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We carry out a classification of the glitch amplitudes of radio pulsars using Extreme Deconvolution 
technique based on the Gaussian Mixture Model, where the observed uncertainties in the glitch 
amplitudes 

(
�ν
ν

)
are taken into account. Our dataset consists of 699 glitches from 238 pulsars. We 

then use information theory criteria such as AIC and BIC to determine the optimum number of glitch 
classes. We find that both AIC and BIC show that the pulsar glitch amplitudes can be optimally described 
using a bimodal distribution. The mean values of 

(
�ν
ν

)
for the two components are equal to 4.79 × 10−9

and 1.28 × 10−6, respectively with standard deviation given by 1.01 and 0.55 dex. We also applied this 
method to classify the pulsar inter-glitch time intervals, and we find that AIC prefers two components, 
whereas BIC prefers a single component. The unified data set and analyses codes used in this work have 
been made publicly available.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Pulsars are rapidly rotating neutron stars which emit pulsed 
radio emission (Kaspi and Kramer, 2016). Although the periods 
of most pulsars are stable, a small fraction of young pulsars 
show abrupt discontinuities in their period. Glitches constitute 
one such discontinuity, where there is a sudden abrupt increase 
in the rotational frequency, with frequency jumps ranging from 
(10−4 − 102) μHz (Espinoza et al., 2011; Manchester, 2018). The 
glitch is followed by a recovery stage in which the rotation fre-
quency asymptotes to the pre-glitch behavior. The glitch amplitude 
is usually parameterized by 

(
�ν
ν

)
, where �ν is the change in rota-

tional frequency and ν is the observed frequency. This amplitude 
ranges from 10−11 − 10−4, whereas the inter-glitch time interval 
varies between 20-1000 days (Eya et al., 2019). Ever since the 
detection of the first glitch in the Vela pulsar in 1969 (Radhakr-
ishnan and Manchester, 1969; Reichley and Downs, 1969), glitches 
have proved to be a wonderful laboratory for probing the physics 
of the neutron star, in particular the nature of superfluid in the 
interior of the neutron star (Baym et al., 1969). However, the 
full details of the glitch mechanisms are still not completely un-
derstood (Haskell and Melatos, 2015). Therefore, there are large 
number of observational campaigns on current as well as future 
radio telescopes to get more insights into the nature of glitches 
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and their causes (Singha et al., 2021). The study of pulsar glitches 
will also be one of the flagship science goals carried out during 
the SKA era (Singha et al., 2022). Such glitches have also been ob-
served in millisecond pulsars (Cognard and Backer, 2004; McKee et 
al., 2016) and also magnetars (Dib and Kaspi, 2014), where anti-
glitches (corresponding to spin-down in the neutron star period) 
have been detected (Archibald et al., 2013).

The study of pulsar glitches is very important for gravitational 
wave astronomy. Pulsar glitches could result in a gravitational 
wave burst (van Eysden and Melatos, 2008). Studying the statistical 
characteristics of these glitches is therefore important for designing 
search pipelines to look for such gravitational wave bursts (Clark 
et al., 2007; Hayama et al., 2008; Prix et al., 2011). Furthermore, 
glitches could also affect the sensitivity of continuous gravitational 
wave (CW) searches (Ashton et al., 2017). It is important to under-
stand the probability of occurrence of a glitch during a CW and the 
impact of a probable glitch on its detectability. The statistical char-
acteristics of the observed glitch population has also been used to 
extrapolate the glitch magnitudes for the unobserved neutron star 
population to understand its implications for CW searches (Ashton 
et al., 2017).

