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Abstract: The effectiveness of irrigation schedules and crop growth models is largely dependent on the accuracies associated with the most
uncertain input parameter, viz. weather forecasts. This research is focused on quantifying the inaccuracies associated with the India Meteoro-
logical Department (IMD) issuing short-term weather forecasts (with 1–5 days lead time), and their propagation into irrigation models, with
an objective to select the optimal parameters for use with simulation. While precipitation (P) forecasts were directly used, remaining meteoro-
logical forecasts were converted to reference evapotranspiration (ET0) forecasts. The effectiveness of the ‘P’ and ‘ET0’ forecasts was found to
be low at all lead times. We applied two popular bias correction methods: linear scaling (LS) and empirical quantile mapping (EQM), and
observed a marginal improvement in forecast skill. Bias-corrected, forecast-driven irrigation scenarios, along with conventional irrigation
(that ignores weather forecast), and a hypothetical perfect 5-day forecast-based irrigation (as reference) system were tested on a water-
intensive paddy crop for two growing seasons (S1: monsoon and S2: winter). Conventional irrigation resulted in the highest use of irrigation
water (820 mm in S1, 880 mm in S2) and percolation loss (1,140 mm in S1, 680 mm in S2), while achieving a low relative yield (0.88 in S1,
0.87 in S2). LS-corrected forecasts outperformed other scenarios with 20.24%� 4.21% and 1.25%� 1.51% savings in irrigation costs for S1
and S2, respectively. While IMD forecasts greatly improved irrigation schedules in the monsoon season, their usage for winter crops was
found to be trivial. Our findings conclude that LS-corrected IMD forecasts were moderately reliable over multiple lead times and can serve as a
valuable addition to irrigation scheduling, provided the contribution of ‘P’ to the total water balance is significant. DOI: 10.1061/JWRMD5.
WRENG-5644. © 2022 American Society of Civil Engineers.
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Introduction

India’s water withdrawal for agriculture (∼700 billion cubic meters
(BCM)/year) is the highest in the world, far higher than the com-
bined utilization of the next two ranked countries, i.e., China and
US (FAO 2017). Two crops, namely rice (paddy) and sugarcane,
occupy one-fourth of India’s gross cropped area and consume over
60% of total irrigation supplies (Sharma et al. 2018). Globally,
India ranks first in area under rice cultivation (∼45 million hectares
‘M ha’) as well as rice water consumption (∼221BCM), and second

in rice production (∼160 M tons). Despite these encouraging
statistics, crop productivity (CP: yield per unit area), and crop
water productivity (CWP: yield per unit of water delivered) of
rice in India (3.6 t ha−1 and 0.495 kgm−3) are substantially lower
than corresponding world averages (4.6 t ha−1 and 0.755 kgm−3)
(Chapagain and Hoekstra 2011). A number of studies have shown
that India experiences high production loss, a shortfall of fresh-
water resources, and a reduction in the share of agricultural water
due to population growth, changes in climate, and increased urbani-
zation (Auffhammer et al. 2006; Cline 2007; Aggarwal 2008; Mishra
et al. 2013). These situations clearly highlight the need to improve
CWP in agriculture by saving irrigation water and maintaining crop
production (Boutraa 2010). Sustainable irrigation strategies help to
improve CWP by analyzing soil-water-crop-weather interactions on
a real-time basis (Nikolaou et al. 2020). In India, irrigation sched-
uling is mostly driven by farmers’ intuitive decisions based on the
availability of resources and established practices. Such scheduling
activities largely ignore the weather conditions between irrigations,
hence failing to optimize water use in agriculture. Accounting for
weather forecasts can modify the decision on irrigation timing and
amount, which consequently result in optimal utilization of irrigation
water to achieve higher production (Wang and Cai 2009; Cai et al.
2011; Hejazi et al. 2014).

