
Journal of Systems Architecture 135 (2023) 102805

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

TPPD: Targeted Pseudo Partitioning based Defence for cross-core covert
channel attacks
Jaspinder Kaur a,∗, Shirshendu Das b

a Department of CSE, Indian Institute of Technology Ropar, Punjab, 140001, India
b Department of CSE, Indian Institute of Technology Hyderabad, Telangana, 502285, India

A R T I C L E I N F O

Keywords:
Cache security
Timing channel attacks
Cache partitioning
Covert Channel Attack (CCA)
Last level cache (LLC)

A B S T R A C T

Contemporary computing employs cache hierarchy to fill the speed gap between processors and main
memories. In order to optimise system performance, Last Level Caches (LLC) are shared among all the cores.
Cache sharing has made them an attractive surface for cross-core timing channel attacks. In these attacks, an
attacker running on another core can exploit the access timing of the victim process to infiltrate the secret
information. One such attack is called a cross-core Covert Channel Attack (CCA). Timely detection and then
prevention of cross-core CCA is critical for maintaining the integrity and security of users, especially in a shared
computing environment. In this work, we have proposed an efficient cross-core CCA mitigation technique. We
propose a way-wise cache partitioning on targeted sets, only for the processes suspected to be attackers. In
this way, the performance impact on the entire LLC is minimised, and benign applications can utilise the
LLC to its full capacity. We have used a cycle-accurate simulator (gem5) to analyse the performance of the
proposed method and its security effectiveness. It has been successful in abolishing the cross-core covert timing
channel attack with no significant performance impact on benign applications. It causes 23% less cache misses
in comparison to existing partitioning based solutions while requiring ≈ 0.26% storage overhead.
1. Introduction

Modern multi-core processors have adopted a multi-level cache
hierarchy to address the rising need for high-performance computing.
Caches are smaller and faster memories deployed to bridge the speed
gap between the processor and main memory. Most commercial pro-
cessors available in the market are equipped with multiple levels of
caches. The higher layers of caches are private to each core, whereas
all CPU cores share the Last Level Cache (LLC).1 Cache memories boost
overall performance by allowing processors quicker access to data.
While improving the system’s overall performance, the LLCs have also
become an attractive target surface for timing channel-based attacks [1]
due to these reasons:

1. The significant time difference between a cache hit and miss
provides an effective timing channel that is exploited to unveil
the memory accesses of the targeted process [2,3].

2. Shared nature of LLC allows an attacker process to interfere in
the cache occupancy of other processes. The attacker uses the
timing channel to understand other processes’ access patterns

∗ Corresponding author.
E-mail addresses: 2017csz0002@iitrpr.ac.in (J. Kaur), shirshendu@cse.iith.ac.in (S. Das).

1 All the cache memories in this paper are considered as set-associative cache. We used the term ‘‘set’’ and ‘‘way’’ of a set-associative cache without a detailed
explanation about them.

on the shared cache as described in Fig. 1. These accesses are
further analysed to reveal the underlying secret [4].

Any remote process, sharing LLC with the victim process, can mount
these attacks without requiring special privileges or shared address
space [5]. The victim and attacker processes may run on separate
cores, but they share the LLC space. Such attacks are called cross-core
attack. These attacks become more threatening in shared computing
environments such as the cloud, where multiple users from different
security domains share the underlying LLC. Cache timing channel
can be implemented in two forms: Side-Channel Attack (SCA) and
Covert Channel Attack (CCA) [6,7]. The private keys of cryptography
algorithms like AES [8], RSA [9], and ECDSA [10] have been the
primary target of cache-based SCAs. In a CCA, two suspicious processes,
spy and Trojan, communicate covertly by exploiting the cache timing
channel [6]. The Trojan runs on a different core and knows some
sensitive information that it needs to send to the spy. The attacker
uses CCA when as no direct communication between Trojan and spy
is possible because of the security restrictions.
vailable online 19 December 2022
383-7621/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2022.102805
Received 30 May 2022; Received in revised form 30 November 2022; Accepted 10
 December 2022

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:2017csz0002@iitrpr.ac.in
mailto:shirshendu@cse.iith.ac.in
https://doi.org/10.1016/j.sysarc.2022.102805
https://doi.org/10.1016/j.sysarc.2022.102805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102805&domain=pdf

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 1. The step-wise details of LLC based timing channel attacks.
From experiments, we have found that the attack works successfully
on real-time systems with processors Intel Core i9-10885H, i7-9700,
and i7-7700. It is crucial to detect and prevent these attacks effectively
in order to preserve the confidentiality and integrity of the computer
systems [11,12]. This paper is based on proposing countermeasures for
preventing cross-core CCA attacks. Section 2.1 discusses CCA in more
detail.

The CCA attack that is discussed in this paper is cross-core attack;
based on the shared LLC used by the multi-core processors. Attack
defence mechanisms based on not allowing cache sharing through LLC
partitioning have been proposed previously [13,14]. Cache partitioning
techniques were initially proposed for improving the performance of
the system by fairly dividing the LLC among the cores (or applica-
tions) [15–17]. Most of them were not proposed keeping security in
mind. These partitioning techniques divide the LLC either way-wise
or set-wise. The way-wise partitioning techniques are more prevalent
where the ways of a set-associative LLC are partitioned among the cores
(or applications) [15]. The partition can be either static or dynamic.
The static partitioning techniques cannot change the partition during
the execution, while the dynamic partitioning techniques can change
the partition based on the requirement of the running applications.
Since cache partitioning can separate the LLC space used by Trojan
and spy, the cache interference of two applications can be prevented.
However, there are two major challenges in using cache partitioning
for preventing CCA:

1. The static partition-based solutions suffer from severe perfor-
mance degradation as cache cannot be utilised fairly based on
the dynamic behaviour of the system [15].

2. Dynamic partitioning techniques utilise the cache more effi-
ciently and hence improve performance. However, the dynamic
partitioning technique itself can be exploited to mount CCA as
proposed in [18]. In this work, the authors have shown that if
the attacker knows the logic of partition change, it can misuse
this and change the partition as per the attacker wish. Thus,
a dynamic partitioning based countermeasure can restrict the
attack but indirectly opens another option for CCA.

Hence for preventing CCA, a partitioning technique is required, in
which the attacker cannot change partition size. Also, the technique
should not degrade the performance of the overall system.

There are some existing countermeasures proposed based on the
static partition where the technique applies to all the sets within
the LLC. In this paper, we call this type of countermeasure as a
non-targeted countermeasure. Such countermeasures cause higher per-
formance degradation in the system. Our attack mitigation mechanism
overcomes the drawbacks of the existing partitioning-based solutions.
We do this by providing Targeted Pseudo Partitioning based Defence
(TPPD). It is termed as ‘‘targeted’’ because the attack prevention mech-
anism is only applied to the cache sets suspected to be participating
in CCA. The sets which participate in the timing channel attacks are
termed as targeted set. The remaining cache sets can behave as before,
thus minimising the effect of static partitioning on the performance. A
2

practical attack detection technique is deployed that sends the infor-
mation regarding suspicious processes (Trojan and spy) and cache sets
involved. Attack detector based on conflict misses pattern [19] has been
tested to identify the suspicious processes and sets involved.

The main contributions of this work are listed as follows:

1. We propose an effective attack defence mechanism, TPPD, that
dismantles the cross-core CCA with an insignificant effect on
system performance.

2. The proposed TPPD creates the pseudo partition only on the
targeted set and is applied only for the Trojan and spy process.
In this technique, not all blocks of the spy can be removed by
Trojan and vice versa.

3. Effect of TPPD on the performance of PARSEC benchmark [20]
is tested experimentally in gem5 simulator [21].

4. Experiments are conducted to test the effectiveness of TPPD in
mitigating cross-core CCA.

The organisation of the paper is as follows. Section 2 describes the
background and related work. Section 3 describes the threat model
taken under consideration, and Section 4 discusses our proposed work
in detail. The experimental analysis is shown in Section 5. Finally,
Section 6 concludes the paper.

2. Background and related works

This section describes the background information required to un-
derstand the proposed attack defence mechanism. In a cache timing
channel attack, the attacker process uses different attack methods to
unveil the cache access pattern of the target process. In side-channel
attacks, the target is an innocent victim process performing cache ac-
cesses as part of its underlying operation without any malign intentions.
In a covert channel attack, there are two malign processes performing
cache accesses with the intent of leaking secrets. An abstract overview
of cache timing channel attacks is shown in Fig. 1.

2.1. Cross-core covert channel attacks

In a covert timing channel attack, two suspicious processes: spy and
Trojan, are involved. Trojan has access to some critical information that
it wants to transmit to spy, but this transmission is not allowed under
the system security policy. Trojan uses a cache timing channel to leak
this information to spy without being noticed. This type of attack is
called Covert Channel Attack (CCA). The CCA is called cross-core when
the spy and Trojan execute on two different cores. In this case, both Tro-
jan and spy use the shared LLC to create a timing channel. Cache timing
channel attack can be constructed using various attack techniques like
Prime+Probe (P+P), Evict+Reload (E+R), Flush+Reload (F+R), and
Evict+Time (E+T) [6]. These attack techniques, even though different,
follow these basic three steps:

• Step 1: In the first step, the aim is to bring the shared LLC in
a predictable state known to the attackers. It is done by either
bringing some data in LLC or evicting it out by the spy.

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

R
t

t
B
g
o
o
p
p
w
s

Fig. 2. Cross-Core covert channel attack using Prime+Probe technique.
• Step 2: In this step, the spy process sits idle, and the Trojan
process performs conditional memory accesses based on the bit
to transmit (bit 1 or 0).

• Step 3: In this step, the spy process observes the changes made in
the earlier known state of the cache by the Trojan to detect the
bit as 1 or 0.

epeating the above mentioned steps, the Trojan can send multiple bits
o the spy.