There have been several studies which have looked at the sta-
tistical distribution of glitch amplitudes, which have alluded to a 
bimodal distribution (Lyne et al., 2000; Wang et al., 2000; Espinoza 
et al., 2011; Yu et al., 2013; Fuentes et al., 2017; Konar and Arjun-
wadkar, 2014; Ashton et al., 2017; Eya et al., 2017, 2019; Basu et 
al., 2022). A few works have previously carried out a GMM based 
analysis of the glitch amplitudes (Ashton et al., 2017; Fuentes et 
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al., 2017) or the fractional glitch amplitude (Konar and Arjunwad-
kar, 2014), followed by Bayesian (Ashton et al., 2017) or AIC based 
model comparison test (Fuentes et al., 2017). However none of 
these works have included the associated errors in the fractional 
glitch amplitudes. In addition to the aforementioned importance 
of understanding the statistical nature of glitches for gravitational 
wave astronomy, the bimodal nature of the glitch amplitude distri-
bution is important for constructing unified models of the glitch 
phenomenon (Celora et al., 2020). Therefore it is important to 
re-assess the robustness of the claim of bimodality of the glitch 
amplitude distribution, when the uncertainties are incorporated, 
which hitherto has never been done.

For this purpose, we carry out a clustering based analysis of 
pulsar glitch amplitudes by applying the Extreme Deconvolution 
technique based on the Gaussian Mixture model (Bovy et al., 2011) 
and determine the optimum number of classes using information 
theoretical criteria (Krishak and Desai, 2020a). This work follows 
up on our previous studies, where we applied these same tech-
niques for the classification of pulsars (using their period and 
period derivatives) (Reddy Ch. and Desai, 2022) and Gamma-Ray 
Bursts (using durations and hardness) (Bhave et al., 2022).

This manuscript is structured as follows. The data set used for 
our analysis is described in Sect. 2. The analysis methodology is 
described in Sect. 3. Our results are discussed in Sect. 4 and we 
conclude in Sect. 5.

2. Data set

A complete catalog of pulsar glitches has been independently 
collated in two different locations: one at Jodrell Bank (JBO) (Es-
pinoza et al., 2011)1 and also by ATNF (Manchester et al., 2005).2

The JBO catalog contains 664 glitches from 207 distinct pulsars. 
Each JBO glitch entry consists of pulsar name, glitch MJD, glitch 
amplitude and its error, the first derivative of the glitch amplitude 
along with its error. In this catalog, two glitches did not have any 
associated amplitude and error, whereas 16 glitches had no associ-
ated uncertainties for 

(
�ν
ν

)
. The ATNF catalog contains 641 glitches 

from 211 distinct pulsars and 18 glitches without any associated 
pulsar. This catalog also contains 54 entries from 32 distinct pul-
sars, which are not in the JBO catalog.

For our analysis we primarily used the JBO catalogue. How-
ever, we appended to this catalog the 54 entries from the ATNF 
list which were absent from JBO. We also checked to see if any 
of the entries with missing amplitude or error in the JBO cata-
log had corresponding values in the ATNF and we found 5 such 
events. After combining data from both the catalogs we had a total 
of 717 glitches from 238 distinct pulsars. After preprocessing the 
data to remove pulsars associated with negative glitch amplitude 
and ones with no associated uncertainties, we had a total of 699 
glitches from 238 pulsars. The median value of the fractional error 
in the glitch amplitude is about 1.5%. The full dataset used for our 
analysis can be found at https://github .com /swetha9730 /XDGMM -
for-Pulsar-Glitches -Classification. Given the large dynamic range in (

�ν
ν

)
, we do the classification in logarithmic space using the base 

10. We now describe the methodology used for classification.

3. Methodology

3.1. XDGMM

Extreme Deconvolution (XDGMM) is a generalization of Gaus-
sian Mixture Model (Kuhn and Feigelson, 2017) (GMM), which in-
corporates the uncertainty in the observed data (Bovy et al., 2011; 

1 https://www.jb .man .ac .uk /pulsar /glitches /gTable .html.
2 https://www.atnf .csiro .au /people /pulsar /psrcat /glitchTbl .html.
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Ivezić et al., 2014; Holoien et al., 2017). It has been used for a vari-
ety of astrophysical applications, including determining the veloc-
ity distribution from Hipparcos (Bovy et al., 2011), classification of 
pulsars (Reddy Ch. and Desai, 2022) and GRBs (Bhave et al., 2022), 
the three-dimensional motions of Sagittarius stream stars (Koposov 
et al., 2013), bifurcation of neutron star masses (Keitel, 2019), de-
tection of dark matter subhalo candidates (Coronado-Blázquez et 
al., 2019). We provide a brief description of the XDGMM method, 
and use the same notation as Reddy Ch. and Desai (2022); Bhave 
et al. (2022). More details about XDGMM can be found in Bovy et 
al. (2011); Ivezić et al. (2014); Holoien et al. (2017). We note that 
GMM has also been extended to account for incomplete/missing as 
well as truncated data (Melchior and Goulding, 2018).