India Meteorological Department (IMD)-issued short-term
weather forecasts (with 1 to 5 days lead time) provide an oppor-
tunity to analyze crop water requirements in response to future
weather, thereby helping to optimize irrigation strategies. IMD
issues daily operational weather forecasts at the block-level using
a high-resolution, deterministic, global forecast system model
(GFS T1534). The model runs daily for 10 days into the future
and provides outputs at three-hour intervals. The forecast datasets
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are published each day at 08:30 a.m. for the next 5 days. Evaluation
of the GFS T1534 model revealed that the model broadly captures
heavy rainfall events during monsoon, but significantly over-
estimates low rainfall events both in number and in magnitude
(Mukhopadhyay et al. 2019). Reasonable forecasting skill was ob-
served for all rainfall categories, but the skill was found to decrease
with lead time (Mukhopadhyay et al. 2019). Evaluation of forecasts
of other meteorological variables has not been found in the liter-
ature, which may be due to the fact that a large number of appli-
cations such as climate change impact studies (Chen et al. 2013a,
b), hydrologic analysis of stream flows (Tiwari et al. 2022), and
extreme event analysis (Maity et al. 2019) use exclusive precipita-
tion forecasts with reasonable accuracy. However, irrigation sched-
ules and crop growth models demand evapotranspiration (ET)
forecasts in addition to precipitation (P) forecasts for the effective
management of water in agriculture (Wang and Cai 2009). This is
particularly true with the cultivation of water-intensive crops like
rice and sugarcane, where the contribution of ET to total agricul-
tural water is significant (Sharma et al. 2018). Being the key hydro-
logic contributor to the water balance, an accurate prediction of
reference ET (ET0) using a standard method, such as FAO Penman–
Monteith, from the available meteorological forecasts is essential to
effectively manage crop water (Cai et al. 2007). However, the non-
availability of solar radiation data by most of the public weather fore-
cast agencies, including IMD, has promoted the development of soft
computing models (Kumar et al. 2002; Landeras et al. 2009) and
temperature-driven empirical models (Luo et al. 2014; Xiong et al.
2016; Ballesteros et al. 2016) for ET0 forecasts. All of these models
were proven to be less effective in estimating ET0 as the meteoro-
logical drivers for ET0 such as wind speed, humidity, and solar ra-
diation data were not considered (Yang et al. 2016). The analytical
method (AM) proposed by Cai et al. (2007) overcomes this limita-
tion by translating available cloud cover (CC) into solar radiation,
thus making full use of available meteorological forecasts. A number
of studies have concluded that the use of public weather forecasts in
the Penman–Monteith equation through AM can significantly im-
prove the performance of daily ET0 forecasts (Yang et al. 2016,
2019; Anupoju et al. 2021).

Evidence of bias in ‘P’ and ‘ET0’ forecasts has prompted many
researchers to avoid the direct use of publicly available weather
forecasts in crop simulation models (Venäläinen et al. 2005; Ines
and Hansen 2006). Thus, post-processing of weather forecasts,
such as bias correction, became a pre-requisite for their use in ir-
rigation management studies (Tiwari et al. 2022). Bias correction
techniques are designed to either reduce or remove the errors (that
are of systematic in nature) associated with the forecasts, thereby
increasing the skill and reliability of weather forecasts. Bias
correction techniques are broadly categorized into two groups,
i.e., (1) linear methods, which adjust the means of raw forecasts to
match with observations using the difference or ratio of the two
means applied as a correction factor, and (2) distribution methods,
which adjusts raw forecasts by mapping the statistical distribu-
tion of observed values onto forecasted values for each quantile
(Crochemore et al. 2016). Bias correction techniques have been
widely used for various applications, and reviews of different bias
correction techniques in hydrology and agriculture can be found in
the literature (Lafon et al. 2013; Pierce et al. 2015; Dang et al.
2017). Typically, an appropriate bias correction technique is se-
lected by evaluating the propagation of error associated with a
given forecast scenario into the model outputs (Lafon et al. 2013;
Chen et al. 2021).

A number of studies have evaluated the role of ‘P’ forecasts
in irrigation schedules and crop yields using deterministic (Wang
and Cai 2009; Mishra et al. 2013) and stochastic (Cai et al. 2011;

Jamal et al. 2018, 2019) optimization techniques. The utility of ET0

forecasts for real-time irrigation management is demonstrated by a
number of researchers including Snyder et al. (2009), Luo et al.
(2014), Traore et al. (2016), and Yang et al. (2016, 2019), but only
a few studies have focused on the combined use of ‘P’ and ‘ET0’
forecasts in irrigation schedules and crop simulation models (Anupoju
et al. 2021; Chen et al. 2021). However, none of these studies have
either quantified or adjusted the bias in raw forecasts prior to their
use in irrigation schedules. This motivates the present study, and the
objectives of this study are as follows: (1) assess the reliability of
IMD-issued precipitation forecasts and estimated ET0 forecasts at
different lead times, (2) evaluate the performance of two bias cor-
rection techniques in reducing systematic errors and consequently
improving forecast skill, (3) analyze water balance and crop yield
fluxes under conventional and forecast-assisted rule-based irriga-
tion scenarios, and (4) select an optimal forecast horizon and bias
correction technique in using IMD forecasts for irrigation schedul-
ing. The results of this paper are expected to provide guidelines for
real-time management of irrigation water using IMD short-term
weather forecast datasets. The conceptual framework of the pro-
posed research is illustrated in Fig. 1.