CCA using Prime+Probe (P+P) technique is described in Fig. 2. In
his method, spy and Trojan do not require any shared address space.
oth these processes have their own Eviction Set (ES) [22]. ES is the
roup of unique block addresses mapping to the same set. The number
f addresses in each ES is either equal to or more than the associativity
f the underlying cache. In the prime phase, the spy uses the addresses
resent in its ES to fill the targeted set with its own blocks. After
riming the cache, spy waits for a Trojan to send the bit. If Trojan
ants to transmit bit 1, it replaces all of spy’s blocks from the targeted

et with its own blocks (from Trojan’s ES). For bit 0, it does not do
anything; thus, spy’s blocks stay in the set. After this, in the probe
phase, spy accesses the addresses from its ES again. In this phase, spy
faces high latency in case Trojan has removed its blocks from the set;
otherwise, less latency. Based on this latency, the spy unveils the cache
access pattern of Trojan and the secret bit transmitted. The rest of the
discussions of this paper assume Prime+Probe (P+P) based CCA.

The Prime+Probe attack discussed in Fig. 2 can be slightly modified
to make the attack possible in non-inclusive caches also [23]. The idea
here is to make sure that the blocks requested in the prime phase reside
only in the LLC after the prime phase. This can be achieved by using
some additional block requests at the end of the prime phase. Such
actions remove all the actual blocks of eviction set from L1 and place
them in LLC. The same policy will be followed by the Trojan. Hence
the timing difference will be created only based on the hits and misses
of the LLC. Since the timing difference, in this case, is not expecting a
hit in L1, the attack works perfectly for non-inclusive caches.

2.2. Existing attack mitigation techniques

As discussed in Section 2.1, cache sharing is the critical pre-
requirement of cross-core cache timing channel attacks. Prohibiting
cache sharing across processes or different security domains is an effec-
tive solution. However, it is not feasible as the impact of a non-shared
cache will lead to under-utilisation of cache capacity thus, impacting
system performance significantly. Various works with different cache
3

partitioning techniques that try to maintain cache utilisation have been
proposed in recent years. Partitioning Locked cache (PLcache) [24]
allows compiler and programmer to mark security critical lines, and
these will be locked in the cache. In this architecture, each cache line
is augmented with a process id and a bit dictating whether that line is
locked or not. A locked line of a process cannot evict a locked line of a
different process, while no unlocked line is allowed to replace a locked
line. Thus, disabling inter-process and intra-process cache interference
has been identified as the root cause of cache access-based attacks.
NonMonopolizable (NoMo) [25] cache allocated 𝑣 number of ways of
each set to an active thread. The allowed range for 𝑣 is 1 to 𝐴∕𝑀 , where
𝐴 is the associativity of the cache, and 𝑀 is the maximum number of
threads allowed per processing core. Data of one thread cannot evict
reserved lines of another thread; thus, an attacker cannot know the
victim’s cache access.

NoMo and PLCache offer easy-to-implement static partition solu-
tions, but the static partitioning can lead to not utilising the cache to its
full capacity. Security Dynamic Cache Partitioning(SecDCP) cache [26]
addresses this issue by proposing a dynamic cache partition. SecDCP
allocates a number of ways to different security classes based on their
requirement. However, dynamic partitioning in itself can be exploited
to create cache covert timing channel attack as described in [18]. A
secure dynamic partitioning in terms of SCA is proposed in [13]. It
proposes a secure dynamic cache partitioning cache called FairSDP,
where partitioning size is determined by the cache usage of non-
critical processes, thus not revealing the requirement of security-critical
processes. However, this does not work against CCA as it involves two
suspicious processes, and there is no security-critical process.

All the mitigation techniques discussed above apply some strict
cache partitioning policy across all sets for all processes. Hence these
techniques reduce the performance of the LLC as well as the entire
system. Also, most of the existing countermeasures are non-targeted, as
the mechanism is applied to all the cache sets and processes regardless
of their participation in the attack. A targeted countermeasure can be
less expensive as the necessary actions can be applied only in the sets
currently under attack. An alternative solution to prevent cross-core
CCA is the recently proposed randomised LLCs [27,28]. In these works,
the block-to-set mapping of the set-associative cache changes after
an epoch. However, these techniques suffer significant performance
degradation because of the remapping [29]. The number of write-backs
required to remap is high. Hence in this work, we have been motivated
to propose a targeted countermeasure for the cross-core CCA.

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 3. Overall design of TPPD and its structure.
3. Threat model

In this paper, we have assumed a chip multiprocessor (CMP) with
two levels of cache memories. Each core in the CMP has its own private
L1 cache, and all the cores share a common L2 cache as LLC. The LLC is
inclusive, and all the cache memories are set-associative. The cores, L1
caches, and LLC are connected with some on-chip interconnects. The
cross-core CCA attack discussed in this paper runs spy and Trojan on
two different cores. These two attacking processes (spy and Trojan)
are not using any shared address space. Hence no cache blocks can
be shared among these two processes, and the eviction sets (c.f. Sec-
tion 2.1) of both processes are also different. However, both spy and
Trojan share the LLC, and they can evict each other blocks from the
LLC. The eviction set of both spy and Trojan maps to the same targeted
set. We propose TPPD to mitigate cross-core CCA. This attack can be
based on Prime+Probe [6] or Evict+Time [6] methods, where spy and
Trojan processes rely on replacing each other’s block to transmit bits.
Trojan has a piece of secret information that spy cannot access di-
rectly due to underlying system security policies. Trojan transmits this
information to spy through LLC based covert communication channel
(details of CCA is already discussed in Section 2.1). Both Trojan and
spy can successfully create their eviction sets as they are aware of the
virtual address to LLC set mapping. An undisclosed set mapping of
set-associative cache can also be calculated as discussed in [30]. Both
attacker processes are unprivileged processes that do not have any kind
of special privilege.

4. Our proposal

The most straightforward approach to preventing attacks is killing
the suspected attacker process. However, no attack detection mecha-
nisms are free from false detection. The killing of the innocent process
can cause severe performance as these processes needs to be restarted
from the beginning. An ideal attack prevention mechanism should
effectively obfuscate the covert communication between spy and Trojan
without compromising system performance. We propose a localised
attack prevention mechanism with minimal impact on benign processes
to fulfil this requirement. Our proposed targeted defence mechanism,
TPPD, works against LLC based covert channel attacks (cross-core
4

CCA) by creating way-wise pseudo partitioning between the suspicious
process pair (spy and Trojan). This partition technique used in TPPD
cannot be changed by the attacker process as per its requirement. Also,
the partition is only applied on the sets suspected to participate in
covert channel communication. The purpose of using the term ‘‘pseudo’’
is discussed later in this section. TPPD decreases the cache interference
between the Trojan and spy on the targeted sets, thus disturbing the
access latency pattern observed by the spy to interpret the bit sent.
TPPD receives information regarding suspicious process ids (spy and
Trojan) and the targeted sets from a CCA detector module; then ap-
plies the proposed pseudo-partitioning on these sets for the suspicious
processes. The CCA detection module is discussed in Section 4.1. The
overall design of TPPD is shown in Fig. 3(a). In this section, we describe
TPPD in detail, along with how it can be implemented with minimal
modification in architectural design.

4.1. Cross-core covert channel attack detector

TPPD works efficiently by applying attack mitigation mechanisms
only for suspicious process pairs on the LLC sets suspected to be used for
cache covert channel attacks. The countermeasure proposed in TPPD
depends on an efficient CCA detection mechanism. A cross-core CCA de-
tection mechanism based on conflict misses pattern is proposed in [19].
It is based on the observation that set under attack have a higher
number of conflict misses than other sets during the attack. These
misses form a ping-pong pattern because spy and Trojan processes evict
each other’s data regularly to communicate covertly using cache timing
channel attacks. In [19] a two-step detection mechanism is proposed
which, firstly, filters out the sets with low conflict. In the second
step, sets observing ping pong pattern of conflict misses between two
processes are declared suspicious along with processes participating in
this pattern. However, we observed that the behaviour of total cross-
process misses per unit time is sufficient in order to identify sets and
processes used for mounting CCA. The experimental observation for the
same is shown in Fig. 4. The figure shows the cross-process conflict
misses on an LLC set. The experiment is performed on different mixes
of benign processes (Mix-𝑥) from Parsec benchmarks (described in
Table 1) and also on an attacker process pair (only-attack). The details
about the experiment setup, benchmarks, and creating attack process
pair are discussed in Section 5. From the figure, it can be observed that

the attacker process pair suffers high cross-process conflict misses when

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 4. Cross-process conflict misses per unit of time (.10 s).
i
t
p
m
m
r
t

T
r
T
d

t
f
S
S
v
f
m
s
a
n
a
a
s
a
s
o
t
a
b
o
r

Table 1
PARSEC benchmark mixes used.

Mixes Benchmarks Involved

Mix 1 blacksholes + canneal
Mix 2 blacksholes + dedup
Mix 3 blacksholes + fluidanimate
Mix 4 blacksholes + freqmine
Mix 5 canneal + dedup
Mix 6 canneal + fluidanimate
Mix 7 freqmine + fluidanimate

compared to any mixes of benign benchmarks for the duration of the
attack.

Initially spy and Trojan collude to decide on a target set and bit
pattern for synchronisation. During synchronisation, Trojan sends this
small bit pattern to spy for sync purposes using a covert channel attack
on the targeted set. This pattern transmission generates more cross-
process conflict misses in a smaller duration than any other benign
benchmark mix. Thus, attacks are detected before actual suspicious
transmission can take place. The cross-process conflict misses and rate
of increase is significantly higher than any Innocent process pair as
described in Fig. 4. Thus, setting an appropriate threshold was able to
detect suspicious pairs without any false-positive in these experiments.

