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The weighted �1−2 minimization has recently attracted some attention due to its capability to deal 
with highly coherent matrices. Notwithstanding the availability of its stable recovery guarantees, there 
appear to be some issues not addressed in the literature, which are (i). convergence of the solver for 
the weighted �1−2 minimization analytically, and (ii). detailed analysis of relevance of general weights 
to applications. While establishing the convergence of the solver of the weighted �1−2 minimization, 
we demonstrate the significance of general weights, w ∈ (0, 1), empirically through some applications, 
including the reconstruction of magnetic resonance images. In particular, we show that the general 
weights attain significance when we do not have fully accurate or fully corrupt information about the 
support of the signal to be reconstructed from its linear measurements. We conclude the work by 
discussing a numerical scheme that chooses the partial support and the weights iteratively.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Compressed Sensing (CS) deals with recovering a sparse signal 
from a small set of its linear projections. In CS, one obtains the 
sparsest solution of an under-determined linear system via the �1
minimization. The applications of CS are far and wide in diverse 
fields [1][2][3][4]. The standard CS techniques, nevertheless, are 
non-adaptive in the sense that they do not take into account the 
properties of the signal to be reconstructed. It is possible to ob-
tain a prior partial support estimate of the signal in many applied 
domains, [5][6] such as audio/video processing, dynamic Magnetic 
Resonance Imaging (MRI) etc. To accommodate such a prior sup-
port constraint into the reconstruction process, several researchers 
[5][6][7] have made novel contributions proposing the weighted 
�1 minimization problems and establishing the essential recovery 
guarantees. The results in these works have shown that the gen-
eral weights can improve the reconstruction significantly when we 
have sufficiently accurate information about the support of the sig-
nal to be recovered.

In [8], Esser et al. have worked with the �1−2 minimization 
in the context of finding structured sparse solutions to the non-
negative least square problems. The basic idea behind this is that 
the level curves of the �1−2 function given by (‖.‖1 −‖.‖2) promote 
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more sparsity than the standard �1 norm. P. Yin et al. [9] have es-
tablished stable recovery results in terms of the RIP for the �1−2
minimization problem and presented an iterative method for solv-
ing this based on the Difference of Convex functions Algorithm (DCA). 
They have also shown that, for highly coherent matrices, the �1−2
minimization works better than the existing non-convex solvers 
available in the literature. Several authors have worked on certain 
variants of this problem [10][11], its numerical properties [12] and 
its theoretical recovery guarantees [13][14]. Recently, improved re-
covery guarantees for the �1−2 minimization in terms of coher-
ence [15], Restricted Isometry Property (RIP), [16] and Null Space 
Property (NSP) [17] have been established in the literature. These 
non-convex minimization techniques work well in sparse signal re-
covery, matrix completion, and reconstruction in MRI [12][18]. The 
recent sparse regularization techniques [19][20] using �1−2 func-
tion and other non-convex sparse regularizers in deep neural net-
works have been shown to provide their compressed versions with 
comparable accuracy as their dense counterpart. The reason behind 
the popularity of �1−2 minimization lies in its superior reconstruc-
tion quality in many applied domains even when the underlying 
matrix has coherence close to 1. In addition, the availability of ef-
ficient algorithms for its execution [9][10] has also contributed to 
its popularity.

The authors of [21][22] have generalized the �1−2 minimization 
by considering general weights w ∈ (0, 1) in �1−2 minimization 
and proposed a solver along with the stable recovery conditions. 
Recently in [23], the authors have extended the notion of the 
weighted �1−2 minimization to the block sparsity setup. To the 
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best of our knowledge, however, there have been no results that 
discuss (i) the convergence of the solver which is based on DCA 
and (ii) an empirical analysis that shows the significance of general 
weights in applications. Motivated by this, in this paper, we pro-
vide convergence guarantees of the DCA-based solver and demon-
strate the role of general weights through some reconstruction 
problems. Consequently, this work complements the novel ideas 
presented in [21]. More specifically, we demonstrate the impor-
tance of general weights in �1−2 minimization problem through 
extensive simulation work including the image reconstruction in 
MRI, and compare the results with those obtained through other 
state-of-the-art methods. Our empirical results show that the gen-
eral weights in (0, 1) can give smaller reconstruction errors than 
the standard weights 0 and 1, provided we have some partial in-
formation about the support of the sparse vector. Importantly, we 
observe that the role of the general weights becomes more signifi-
cant for the coherent matrices in the sense that the reconstruction 
error falls significantly for a small deviation of weights from 0 or 1. 
To summarize, the novelty of the present work lies in establishing 
the relevance of the general weighted �1−2 problem. The contribu-
tions of the present work may be summarized as follows:

• Demonstrating the role of general weights through applica-
tions

• Establishing the convergence of the associated solver
• Proposing an iterative method for choosing partial support and 

weights.

The paper is organized into several sections. In section 2, we 
discuss the relevant basics of CS and related results, and contri-
bution of present work. In section 3, we discuss the convergence 
analysis of the solver and in section 4 we discuss simulation results 
providing a comparison with the other state-of-the-art methods 
and an application to reconstruction in MRI. We discuss a numer-
ical scheme for iteratively determining the partial support and the 
weights in the �1−2 minimization in section 5, followed by some 
concluding remarks in the last section.

2. Preliminaries and relevant works

In this section, we discuss the essential basics of CS, some rel-
evant solvers, and a summary of present contributions.