Methodology

Study Area

Meteorological, phenological, and management conditions were
observed for one agricultural year (June 1, 2019–May 31, 2020)
in a private farmland situated in the Nandi Kandi village of the
Sangareddy district, Telangana, India (17°36 050 0 0 N, 77°59 015 0 0 E,
525 m above sea level). As per Kö ppen-Geiger classification, the
region falls under tropical savanna climate zone (Aw) characterized
by lengthy dry and short wet seasons (Kottek et al. 2006). The
mean annual precipitation of the region is 900 mm, and most of
the annual precipitation (∼75%) occurs during the south-west mon-
soon (July–September). Maximum temperatures (32 to 45°C) are
observed during summer (March–June), whereas minimum tem-
peratures (15 to 24°C) are seen in winter (December–February).
The humidity of the region varies from 35% in summer to 73%
during monsoon season (CGWB 2013). Soils of the site have
a sandy loam texture with a mean bulk density of 1.58 g cm−3,
saturated water content of 0.44 cm3 cm−3, field capacity of
0.31 cm3 cm−3, permanent wilting point of 0.12 cm3 cm−3, and
mean saturated hydraulic conductivity of 0.192 mday−1 (Anupoju
and Kambhammettu 2020).

Rice is the second largest cultivated crop in the region after cot-
ton and is grown in two seasons: rain-fed ‘Kharif’ (monsoon): S1,
and irrigated ‘Rabi’ (winter): S2. Kharif cultivation of rice is more
prominent due to frequent rain spells and favorable agro-climatic
conditions. The ‘BPT-5204’ variant of rice was transplanted from a
nursery and planted in the field with a spacing of 15 to 20 cm. The
phenology, growth stages, and water requirement of the crop are
provided in Table 1. Irrigation scheduling is done at 4–6 day inter-
vals, with timing and amount decided based on the farmer’s intui-
tive knowledge. Conventional irrigation (CI) practiced in the region
does not utilize weather forecast information between the irriga-
tions and is driven solely by resource availability. Farmers used
to apply a fixed amount of irrigation at regular intervals resulting
in huge wastes of water and electricity.

Data Collection and Processing

India Meteorological Department (IMD) is the nodal agency that
monitors and archives various meteorological variables, and issues
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weather forecasts. IMD’s short-term weather forecasts are based on
a suite of operational numerical weather prediction (NWP) models
and made available to the public at the block (mandal) level for the
next 1–5 days (https://mausam.imd.gov.in/). The IMD’s published
weather forecasts consist of the following meteorological variables:
precipitation (P), maximum temperature ðTmaxÞ, minimum temper-
ature ðTminÞ, maximum humidity ðRHmaxÞ, minimum humidity
ðRHminÞ, wind speed (w), wind direction, and cloud cover (CC).
Data for one agricultural year (i.e., June 1, 2019–May 31, 2020)
was considered in this study. An automatic weather station (AWS)
(Spectrum Technologies, US, Model: 2900ET) located about 12 km

east of the experimental plot was used to monitor meteorological
variables on a daily basis. An open-path eddy covariance (EC) flux
tower was installed in the experimental plot to monitor high-
frequency water vapor ðH2OÞ flux using a fast response infrared
gas analyzer (IRGASON-EB-IC, Campbell Sci. Inc., US) and a
3D sonic anemometer. The flux data is sampled at a 10-Hz fre-
quency, averaged over 30 min, and presented as daily means of
evapotranspiration ðETaÞ for use with calibration.

ET 0 Estimation from Weather Forecasts

The unavailability of solar radiation forecasts limits the use of the
universally accepted FAO Penman–Monteith (FAO-PM) method in
estimating reference evapotranspiration ðET0Þ forecasts. To over-
come this limitation, the analytical method proposed by Cai et al.
(2007) was adopted by translating the available IMD forecasts of
CC into solar radiation. This will ensure a fair utilization of a full
range of IMD meteorological forecasts in representing the key
hydrological fluxes of the water balance equation, viz, P and ET0.
The FAO-PM equation for the estimation of daily ET0 (mm day−1)
considering a hypothetical reference crop (Allen et al. 1998, 2006)
is as follows:

Fig. 1. Flowchart illustrating the methodology to evaluate the role of bias-corrected IMD weather forecasts in irrigation schedules and crop growth
simulations.