In this work, we have used the concept of a conflict-miss pattern-
based CCA detector to detect the attack. Since our work is on detection
based countermeasures, we have used the existing detection techniques.
Fig. 3(a) shows that the outcome of the CCA detector is a pair of
attacking processes (Trojan and spy) and the targeted sets. During
our experimental analysis, the detector detects CCA successfully every
time. The mechanism has some hardware overhead to record the cross-
process conflict misses in LLC. However, the operations of the detector
perform in the background and do not affect the critical path of
execution.

4.2. Targeted pseudo partitioning based defence (TPPD)

When the CCA detector detects an attack, it sends information about
the processes and sets involved in the CCA. TPPD enables pseudo
partitioning on the suspected sets for the suspected process pair (Trojan
and spy). Two non-overlapping way-wise partitions are created and
assigned to Trojan and spy. The spy and Trojan are unable to replace
each other’s data if the block is present in this allocated partition.
This restriction, however, exists solely for identified malicious pairs;
other benign processes can access this cache set as before without any
constraint. Because of this reason, the proposed partitioning is called
pseudo as it is invisible to all processes except attackers. As our defence
mechanism is targeted, it only affects the cache sets and the pro-
cesses involved in CCA, thus not impacting the system’s performance
significantly.
5

t

The proposed TPPD can handle multiple CCA attacks on different
cache sets simultaneously. However, in this section, we have assumed
only one pair of attacker processes (spy and Trojan) and only one
targeted set. For the rest of this section, we assume that the detector
detects 𝑝𝑆 as a spy and 𝑝𝑇 as a Trojan. Here 𝑝𝑆 and 𝑝𝑇 are the process
d of spy and Trojan, respectively. Also, we assume that the detected
argeted set is 𝑠′. TPPD can be implemented on top of any replacement
olicy with minor modifications. A replacement policy has three major
odules: (a) insertion, (b) promotion, and (c) eviction [16]. To imple-
ent TPPD, minimal changes are required in the eviction module of a

eplacement policy. TPPD expects two victim selection approaches on
he targeted set 𝑠′. We call it as ‘‘dual victim policy’’.

(a) The default victim selection of a replacement policy. Let us repre-
sent the victim block selected through this method as 𝑉 (𝑠′), where
𝑠′ is the targeted set.

(b) Victim block selection excluding a particular process 𝑝. Let us rep-
resent the victim block selected through this method as 𝑉𝑥(𝑠′, 𝑝).
Here the victim block is selected from the targeted set 𝑠′, exclud-
ing the blocks owned by process 𝑝.

his dual victim policy can be implemented on most of the existing
eplacement policies [31,32] with minor modifications. The concept of
PPD, generic to any replacement policy (those can be modified for
ual victim selection), is discussed next.

Consider that for a cache block 𝑏, 𝑂(𝑏) represents the owner process
o which the block belongs. The dual eviction policy is only required
or the targeted set 𝑠′, detected by the CCA detector as discussed in
ection 4.1. For other sets, 𝑠; 𝑠 ≠ 𝑠′, the victim block is always 𝑉 (𝑠).
ince the attacker can target any of the cache sets, the facility of dual
ictim selection must be present in all the sets. However, it is used only
or the targeted set. To implement the dual eviction policy, we need to
aintain two counters for each set 𝐶𝑠𝑃 (𝑖) and 𝐶𝑠𝑇 (𝑖) where 𝑖 is the

et number. 𝐶𝑠𝑃 (𝑠′) and 𝐶𝑠𝑇 (𝑠′) are used to count the number of spy
nd Trojan blocks respectively present in 𝑠′. When 𝑝𝑇 (Trojan) block
eeds to replace an existing block of 𝑝𝑆 (spy) from 𝑠′, TPPD sets some
dditional conditions. If 𝑂(𝑉 (𝑠′)) is 𝑝𝑆 (spy) and 𝐶𝑠𝑃 (𝑠′) is less than
threshold, 𝑝𝑇 cannot replace 𝑉 (𝑠′). In that case, the victim block is

elected by 𝑉𝑥(𝑠′, 𝑝𝑆). This policy restricts the Trojan from removing
ll of the spy blocks from 𝑠′. A similar policy is also applied when a
py tries to evict a block of Trojan from 𝑠′. The ping-ponging pattern
f conflict misses between the spy and Trojan is interrupted because
he continuous eviction of each other’s data is restricted. In this way,

spy cannot observe the cache access latency pattern to distinguish
it 0 or 1, resulting in noisy covert channel communication. The value
f the threshold depends on the underlying replacement policy. In the
est of this paper, we use LRU to implement TPPD, and an appropriate

hreshold value to inhibit attack is also discussed.

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

t
t
o
t
t
f
t

4

s
b
r
t
b
p
t
p
d
r
W
T
T

4

m
t
t
d
A
T
i
i
𝑠
u
n

d

b
(
t
s
i

4.2.1. Structure of LLC using TPPD
Fig. 3(b) shows the structure of the LLC using TPPD. The additional

components required for TPPD are shown on the two sides of the set-
associative LLC. These additional components are divided into two
major parts: the CCA Detector and TPPD Components. For TPPD,
each set maintains a tuple, (𝑎𝑡𝑡𝑎𝑐𝑘_𝑓𝑙𝑎𝑔, 𝑝𝑆, 𝑝𝑇 , 𝐶𝑠𝑃 , 𝐶𝑠𝑇). Here the at-
tribute, 𝑎𝑡𝑡𝑎𝑐𝑘_𝑓𝑙𝑎𝑔 is a single bit of information that indicates whether
the set is under attack or not. The other attributes are already defined
in this section. The attributes excluding 𝑎𝑡𝑡𝑎𝑐𝑘_𝑓𝑙𝑎𝑔, are only required
for a suspicious set. When the CCA detector detects a CCA attack, the
corresponding attributes of the attacker set are updated in the TPPD
component. As mentioned in Section 4.1 the CCA detection module is
a cross-process conflict-miss pattern-based detector as proposed in [19].

4.2.2. Engagement and disengagement with dual victim policy
Since the CCA attack happens during execution, in the beginning,

all the sets are non-suspicious. A set engages with dual victim policy
only when it has been detected as a targeted set by the CCA detector.
Once a process pair and a set 𝑠′ have been detected as suspicious, one
option is to continue with the proposed dual victim policy (in 𝑠′) till
he termination of these processes. However, the option may reduce
he performance of these processes in false-positive cases. The second
ption is to periodically check the set status in the CCA detector. If any
ime the cross-process misses between spy and Trojan reduces in 𝑠′,
he set may again reset as non-suspicious. Though the chances of such
alse-positive cases in the CCA detector are very few, we have only used
he first option in this paper.

.2.3. Maintaining process ID
The replacement policy of TPPD needs the process id of a block

tored in the LLC. Fig. 3(b) shows it as the metadata of each LLC
lock. The existing partitioning techniques [15,16] as well as some
eplacement policies [31,33,34] need process id for each block. Hence
he overhead of maintaining process id in LLC as metadata cannot
e considered as the overhead of TPPD. In case we assume only one
rocess can run in a core, then instead of a process id, we can also use
he core id. Storing core id takes fewer bits than storing process id. This
olicy is used in some existing works [15,16]. However, in a practical
esign, each block must store the process id. The additional components
equired for TPPD (as shown in Fig. 3(b)) also need to store process id.
e have considered all the additional components as an overhead of

PPD. In Section 5.6, we have calculated the hardware overhead of
PPD, both assuming core id and process id as TPPD components.

.3. TPPD for LRU replacement policy

Algorithm 1 shows an implementation of 𝑉𝑥(𝑠′, 𝑝) for LRU replace-
ent policy. The alternative victim (𝑉𝑥(𝑠′, 𝑝)) in LRU can be selected in

wo ways. The first method is selecting a random block not belonging
o 𝑝, and the second method is to choose the next LRU block that
oes not belong to 𝑝. The algorithm describes the second method.
ll the experimental analyses in this paper use the second method.
he complete mechanism of TPPD in terms of LRU replacement policy

s discussed in Algorithm 2. The terminology used in this algorithm
s described in the box. As mentioned in Section 4.2, we have used
′ to represent the targeted set, but to write an algorithm, we have
sed 𝑖 to represent any LLC set. The set can be either suspicious or
on-suspicious. Here 0 ≤ 𝑖 < 𝑁 , and 𝑁 is the total sets of LLC.

The main function in this algorithm is 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑉 𝑖𝑐𝑡𝑖𝑚(𝑖, 𝑝), which
selects the appropriate victim block from the LLC as per the require-
ment of TPPD. The function is called every time a process 𝑝 requests
for a block and has a conflict miss. Process 𝑝 is called an incoming
process, and the block it requested as an incoming block. Initially, an
original eviction victim 𝑤 is selected per the LRU replacement policy
(Line 2). Then it checks if the requested set is under attack or not (Line
3). If not, the original victim block 𝑤 is returned (Line 4). However,
6

d

additional checks are required if the request is for the suspicious set.
Everything mentioned from Line 5 onward in this function is for a
suspicious set. First, the owner process 𝑝𝑤 of the victim block 𝑤 is
etermined (Line 6 to Line 13). The 𝑝𝑤 can be either spy (𝑝𝑆), Trojan

(𝑝𝑇), or an innocent process. If the incoming process 𝑝 is innocent, it
can replace any block from the set. Hence, in that case, 𝑤 is evicted
irrespective of 𝑝𝑤, and the corresponding counter (𝐶𝑠𝑇 [𝑖] or 𝐶𝑠𝑇 [𝑖]
based on 𝑝𝑤) needs to be updated. Lines 14 and 15 do the same. The
function 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡) is used for this which is discussed
later. Similarly, the original victim 𝑤 is evicted when the incoming
block and victim block belong to the same process but without an
update in the counters.