2.1. Basics of compressed sensing

For a subset T of [n] := {1, 2, · · · , n}, suppose xT ∈ Rn denotes 
restriction of a vector x to the set T , which means (xT )i = xi , for 
i ∈ T , and 0 else. The bold-symbol 0 ∈ Rn denotes zero vector 
in Rn . For x ∈ Rn , support of x (denoted by supp(x)) is the set 
of all indices corresponding to the nonzero components of x and 
‖x‖0 = |supp(x)|. A vector x is called k-sparse if ‖x‖0 � k. The mu-
tual coherence [24] of a matrix A ∈Rm×n is defined as

μ(A) = max
i �= j,1�i, j�n

|〈ai,a j〉|
‖ai‖2‖a j‖2

,

where ai denotes the ith column of A. A matrix A is said to have 
the Restricted Isometry Property (RIP) of order k [24], if there ex-
ists a constant δ ∈ (0, 1) such that for any k-sparse vector x, we 
have

(1 − δ)‖x‖2
2 � ‖Ax‖2

2 � (1 + δ)‖x‖2
2. (1)

The least such δ (denoted by δk) satisfying (1) is called the Re-
stricted Isometry Constant (RIC) of order k.
2

In Compressed Sensing (CS), one considers the following �1

minimization problem [24] for finding a solution of b = Ax + η

with ‖η‖2 � ε that possesses a very few nonzero components

(P1) : min
x∈Rn

‖x‖1 subject to ‖Ax − b‖2 � ε, (2)

where A is an under-determined matrix. The recovery guarantees 
[24] in compressed sensing via the standard �1 norm state that 
a higher (or smaller) value for the coherence translates to more 
(or less) number of measurements for faithful reconstruction. In 
applications such as computed tomography [25], poor coherence of 
discrete Radon matrix implies a large number of X-ray projections, 
which is to be avoided. The �1 minimization problem in (2) is not 
signal adaptive as it does not include any information about the 
underlying signal to be recovered.

2.2. Weighted �1-norm based CS

The weighted CS techniques are signal adaptive as they incor-
porate prior partial support information of the signal into the re-
covery process. The weighted �1 minimization problem (�1,w ) [5]
is defined as

(P1,w) : min
x∈Rn

‖x‖1,w subject to ‖Ax − b‖2 � ε, (3)

where ‖x‖1,w = ‖wxT + xT c ‖1 with w ∈ [0, 1], and T is the prior 
partial support information. Here wxT denotes the point-wise 
multiplication of the scalar w and the vector xT , and xT c ∈Rn is x
restricted to T c in line with the definition of xT .

In the weighted �1 minimization problem given in (3), the en-
tries from the partial support of the signal are less penalized than 
the rest so that the recovered signal is more likely to contain the 
entries from the partial support set. Such partial support informa-
tion of many signals is available in signal processing [5][6]. The 
authors of [6][7][26] have dealt with the sparse recovery of signals 
using the weighted �1 minimization. The authors of [5] have pro-
posed a stable recovery bound for the (P1,w ) problem. It is worth 
mentioning here that the re-weighted �1 minimization methods 
[27] are different from the weighted �1 minimization methods 
as the former ones deal with approximating non-convex sparsity 
promoting functions such as �p , for p ∈ [0, 1), using weighted �1
functions through the iteratively chosen weights.

2.3. �1−2 based CS

By observing that the level curves of the �1−2 function via 
(‖.‖1 − ‖.‖2) promote more sparsity than the standard �1 norm, 
Esser et al. [8] have worked with the following �1−2 minimization:

(P1−2,1) : min
x∈Rn

[‖x‖1 − ‖x‖2
]

subject to ‖Ax − b‖2 � ε, (4)

whose unconstrained version is defined as

min
x∈Rn

[
1

2
‖Ax − b‖2

2 + λ(‖x‖1 − ‖x‖2)

]
. (5)

The stable recovery guarantees of the afore-stated problem have 
been established in [9]. In [14], the authors have provided the 
coherence-based stable recovery bounds for the unconstrained 
�1−2 minimization problem (5). In [21], for w ∈ [0, 1], the authors 
have considered the following weighted �1−2 (�1−2,w ) minimiza-
tion problem

(P1−2,w) : min
x∈Rn

[‖x‖1,w − ‖x‖2,w
]

subject to ‖Ax − b‖2 � ε,

(6)
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Algorithm 1: Weighted DCA (WDCA) for solving (8).

Define ε0 > 0. Initialize x0 = 0.
for k = 0, 1, · · · , M1 do

xk+1 = arg min
x

[
1

2
‖Ax − b‖2

2 + c

2
‖x‖2

2 + λ‖x‖1,w − 〈x, λek
w 〉

]
;

end
M1: Maximum number of iterations for DCA.

and established its stable recovery conditions. In the above prob-
lem,

‖x‖1,w = ‖wxT + xT c ‖1 and ‖x‖2,w = ‖wxT + xT c ‖2. (7)

A DCA-based solver for the weighted �1−2 minimization has also 
been proposed in [21].

2.4. Solver for the weighted �1−2 minimization

In this subsection, we discuss a solver for the following uncon-
strained (�1−2,w ) problem [21]

min
x∈Rn

[
f (x) := 1

2
‖Ax − b‖2

2 + λ(‖x‖1,w − ‖x‖2,w)

]
. (8)

For the sake of convergence analysis and for fixing the notation, 
we present herein the ideas of the adapted algorithm. We take 
f (x) = g(x) − h(x), with g(x) = 1

2 ‖Ax − b‖2
2 + λ‖x‖1,w + c

2 ‖x‖2
2 and 

h(x) = λ‖x‖2,w + c
2 ‖x‖2

2, where c > 0 is considered to ensure the 
strong convexity of functions g and h, which is needed for the 
convergence analysis. The DCA method iteratively computes xk and 
yk which approximate the optimal solution for the primal and dual 
problems at each iteration. One considers

yk ∈ ∂h(xk)

xk+1 = arg min
x∈Rn

[
g(x) − (

h(xk) + 〈yk, x − xk〉)],
(9)

where ∂h(xk) is the subgradient of h(x) at xk . It may be noted that

f (xk+1) � g(xk+1) − (
h(xk) + 〈yk, xk+1 − xk〉)

� g(xk) − (
h(xk) + 〈yk, xk − xk〉)

= f (xk),

(10)

which follows from the definition of the subgradient and (9). Since 
f (x) � 0, ∀ x ∈Rn , the monotonically decreasing sequence { f (xk)}
is convergent.

