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We discover a deep connection between parity-time symmetric optical systems and quantum transport in
one-dimensional fermionic chains in a two-terminal open system setting. The spectrum of one dimensional
tight-binding chain with periodic on-site potential can be obtained by casting the problem in terms of 2 × 2

transfer matrices. We find that these non-Hermitian matrices have a symmetry exactly analogous to the
parity-time symmetry of balanced-gain-loss optical systems, and hence show analogous transitions across
exceptional points. We show that the exceptional points of the transfer matrix of a unit cell correspond to
the band edges of the spectrum. When connected to two zero temperature baths at two ends, this
consequently leads to subdiffusive scaling of conductance with system size, with an exponent 2, if the
chemical potential of the baths are equal to the band edges. We further demonstrate the existence of a
dissipative quantum phase transition as the chemical potential is tuned across any band edge. Remarkably,
this feature is analogous to transition across a mobility edge in quasiperiodic systems. This behavior is
universal, irrespective of the details of the periodic potential and the number of bands of the underlying
lattice. It, however, has no analog in absence of the baths.
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Introduction and overview of results.—It is fascinating
how fundamental mathematical concepts aid in our under-
standing of physical phenomena across all scales. This
often allows us to find deep connections between seem-
ingly completely disparate physical situations. Here, we
show how a property termed pseudo-Hermiticity of non-
Hermitian matrices reveals a unique connection between
balanced-gain-loss optical systems and quantum transport
in fermionic chains.
The dynamics of two coupled optical cavities, one with

gain and the other with loss, such that the gain and loss are
perfectly balanced, is most commonly envisioned as being
governed by the so-called 2 × 2 parity-time (PT) symmetric
non-Hermitian “Hamiltonian” HPT ¼ ω0I2 þ iγσz þ gσx
[1–3]. Here, σx;y;z are the Pauli matrices, and I2 is the
2 × 2 identity matrix. This 2 × 2 non-Hermitian matrix has
the pseudo-Hermiticity property associated with the anti-
linear operator σxK, i.e., ðσxKÞHPTðσxKÞ−1 ¼ HPT, where
σx describes the parity operator and K describes the time-
reversal (complex conjugation) operator. Whenever a matrix
has such a pseudo-Hermiticity, its eigenvalues are either
purely real or occur in complex conjugate pairs [4–6]. When
the eigenvalues are real, the eigenvectors are also simulta-
neous eigenvectors of the symmetry operator σxK with
eigenvalue 1. This is termed “PT-symmetric regime.”When

the eigenvalues are complex, the eigenvectors ofHPT are no
longer simultaneous eigenvectors of the symmetry operator.
This is termed “PT-broken regime.” Transition between
these two regimes occurs at γ ¼ g, which is the exceptional
point (EP), where there is a single eigenvalue ω0 and the
matrix is not diagonalizable. The dynamics drastically
changes on transition across the EP, leading to interesting
applications and exotic physics in both classical and
quantum regimes [1–3,7–9]. This is the most paradigmatic
example of symmetries of non-Hermitian matrices gov-
erning physical systems [9–31].
In this Letter, we explore the effects of a similar

transition occurring in a different kind of non-Hermitian
matrix that appears in scattering theory: the transfer matrix.
Unlike mostly studied non-Hermitian matrices, transfer
matrices do not directly govern the dynamics of the system.
They instead play a fundamental role in determining the
spectrum of the Hamiltonian of the system. The band
structure of nearest neighbor fermionic chains with periodic
on-site potentials can be obtained by casting the problem in
terms of 2 × 2 transfer matrices [32–34]. We note that each
such transfer matrix can be transformed to the form of
HPT via a unitary transformation U. Consequently, the
transfer matrices have a pseudo-Hermiticity, associated
with the antilinear operator S ¼ UσxKU†. So, similar to
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HPT, they show transitions across EPs from S-symmetric to
S-symmetry-broken regimes.
We find that the EPs of the transfer matrix of a unit cell of