Consider a noisy data set xi , which is related to the true values 
vi according to Bovy et al. (2011); Ivezić et al. (2014):

xi = Ri vi + εi, (1)

where Ri is the rotation matrix used to transform the correct val-
ues to the observed noisy dataset. Similar to ordinary GMM, we 
assume that the probability density of the true values v can be 
written as a mixture of K Gaussians given by

p(vi) =
K∑

j=1

α jN (vi |μ j,� j) (2)

where μ j and � j are the means and variances of each of the Gaus-
sian distribution, and α j is the weight of each Gaussian, subject to 

the constraint 
K∑

j=1
α j = 1. For the example in this work, xi and vi

represent the one-dimensional dataset given by log
(

�ν
ν

)
. We as-

sume that the noise εi (in Eq. (1)) is a Gaussian random variable 
with zero mean and variance equal to Si . The likelihood of the 
model parameters (θ ≡ {α, μ, �, Ri , Si }) for each noisy data point 
(xi ) is then given by Bovy et al. (2011):

p(xi |θ) =
K∑

j=1

α jN (xi |Riμ j, Ri� j RT
i + Si) (3)

The final step in XDGMM is to maximize the likelihood of the 
dataset with respect to the model parameters. This can be done by 
summing the individual log-likelihood functions:

argmax
θ

L =
N∑

i=1

ln(p(xi |θ)), (4)

where N is the total number of data points. This objective function 
is maximized using an extension of the Expectation-maximization 
algorithm (Bovy et al., 2011). The output of XDGMM returns a like-
lihood, which can then be used for model selection.

3.2. Model selection

There are basically three kinds of techniques used in litera-
ture to arbitrate between two models which are used to fit the 
data: frequentist, Bayesian, and information theoretical ones. More 
details on these techniques, including pitfalls and advantages of 
each of them can be found in Liddle (2004); Kerscher and Weller 
(2019); Sharma (2017) or in some of our past works (Kulkarni 
and Desai, 2017, 2018; Ganguly and Desai, 2017; Krishak et al., 
2020; Krishak and Desai, 2019; Singirikonda and Desai, 2020; Kr-
ishak and Desai, 2020b,a). In this work, we shall use information 
theoretical techniques such as AIC and BIC, since they are straight-
forward to compute from the likelihood returned by XDGMM. We 
now add each of them below:

https://github.com/swetha9730/XDGMM-for-Pulsar-Glitches-Classification
https://github.com/swetha9730/XDGMM-for-Pulsar-Glitches-Classification
https://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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Fig. 1. AIC and BIC values as a function of the number of components. The minimum 
value of AIC/BIC is obtained for two components, indicating that the pulsar glitch 
amplitude can be adequately described using two classes.

• AIC AIC is defined by

AIC = 2p − 2 ln Lmax, (5)

where p is the number of free parameters in the model and 
Lmax is the maximum likelihood. For our analysis, Lmax is ob-
tained from XDGMM. The model with the smaller value of AIC 
is considered as the better model and the significance can be 
assessed using the qualitative strength of evidence rules (Kr-
ishak and Desai, 2020a).

• BIC

B IC = p ln N − 2 ln Lmax, (6)

where N is the number of data points and all the other terms 
is the same as in Eq. (5). BIC penalizes models with addi-
tional free parameters more harshly than AIC. Similar to AIC, 
the model with the smaller value of BIC is considered as the 
favored model and the significance can be assessed using the 
strength of evidence rules proposed for BIC (Krishak and Desai, 
2020a).