At iteration k, it follows that

xk+1 = arg min
x

[
1

2
‖Ax − b‖2

2 + c

2
‖x‖2

2 + λ‖x‖1,w − 〈x, λek
w 〉

]
,

(11)

where

ek
w =

⎧⎨
⎩

xk
w2

‖xk
w‖2

+ cxk if xk �= 0

0 else,

with xw2 = w2xT + xT c . It is proved in section 3 that xk con-
verges to a stationary point. As a result, the stopping criterion for 
this algorithm may be considered as ‖xk+1−xk‖2

max{‖xk‖2,1} < ε0, for some 
given parameter ε0 > 0. We summarize the weighted DC algo-
rithm (WDCA) in Algorithm 1. The Alternating Direction Method of 
Multipliers (ADMM) algorithm [28] for solving the sub-problems 
mentioned in (11) is given in Algorithm 2, wherein λw ∈ Rn is 
defined as
3

Algorithm 2: ADMM for (11).

Initialize x0, z0 and y0.
for l = 0, 1, · · · , M2 do

xl+1 = (AT A + (c + δ)I)−1(AT b − v + δzl − yl)

zl+1 = S(xl+1 + yl/δ, λw/δ))

yl+1 = yl + δ(xl+1 − zl+1)

end
M2: Maximum number of iterations for ADMM.

(λw)i =
{

λw, i ∈ T

λ, else,
(12)

and S(x, r) is the soft thresholding operator which is defined as 
(S(x, r))i = sgn(xi)max(|xi | − ri, 0). The stopping criterion [29] for 
Algorithm 2 is given by

‖xl − zl‖2 �
√

nεabs + εrelmax{‖xl‖2,‖zl‖2},
‖δ(zl − zl−1)‖2 �

√
nεabs + εrel‖yl‖2.

2.5. Present contribution

The authors of [21] have provided the recovery guarantees of 
the problem in (6). But, to our knowledge, there is no convergence 
analysis established for the solver of (6). In addition, there appears 
to be no study available for determining the weights other than the 
trial and error method. Motivated by these points, we demonstrate 
the nontrivial role played by the general weights both in the cases 
of incoherent and highly coherent matrices. Besides establishing 
the convergence of the solver, we discuss a possible procedure 
for determining the weights iteratively. Furthermore, through re-
construction in MRI, we show that the general weights assume 
significance when we do not have fully accurate or fully corrupt 
information about the support of the underlying signal.

3. Convergence guarantees of the weighted DCA solver

We now prove that the iterates {xk} in Algorithm 1 converge to 
a stationary point, which obeys the first order optimality condition.

Theorem 3.1. Suppose the sequence of iterates {xk} is defined as in (11). 
Then

1. If rank(A) > |T |, then the sequence of iterates {xk} is bounded.
2. ‖xk+1 − xk‖2 → 0 as k → ∞.
3. Any non-zero limit point x∗ of {xk} obeys the first order optimal-

ity condition 0 ∈ [
AT (Ax∗ − b) + λ

(
∂(‖x∗‖1,w) − ∇(‖x∗‖2,w) 

)]
, 

implying that x∗ is a stationary point of f .

Proof: We prove the afore-stated points in the same order.

1. We first prove that f (νx) → ∞ as ν → ∞ for any x ∈ Rn/{0}
which implies that f (x) → ∞ as ‖x‖2 → ∞. Since {xk} ⊆ {x :
f (x) � f (x0)}, the above result implies that {xk} is bounded.
We have f (νx) = 1

2 ‖ν Ax −b‖2
2 +νλ(‖x‖1,w −‖x‖2,w) for v � 0. 

If x ∈ K er(A), then ‖x‖0 � rank(A) + 1 > |T | + 1 which im-
plies that ‖xT c ‖0 > 1. Thus ‖x‖1,w − ‖x‖2,w > 0 for all w
and f (νx) → ∞ as ν → ∞ as νλ(‖x‖1,w − ‖x‖2,w) → ∞ as 
ν → ∞. It may be noted that f (νx) � 1

2 (ν‖Ax‖2 − ‖b‖2)
2 +

νλ(‖x‖1,w − ‖x‖2,w). If x /∈ K er(A), then f (νx) → ∞ as ν →
∞, since ν‖Ax‖2 → ∞ as ν → ∞.

2. Since both g − c
2 ‖.‖2

2 and h − c
2 ‖.‖2

2 are convex, by the Proposi-
tion A.1 in [30], we have f (xk) − f (xk+1) � c‖xk+1 −xk‖2. From 
the convergence of { f (xk)}, it follows that ‖xk+1 − xk‖2 → 0 as 
k → 0.
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Table 1
Noiseless case: Reconstruction errors (denoted by Err(w)) at 0 and optimal w (denoted by wopt ), provided by �1−2,w

solver for Gaussian (incoherent) matrix. For each ρ , the shaded cell gives error at w = 1 which is same for all values of 
α. Here ρ and α satisfy αρ � 1. The errors being small for some w ∈ (0, 1), when α �= 0, 1, signify the importance of 
�1−2,w problem.

α ρ = 0.75 ρ = 1 ρ = 1.25

wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0)

0 1 0.5830 1.5071 1 0.5865 2.3182 1 0.5866 4.6116

0.25 0.8 0.5731 0.9389 0.8 0.5786 1.2005 0.8 0.5716 2.4294
0.5 0.4 0.4517 0.5649 0.4 0.4226 0.6197 0.3 0.3716 1.0392
0.75 0.2 0.2792 0.2970 0.1 0.1770 0.2000 0.1 0.0529 0.0910
1 0 0.0917 0.0917 0.1 5.1158 ×10−05 5.7706 ×10−05 × × ×
3. Let {xnk } be the sub-sequence of {xk} that converges to x∗ . 
Then the optimality condition at nth

k iteration implies the fol-
lowing:

0 ∈ [
AT (Axnk −b)+λ

(
∂(‖xnk ‖1,w)−∇(‖xnk−1‖2,w)

)]
. (13)

By the Proposition 3.1(c) of [9], we have ∂(‖xnk ‖1) ⊆ ∂(‖x∗‖1), 
for large nk . This ensures that ∂(‖xnk ‖1,w) ⊆ ∂(‖x∗‖1,w), for 
large nk . This gives