the system correspond to the band edges. When the system
is connected to two zero temperature baths at two ends (see
Fig. 1); this, in turn, leads to a subdiffusive scaling of
conductance with system size if the chemical potential μ is
equal to any band edge. The subdiffusive scaling exponent is
universal, irrespective of any further details of the periodic
on-site potential. If μ is outside any system band, the
eigenvalues of the transfer matrix are real (S-symmetric
regime), which leads to lack of transport beyond a well-
defined length scale. If μ is inside any system band, the
eigenvalues of the transfer matrix are complex (S-symmetry-
broken regime), which leads to ballistic transport. Thus, a
transition across EP occurs in the transfer matrix when
the chemical potential is tuned across a band edge.
Correspondingly, there occurs a nonanalytic change in the
zero temperature steady state transport properties of the open
system, thereby causing a dissipative quantum phase tran-
sition. Our results can be summarized in Fig. 1. This
transition occurring in the behavior of conductance as a
function of μ at every band edge is reminiscent of locali-
zation-delocalization transitions across a mobility edge
occurring in certain one dimensional quasiperiodic systems
(for example, [35–40]). We discuss the similarities and the
differences between them.
Tight-binding chain and transfer matrices.—We con-

sider a fermionic nearest neighbor tight-binding chain of N
sites with a periodic potential,

ĤS ¼
XN
l¼1

εlĉ
†
lĉl þ

XN−1

l¼1

ðĉ†lĉlþ1 þ ĉ†lþ1ĉlÞ; ð1Þ

where ĉl is the fermionic annihilation operator at site l of
the chain, and εl is a periodic on-site potential satisfying
εlþq ¼ εl. Here, q is the length of the unit cell and the
hopping parameter is set to 1, which is therefore the unit of
energy. We consider N to be an integer multiple of q. The
periodic on-site potential with unit cell of length q causes
the spectrum of the system to be separated into q bands. In
the thermodynamic limit, using Bloch’s theorem, the
energy dispersion of the bands can be obtained via solving
the following equation for ε [32–34]:

Tr½TqðεÞ� ¼ 2 cos k; ð2Þ
where k is the wave vector, −π ≤ k ≤ π, and TqðεÞ is given
by [41]

TqðεÞ¼
Yq
l¼1

TðlÞðεÞ; TðlÞðεÞ¼ ε−εl
2

ðI2þσzÞ− iσy: ð3Þ

Here, TðlÞðεÞ is the transfer matrix for site l, whereas TqðεÞ
is the transfer matrix for a single unit cell of the lattice [41].
Pseudo-Hermiticity of transfer matrices.—We carry out

the following unitary transformation on the transfer matrix
for site l, U†TðlÞðεÞU ¼ ½ðε − εlÞ=2�ðI2 þ σxÞ − iσz,
where U is the 2 × 2 unitary matrix that diagonalizes σy.
The elements of U are U11 ¼ 1=

ffiffiffi
2

p
, U12 ¼ 1=

ffiffiffi
2

p
,

U21 ¼ i=
ffiffiffi
2

p
, U22 ¼ −i=

ffiffiffi
2

p
. After the unitary transforma-

tion, TðlÞðεÞ is of the exact same form as HPT, and
therefore commutes with σxK. This, in turn means,
STðlÞðεÞS−1 ¼ TðlÞðεÞ, with S ¼ UσxKU†. Thus, transfer
matrix for each site has the same pseudo-Hermiticity.
Consequently, the transfer matrix of the unit cell, TqðεÞ,
which is obtained by multiplying transfer matrices for each
site, also has the pseudo-Hermiticity associated with S.
The existence of the pseudo-Hermiticity guarantees that

every transfer matrix has (a) a S-symmetric regime where
eigenvalues are real, and eigenvectors are simultaneous
eigenvectors of S and (b) a S-symmetry-broken regime
where the eigenvalues are complex conjugate pairs and
eigenvectors are not simultaneous eigenvectors of S. The
transition between these two regimes occurs via the EP. In
the following, we consider the EPs of the transfer matrix of
a unit cell TqðεÞ.
Band edges as EPs of transfer matrix of unit cell.—The

band edges of the system correspond to k ¼ 0;�π. So,
from Eq. (2), we see that the band edges ε ¼ εb of the
system can be obtained via solution of