3.3. XDGMM implementation

We now apply XDGMM to our unified glitch catalog using log(
�ν
ν

)
as inputs, where log refers to logarithm to the base 10. The 

error in this quantity is given by σ
2.3�ν/ν , where σ refers to the un-

certainty in 
(

�ν
ν

)
. We did not consider the data points for which (

�ν
ν

)
< 0, since we are doing the fit in logarithmic space. We use 

the XDGMM implementation in the XDGMM classes (Holoien et al., 
2017), which is a wrapper to the astroML module. The output 
of XDGMM consists of the weights, means, and covariances for the 
input number of clusters. In order to determine the optimum num-
ber of components, we apply XDGMM by varying the number of 
glitch classes from one to four and then use AIC/BIC to determine 
the best number among these.

4. Results

The AIC/BIC as a function of the number of glitch classes can be 
found in Fig. 1. Both AIC and BIC show a minimum for two glitch 
classes. BIC rises sharply as we increase the number of compo-
nents with (�BIC > 10). Therefore, based on strength of evidence 
rules (Liddle, 2004; Krishak and Desai, 2020a), BIC decisively fa-
vors two classes over any other. AIC also shows a minimum for 
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Fig. 2. Normalized histogram of the pulsar glitch amplitudes (log
(

�ν
ν

)
) along with 

the Gaussian fit obtained using XDGMM. The mean value and standard deviation for 
the two components (μ, σ ) are given by (-8.32, 1.01) and (-5.89, 0.55) respectively.

two components, although the difference with respect to the third 
component is less than 10 (�AIC=5). This is because AIC is more 
liberal while fitting complicated models. Still both the techniques 
agree that the optimum number of glitch classes (based on glitch 
amplitude) is equal to two.

The mean value and standard deviation of the two components 
(μ, σ ) are given by (−8.32, 1.01) and (−5.89, 0.55) respectively. 
This corresponds to mean fractional glitch amplitude 

(
�ν
ν

)
equal 

to 4.79 ×10−9 and 1.28 ×10−6, respectively. There are 386 glitches 
which belong to the first component (μ1 = −8.32) and 313 to 
the second component (μ2 = −5.89). There are 98 glitches in the 
overlap region, where overlap region is defined by the region lying 
between μ1 + 2σ1 and μ2 − 2σ2.

4.1. Application of XDGMM to inter-glitch arrival times

We now apply XDGMM to the pulsar inter-glitch arrival times, 
defined as the arrival time between multiple glitches for the same 
pulsars. The error in inter-glitch arrival times were obtained by 
adding in quadrature the uncertainty in both the time intervals. 
For this analysis, we used the same data-set used for XDGMM on 
fractional glitch amplitudes and further removed glitches which 
had no uncertainty in their MJD. We had a total of 658 glitches 
from 219 distinct pulsars and hence had 439 inter-glitch arrival 
times (ti ) (in days) after pre-processing the data. We again ap-
ply XDGMM for the glitch arrival times in logarithmic (to base 10) 
space.

The results of XDGMM analysis can be found in Fig. 3. The his-
togram of the inter-glitch arrival times along with the XDGMM 
best-fit for one component is shown in Fig. 4, and the same with 
two components in Fig. 5. We find that the BIC analysis points 
prefers an unimodal distribution, whereas the AIC analysis shows a 
preference for two components with � BIC (AIC) between the first 
and second component equal to -0.9 and 11.3, respectively. There-
fore, AIC and BIC analyses lead to opposite conclusions. We have 
seen this previously also where AIC and BIC results did not always 
agree (Kulkarni and Desai, 2017, 2018; Bhave et al., 2022). We note 
that AIC and BIC answer different questions and are derived based 
on different assumptions. As emphasized by Tarnopolski (2019), 
AIC chooses a model which describes reality for the data being 
analyzed, whereas BIC finds the correct model among the different 
hypotheses being tested. Therefore, they differ in how they penal-
ize the number of free parameters, where BIC is more stringent in 
penalizing parameters with additional free parameters (Tarnopol-
ski, 2019). Therefore BIC results are more trustworthy in case of 
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Fig. 3. AIC and BIC values as a function of the number of components. The mini-
mum value of BIC is obtained for one components, while minimum value of AIC is 
obtained for two components.