−[
AT (Axnk − b) − λ∇(‖xnk−1‖2,w)

] ∈ λ∂(‖x∗‖1,w). (14)

Further,

lim
k→∞

[
AT (Axnk − b) − λ∇(‖xnk−1‖2,w)

]
= lim

k→∞
[

AT (Axnk − b) − λ∇(‖xnk ‖2,w) + λ∇(‖xnk ‖2,w)

− ∇(‖xnk−1‖2,w)
]

= lim
k→∞

[
AT (Axnk − b) − λ∇(‖xnk ‖2,w)

+ xnk
w2

‖xnk
w ‖2

− xnk−1
w2

‖xnk−1
w ‖2

]

= AT (Ax∗ − b) − λ∇(‖x∗‖2,w)

(15)

as ‖xk+1 − xk‖2 → 0 as k → 0. Thus (14) and (15) imply that

0 ∈ [
AT (Ax∗ − b) + λ

(
∂(‖x∗‖1,w) − ∇(‖x∗‖2,w)

)]
.

Remark 3.1. It is worth mentioning here that the crucial part 
of this proof is the condition rank(A) > |T |, which ensures that 
‖xT c ‖0 > 1 for all x ∈ K er(A). It may be noted that this condition 
is not restrictive in the sense that, in general, the cardinality of the 
support estimate is taken less than the rank of the measurement 
matrix. This ensures that the iterates are bounded, which helps in 
proving the convergence of the iterates to a stationary point.

Remark 3.2. The novelty in the above proof occurs due to the pres-
ence of general weights w for the entries in the partial support T . 
The sufficient condition that ensures the boundedness of the iter-
ates is different from that of the DCA solver for the standard �1−2
minimization. It may be observed that, for proving the convergence 
of the iterates in the �2 norm sense, we incorporate the ideas 
from [9]. While for showing that the stationary point satisfies the 
first-order optimality condition, we extend the proof techniques 
from [30].

Remark 3.3. The weights introduced into the optimization problem 
result in M1M2|T | number of additional multiplications (which 
may be ascertained from Algorithms 1 and 2), where |T |, M1 and 
M2 respectively stand for the cardinality of the partial support set 
4

T , number of DCA iterations and number of ADMM iterations. Nev-
ertheless, the order of the complexity remains same as the matrix 
inversion step in Algorithm 2 is the dominating part in calculating 
the complexity of the algorithm.

4. Empirical analysis of weights

In this section, we demonstrate the significance of general 
weights in the following lines: (i). Recovery of the sparse signals 
from their randomly sampled linear measurements, (ii). Compari-
son of results obtained via (6) with those obtained through other 
methods and (iii). Reconstruction in MRI.

4.1. On the recovery of sparse signals

We test our weighted DCA algorithm on two sets of matrices, 
viz, Gaussian matrices and randomly over-sampled partial discrete 
cosine transform (DCT) matrices both with and without noise. 
Though the Gaussian matrices are incoherent possessing small mu-
tual coherence, the over-sampled DCT matrices are not (due to 
their high coherence values). Consequently, in a way, these two 
represent complementary cases. Throughout the simulation work, 
unless stated, we report an average behaviour over 100 realizations 
when dealing with random matrices, and the signal x is drawn 
from the normal distribution N (0, 1). We report simulations for 
various values of ρ and α, where ρ represents the relative size 
of the partial support compared to the size of the actual support 
of the signal. Here α represents the proportion of the partial sup-
port that intersects with the actual support of the signal, which 
is a measure of the accuracy of the partial support information 
so that αρ � 1. Since the partial support information so obtained 
need not be fully accurate, analysis of reconstruction error with 
respect to w for different values of α attains significance. The 
following simulations show that the performance of the �1−2 min-
imization improves when we introduce general weights. For the 
WDCA solver, we have fixed λ = 10−06, c = 10−09. The remain-
ing parameters have been fixed as in [9]. All the simulations have 
been performed in Matlab R2021a on a laptop with 8 GB RAM and 
2.50 GHz Intel(R) Core(TM) i5-7200U CPU under Windows 10 op-
erating system.

The simulation results for the incoherent case (that is, with 
Gaussian matrices) are shown in Table 1. Here the matrix A has 
been taken as Gaussian possessing mean 0 and standard deviation 

1√
m

with m = 128, n = 256. The average coherence of this matrix 
is 0.36. In our simulation work, as an example, the sparsity k of 
the vector has been set to 100. The size of partial support has 
been taken as ρk for 3 different values of ρ = 0.75, 1 and 1.25. For 
each size of partial support, we have taken 0, 0.25, 0.5, 0.75 and 
1 as possible values of α. We have performed �1−2,w minimiza-
tion for each w in the set {0, 0.1, 0.2, ..., 1}. For different choices 
of (α, ρ), Tables 1 and 2 provide average relative �2 norm recon-
struction errors and optimal values of w ∈ [0, 1] that result in least 
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Table 2
Noise-case: Reconstruction errors with respect to the weighted DCA solver for Gaussian matrices.

α ρ = 0.75 ρ = 1 ρ = 1.25

wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0)

0 1 0.5989 1.4891 1 0.5958 2.2408 1 0.5977 4.4653

0.25 0.8 0.5890 0.9462 0.8 0.5873 1.2143 0.8 0.5787 2.3521
0.5 0.4 0.4675 0.5872 0.3 0.4142 0.6247 0.3 0.3642 1.1319
0.75 0.2 0.2740 0.2911 0.1 0.1741 0.1967 0.1 0.0467 0.0819
1 0 0.0768 0.0768 0.1 6.4081×10−04 6.5774×10−04 × × ×

Table 3
Noiseless case: Reconstruction errors given by the WDCA solver for randomly over-sampled partial DCT (coherent) matrix. The 
errors being significantly small even when wopt remains close to 0 with α �= 0, 1 signify the importance of general weighted �1−2,w

problem.