�
Tr½TqðεbÞ�

2

�
2

− 1 ¼ 0: ð4Þ

Next we note that the determinant of TðlÞðεÞ, and hence
the determinant of TqðεÞ is 1. Using this, we can write
the eigenvalues of TqðεÞ as λ� ¼ f(Tr½TqðεÞ�)=2g�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f(Tr½TqðεÞ�)=2g2 − 1

q
. From Eq. (4) we immediately

FIG. 1. The top panel shows a schematic of a fermionic nearest
neighbor hopping chain, with a periodic on-site potential coupled
at two ends to two zero temperature baths at slightly different
chemical potentials, μ and μ − δμ. The table summarizes our
main result. Here, TqðμÞ is the transfer matrix of a unit cell, λ� are
its eigenvalues, GðμÞ is the conductance in the two-terminal
setting.
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see that at every band edge, there is a single eigenvalue,
either both 1 or both −1. Thus, every band edge corre-
sponds to an EP ofTqðεÞ. As we discuss below, this leads to
universal anomalous transport behavior at every band edge.
Quantum transport and transfer matrices.—We connect

the site 1 and the site N of the lattice chain to fermionic
baths, which are modeled by an infinite number of
fermionic modes. The associated bath spectral functions
are J1ðωÞ, JNðωÞ. At initial time, the baths are considered
to be at their respective thermal states with inverse temper-
ature β → ∞, and chemical potentials μ and μ − δμ, while
the system can reside at some arbitrary initial state (see
Fig. 1). We are interested in the linear response regime
where δμ is small. As long as the bath spectral functions are
continuous and the band of the bath encompass all the
bands of the system, in the long time limit, the system
reaches a unique nonequilibrium steady state (NESS) [42].
Using nonequilibrium Green’s functions (NEGF) and the

nearest neighbor nature of the system, at NESS, the zero
temperature conductance can be written as [41–44]

GðμÞ ¼ J1ðμÞJNðμÞ
2πjΔ1;NðμÞj2

; ð5Þ

whereΔ1;NðμÞ is the determinant of the inverse of the NEGF.
Nearest neighbor hoppings make inverse of the NEGF
tridiagonal. As a result, Δ1;NðμÞ can be obtained from the
following relation involving the transfer matrix [41–43]:
�Δ1;NðμÞ
Δ2;NðμÞ

�
¼
�
1 −Σ11ðμÞ
0 1

�
½TqðμÞ�n

�
1

ΣNNðμÞ

�
; ð6Þ

where n ¼ N=q is an integer, ΣllðωÞ ¼
R ðdω0=2πÞ

f½Jlðω0Þ�=ðω − ω0Þg − if½JlðωÞ�=2g, with l ¼ 1; N, and
Δ2;NðμÞ is the determinant of inverse of theNEGF in absence
of the first site.We immediately see fromEqs. (5) and (6) that
the system-size scaling of conductance is completely inde-
pendent of the type of bath spectral functions and is entirely
governed by the nature of the transfer matrix TqðμÞ.
The system-size scaling of conductance specifies the

nature of transport. In normal conductors, resistance (i.e,
inverse of conductance) is proportional to length, such that
resistivity is a well-defined property of the conductor. So,
the behavior is GðμÞ ∼ N−1 in normal diffusive transport.
Departure from this behavior means resistivity is no longer
a well-defined property of the material but depends on the
system length. This specifies other types of transport. For
ballistic transport, conductance is independent of system
length, GðμÞ ∼ N0. If GðμÞ ∼ N−δ, δ ≠ 0, 1, transport is said
to be anomalous. For 0 < δ < 1, transport is called super-
diffusive, while for δ > 1 transport is called subdiffusive.
Apart from these behaviors, conductance can decay expo-
nentially with system length, GðμÞ ∼ e−N=ξ, which shows
that there is lack of transport beyond a length scale ξ. This
behavior is seen in localized systems in presence of

disordered or quasiperiodic potentials, with ξ being the
localization length. We remark that, for anomalous trans-
port, this classification of transport behavior does not
necessarily correspond to classification of transport via
spread of density correlations in an isolated system, and
may lead to different results [45,46].
Universal subdiffusive scaling and dissipative quantum