The condition mentioned in Line 16 is true only when these three
conditions are true: (a) 𝑝 and 𝑝𝑤 are not the same, (b) the incoming
process 𝑝 is either Trojan or spy, and (c) the value of counter corre-
sponding to 𝑝𝑤 is less than the threshold. In this case, the alternative
victim blocks 𝑤′′ are selected by calling function 𝑓𝑖𝑛𝑑𝑉 𝑖𝑐𝑡𝑖𝑚𝐸𝑥𝑐𝑒𝑝𝑡(𝑖, 𝑝)
(Line 17). This function is defined in Algorithm 1. New victim block 𝑤′′

can be from the incoming process 𝑝 or from an innocent process. The
counter update is required only in the latter case (Line 18–20). In case
the condition written in Line 16 is false then the original LRU victim
𝑤 is selected as victim block (Line 23), and counters are updated.

Terminology used in Algorithms:
—————————————–

• 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑉 𝑖𝑐𝑡𝑖𝑚(𝑖, 𝑝): Finds the victim block to be replaced
from set 𝑖.

– 𝑖: Set number of the victim block.
– 𝑝: Owner process of the incoming block. Or

the process responsible for triggering the cache
replacement.

• 𝑖𝑠𝑈𝑛𝑑𝑒𝑟𝐴𝑡𝑡𝑎𝑐𝑘(𝑖): Returns true if the set 𝑖 is under CCA
attack, otherwise false. The value is provided by the status
bit maintained in additional TPPD structure.

• 𝑔𝑒𝑡𝑇 𝑟𝑜𝑗𝑎𝑛(𝑖), 𝑔𝑒𝑡𝑆𝑝𝑦(𝑖): Returns the suspicious process
pair(spy and Trojan) on set 𝑖. The values are provided by
the two suspicious process identifier maintained in TPPD
structure.

• 𝑔𝑒𝑡𝐿𝑅𝑈𝑉 𝑖𝑐𝑡𝑖𝑚(𝑖): Returns 𝑉 (𝑖) from the set 𝑖. Or returning
the victim block as per LRU replacement policy.

• 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑖, 𝑤, 𝑝): Returns true if process 𝑝 is the owner
of the block 𝑤 in set 𝑖, otherwise false.

• 𝑂𝑤𝑛𝑒𝑟(𝑤): Returns owner process of block 𝑤. Also
represented as 𝑂(𝑤).

• 𝑝𝑆[𝑖] and 𝑝𝑇 [𝑖]: Process identifiers of spy and Trojan
respectively.

• 𝐶𝑠𝑃 [𝑖] and 𝐶𝑠𝑇 [𝑖]: The counters to keep track of Spy and
Trojan’s blocks respectively in a suspicious set 𝑖. This is
also defined in Section 4.2.

• 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡): Updates 𝐶𝑠𝑃 (𝑖) or 𝐶𝑠𝑇 (𝑖) for
the set 𝑖. Here 𝑤 is the incoming block. Here 𝑝𝑖𝑛 and
𝑝𝑜𝑢𝑡 are process id of incoming block and victim block
respectively.

• 𝑓𝑖𝑛𝑑𝑉 𝑖𝑐𝑡𝑖𝑚𝐸𝑥𝑐𝑒𝑝𝑡(𝑖, 𝑝)): Returns 𝑉𝑥(𝑖, 𝑝), as discussed in
Algorithm 1.

• 𝑡ℎ𝑠 and 𝑡ℎ𝑡: Threshold partition size of spy and Trojan
respectively.

Function 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡) keeps spy and Trojan updated
ased on the id of incoming process (𝑝𝑖𝑛) and process of victim block
𝑝𝑜𝑢𝑡). Note that no counter updates are required if 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡 are
he same. Also, counter updates are not required in non-suspicious
ets. Since the counter maintains the total number of blocks available
n the set for Trojan and spy, they may need to be incremented or
ecremented during an eviction. From the algorithm, it can be observed

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

t
t
T
e
c

4

t
o
d

o
p

b
o
r
a
T
w
t
d
r
a

s
d

i
c
C

Input: 𝑠𝐼𝑑: Cache set index. 𝑜𝑚𝑖𝑡𝑃 : Process whose block not to
evict.

Output: A victim block not belonging to process 𝑜𝑚𝑖𝑡𝑃 .
1 Function findVictimExcept(𝑠𝐼𝑑, 𝑜𝑚𝑖𝑡𝑃):
2 /*Assuming 𝑐𝑎𝑐ℎ𝑒[𝑟𝑜𝑤, 𝑎𝑠𝑠𝑜𝑐] is the set-associative LLC

where 𝑟𝑜𝑤 is the total sets and 𝑎𝑠𝑠𝑜𝑐 is the associativity.
𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑛𝑑𝑒𝑥 and 𝑚𝑎𝑥_𝑎𝑔𝑒 are two variables.*/

3 𝑘 = 0
4 while 𝑘 ≠ 𝑎𝑠𝑠𝑜𝑐 do
5 if 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑠𝐼𝑑, 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝐷, 𝑘], 𝑜𝑚𝑖𝑡𝑃) is FALSE then
6 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑛𝑑𝑒𝑥 = 𝑘
7 𝑚𝑎𝑥_𝑎𝑔𝑒 = 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝐷, 𝑘].𝑎𝑔𝑒
8 break
9 end

10 k++
11 end
12 while 𝑘 ≠ 𝑎𝑠𝑠𝑜𝑐 do
13 if (𝑚𝑎𝑥_𝑎𝑔𝑒 < 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝑑, 𝑘].𝑎𝑔𝑒) then
14 if 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑠𝐼𝑑, 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝐷, 𝑘], 𝑜𝑚𝑖𝑡𝑃) is FALSE

then
15 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑛𝑑𝑒𝑥 = 𝑘
16 𝑚𝑎𝑥_𝑎𝑔𝑒 = 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝐷, 𝑘].𝑎𝑔𝑒
17 end
18 end
19 k++
20 end
21 return 𝑐𝑎𝑐ℎ𝑒[𝑠𝐼𝑑, 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑛𝑑𝑒𝑥]
22 end

Algorithm 1: Modified Eviction Policy for LRU

hat TPPD applies a dual victim policy only to the suspicious sets. Also,
he need for selecting the alternative victim is only required when
rojan and spy try to remove each other’s block. Section 5 shows
xperimental analysis on different threshold values (𝑡ℎ𝑠 and 𝑡ℎ𝑡) that
an be used for this algorithm.

.4. How does TPPD effectively mitigate covert channel attack?

In this part, we give a theoretical analysis of how TPPD disman-
les LLC-based cross-core covert channel attacks with minimal impact
n system performance. Our observations and their explanations are
escribed as follows:

Observation 1: The communication between the spy and the Trojan
f the covert channel attack is degraded when the suspicious process
air is prevented from accessing all the ways of a targeted cache set.

Explanation: A low and high cache access latency pattern observed
y a spy to determine the bit transmitted by Trojan is at the foundation
f a successful covert channel attack. Trojan establishes this pattern by
emoving all of the spy’s data in one case (e.g., bit 1) or none at all for
nother bit (bit 0). In TPPD design, cache interference between spy and
rojan is decreased by restricting them from evicting each other’ block
hen the current number of blocks of these processes falls below the

hreshold. As a result, the Trojan is unable to replace all of the spy’s
ata for sending bit 1, and the spy cannot fully prime the cache set by
eplacing Trojan’s data with its. In this way, the spy’s easily identifiable
ccess latency pattern is obscured.

Observation 2: A targeted defence mechanism that affects only
uspected sets and processes limits the overall system performance
egradation.

Explanation: The main feature of our proposed defence mechanism
s that it is a targeted countermeasure. It affects only processes and
ache sets detected to be participating in covert channel attack by the
7

CA detector. Modified replacement policy to implement TPPD design
Input: 𝑖: set index, 𝑝: process requesting replacement.
Output: 𝑤: way of block to be evicted from set 𝑖

1 Function EvictionVictim(𝑖, 𝑝):
2 𝑤=𝑔𝑒𝑡𝐿𝑅𝑈𝑉 𝑖𝑐𝑡𝑖𝑚(𝑖)
3 if 𝑖𝑠𝑈𝑛𝑑𝑒𝑟𝐴𝑡𝑡𝑎𝑐𝑘(𝑖) is FALSE then
4 return 𝑤 // Return 𝑉 (𝑖).
5 else

/* The set 𝑖 is under attack. */
6 𝑝𝑇=𝑔𝑒𝑡𝑇 𝑟𝑜𝑗𝑎𝑛(𝑖); 𝑝𝑆=𝑔𝑒𝑡𝑆𝑝𝑦(𝑖)
7 if 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑖, 𝑤, 𝑝𝑆) is TRUE then

// If the owner of 𝑤 is spy.
8 𝑝𝑤 = 𝑝𝑆
9 else if 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑖, 𝑤, 𝑝𝑇) is TRUE then

// If owner of 𝑤 is Trojan.
10 𝑝𝑤 = 𝑝𝑇
11 else
12 𝑝𝑤 = −1 // if owner of 𝑤 is an innocent

process.
13 end
14 if ((𝑝! = 𝑝𝑆)&(𝑝! = 𝑝𝑇)))||(𝑝 == 𝑝𝑤) then

/* Incoming block from innocent process
or both incoming and victim from same
process. */

15 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝, 𝑝𝑤); return 𝑤
16 else if ((𝑝𝑤 == 𝑝𝑆)&(𝐶𝑠𝑃 [𝑖] < 𝑡ℎ𝑠))||((𝑝𝑤 ==

𝑝𝑇)&(𝐶𝑠𝑇 [𝑖] < 𝑡ℎ𝑡)) then
17 𝑤′′ = 𝑓𝑖𝑛𝑑𝑉 𝑖𝑐𝑡𝑖𝑚𝐸𝑥𝑐𝑒𝑝𝑡(𝑖, 𝑝𝑤)
18 if 𝑐ℎ𝑒𝑐𝑘𝑂𝑤𝑛𝑒𝑟(𝑖, 𝑤′, 𝑝) is FALSE then
19 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝,−1)
20 end
21 return 𝑤′′