α ρ = 0.75 ρ = 1 ρ = 1.25

wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0)

0 1 0.9356 1.6723 1 0.9420 1.8422 1 0.9464 1.9393

0.25 0.2 0.5835 1.1850 0.2 0.5065 0.9379 0.2 0.3659 0.7890
0.5 0.2 0.2526 0.7354 0.2 0.1128 0.3700 0.1 0.0430 0.1463
0.75 0.2 0.0401 0.3131 0.3 0.0097 0.0920 0.1 0.0214 0.0772
1 0 1.6058×10−04 1.6058×10−04 0.1 5.7538×10−05 6.7603×10−05 × × ×

Table 4
Noise-case: Reconstruction errors for randomly over-sampled partial DCT (coherent) matrix. When α = 0, reconstruction 
error at w = 1 is 0.9699.

α ρ = 0.75 ρ = 1 ρ = 1.25

wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0) wopt Err(wopt ) Err(0)

0 0.7 0.9622 1.7641 1 0.9350 1.8232 1 0.9367 2.0777

0.25 0.2 0.5586 1.2856 0.2 0.4748 0.9977 0.1 0.3767 0.7519
0.5 0.1 0.2488 0.7016 0.1 0.1265 0.3569 0.1 0.0379 0.1893
0.75 0.2 0.0616 0.3759 0.1 0.0248 0.1324 0.2 0.0078 0.1148
1 0.1 0.0047 0.0052 0.1 0.0022 0.0023 × × ×
error both in noise as well as noiseless cases. The relative �2 norm 
reconstruction error has been calculated via ‖xr−x0‖2‖x0‖2

, where x0 and 
xr are the original and reconstructed signals respectively. It may be 
observed in the tables that the optimal w takes 1 when α = 0, im-
plying thereby that the performance of the weighted �1−2 problem 
reduces to that of standard �1−2 problem. Further, it may also be 
noted that the reconstruction error at w = 1 (shown in the shaded 
cells in Tables 1 to 4) is independent of α for each ρ . Driven by 
this, we have avoided reporting these errors in a separate column.

It is clear from the Tables 1 and 2 that for the incoherent 
Gaussian matrix case, when α �= 0, 1, w ∈ (0, 1) provides least re-
construction errors than the cases where w = 0, 1. The average 
behaviour is that, for α � 0.5, optimal w is smaller than 0.5 and 
vice versa.

The average relative �2 norm reconstruction errors for the co-
herent matrix are shown in Tables 3 and 4 for the noiseless and 
noise cases respectively. Here the matrix A has been taken as the 
randomly over-sampled partial DCT matrix whose columns satisfy

ai = 1√
m

cos

(
2π iv

F

)
, i = 1, · · · ,n, (16)

where v ∼ U([0, 1]m) and F ∈N is a refinement factor. In our sim-
ulations, we have considered m = 100, n = 2000 and F = 20. The 
average mutual coherence of this matrix is 0.9999. Despite this, a 
signal x can be recovered from its linear projections that are gen-
erated as Ax, if it has sufficient minimum separation [31]. A signal 
x has minimum separation L if min

j,k∈supp(x)
| j − k| � L. In our simu-

lations, we have considered the signals of sparsity 36 with L = 2F
and k = 36. It is clear from Tables 3 and 4 that for the case of 
coherent DCT matrix, where α �= 0, 1, the weights in (0, 1) give 
5

least reconstruction errors compared to the cases where w = 0, 1. 
Importantly, in this case, despite optimal w being close to 0, the 
corresponding error is smaller than that provided by the w = 0
case. Also here the average behaviour is that, for α = 0, the opti-
mal w is 1 and, for other values of α, the optimal w is at most 
0.5.

To summarize, the stated simulations on the recovery of sparse 
signals in the cases of coherent and incoherent matrices provide 
the least reconstruction errors with weights in (0, 1), when we do 
not have fully accurate or fully corrupt information about support 
of the signal. In some of the cases, even when the optimal values 
of w are close to 0 or 1, there is a significant difference between 
the corresponding reconstruction errors. Therefore the efficiency of 
(P1−2,1) problem can be improved by considering general weights 
in �1−2,w problem. The simulation results also show that bigger ρ , 
corresponding to a bigger support estimate, gives finer reconstruc-
tion and that the value of α has a better bearing on reconstruction 
than ρ . To conclude, �1−2,w gives the better reconstruction results 
for w � 0.5 when α > 0.5. It is worth mentioning here that the 
finer range of values of w depends on many factors including the 
properties of the matrix and the signal to be recovered.

The overall observations of the behaviour of the optimal recon-
struction error via weighted �1−2 minimization problem for the 
incoherent and coherent sensing matrices are as follows:

• For each fixed value of ρ , the reconstruction error decreases 
with increasing α.

• For each fixed value of α, the reconstruction error decreases 
with increasing ρ .

• For a fixed ρ , when α = 0 (that is, when the partial support 
is completely inaccurate), better reconstruction is obtained 
around the standard weight w = 1.
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• For the values of w lying closer to 0, better reconstructions 
are obtained when αρ is sufficiently big.

• For fixed ρ , when α = 1 (that is, when the partial support is 
fully accurate) better reconstruction is obtained around w = 0.

• For a fixed ρ , when α �= 0 or 1 (that is, when the partial 
support is neither fully inaccurate nor accurate, better recon-
struction is obtained for the general values of the weights in 
w ∈ (0, 1).

• For the incoherent case, the behaviour is that when α < 0.5, 
the optimal weights are bigger than 0.5, and when α > 0.5, 
the optimal weights are less than 0.5.

• For the coherent case, the behaviour is that when α �= 0 and 
1, the optimal weights take values which are at most 0.5.

• In some of the cases, even when the optimal values of w are 
close to 0 or 1, there is a significant difference between the 
corresponding reconstruction errors.