phase transition at every band edge.—Themost remarkable
result that directly follows from all of the above discussion
pertains to the case where μ is equal to a band edge εb of
the system (i.e., jTr½TqðμÞ�j ¼ 2). As already noted before,
the band edges of the system correspond to the EPs of the
transfer matrix of a unit cell, both eigenvalues being 1.
Consequently, TqðμÞ cannot be diagonalized, but can be
taken to the Jordan normal form via a similarity transform,
RðμÞTqðμÞR−1ðμÞ ¼ I2 þ ðσx þ iσyÞ=2. Using properties
of Pauli matrices, one then has at μ ¼ εb, ½TqðμÞ�n ¼
R−1ðμÞfI2 þ n½ðσx þ iσyÞ=2�gRðμÞ. Note that we do not
need the explicit form of RðμÞ to obtain this result [41].
Using this in Eq. (6), gives Δ1;N ∼ N for N ≫ 1, and hence,
from Eq. (5), we immediately find GðμÞ ∼ N−2. Thus
remarkably, because transfer matrix of a unit cell has
exceptional points at every band edge, there is a universal
subdiffusive scaling of conductancewith system size, with a
scaling exponent 2.
If μ is within the bands of the chain, then using Eq. (2) it

can be shown that the eigenvalues of TqðμÞ are λ� ¼ e�ik.
This corresponds to the S-symmetry-broken regime of
TqðμÞ. The ½TqðμÞ�n therefore yields an oscillatory behav-
ior of Δ1;N with N. Thus, within the bands of the chain,
GðμÞ does not show any scaling with N, implying ballistic
behavior.
On the other hand, when μ is outside the band edges of the

chain, there is no solution for Eq. (2) unless k is purely
imaginary (κ ≡ ik). Consequently, the eigenvalues of TqðμÞ
are real, and therefore corresponds to the S-symmetric
regime. The eigenvalues can be written as λ� ¼ e�κ, where
Tr½TqðμÞ� ¼ 2 cosh κ. Since one of the eigenvalues of
TqðμÞ is guaranteed to have magnitude greater than 1, Δ1;N

diverges exponentially with system size. Consequently,
GðμÞ ∼ e−N=ξ, which shows lack of transport beyond a length

scale ξ. The expression for ξ can be obtained as ξ−1 ¼
ð2=qÞ log ½jf(Tr½TqðμÞ�)=2gj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f(Tr½TqðμÞ�)=2g2 − 1

q
�

for jTr½TqðμÞ�j > 2. This behavior is exactly analogous to
that observed in a localized disordered or quasiperiodic
system, with ξ playing the role of the localization length. In
disordered or quasiperiodic systems, the finiteness of the so-
calledLyapunovexponent associatedwith the transfermatrix
is taken as the signature of localization [32,39,40,47,48].
For our setup, this quantity is given by lðμÞ ¼
limn→∞ð1=nÞ logðjj½TqðμÞ�njjÞ, where jjAjj is the norm of
the matrix A. Since one of the eigenvalues of ½TqðμÞ�n
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diverges exponentially with n, the Lyapunov exponent is
indeed finite for μ outside the system bands, and is propor-
tional to ξ−1.
Our main results are given in the table in Fig. 1. In the

entire discussion above, the nature of the periodic on-site
potential εl, and its period q, which controls the number of
bands, is completely arbitrary. This behavior is therefore
independent of these details. As an example, we demon-
strate the two-band case in Fig. 2 (see Ref. [41] for another
example).
The NESS of the chain thus changes nonanalytically as a

function of μ at every band edge at zero temperature. This
behavior is seen in the large system-size limit, and is
completely independent of the nature of bath spectral
functions, as well as the strength of system-bath couplings,
as long as the steady state is unique. Therefore at every
band edge there occurs a dissipative quantum phase
transition as a function of μ, which, in our setup, is not
a Hamiltonian parameter but a thermodynamic parameter
of the baths. This is unlike most other examples of
dissipative phase transitions (for example, [49–63]) where
a Hamiltonian parameter is changed. Like standard quan-
tum phase transitions, this phase transition occurs strictly at

zero temperature, while at finite, but low temperatures, it
can be shown to manifest as a finite size crossover [41].
Although the transition is independent of the strength of