22 else
23 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖, 𝑝, 𝑝𝑤); return 𝑤
24 end
25 end
26 end
27 Def updateCounter(𝑖, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡):

/* 𝑝𝑖𝑛 is the process of incoming block and 𝑝𝑜𝑢𝑡
is the process of outgoing (or victim)
block. */

28 if 𝑝𝑖𝑛! = 𝑝𝑜𝑢𝑡 then
29 if 𝑝𝑜𝑢𝑡 == 𝑝𝑆 then
30 𝐶𝑠𝑃 [𝑖] − −
31 else if 𝑝𝑜𝑢𝑡 == 𝑝𝑆 then
32 𝐶𝑠𝑇 [𝑖] − −
33 end
34 if 𝑝𝑖𝑛 == 𝑝𝑆 then
35 𝐶𝑠𝑃 [𝑖] + +
36 else if 𝑝𝑖𝑛 == 𝑝𝑆 then
37 𝐶𝑠𝑇 [𝑖] + +
38 end
39 end
40 end

Algorithm 2: Modified LRU Replacement Policy for implementing
TPPD

is activated on suspicious sets, and it restricts only conflict misses oc-
curring between the suspicious processes. Original replacement policy
is implemented for remaining sets not participating in covert channel
attack. On suspicious sets, Trojan and spy processes have restrictions on
evicting each other’s block. The innocent processes have access to the
entire cache set and can evict blocks of any process as determined by
the original replacement policy. However, when suspicious processes
are restricted from evicting each other’s block, a new block is selected

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

b
m

f
b

4

c
t
s
𝑡
w
d
o

a

Fig. 5. An example to demonstrate the working of TPPD after detecting a CCA on set 𝑠′ for 𝑝𝑆 (as spy) and 𝑝𝑇 (as Trojan). We have assumed that the set 𝑠′ contains all the
locks of Trojan during the detection. The prime process starts with this assumption. The TPPD configuration considered here is TPPD-2. The figure shows that the Prime+Probe
ethod cannot perform CCA once TPPD-2 becomes active.
s
w
w

s
r
T
T
a

or eviction. This can lead to premature eviction of benign process
locks, thus slightly impacting overall system performance.

.5. Calculating performance of TPPD

TPPD can use different threshold values for 𝑡ℎ𝑠 and 𝑡ℎ𝑡. These values
an be either the same or different for spy and Trojan. In the rest of
he discussion, we have considered the same values (𝑡ℎ𝑠 = 𝑡ℎ𝑡) for both
py and Trojan. The TPPD-𝑧 is considered as a configuration having
ℎ𝑠 = 𝑡ℎ𝑡 = 𝑧. The minimum value of 𝑧 is 1, and the maximum is 𝐴∕2,
here 𝐴 is the associativity of the LLC. The value of 𝑧 can be changed
ynamically, but for most of our experiments, we have fixed the value
f 𝑧 throughout the execution.

We have measured the isolated performance impact on benign
pplications through the following steps:

• When only the attacker processes are executing in the system, the
impact of TPPD-𝑧 in terms of LLC misses (𝐷𝐼𝐹𝐹𝑧) is calculated
by differentiating number of misses in LLC having TPPD-𝑧 and no
defence.

𝐷𝐼𝐹𝐹𝑧 = 𝑀𝑖𝑠𝑠𝑒𝑠𝑧 −𝑀𝑖𝑠𝑠𝑒𝑠0 ∀𝑧 ∈ (1, 𝐴∕2) (1)

Here 𝑀𝑖𝑠𝑠𝑒𝑠𝑧 means total misses on LLC while TPPD-𝑧 is active.
𝑀𝑖𝑠𝑠𝑒𝑠0 means total LLC misses when no defence mechanism is
implemented in LLC.

• In the next scenario, a Parsec benchmark [35] is run parallel to
the attack processes. The difference in LLC misses (𝐷𝐼𝐹𝐹 ′

𝑧,𝑏) en-
countered in TPPD-𝑧 (𝑀𝑖𝑠𝑠𝑒𝑠𝑧,𝑏) and without defence (𝑀𝑖𝑠𝑠𝑒𝑠0,𝑏)
is measured for benchmark 𝑏.

𝐷𝐼𝐹𝐹 ′
𝑧,𝑏 = 𝑀𝑖𝑠𝑠𝑒𝑠𝑧,𝑏 −𝑀𝑖𝑠𝑠𝑒𝑠0,𝑏 ∀𝑏 ∈ 𝑃𝐴𝑅𝑆𝐸𝐶 (2)

Here 𝑀𝑖𝑠𝑠𝑒𝑠𝑧,𝑏 means total LLC misses while TPPD-𝑧 is active.
8

𝑀𝑖𝑠𝑠𝑒𝑠0,𝑏 means total LLC misses without a defence mechanism. s
• The isolated impact of TPPD-𝑧 on a benign application (𝐷𝑧,𝑏) and
average impact(𝐴𝑣𝑔𝐷𝑧) is calculated as described in Eqs. (3) and
(4) respectively.

𝐷𝑧,𝑏 = 𝐷𝐼𝐹𝐹 ′
𝑧,𝑏 −𝐷𝐼𝐹𝐹𝑧 (3)

𝐴𝑣𝑔𝐷𝑧 =
∑

𝑏∈𝑃𝐴𝑅𝑆𝐸𝐶

𝐷𝑧,𝑏

𝑇𝑛
(4)

Here, 𝑇𝑛 is the total number of PARSEC applications considered.

These equations are used in Section 5 for performance analysis. The
higher positive difference (𝐴𝑣𝑔𝐷𝑧) indicates more significant perfor-
mance degradation of benign processes. A difference close to zero will
signify that there has been no effect on these processes.

4.6. An example of TPPD

An example discussing how our proposed approach deteriorates
covert channel communication on LLC is shown in Fig. 5. Consider
the Prime+Probe based CCA attack mounted on set 𝑠′ of LLC. After
the attack detector detects this attack; it sends the set id 𝑠′ along with
process ids 𝑝𝑆 and 𝑝𝑇 to TPPD. When TPPD-2 is deployed initially,
we assumed the entire cache set 𝑠′ contains Trojan’s block (Trojan is
ending 1) as shown in Step 2 of Fig. 2. This assumption is considered
ithout any loss of generality and a better understanding of TPPD
orking.

During the prime phase, the spy requests for blocks from its eviction
et. From the figure, it can be observed that at the end of all the block
equests of the prime phase, the spy could not able to remove all the
rojan’s blocks from the set. This is because of the dual victim policy of
PPD-2. In its first two accesses, the spy is able to replace Trojan’s block
s intended. However, for the next spy access, if the original LRU victim

py block is evicted, the number of spy blocks present in the set falls

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

d
i
a
r
T
F
f
t
H
c
s
r

f
s
T
a
t
T
a
i
t
T
a
s
t
w
c

Table 2
System configuration for the experimental setup.

Parameter Specification

Simulator gem5 [21]

Architecture 4 cores each at 2.0 GHz

Coherence Protocol MESI two level

Level 1 Cache Inclusive L1I/L1D Private, 64 KB, 4-way, 2
cycles latency, 64B blocks

Level 2 Cache (LLC) Inclusive Shared, 2MB 8-way, 18 cycles
latency, 64B blocks

LLC structure Single Bank. Uniform Cache Access (UCA)

Replacement Policy LRU

Main Memory DRAM, 250-cycle latency

Fig. 6. Cache access latency observed by spy for bit 0 and 1 in LLC with no TPPD.

below the threshold of 2, which is not allowed by TPPD-2. In this case,
as per the dual victim policy of TPPD, an alternative replacement victim
that does not belong to the Trojan process is selected using 𝑉𝑥(𝑠′, 𝑝𝑇).
After the prime phase, in the case of sending bit 1, the Trojan removes
all the blocks of spy by requesting a block from its own eviction set.
However, because of TPPD-2, the Trojan cannot remove all the spy’s
blocks. From the figure, it can be observed that, after the intermediate
phase, the status of the set is the same for both bit 1 and bit 0. In the
probe phase, when spy probes set 𝑠′ for the blocks from its eviction set,
it encounters 2 misses and 2 hits in both cases of a bit 1 and bit 0.

5. Experiments and results

To perform the experimental analysis, TPPD is implemented on a
full system cycle-accurate simulator, gem5 [21]. We consider a 4-core
system setup with two levels of the cache hierarchy. Each core has
its private L1 cache, and the L2 cache is considered a shared LLC.
Other parameters of the setup are shown in Table 2. To simulate the
CCA attack, we have developed our own Trojan and spy applications.
These applications are written in C++ and can be executed on gem5.
We considered a generic Prime+Probe attack as described in Fig. 2 in
this application. As mentioned in Section 1, we have successfully tested
these attacks on Intel Core i9-10885H, i7-9700 and i7-7700. The ability
to perform CCA attack by these two applications have experimented
first on gem5. Parsec benchmarks [20] are used to measure the perfor-
mance of innocent applications in the presence of attacker applications.
From the 4-cores, two cores are assigned to the attacker processes (spy
and Trojan). A multithreaded Parsec benchmark is binded to the other
two cores. Different configurations of TPPD (TPPD-𝑧) are considered in
order to fully analyse the performance behaviour of TPPD. The value
of 𝑧 varies from 1 to 4 (8 is the associativity of the LLC). TPPD-0 means
baseline design with no defence mechanism.