4.2. Comparison with other solvers

In this subsection we compare the WDCA solver for the un-
constrained (�1−2,w ) problem in (8) with other solvers. It has 
already been demonstrated in [9][12] that for highly coherent ma-
trices �1−2 minimization works better than the existing solvers like 
ADMM-Lasso [32], IRLS-�p [33], re-weighted �1 [27], CoSAMP [34]
and half thresholding [35]. We consider here a comparison with 
other methods such as �1 homotopy, [36], T �1 [37] and �1/�2
[38], (�1 − ν�2) [10], weighted �1 (�1,w ) [5] along with �1−2 [9]
over the highly coherent partial DCT matrices. It is to be men-
tioned here that the weighted �p [39] minimization is shown to 
give inferior performance than the weighted �1−2 minimization 
for the highly coherent matrices, and hence it is not considered 
here. We have considered matrices of size 100 × 2000 for F = 10
and 20 cases whose average mutual coherences are 0.9982 and 
0.9999 respectively. Further, we have generated x randomly as a 
k sparse vector with minimum separation 2F where k takes the 
values 5 to 45 and the size of the partial support T is taken as 
k itself. For �1,w and �1−2,w problems, we have considered three 
different cases where α takes 0.5, 0.75 and 1. We have taken 50 
trials for each setup, where a trial has been considered success-
ful if the relative �2 norm reconstruction error is less than 10−03. 
For the weighted DCA solver we have fixed λ = 10−6, δ = 10λ, 
M1 = 10, M2 = 5000, ε0 = 10−2, εabs = 10−7 and εrel = 10−5. For 
T �1 problem, we have fixed γ = 10−06, c = 0, a = 1, maxoit = 10, 
maxit = 5000 and tol = 10−08. For �1/�2 problem, we have fixed 
restol = 10−05. For the �1-homotopy we have set delx-mode to 
‘qr’. For �1−2, (�1 − ν�2) (with ν = 0.5) and WDCA solvers we 
have fixed λ = 10−06. The rest of the parameters in all these 
solvers have been set to their default values. Since performance 
of (�1 − ν�2) is almost the same as �1−2, we have excluded the 
(�1 −ν�2) case from the plots. For �1,w and �1−2,w solvers, success 
rate corresponding to the optimal w has been considered at each 
trial. From Fig. 1, it can be seen that the WDCA solver has bet-
ter success rates than all the other solvers. For α = 1, �1,w solver 
has equal performance as �1−2,w . Nevertheless, when α �= 1, suc-
cess rates of �1,w are too low especially for the F = 20 case. It 
can be concluded that the WDCA solver performs well even over 
less-sparse vectors.

4.3. MRI reconstruction using prior support estimate

We now turn to the application of MRI, which involves re-
constructing an image from its projections. The goal of MRI is to 
recover images from less number of projections. The authors of 
[9][18] have demonstrated the applicability of the �1−2 minimiza-
tion to the reconstruction in MRI in a very novel way, demon-
strating that a very highly accurate reconstruction of Shepp-Logan 
6

Fig. 1. Success rates with the coherent matrices as discussed in subsection 4.2. This 
plot demonstrates the superior performance shown by the weighted �1−2 solver.

phantom image of size 256 × 256 is possible from merely 7 pro-
jections through �1−2 minimization problem. In order to further 
reduce the number of projections without distorting the quality of 
MRI reconstruction, one can incorporate the idea of the weighted 
�1−2 minimization using a prior support estimate. For instance, 
when patients need to take routine MRI scans, the image from 
the previous scan can be used to find a support estimate, which 
helps us to reduce the number of projection samples needed for 
the current scan. In this subsection, we use this idea for the MRI 
reconstruction. In particular, we show that 3 samples are enough 
for faithful reconstruction of the Shepp-Logan phantom image of 
size 256 × 256 with a proper choice of weights.

Since images are sparse in the gradient domain in general, we 
take minimization in the gradient domain. We pose the weighted 
minimization problem for the MRI reconstruction as

min
u

[
‖∂x(u)‖1,w + ‖∂x(u)‖1,w −

√
‖∂x(u)‖2

2,w + ‖∂x(u)‖2
2,w

]
s.t. RFu = f ,

where u is a 2-dimensional image, ∂x(u), ∂y(u) are the par-
tial derivatives of u in the x and y directions respectively, R
denotes the sampling matrix in the frequency domain, F de-
notes 2D Fourier transform and f is the data. Here ‖∂x(u)‖1,w , 
‖∂x(u)‖2,w are the �1 and �2 norms of (∂x(u))w where (∂x(u))w =
w(∂x(u))T + (∂x(u))T c and T is the partial support information 
known a priori. Now we solve the following unconstrained prob-
lem:

min
u

[
μ

2
‖RFu − f ‖2

2 + ‖∂x(u)‖1,w + ‖∂x(u)‖1,w

−
√

‖∂x(u)‖2
2,w + ‖∂y(u)‖2

2,w

]
.

(17)



K.Z. Najiya and C.S. Sastry Digital Signal Processing 133 (2023) 103833

Fig. 2. Reconstruction of phantom image from 3 projections with different methods. We use the image (a) to obtain the prior support estimate to recover the new image (b). 
It is clear that, among the methods used, �1−2,w gives accurate reconstruction results at w = 0.1. In the result obtained through the �1−2,0 solver, it may be noted that the 
marked portion is blurred at the corners. This figure shows the importance of general weights.
In order to solve the afore-stated problem, we combine the DCA 
techniques (discussed in Section 2.4) along with the split Bregman 
method in [40]. Then the iterative steps become

uk+1 = min
u,dx.dy

[
μ

2
‖RFu − f ‖2

2 + ‖dx‖1,w + ‖dy‖1,w

− (dx,dy)
T )(∂x(uk))w2 , (∂y(uk))w2)√

‖∂x(uk)‖2
2,w + ‖∂y(uk)‖2

2,w

+ λ

2
‖dx − ∂x(u) − bx‖2

2

+ λ

2
‖dy − ∂y(u) − by‖2

2

]
.