system-bath couplings, the presence of the baths is crucial.
This is rooted in the fact that the mechanism for NESS
transport relies not only on the chain energy states but also
on the energy states available in the baths. The current-
current correlations (or the associated density-density
correlations) computed in absence of the baths, as often
done in the Green-Kubo formalism, will not show any
subdiffusive behavior for μ at band edges or the existence
of a well-defined localization length for μ outside system
bands. In absence of the baths, in either case, no transport is
possible because all bands are either completely full or
completely empty. In presence of the baths, even if there is
no single particle energy eigenstate for the chain at a chosen
value of μ, due to quantum nature of the particles, a small
but finite probability exists for few particles to tunnel into
and out of the chain, thereby making transport possible.
This, in turn, leads to the exotic dissipative phase transition
at every band edge. Therefore the nonanalytic change in
conductance at every band edge has no obvious analog
either in isolated quantum systems or in classical stochastic
open systems. It also has no obvious analog in bosonic
settings because Eq. (5) for conductance depends crucially
on the nature of Fermi distribution at zero temperature [41].
Similarities and differences between band edges and

mobility edges.—The sharp transition as a function of μ
from a regime with a well-defined localization length to a
regime of ballistic transport via a “critical point” showing
subdiffusive scaling is akin to localization-delocalization
transitions as a function of energy seen in some quasiperi-
odic systems (for example, [35–40,64]). The energy where
this transition happens is called the mobility edge. In this
sense, in a two-terminal setup, every band edge behaves
like a mobility edge. A mobility edge in a two-terminal
setup acts as an energy filter for quantum transport. This
property can find potential applications in devising efficient
autonomous thermal machines [65,66]. Since every band
edge has the same effect, band edges can also be potentially
used for the same purpose.
Despite the analogy between our setup and quasiperiodic

systems, there are stark differences. Unlike our setup, for
the quasiperiodic systems with mobility edge, the transition
in conductance scaling with system size in presence of
baths can be linked to a transition in nature of single-
particle eigenstates of the system in absence of the baths
(see, for example, [35–40,64]). This is very different from
the transition observed in our setup, which is rooted in
transition across EP of the transfer matrix of a unit cell.
Note that, while a unit cell is well-defined for a periodic on-
site potential, for quasiperiodic on-site potential, a unit cell
does not exist.
Conclusions and outlook.—We have shown how non-

Hermitian transitions in the transfer matrix of Hermitian

(a)

(b)

(c)

(d) (e)

FIG. 2. (a) Real and imaginary parts of eigenvalues of TqðμÞ,
given in Eq. (3), are plotted as a function of μ for a two-band case,
i.e, q ¼ 2 (εl ¼ �0.5). The vertical lines correspond to band
edges [solution to Eq. (4)]. The transition across EP at each band
edge is clear. (b) The zero temperature conductance GðμÞ vs μ is
shown for three different system sizes. The nonanalytic change in
system-size scaling at every band edge is clear. (c) The universal
subdiffusive scaling, GðμÞ ∼ N−2, is shown for μ at two chosen
band edges, pointed out in panel (b). (d) The exponential decay of
GðμÞ with N is shown for μ slightly outside the chosen band. The
exponents in the fits are obtained from the formula for locali-
zation length. (e) The GðμÞ ∼ N0 behavior is shown for μ slightly
inside the chosen band. All energies are in units of system
hopping strength.
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Hamiltonians affect the nature of quantum transport (see
Fig. 1). In doing so, we have united two seemingly
disparate concepts: (i) the symmetries and transitions in
non-Hermitian matrices studied in non-Hermitian optics
and (ii) band structure and quantum transport in fermionic
systems studied in condensed matter and statistical physics.
We find that this connection offers an extremely simple way
to understand several nontrivial features of mobility edges,
localization length and anomalous transport in a two-
terminal open system setting, without considering disor-
dered or quasiperiodic potentials. We discover a completely
different way subdiffusive scaling of conductance, with a
universal exponent, can originate: from exceptional points
of transfer matrices. We remark that explaining the origin
of subdiffusive scaling exponents is often a difficult
problem [64,67,68].
Our results are relevant for platforms showing bands of

ballistic electron transport (for example, [69–73]). They
pave the way for understanding band structure and quantum
transport in more exotic cases, such as higher dimensional
short-ranged systems, in terms of the non-Hermitian
properties of their associated transfer matrices [33,34].
But, the transfer matrix picture presented here does not hold
in presence of long-range hopping. However, interestingly,
the subdiffusive behavior GðμÞ ∼ N−2 at band edges was
also recently numerically seen in presence of long-range,
power-law-decaying hopping [74]. This points to the
superuniversality of this behavior at band edges, the deeper
understanding of which requires further work.
Investigations in these directions will be carried out in
future works.
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