We have considered all the Parsec benchmarks as innocent appli-
9

cations. To measure the worst-case performance impact, the attacking
applications are developed such that once the attack starts, it continues
during the execution of the system. Fig. 8 shows the pseudocode of the
two attacking applications (spy and Trojan) used in our experiments.
Both sender and receiver have colluded and decided on the targeted
set 𝑖, prime interval 𝑇 𝑝 and have their own eviction set (𝐸𝑆𝑖 and
𝐸𝑆′𝑖) corresponding to this set. In the first step, receiver accesses the
addresses of 𝐸𝑆′𝑖 to prime set 𝑖. Priming of targeted set is done multiple
times for interval 𝑇 𝑝 to ensure presence of ES addresses in the set. Next,
based on the value of the bit sent, either sender replaces receiver’s data
in the targeted set by accessing addresses from its own eviction set (for
bit 1) or remains idle (for bit 0). In the next step, receiver accesses
the set using the same 𝐸𝑆′𝑖 and measures the access time. Based on
this value of the access time, bit sent by the sender is determined.
After probing, receiver waits for the prime interval for synchronisation
purposes.

5.1. Security analysis

We assess the effectiveness of TPPD against cross-core based covert
channel attacks on LLC. As described in Section 4.4, TPPD reduces
the difference in probe time observed by the spy for bit 0 and 1. This
ifference is substantially more significant when no defence mechanism
s active, as evident by Fig. 6. Here bit 0 represents cache miss and bit 1
s a cache hit. TPPD reduces this difference such that the information
eceived by the spy becomes noisy. This difference becomes close in
PPD-1, TPPD-2 and TPPD-3 but does not overlap as represented in
ig. 7(a), 7(b) and 7(c) respectively. These TPPD configurations are ef-
ective against attacks based on fine-grained information, i.e., observing
he number of cache accesses by victim applications in the targeted set.
owever, in a low-speed covert channel attack, we considered these
onfigurations would not be effective, especially when there is low
ystem noise. However, TPPD-4 was able to completely obfuscate the
eceiver’s access time pattern used to identify bit 0 and 1 as illustrated

in Fig. 7(d). Hence, TPPD-𝐴∕2 is the recommended configuration to
prevent most CCA attacks. Here 𝐴 is the associativity of the LLC.

As suggested in [36] we have also tested both the CCA attack and
the proposed countermeasure on different LLC sizes, associativity, and
replacement policies. The attack is tested for LLC sizes of 1MB, 2MB,
and 4MB. The replacement policies tested are LRU, SRRIP [37], Ran-
dom, and Least Frequently Used. Based on our experimental analysis,
we have observed that the CCA is possible in almost all configura-
tions. However, the configurations with random replacement policy
shows some noises. The proposed countermeasure, TPPD, also works
effectively for all these configurations.

5.2. Performance analysis

While deconstructing cache timing channel-based attacks, the attack
defence mechanism must guarantee that system performance does not
suffer. Fig. 9 represent the total LLC misses encountered in different
benchmark applications for TPPD-𝑧 and TPPD-0. The upper part of the
igure shows the actual values (in millions), while the bottom part
hows the normalised LLC misses. The values are normalised w.r.t.
PPD-0. As mentioned above, the benchmarks are combined with the
ttacker applications during the execution. However, in the figure,
he benchmark named as ‘‘only-attack’’ is not a Parsec benchmark.
his is designed only with the combination of Trojan and spy. To
nalyse the performance impact of TPPD on innocent applications, it
s important to first analyse the performance of ‘‘only-attack’’. From
he figure, it can be observed that, in the case of ‘‘only-attack’’, if
PPD is applied to prevent CCA, the LLC misses are increased by 17%
s compared to TPPD-0 (no defence). All the configurations of TPPD
how almost similar results. However, for the rest of the benchmarks,
he increment is less. On average, while a Parsec benchmark executes
ith two attacker applications, which are constantly trying to covertly

ommunicate, the miss count in TPPD is 5%, 7%, 6%, and 9% more

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

t
S
i
c
s
i

a
o

Fig. 7. Cache access latency for bit 0 and bit 1.
Fig. 8. Pseudo code for Prime+Probe attack considered in this work. Sender means Trojan and Receiver means spy.
han TPPD-0 for TPPD-1, TPPD-2, TPPD-3, and TPPD-4 respectively.
imilar to TPPD-4 results were observed for TPPD-8 when the attack
s reconfigured for 16-way associative LLC. The degradation (high miss
ount) in TPPD-4 is more because a higher threshold value may evict
ome more innocent blocks from the cache. A similar result can be seen
n Fig. 10 for Misses per Thousand Instructions (MPKI).

The important point here is that the misses are higher when TPPD
pplies only to the attacker set in ‘‘only-attack’’. However, the miss
verhead is reduced when the cores mix attack applications with some
10
innocent Parsec benchmarks. It means that the miss overhead of TPPD
is higher only for the attacker applications. The overhead is less for
innocent applications. The two main reasons for this are:

• TPPD is a targeted CCA countermeasure. Hence from the non-
targeted set, the victim is selected per the original replacement
policy.

• In the targeted set, the innocent blocks have no restrictions, and
they can remove any other block from the set.

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 9. Total misses in LLC for PARSEC benchmarks on different TPPD configurations. *The calculation of geomean is excluding ‘‘only-attack’’. The lower part of the figure shows
the LLC misses normalised to TPPD-0.
Fig. 10. Total MPKI in LLC for PARSEC benchmarks on different TPPD configurations. The lower part of the figure shows the MPKI normalised to TPPD-0.
Because of these two reasons, TPPD becomes an efficient countermea-
sure for cross-core covert channel attacks.

Fig. 11 shows the performance of TPPD in terms of Instruction
per Cycle (IPC) as compared to TPPD-0. It can be observed from the
figure that the performance of the system slightly degrades in TPPD
as compared to the baseline (TPPD-0). The degradations are 0.73%,
11
0.87%, 0.71% and 0.86% as compared to TPPD-0 in TPPD-1, TPPD-2,
TPPD-3, and TPPD-4 respectively. Hence, the proposed countermeasure
does not create any significant performance overhead in the system
to defend a CCA. Also, the overall degradation shown in the figure
is mostly for affecting the spy and Trojan. The innocent application
faces less performance reduction. However, compared to a baseline

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 11. Normalised IPC over TPPD-0 in single-set attack for PARSEC benchmarks on different TPPD configurations. *The calculation of geomean is excluding ‘‘only-attack’’.
Fig. 12. Isolated LLC misses for PARSEC benchmarks with different TPPD configurations measured using Eq. (3).
where no CCA is happening, TPPD-0 (baseline under CCA) shows some
performance degradation. The reasons for such degradation are: (a)
congestion in the LLC request queue, and (b) replacing the blocks of
innocent application by the attacker application. As the number of
targeted set increases in CCA, the performance of the system decreases.
The countermeasures like TPPD and HybridCache [38] are not handling
this degradation directly. These countermeasures ensure that the CCA
is prevented and by doing this no significant performance degradation
should occur in addition to degradation facing by TPPD-0. All the TPPD
configurations behave same as the baseline which is not under CCA,
when no CCA executes in the system.

The impact of TPPD’s different configurations on system’s overall
MPKI compared to TPPD-0 is depicted in Fig. 10. Fig. 12 shows how
much change in the misses has occurred to the benign application.
The calculation is performed using Eq. (3) and Eq. (4). As evident
from Fig. 12, the increment in total LLC misses (compared to TPPD-
0) when the benchmark runs alongside the attack process is always
less than the misses when just attack runs in LLC augmented with
TPPD-𝑧. In this figure, a less number (large negative number) means
less overhead on an application. On average, the applications face the
lowest overhead in TPPD-1. However, the miss overhead in TPPD-4
(which is the recommended configuration) is also less.

5.3. Comparison with existing works

Existing partitioning-based approaches such as PLCache [24],
SecVerilog Cache [39] and SecDCP [26] can combat cache-based side-
channel attacks in which an attacker process attempts to reveal the
cache access pattern of an innocent victim process in order to leak
its secret, such as the private key of cryptography algorithms. These
secure cache designs rely on a reliable operating system, compiler, or
programmer to recognise security-critical processes or data that could
be vulnerable to cache timing channel attacks. PLCache pre-loads and
lock the security critical data in the cache and prevents its eviction
12

by unlocked data. In SecVerilog and SecDCP, processes are assigned to
different security classes and cache interference between these security
domains is restricted. These security measures are ineffective in the
presence of covert timing channel attacks where both processes are
malicious.

The static cache partitioning based secure cache design, NOMO [25]
can defend against covert channel attacks by completely isolating ways
of spy and Trojan. In our setup, NOMO-2, in which two ways were
fixed per process, was able to dismantle the covert channel attack.
However, significant performance degradation was observed in the
case of NOMO-2 in comparison to our design TPPD-4 as shown in
Fig. 13 in terms of MPKI and IPC. It can be observed from the figure
that NOMO shows less miss overhead over TPPD-4 when executed for
‘‘only-attack’’. However, when innocent applications are executed with
attacker applications, the overhead increases significantly. The main
reason for that is the non-targeted nature of NOMO. The restricted
eviction mechanism is uniformly applied to all the sets. Hence, the over-
head of misses increases in non-targeted sets also. Since the attackers
mainly requested for the blocks mapped to the targeted set, the other
set mostly served innocent applications. Uniform implementation of the
restricted eviction policy impacts the miss rate of innocent applications
on non-targeted sets. On average, NOMO-2 had 23% higher MPKI than
TPPD-4. This increased miss rate of benign benchmarks impacts the IPC
of NOMO-2 as it suffers 4.09% more degradation compared to TPPD-4.

The performance impact of our proposed secure design was also
compared with the recently proposed HybridCache [38]. HybridCache
also proposes a process isolation based countermeasure for side channel
attack. The LLC is divided into two parts: (a) fully associative (FA) part
and (b) set-associative (SA) part. The applications run in secure cores
map to the FA part of the LLC, while the applications run in other cores
map to the SA part of the LLC. HybridCache is mainly proposed for
mitigating side-channel attacks while TPPD is proposed for mitigating
covert-channel attacks.