(18)

Here (∂x(u))w2 = w2(∂x(u))T + (∂x(u))T c . The values of the vari-
ables bx and by are chosen through the Bregman iteration. In the 
methodology summarized in Algorithm 3, 
 is the Laplacian oper-
ator, F T is the inverse Fourier transform, S is the soft thresholding 
operator, D and DT are the forward and backward difference oper-
7

ators respectively. Here M1 and M2 are the number of outer (DCA) 
and inner (split Bregman) iterations respectively. Further, in Al-

gorithm 3, (tk
x, tk

y) = ((∂x(uk))w2 ,(∂ y(uk))w2 )√
‖∂x(uk)‖2

2,w +‖∂y(uk)‖2
2,w

and the vector λw is 

defined as

(λw)(i, j) =
{

w
λ
, (i, j) ∈ T .

1
λ
, else.

(19)

For the reported results, we have considered M1 = 50, M2 =
50, μ = 106 and λ = 10.

With a view to demonstrating the applicability of (17) and its 
implementation scheme in (18), we have considered three test im-
ages: Shepp-Logan phantom image, abdomen image [41], both are 
of size 256×256 and a non-phantom MRI (MATLAB sample) image 
of size 128 × 128. The image (b) has a deformation compared to 
the image (a) in Figs. 2, 3 and 4. The support of image (a) is con-
sidered as the prior support estimate for the reconstruction of im-
age (b) for �1−2,w . We have minimized �1−2,w for discrete weights 
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Fig. 3. Reconstruction of an abdomen image from 3 projections with different methods. Clearly better reconstruction is provided by the �1−2,w method at w = 0.1.
Algorithm 3: The split Bregman method for (18).
Initialize u = dx = dy = bx = by = 0, z = f .
for 1 to M1 do

for 1 to M2 do
u = (μRT R −λF
F T )−1(μF T Rz+λDT

x (dx −bx) +λDT
y (dy −by))

dx = S(Dxu + bx + tk
x
λ

, λw )

dy = S(D y u + by + tk
y
λ

, λw )

bx = bx + Dxu − dx

by = by + D y u − dy

end
z = z + f −RFu

end

{0, 0.1, . . . , 1} and obtained the optimal weight among them which 
gives the bigger structural similarity (SSIM) [42] index value. Its 
values range between 0 and 1, and bigger SSIM values correspond 
to the reconstruction of good quality.

We have compared our solver with the Back-Projection (BP), �1
[40], �1/�2 [38], (�1 − ν�2) [43], �1−2 [9] minimization solvers in 
the gradient domain. In our simulation work, we have set the pa-
8

rameters to their default values. We have repeated the reconstruc-
tion with varying number of projections and the reconstruction 
results corresponding to the least number of projections that pro-
vide higher SSIM values are reported in Table 5. It may be noted 
that we have obtained better reconstruction results for the image 
(b) of Fig. 2 and Fig. 3 merely from 3 projections at w = 0.1 using 
�1−2,w , while the quality of reconstruction by the rest of the meth-
ods is below par. Here for w = 0, however, in the reconstructed 
image, the marked portion (where there is growth) is hazy at the 
borders. The results in [9][38] and [44] have shown faithful MRI re-
construction of Shepp-Logan phantom image with 6, 7, and 8 pro-
jections respectively, implying thereby that the �1−2,w , fares better 
than the state-of-the-art solvers. It is important to notice here 
that there is a significant difference between the reconstruction 
errors using optimal weights and those with the particular values 
of the weights at 0 and 1. We have also done the comparison for 
a non-phantom image given in image (b) of Figs. 4 along with the 
analysis of varying number of projections. The reconstruction re-
sults of this third image are given in Fig. 4 and Table 6. It can 
be observed that, the reconstruction quality of images increases 
with the number of projections and for each value of number of 



K.Z. Najiya and C.S. Sastry Digital Signal Processing 133 (2023) 103833

Table 5
SSIM values for the reconstructed images (phantom images).

Image L Opt. w SSIM

BP �1 �1/�2 �1 − ν�2 �1−2,1 (w = 1) �1−2,0 (w = 0) �1−2,wopt

Phantom 3 0.1 0.5261 0.5883 0.0118 0.1169 0.5487 0.9995 0.9998
Abdomen 3 0.1 0.5597 0.2980 0.0394 0.2891 0.2227 0.9921 1

Fig. 4. For the test image in (b), reconstruction of a head image from 60 projections with different methods. Optimal reconstruction is obtained when w = 0.1. Notwithstand-
ing the near similar appearance, the reconstruction error at optimal w is significantly small as reported in Table 5.

Table 6
Effect of varying number of projections on the reconstruction quality for the image in Fig. 4(b).

L Opt. w SSIM

BP �1 �1/�2 �1 − ν�2 �1−2,1 (w = 1) �1−2,0 (w = 0) �1−2,wopt

40 0 0.0392 0.5370 0.4626 0.5353 0.5230 0.7733 0.7733
50 0 0.0538 00.5518 0.4873 0.5502 0.5402 0.9447 0.9447
60 0.1 0.0666 0.5611 0.5027 0.5589 0.5480 0.9999 1
9



K.Z. Najiya and C.S. Sastry Digital Signal Processing 133 (2023) 103833

Table 7
Reconstruction errors provided by the weighted DCA solver, where the weights are determined itera-
tively using the proposed scheme. The entries in the last column have been obtained experimentally, as 
discussed in Section 4. This table implies the significance of the scheme proposed in Section 5.

k Relative �2-error

w(0) w(1) w(2) w(3) Constant weight

20 0.0287 0.0166 0.0163 0.0163 0.0248
22 0.0544 0.0228 0.0218 0.0216 0.0504
24 0.1338 0.0837 0.0820 0.0830 0.1248
26 0.3801 0.3172 0.3136 0.3146 0.3469
28 0.5424 0.4761 0.4775 0.4797 0.4948
30 0.6673 0.6187 0.6200 0.6218 0.6135
Fig. 5. Plots of the functions used for obtaining the weights iteratively.

projections, �1−2,w gives better reconstruction results with opti-
mal weights. When using 60 projections, we have obtained better 
reconstruction at w = 0.1 for this non-phantom image. The SSIM 
values of the reconstructions provided by other methods are sig-
nificantly low. From our simulation results, we conclude that the 
weighted norm setup - a generalization of novel �1−2 minimiza-
tion - has a prominent implication in MRI reconstruction.