Fig. 4. Normalized histogram of the pulsar inter-glitch arrival time (log(�ti))(in 
days) along with the Gaussian fit obtained using XDGMM. The mean value and stan-
dard deviation for the Gaussian fit (μ, σ ) are given by (2.76, 0.55).

a discrepancy, which is seen here. Therefore, the current data for 
inter-glitch time interval is consistent with an unimodal distribu-
tion.

5. Conclusions

In this work, we use an automated method to determine the 
optimum number of radio pulsar glitch classes using the fractional 
glitch amplitude. Although a large number of works have previ-
ously alluded to a bimodal distribution for the pulsar glitch am-
plitude, very few works have implemented model selection tech-
niques to ascertain that two pulsar glitch components are deci-
sively favored compared to other classes. Furthermore, no previ-
ous work has incorporated the observational uncertainties in their 
analysis.

To rectify this, we did a classification of 
(

�ν
ν

)
in logarithmic 

space, for all pulsar glitches collated in the JBO or ATNF catalog, 
using XDGMM which is an extension of the GMM technique, which 
incorporates the uncertainties in 

(
�ν
ν

)
. We used information the-

ory criteria such as AIC and BIC to determine the optimum glitch 
classes. Our results for the variation of AIC and BIC as a function of 
the number of the components can be found in Fig. 1. We see that 
both AIC and BIC have a minimum value for two components. The 
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Fig. 5. Normalized histogram of the pulsar inter-glitch arrival time (log(�ti))(in 
days) along with the Gaussian fit obtained using XDGMM assuming two compo-
nents. The mean value and standard deviation for the two components (μ, σ ) are 
given by (2.35, 0.41) and (3.17, 0.33) respectively.

difference in BIC for two components is greater than 10 compared 
to any other value. Therefore, BIC decisively favors two compo-
nents. The difference between the AIC value for two and the next 
larger components is about five.

The dichotomy of the two glitch classes along with the XDGMM 
fit can be found in Fig. 2. The mean values of 

(
�ν
ν

)
for the two 

components are given by 4.78 × 10−9 and 1.38 × 10−6, respec-
tively. Therefore our results for the classification of fractional glitch 
amplitude are consistent with previous works (Lyne et al., 2000; 
Wang et al., 2000; Espinoza et al., 2011; Yu et al., 2013; Fuentes et 
al., 2017; Konar and Arjunwadkar, 2014; Ashton et al., 2017; Eya 
et al., 2017, 2019; Basu et al., 2022), which also pointed to a bi-
modal distribution, even though these works did not consider the 
uncertainty in the glitch amplitudes.

We have also applied this method to inter-glitch arrival time. 
The AIC/BIC distribution for this can be found in Fig. 3. We find 
that BIC based analysis supports a single distribution, whereas AIC 
analysis prefers two components. The best-fit single and two com-
ponent models for the inter-glitch intervals can be found in Fig. 4
and Fig. 5. In such a scenario, the BIC based analysis is more trust-
worthy (Tarnopolski, 2019).

Therefore, our results on the autonomous classification of 
glitches corroborate previous results in literature which alluded 
to two distinct classes. Since extensions to GMM can account for 
the observational uncertainties as well as incompleteness, it is very 
important to have an accurate characterization of not only all the 
glitch observables, but also their uncertainties, completeness and 
upper limits, as we head into the SKA era (Singha et al., 2022). 
We should obtain lot more statistics for pulsar glitches during the 
SKA era and incorporating the uncertainties and completeness into 
the analyses, could alter our Physics inferences. We can also ap-
ply our current technique to other pulsar glitch observables such 
as glitch activity, absolute glitch amplitude, etc. In order to carry 
out a similar analysis on the glitch activity, we would need an ac-
curate estimate of the total time interval over which each pulsar 
has been monitored. Unfortunately, this information is not publicly 
available at the time of writing. Once this has been made publicly 
available, we can apply the XDGMM technique for classification of 
the glitch activity.

The unified data set used for this analysis along with the codes 
have been uploaded at https://github .com /swetha9730 /XDGMM -
for-Pulsar-Glitches -Classification.

https://github.com/swetha9730/XDGMM-for-Pulsar-Glitches-Classification
https://github.com/swetha9730/XDGMM-for-Pulsar-Glitches-Classification
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