In side-channel attacks, the identity of the targeted security critical
process is known to the system. However, this is not the case for

covert channel attacks involving two colluding suspicious processes.

Journal of Systems Architecture 135 (2023) 102805

13

J. Kaur and S. Das

Fig. 13. Comparison of MPKI for NOMO-2 vs TPPD-4 when PARSEC benchmark are executed in parallel to CCA. Here *geomean is calculated excluding ‘‘only-attack’’.

Fig. 14. Average Normalised MPKI of TPPD over TPPD-0 on different LLC sizes. The average MPKI is calculated after executing multiple PARSEC applications.

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
Fig. 15. Average Normalised MPKI and IPC over TPPD-0 in multi-set attacks for PARSEC benchmarks on different TPPD configurations. The average MPKI is calculated after
executing multiple PARSEC applications.
We have considered three scenarios for comparing the performance of
the HybridCache with TPPD: (1) Trojan is mounted on a secure core
and accesses the FA part of the LLC, whereas the spy and benchmark
applications run on non-secure cores, (2) Benchmark applications and
Trojan run on a secure core, and spy runs on a non-secure core, (3)
No active attack on the system, one innocent application is running
on secure core and another on the non-secure core. The performance
impact of HybridCache compared to TPPD-4, when Trojan accesses
the FA part of the LLC is presented (scenario 1) in Fig. 16. As ob-
served, HybridCache has 1.29% degradation in overall system IPC as
compared to TPPD-4. However, HybridCache significantly impacts the
IPC of benign processes, which is 26.34% less as compared to TPPD-4.
HybridCache, in this scenario, gets less number of misses for Trojan as
compared to TPPD-4. This is because the Trojan has the access to the
full FA part which is significantly larger than the 4-ways (of a single set)
available in TPPD-4. However, the high access latency of FA part makes
congestion in the read/write queue of LLC, which causes performance
degradation of innocent applications accessing the SA part.

In the second scenario, HybridCache degrades the overall IPC and
the benign process’s IPC by 6.06% and 30.02%, respectively as com-
pared to TPPD-4. In the third scenario, when no attack is present, TPPD
works the same as the baseline. If a security-critical process is running
alongside another innocent process in TPPD, it can access the full cache
with no restriction. However, in HybridCache such a security-critical
process can only access the FA part. We have observed a degradation
of 13.4% and 7% in terms of MPKI and overall IPC respectively for
HybridCache as compared to TPPD-4.

5.4. Sensitivity analysis

In this section, we discuss the performance impact of TPPD with
different system and attack parameters.

5.4.1. Impact of different LLC sizes
The TPPD is also tested for different LLC sizes. Fig. 14 shows the

average MPKI comparisons of TPPD with TPPD-0. The associativity of
all the LLC sizes is kept same. The attack considered for this experiment
is single-set attack. As the cache size is increasing, the overhead of
MPKI is slightly decreasing as compared to TPPD-0. This is because,
larger sized LLC has more cache sets and space, which reduces the
misses in the LLC.

5.5. Multi-set attack

In this section, we analyse how well TPPD maintains system per-
formance when the attack is extended on multiple sets. We extended
the attack up to eight LLC sets whereas the prime probe interval
remains the same. Fig. 15 presents the comparison of different TPPD
configurations in terms of MPKI and IPC. It can be observed that the
performance degradation (of the innocent applications) up to 8-set
14
Table 3
Storage overhead calculation of TPPD as per the LLC configuration mentioned in
Table 2. We have assumed 16 bits to represent a process id as the maximum process
id possible in Linux is 32768.

Storage
Overhead

𝑦 as core id 𝑦 as process id

Per set Per LLC Per set Per LLC

Status
bit

1 512 Bytes 1 512 Bytes

Suspicious
process1

2 bits 2*4096
= 1 KB

16 bits 16*4096
= 8 KB

Suspicious
process2

2 bits 2*4096
= 1 KB

16 bits 16*4096
= 8 KB

spy
Counter

3 bits 3*4096
= 1.5 KB

3 bits 3*4096
= 1.5 KB

Trojan
Counter

3 bits 3*4096
= 1.5 KB

3 bits 3*4096
= 1.5 KB

Total
Overhead

11 bits 5.5 KB 39 bits 19.5 KB

attack is less than 2%. This is because the innocent process has no re-
striction in accessing the cache sets. However, we have observed higher
performance degradation for the attack on more than eight sets. There
are two reasons for such degradation: (a) The request of the LLC gets
congested with multiple requests from the attacker application, and
(b) The attacker applications evict the blocks of innocent applications.
Such performance degradation cannot create any correctness issue in
TPPD but an attacker can perform a denial of service (DOS) attack in
TPPD using multiple targeted sets. A similar DOS attack is also possible
in other techniques like NOMO and HybridCache. We left out how to
handle such DOS attacks on TPPD as future work.

5.5.1. Implementing TPPD on other replacement policies
The proposed TPPD can be implemented using any replacement

policy where the dual victim policy can be implemented. Algorithm
2 can be modified for that. The internal mechanism of the functions
called from Line 2 and Line 21 of this algorithm needs to be changed
as per the requirement of the replacement policy. We have also exper-
imented TPPD with SRRIP [37], Least Frequently Used, and Random
replacement policies. As observed in Fig. 17 the impact across different
replacement policies for TPPD-4 compared to TPPD-0 are almost same
as LRU.

5.6. Storage and latency overhead

The structure of the LLC having TPPD as a countermeasure is
already discussed in Section 4.2.1. Fig. 3(b) shows the two additional
components required for TPPD: (a) TPPD Components, and (b) CCA
Detector. In this section, we have discussed the storage and latency

overhead of the TPPD components. As mentioned in Section 4.1, we

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das

m

h
a
t
t
i
o
s
i

c
n

Fig. 16. Average Normalised overall IPC and benign process’s IPC over TPPD-4 with Hybrid Cache for PARSEC benchmarks. The average MPKI is calculated after executing
multiple PARSEC applications.
Fig. 17. Average Normalised MPKI and IPC over TPPD-0 with different replacement policies for PARSEC benchmarks on TPPD-4. The average MPKI is calculated after executing
ultiple PARSEC applications.
ave used the existing CCA detector technique [19] to detect the CCA
ttack. Each cache line is augmented with its owner process id to iden-
ify the cache block’s owner process, as seen in Fig. 3(b). An alternative
echnique followed by some existing works [15,16] is to maintain core
d instead of process id along with each cache line. However, the
verhead of storing process id along with the cache line cannot be con-
idered as the overhead of TPPD. The issues with maintaining process
d along with the cache lines are already discussed in Section 4.2.3.

Fig. 3(b) shows all the counters used in TPPD Components. The first
ounter, 𝑎𝑡𝑡𝑎𝑐𝑘_𝑓𝑙𝑎𝑔, is a one-bit counter used to indicate whether or
ot the set is under attack. The next two fields (𝑝𝑆 and 𝑝𝑇) specify

the attacking process pair if the set is under attack. The last two fields
are spy and Trojan counters, each with a size of 𝑙𝑜𝑔2(𝐴) bits to identify
the number of spy and Trojan blocks currently in the set. Here, 𝐴 is
the associativity of the LLC. Thus, the total storage overhead can be
determined as 𝑁 × (1 + 2(𝑦 + 𝑙𝑜𝑔2𝐴)). Here 𝑁 is the total number of
sets in LLC, and 𝑦 is the bits required to represent a suspicious process.
In our work, 𝑦 represents the cores in the system as a single process
is binded per core making core id enough for identifying attacking
pair. Table 3 shows the storage overhead of TPPD as per the LLC
configurations mentioned in Table 2. It can be observed from Table 3
that the total storage required for TPPD is 5.5𝐾𝐵, i.e. 0.26% of total LLC
size. However, in real systems, multiple processes may run on the same
core, making core id not sufficient for uniquely identifying processes.
The table shows that when process id is used instead of core id, the total
size of this additional structure is 20.5𝐾𝐵, i.e. ≈ 1% of total LLC size.

The operations of TPPD are performed in the background without
affecting the critical execution path of the system.

6. Conclusion

This paper proposes an effective and efficient mitigation mecha-
nism, TPPD, for cross-core cache timing channel attacks. TPPD imple-
ments way-wise partitioning on the cache sets used for covert chan-
15

nel attacks but only for suspicious process pairs. However, remaining
benign processes have unrestricted access to these and other sets, re-
ducing the performance impact on system performance. It successfully
abolishes LLC based covert communication between Trojan and spy.
Experiments have shown that it does not have any significant impact on
the performance of benign applications (Parsec benchmark). The total
storage overhead required for implementing TPPD design is approxi-
mately ≈ 0.26% of LLC size. Compared to the existing partitioning based
attack prevention mechanism NOMO, it caused 23% less LLC misses.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Colin Percival, Cache missing for fun and profit, in: In Proc. of BSDCan, 2005.
[2] Eran Tromer, Dag Arne Osvik, Adi Shamir, Efficient cache attacks on AES, and

countermeasures, J. Cryptol. 23 (1) (2010) 37–71.
[3] Dag Arne Osvik, Adi Shamir, Eran Tromer, Cache attacks and countermeasures:

The case of AES, in: Cryptographers’ Track At the RSA Conference, 2006, pp.
1–20.

[4] Daniel J. Bernstein, Cache-timing attacks on AES, 2005.
[5] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B. Lee, Last-level cache

side-channel attacks are practical, in: Symp. on Security and Privacy, 2015, pp.
605–622.

[6] Jaspinder Kaur, Shirshendu Das, A survey on cache timing channel attacks for
multicore processors, J. Hardw. Syst. Secur. (2021) 1–21.

[7] Yangdi Lyu, Prabhat Mishra, A survey of side-channel attacks on caches and
countermeasures, J. Hardw. Syst. Secur. 2 (1) (2018) 33–50.