Remark 4.1. For the test images in Figs. 2(b) and 3(b), our results 
provide better reconstruction for some smaller value of w . How-
ever, in applications where reconstruction from a small projection 
set is of prime importance, one may use �1−2,w minimization in 
the following way: Using the image from the previous reconstruc-
tion for the prior support estimate and repeating the �1−2,w mini-
mization with a few projections by setting weights to 0, and then 
incrementing them by a small factor till the reconstruction of bet-
ter quality is obtained. It is also worth highlighting here that our 
numerical simulations give better reconstruction results for bigger 
values of w when the image to be reconstructed differs drastically 
from the image used to generate the partial support estimate. We 
do not discuss this part herein to avoid presenting too many re-
sults.

5. An iterative scheme for updating partial support and weights

Finding the accurate relation between the weights and partial 
support is rather a challenging problem. Nevertheless, in this sec-
tion, we provide an iterative scheme for updating the partial sup-
port and the weights in the weighted DCA solver. In this scheme, 
we update the partial support iteratively as a union of the p%
supports of the recovered vectors in the previous two iterations. 
Here, the p% support of x, given by a set T ⊂ supp(x), satisfies 
‖xT ‖2 � p

100 ‖x‖2 for p ∈ [0, 100].
Our sparse recovery results in the previous section have shown 

that the optimal weights are inversely proportional to the accu-
racy of the partial support, which in turn is proportional to the 
magnitude of the entries in the partial support. In view of these 
observations from the previous section, we consider three different 
10
iterative schemes for updating the weights in the partial support, 
for which the weights corresponding to the entries in the par-
tial support remain inversely proportional to their magnitudes. The 
three functions we consider for updating the weights are

• w(1)(t) = 1
|t|+1

• w(2)(t) = e−|t|
• w(3)(t) = 1 − tanh(|t|).

We denote w(0)(t) = 1 to represent the standard weight. It can be 
seen that 0 � w(3)(t) � w(2)(t) � w(1)(t) � w(0)(t) = 1, ∀ t ∈ R, 
which is shown in Fig. 5.

The proposed iterative scheme is as follows: at the kth itera-
tion of the weighted DC algorithm, we update the weights wi at 
the ith component of the partial support T based on the values 
of the components in x(k−1) , which is recovered at the (k − 1)th

iteration. That is, for a given choice of a weight function w( j) for 
some j ∈ {0, 1, 2, 3}, at the kth iteration, the weight w in T is up-
dated as w( j)(x(k−1)∗ ), where x(k−1)∗ = max

i∈T
|x(k−1)

i |. All components 

of (x(k−1)∗ )T are equal to the maximum component of (x(k−1))T in 
magnitude. We fix the weight as 1 on T c as in (7).

Remark 5.1. The iterative re-weighted schemes [27] in the litera-
ture are used to approximate the non-convex sparsity promoting 
functions such as �p , for p ∈ [0, 1) in terms of the convex �1 norm 
using weights. The objective of the weighted minimization in this 
section is different as the goal is to incorporate a partial support 
estimate T into the recovery process by means of weights. Driven 
by our observations (that the optimal weights are proportional to 
the accuracy of the partial support information which in turn is 
proportional to the magnitude of the entries in the partial sup-
port) we provide the stated iterative schemes for the updation of 
weights. Thus a comparison of re-weighted algorithms with the 
weighted minimization problem discussed here does not arise.

5.1. Numerical results with iterative scheme

We have evaluated the performance of the proposed itera-
tive scheme on the randomly over-sampled DCT matrix of size 
100 × 2000 with F = 20, whose average mutual coherence is 
0.9999. We have drawn the vectors from the normal distribution 
with a minimum separation of 2F and various sparsity values k
ranging from 20 to 30. We have fixed the p% support as 90%. The 
Table 7 shows the average of the relative �2 norm reconstruction 
errors over 100 trials for different weight functions. We have also 
repeated the experiment with constant weights as in Section 4
while keeping an iterative selection for the partial support de-
scribed in this current subsection. It is clear from the Table 7 that 
the proposed iterative scheme gives better results than the stan-
dard �1−2 minimization which corresponds to the weight w(0) = 1. 
For smaller sparsity, w(3) provides good reconstruction results and 
with the increase in sparsity, w(2) and w(1) give better recon-
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struction results. When sparsity is 30, the reconstruction using the 
constant weights provides better reconstruction results. It can be 
observed that the exponential weights w(2) = e−|.| give the least 
or comparable reconstruction errors at all sparsity levels.

6. Conclusion

The work reported in this paper has addressed issues such as 
the convergence of the iterative solver and the significance of gen-
eral weights pertaining to the weighted �1−2 minimization prob-
lem. While highlighting the importance of general weights, we 
have demonstrated their relevance through extensive simulation 
work, including reconstruction in MRI. We have shown that the 
weights different from 0 and 1 result in the reconstruction of bet-
ter quality when we do not have fully accurate or fully corrupt 
prior partial support information. From our simulation work, we 
have drawn observations on the dependence of optimal w on the 
values of associated parameters like accuracy and relative size of 
prior support information with respect to the actual support of the 
signal, sparsity of the signal to be recovered, and properties of un-
derlying sensing matrix (such as its coherence, size, etc). Alongside, 
we have proposed a numerical scheme for updating the partial 
support and weights iteratively, which is shown to provide good 
reconstruction results for highly coherent matrices. This approach 
for the selection of weights is different from the standard trial and 
error method for finding optimal weights in the weighted mini-
mization problems in CS. On the theoretical front, however, the 
convergence of the scheme proposed in Section 5 is needed to be 
established, which requires further analysis.

Our future works will include further analysis and improvement 
of the proposed iterative scheme for updating the partial sup-
port and weights, and for establishing its convergence guarantees. 
Further, we will also work on the advantage of the weighted min-
imization techniques in other applied domains where some prior 
support estimates can be obtained.
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