coordinate

of residue i after the preliminary centroid-based normalization:

• The amino acid (AA) type, given as a one-hot representation
(scalar)

• Chain index (scalar)
• Sine–cosine encoded dihedral angles (scalar)
• Unit vector encoding of the Cα

′
i close neighbors (vector)

• Unit vector encoding of the Cα
′
i − Cβ

′
i orientation (vector)

Graph edge features
To create edge features f(i,j) capturing interactive contact relation-
ships between residue nodes in current G [here denoting edges
from nodes j to i as

(
i, j

)
], we concatenated the following feature

sets:

• The unit vector in the direction of Cα
′
j − Cα

′
i (vector)

• Euclidean distance encoding between Cα
′
j and Cα

′
i based on

the Gaussian radial basis functions (scalar)
• Sine–cosine encoded j − i node index (scalar).

For the sine–cosine and Gaussian radial basis encoding meth-
ods, we suggest referring Jing et al. for the detailed description
[36].

For the scalar and vector features of a residue node i, we con-
catenated them separately, to produce the node scalar features f S

i

(R ∈ V × 29), node vector features fV
i (R ∈ V × 9 × 3), edge scalar

features f S
(i,j)

(R ∈ E × 32, from residue node j to i) and edge vector

features fV
(i,j)

(R ∈ E × 1 × 3, from residue node j to i), which will

be encoded by our GEE layers (as the input) independently. Please
note that due to the different generation principles of geometric
interactive edges, the edge features of residue i in the KNN and
radius contact graphs are different (while the initial node features
are exactly the same in the two graphs).

The GEE encoder and its pre-training techniques
The equivariance property is of importance in protein-related
representation learning based on machine learning. Specifically,
for a protein structure, its learned representation should not be
sensitive to the imposition of protein’s rigid motions (e.g. extra
translation to original protein 3D coordinates) because the physi-
cal law controlling the dynamics of molecules is not influenced
by such motions [37–39]. In order to incorporate such a prop-
erty into our framework flexibly, we considered employing an
equivariant-based graph neural network (GNN) backbone GVP-
GNN [36], which uses a message passing strategy [40] for geomet-
ric neighbor-based learning of (residue) node-level representa-
tions. However, GVP-GNN cannot effectively process the heteroge-
neous graphs in which nodes or edges could have multiple types,
and so unable to satisfy our requirement of performing the KNN
and radius graph learning simultaneously (the original equations
of GVP-GNN are provided in Supplementary Material). To solve
this problem, we extended GVP-GNN into a multi-relational mode
as follows to create our geometric equivariant encoder (GEE)
layer (in which the superscripts KNN and radius represent the
feature/message specific to corresponding contact graphs sepa-
rately):

fKNN_message

(i,j)
= GVP

(
concat

(
f (S,V)

j , fKNN(S,V)

(i,j)

))
(1)

f radius_message

(i,j)
= GVP

(
concat

(
f (S,V)

j , f radius(S,V)

(i,j)

))
(2)

fKNN_aggregation
i = mean

⎛
⎝ ∑

j:edges of j to i ε E in KNN graph

fKNN_message

(i,j)

⎞
⎠ (3)

f radius_aggregation
i = mean

⎛
⎝ ∑

j:edges of j to i ε E in radius graph

f radius_message

(i,j)

⎞
⎠

(4)

f (S,V)

i = LayerNorm
(
f (S,V)

i + Dropout
(
concat

(
fKNN_aggregation

(i,j)
,

f radius_aggregation

(i,j)

)))
(5)

f (S,V)

i = Layernorm
(
f (S,V)

i + Dropout
(
GVP

(
f (S,V)

i

)))
(6)

Here, we adopted the notation f (S,V)

j and f (S,V)

(i,j)
to refer to the

tuples of f S
j and fV

j and the tuples of f S
(i,j)

and fV
(i,j)

, respectively.

GVP is a special neural network module which is mathematically
demonstrated to be insensitive to 3D rigid motions [36]. fmessage

(i,j)
represents the message representation flowing/aggregating from
residue node j to i during message passing. Intuitively, the mes-
sage passing of geometric characteristics with different scales in
different PPI contact graphs could generate enough powerful rep-
resentation for the downstream PPI ��G predictions. In addition,
we stacked five GEE layers [i.e. Equations (1)–(6)] to constitute the
GEE encoder to increase its ability to non-linear fitting, and the
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hidden feature dimensions for f S
j , fV

j , f S
(i,j)

, fV
(i,j)

in each layer were

the same i.e. 256, 16, 32, 1, respectively (Figure 2A and B).
Based on the above GEE encoder and the designed contact

graphs for each protein–protein complex in our strictly screened
pre-training set, our multi-task pre-training strategy was devised,
in which the backbone denoising, side chain denoising, SASA
prediction and AA type prediction tasks were included, which
will be performed simultaneously. Intuitively, setting multiple pre-
training tasks, which share closely related geometric informa-
tion of the residues themselves, could be beneficial to captur-
ing comprehensive interactive contact relationships (regulations)
within a protein–protein complex. Due to the page limitation,
please see the detailed description and meaning of these tasks
in Supplementary Material. Concisely, for each protein–protein
complex in the pre-training set, we first randomly selected 15% of
its residues and set a (boolean) mask to these residues. For these
masked residues, we added noise to their backbone and side chain
atom coordinates to corrupt the complex’s overall conformation,
and then the corrupted conformation (information) was used to
recover the complex’s corresponding ground truth conformation
or properties (based on the task-specific multi-layer perceptions).