[8] Vincent Rijmen, Joan Daemen, Advanced encryption standard, in: Federal
Information Processing Standards Publications, National Institute of Standards

and Technology, 2001, pp. 19–22.

http://refhub.elsevier.com/S1383-7621(22)00290-9/sb1
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb2
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb2
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb2
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb3
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb3
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb3
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb3
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb3
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb4
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb5
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb5
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb5
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb5
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb5
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb6
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb6
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb6
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb7
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb7
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb7
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb8
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb8
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb8
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb8
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb8

Journal of Systems Architecture 135 (2023) 102805J. Kaur and S. Das
[9] Ronald L. Rivest, Adi Shamir, Leonard Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Commun. ACM 21 (2) (1978) 120–126.

[10] Don Johnson, Alfred Menezes, Scott Vanstone, The elliptic curve digital signature
algorithm, Int. J. Inf. Secur. 1 (1) (2001) 36–63.

[11] Onur Acıiçmez, Çetin Kaya Koç, Trace-driven cache attacks on AES (short paper),
in: Information and Communications Security, 2006, pp. 112–121.

[12] David Gullasch, Endre Bangerter, Stephan Krenn, Cache games–bringing access-
based cache attacks on AES to practice, in: IEEE Symp. on Security and Privacy,
2011, pp. 490–505.

[13] S. Sari, O. Demir, G. Kucuk, FairSDP: Fair and secure dynamic cache partitioning,
in: 4th Intl. Conf. on Computer Science and Engineering, 2019, pp. 469–474.

[14] Fan Yao, Hongyu Fang, Miloš Doroslovacki, Guru Venkataramani, COTSknight:
Practical defense against cache timing channel attacks using cache monitoring
and partitioning technologies, in: Hardware Oriented Security and Trust (0000).

[15] Moinuddin K. Qureshi, Yale N. Patt, Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches, in:
2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06), IEEE, 2006, pp. 423–432.

[16] Prateek D. Halwe, Shirshendu Das, Hemangee K. Kapoor, Towards a better cache
utilization using controlled cache partitioning, in: 2013 IEEE 11th International
Conference on Dependable, Autonomic and Secure Computing, IEEE, 2013, pp.
179–186.

[17] Chen Yang, Leibo Liu, Kai Luo, Shouyi Yin, Shaojun Wei, CIACP: A correlation-
and iteration-aware cache partitioning mechanism to improve performance of
multiple coarse-grained reconfigurable arrays, IEEE Trans. Parallel Distrib. Syst.
28 (1) (2016) 29–43.

[18] Anurag Agarwal, Jaspinder Kaur, Shirshendu Das, Exploiting secrets by leverag-
ing dynamic cache partitioning of last level cache, in: Design, Automation Test
in Europe Conference Exhibition, DATE, 2021.

[19] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš Doroslovački, Guru
Venkataramani, Prodact: Prefetch-obfuscator to defend against cache timing
channels, Int. J. Parallel Programm. 47 (4) (2019) 571–594.

[20] Christian Bienia, Benchmarking Modern Multiprocessors, Princeton University,
2011.

[21] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, et al., The gem5 simulator, ACM SIGARCH Comput. Archit. News 39
(2) (2011) 1–7.

[22] G. Irazoqui, T. Eisenbarth, B. Sunar, S$A: A shared cache attack that works across
cores and defies VM sandboxing – and its application to AES, in: IEEE Symp. on
Security and Privacy, 2015, pp. 591–604.

[23] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, Josep Torrellas, Attack directories, not caches: Side channel attacks in
a non-inclusive world, in: Attack Directories, Not Caches: Side Channel Attacks
in a Non-Inclusive World, 2019.

[24] Zhenghong Wang, Ruby B. Lee, New cache designs for thwarting software cache-
based side channel attacks, SIGARCH Comput. Archit. News 35 (2) (2007)
494–505.

[25] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, Dmitry
Ponomarev, Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks, Trans. Architect. Code Optimiz. 8 (4) (2012) 1–21.

[26] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, G. Edward
Suh, Secdcp: Secure dynamic cache partitioning for efficient timing channel
protection, in: 2016 53nd ACM/EDAC/IEEE Design Automation Conference, DAC,
2016, pp. 1–6, http://dx.doi.org/10.1145/2897937.2898086.

[27] Moinuddin K. Qureshi, CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping, in: 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2018, pp. 775–787.

[28] Moinuddin K. Qureshi, New attacks and defense for encrypted-address cache,
in: Proceedings of the 46th International Symposium on Computer Architecture,
ISCA ’19, Association for Computing Machinery, New York, NY, USA, 2019, pp.
360–371.
16
[29] Pratik Kumar, Chavhan Sujeet Yashavant, Biswabandan Panda, DAMARU: A
denial-of-service attack on randomized last-level caches, IEEE Comput. Archit.
Lett. 20 (2) (2021) 138–141.

[30] Gorka Irazoqui, Thomas Eisenbarth, Berk Sunar, Systematic reverse engineering
of cache slice selection in intel processors, in: 2015 Euromicro Conference on
Digital System Design, IEEE, 2015, pp. 629–636.

[31] Akanksha Jain, Calvin Lin, Back to the future: Leveraging Belady’s Algorithm
for improved cache replacement, in: Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, IEEE Press, 2016, pp. 78–89.

[32] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., Joel Emer, High per-
formance cache replacement using re-reference interval prediction (RRIP), ACM
SIGARCH Comput. Archit. News 38 (3) (2010) 60–71.

[33] Kousik Kumar Dutta, Prathamesh Nitin Tanksale, Shirshendu Das, A fairness
conscious cache replacement policy for last level cache, in: 2021 Design,
Automation & Test in Europe Conference & Exhibition, DATE, IEEE, 2021, pp.
695–700.

[34] Tripti S. Warrier, B. Anupama, Madhu Mutyam, An application-aware cache
replacement policy for last-level caches, in: International Conference on
Architecture of Computing Systems, Springer, 2013, pp. 207–219.

[35] Christian Bienia, Kai Li, Parsec 2.0: A new benchmark suite for chip-
multiprocessors, in: Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, vol. 2011, 2009, p. 37.

[36] Xiaodong Yu, Ya Xiao, Kirk Cameron, Danfeng Daphne Yao, Comparative
measurement of cache {Configurations’} impacts on cache timing {Side-Channel}
attacks, in: 12th USENIX Workshop on Cyber Security Experimentation and Test
(CSET 19), 2019.

[37] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., Joel Emer, High per-
formance cache replacement using re-reference interval prediction (RRIP), ACM
SIGARCH Comput. Archit. News 38 (3) (2010) 60–71.

[38] Ghada Dessouky, Tommaso Frassetto, Ahmad-Reza Sadeghi, {HybCache}: Hybrid
{Side-Channel-Resilient} caches for trusted execution environments, in: 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 451–468.

[39] Danfeng Zhang, Yao Wang, G. Edward Suh, Andrew C. Myers, A hardware design
language for timing-sensitive information-flow security, Acm Sigplan Not. 50 (4)
(2015) 503–516.

Jaspinder Kaur A Ph.D scholar in the CSE department of
Indian Institute of Technology Ropar. She has completed
M.Tech (CSE) from the Department of Computer Engi-
neering of Punjabi University Patiala, India. Her research
interests include Computer Architecture, Cache Prefetching
and Cache Security against timing channel attacks.

Dr. Shirshendu Das received a Ph.D. degree (CSE) from
the Indian Institute of Technology Guwahati, India, in
2016. Previously he did M.Tech (CSE) from the Indian
Institute of Technology Guwahati, India. Presently he is
an Assistant Professor in the Department of CSE, Indian
Institute of Technology Ropar, Punjab, India. His area of
research includes Computer Architecture, Network-on-Chip,
and Hardware Security.

http://refhub.elsevier.com/S1383-7621(22)00290-9/sb9
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb9
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb9
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb10
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb10
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb10
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb11
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb11
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb11
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb12
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb12
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb12
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb12
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb12
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb13
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb13
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb13
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb15
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb16
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb17
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb18
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb18
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb18
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb18
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb18
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb19
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb19
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb19
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb19
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb19
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb20
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb20
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb20
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb21
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb22
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb22
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb22
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb22
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb22
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb23
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb24
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb24
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb24
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb24
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb24
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb25
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb25
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb25
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb25
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb25
http://dx.doi.org/10.1145/2897937.2898086
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb27
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb27
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb27
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb27
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb27
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb28
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb29
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb29
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb29
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb29
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb29
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb30
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb30
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb30
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb30
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb30
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb31
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb31
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb31
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb31
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb31
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb32
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb32
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb32
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb32
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb32
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb33
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb34
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb34
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb34
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb34
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb34
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb35
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb35
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb35
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb35
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb35
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb36
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb37
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb37
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb37
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb37
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb37
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb38
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb38
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb38
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb38
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb38
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb39
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb39
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb39
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb39
http://refhub.elsevier.com/S1383-7621(22)00290-9/sb39

	TPPD: Targeted Pseudo Partitioning based Defence for cross-core covert channel attacks
	Introduction
	Background and Related Works
	Cross-Core Covert Channel Attacks
	Existing Attack Mitigation Techniques

	Threat Model
	Our Proposal
	Cross-Core Covert Channel Attack Detector
	Targeted Pseudo Partitioning based Defence (TPPD)
	Structure of LLC using TPPD
	Engagement and disengagement with dual victim policy
	Maintaining Process ID

	TPPD for LRU Replacement Policy
	How does TPPD effectively mitigate covert channel attack?
	Calculating Performance of TPPD
	An example of TPPD

	Experiments and Results
	Security Analysis
	Performance Analysis
	Comparison with Existing Works
	Sensitivity Analysis
	Impact of Different LLC Sizes

	Multi-Set Attack
	Implementing TPPD on other Replacement Policies

	Storage and Latency Overhead

	Conclusion
	Declaration of Competing Interest
	Data availability
	References