Besides, according to the ground truth to be recovered, the loss
functions measuring the model reconstruction errors were mean
square error MSE (for backbone denoising, MSECα), MSE (for side
chain denoising, MSESidec), MSE (for SASA prediction, MSESASA) and
binary cross-entropy BCE (for AA type prediction, BCEAA), respec-
tively. To summarize, we can perform the above four pre-training
tasks simultaneously in an end-to-end fashion (Figure 2A). The
overall learning objective for guiding the model optimization is
formulated as follows, and the Adam [41] with the initial learning
rate of 0.001 is adopted as the corresponding optimizer:

�overall = MSECα + MSESidec + MSESASA + BCEAA (9)

Furthermore, the choice of the masked residues and magni-
tude of noise (the details of noise injection is in Supplementary
Material) is selected ‘on-the-fly’. In other words, for every epoch
in the pre-training, both the masked residues and magnitude
of added noise will be determined again, in order to allow the
model to see complexes with more diversities during training. The
numbers of epochs and early stopping steps were set to 100 and
30, respectively.

For the implementation of the GEE encoder, Pytorch [42] with a
default random seed 1234 was employed, and it was trained on a
configuration of one NVIDIA A100 GPU.

The prediction of downstream PPI ��G
After pre-training, the GEE encoder has learned how to provide an
effective structural representation of a protein–protein complex
with good generalization, which can be used for the downstream
��G prediction task (Figure 2B). Specifically, for one PPI AA muta-
tion sample point, we first constructed its KNN and radius contact
graphs for the WT and MT 3D complex structures (produced by
molecular generation tools), respectively. After that, the interface
residues under the WT status were found based on the inter-
faceResidue function in PyMOL [43] (detailed in Supplementary
Material), denoted as Sinterface, and we marked current mutation
residues as Smutation. Next, the contact graphs of the WT and MT
complexes are sent to the trained GEE encoder, to acquire two
groups of residue representations for the whole WT (denoted as
RWT) and MT (denoted as RMT) structures, respectively.

After acquiring RWT and RMT, following Liu et al. [15], we
leveraged gradient-boosting trees (GBT) as the final ��G

decoder/predictor due to its good capability to effectively handle
high-dimensional features and overcome overfitting under
relatively small datasets. To get the informative input of GBT,
we generated the following representations for comparing the
geometric difference between WT and MT structures from
different perspectives:

• Max-pooling and mean-pooling of representations of muta-
tion sites in WT complex: max _pooling

(
RWTε Smutation

)
and

mean_pooling
(
RWTε Smutation

)
.

• Max-pooling and mean-pooling of representations of inter-
face sites in WT complex: max _pooling

(
RWTε Sinterface

)
and

mean_pooling
(
RWTε Sinterface

)
.

• Max-pooling and mean-pooling of representations of muta-
tion sites in MT complex: max _pooling

(
RMTε Smutation

)
and

mean_pooling
(
RMTε Smutation

)
.

• Max-pooling and mean-pooling of representations of inter-
face sites in MT complex: max _pooling

(
RMTε Sinterface

)
and

mean_pooling
(
RMTε Sinterface

)
.

• The difference between the mutation sites in WT and MT
complexes: max _pooling

(
RWTε Smutation

) − max _pooling(
RMTε Smutation

)
and mean_pooling

(
RWTε Smutation

) − mean_
pooling

(
RMTε Smutation

)
.

• The global geometric representation of MT complex:
mean_pooling

(
RMT

)
.

Above representations will be concatenated together and sent
to the GBT decoder, and the output of GBT is the final predicted PPI
��G representing the binding affinity/binding free energy change
from wild-type to mutant status (i.e. �GWT−�GMT). In addition, for
the selection of GBT hyper-parameters, the learning rate, number
of sub-estimators and maximum depth of sub-estimators are set
to 0.001, 5 × 104 and 6, respectively. The implementation of this
GBT was based on the scikit-learn library [44]. An overall summary
of tools for implementing MpbPPI is provided in Supplementary
Material.

Key Points

• We introduce MpbPPI, a flexible geometric equivari-
ant graph neural network framework, which effec-
tively propagates specially designed different-scale geo-
metric relationship characteristics of both wild-type
and mutant protein–protein complexes, providing high-
quality low-dimensional representations for protein–
protein interaction (PPI) ��G predictions caused by
amino acid site mutations.

• To facilitate MpbPPI learning multi-scale geometric reg-
ulations of protein–protein complexes, we devise four
pre-training tasks aiming at learning the geometric prop-
erties of individual residues themselves from different
perspectives, for forcing MpbPPI to capture the com-
prehensive geometric regulations based on a strictly
screened protein complex pre-training dataset.

• MpbPPI can flexibly accept the mutant structures
from various generation tools (e.g. FoldX, MODELLER,
AlphaFold2) as the model input, allowing the evaluation
and comparison of different generation tools to choose
the most appropriate method for a given PPI system.

• The effectiveness of MpbPPI on predicting PPI ��G has
been extensively validated on four benchmark datasets
under two realistic evaluation settings.
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