Table 1. Stage-specific crop coefficients and yield response factors of rice
considered in the water balance model

Growth stage
Period
(days)

Limiting
ponding

depth (mm)

Water
requirement

(mm)

Crop
coefficient

(Kc)

Yield
response

factor (Ky)

Transplantation 20 50 250 1.10 0.80
Vegetative 40 30 450 1.13 1.03
Reproduction 30 50 400 1.04 0.80
Ripening 20 10 100 0.73 0.45
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ET0 ¼
0.408ΔðRn − GÞ þ γ 900

Tþ273
u2ðes − eaÞ

Δþ γð1þ 0.34u2Þ
ð1Þ

where T is mean air temperature (°C), u2 is wind speed at a height of
2 m from the surface (m s−1), ea and es are, respectively, the actual
and saturated vapor pressures of air above the surface (kPa),
G is soil heat flux density (MJ m−2 day−1) that can be ignored
for daily simulations, Rn is net radiation at crop surface (MJ
m−2 day−1), Δ is the slope of the vapor pressure curve (kPa °C−1),
and γ is the psychometric constant (kPa °C−1). Except Rn, all other
variables can be directly obtained from IMD-published datasets.
Net radiation is computed as the difference between net shortwave
and net longwave radiation and given by

Rn ¼ Rns − Rnl ð2Þ
where Rns is considered as a fraction of solar radiation (Rs)
given by

Rns ¼ ð1 − αÞRs ð3Þ
where α is the albedo of reference crop (0.23). Shortwave radiation
(Rs) is obtained from sunshine duration (n) using the Angstrom
equation and given by

Rs ¼
�
aþ bs ·

n
N

�
Ra ð4Þ

where Ra is extraterrestrial radiation, n is actual duration of sun-
shine, andN is daylight duration, and a and bs are non-dimensional
parameters representing the part of Ra reaching earth. The AM
method considers a linear inverse relationship between ‘n’ and
‘CC’ with n ¼ N on a clear day to n ¼ 0 on an overcast day.
Region-specific crop coefficients ðKcÞ for rice were used to convert
ET0 forecasts into crop ET ðETcÞ forecasts for use with soil-water
balance studies (Anupoju and Kambhammettu 2020).

Bias Correction Methods

It is a known fact that forecasts are associated with an error (bias)
that can be reduced by applying appropriate bias correction tech-
niques. In this paper, two bias correction methods were applied,
i.e., linear scaling (LS) and empirical quantile mapping (EQM). The
first method, LS, adjusts raw forecasts using a multiplicative factor,
equal to the ratio of the observed to forecast means and given by

Pcor ¼ Praw ·
Pobs

Praw
ð5Þ

ETcor ¼ ETraw ·
ETobs

ETraw
ð6Þ

where the subscripts ‘obs’, ‘raw’, and ‘cor’ correspond to observed
values, raw forecasts, and corrected forecasts, respectively. The
second method, EQM, adjusts forecasts by mapping statistical dis-
tributions of forecasts and observations. At first, the cumulative dis-
tribution function (CDF) of observations is divided into a number of
discrete quantiles. Raw forecasts are then resampled to match with
the frequency of the observed CDF with the same quantile value. We
used quantiles of 10 percentiles for the observed and forecasted data-
sets and applied bias correction for each bin. The presence of a sig-
nificant number of zeros in precipitation, particularly for regions
dominated by monsoons, poses challenges, similar to those in this
study. For example, whether to treat zero and non-zero precipitation
values separately or jointly is subjective (Maity et al. 2019). In this
study, all precipitation data that consists of both zero and non-zero

precipitation values are considered so that the bias-corrected fore-
casts can be smoothly integrated with irrigation models. Among
the two methods, the LS method is relatively simple and improves
the first moment of forecasts (mean), but significantly distorts other
moments of distribution (Arnell 2003; Lafon et al. 2013). The EQM
method modifies forecasts such that the adjusted forecast will have
similar distribution aspects as the observed values; however, it may
lead to higher bias after correction if a mismatch in the data pairs
exists, yet preserving the shape (Lafon et al. 2013).

Evaluation of Forecasts

All three forecasts, i.e., raw, LS-corrected and EQM-corrected fore-
casts for both P and ET0 were evaluated at all lead times using three
metrics, i.e., multiplicative bias (BIAS), root mean squared error
(RMSE), and correlation coefficient (ρ). Each of these metrics
evaluate a different aspect of the forecast. Bias is a measure of
the factor by which climatological forecasts (F̄) deviate from cli-
matological observations (Ō), and is given by

BIAS ¼ F̄
Ō
;where F̄ ¼

P
n
i¼1 Fi

n
and Ō ¼

P
n
i¼1 Oi

n
ð7Þ

The difference between forecast and corresponding observation is
termed as ‘error,’ and it provides information on forecast accuracy.
While multiple error metrics such as mean error, mean absolute error,
and RMSEwere available, RMSEwas used in this study. The RMSE
allows one to comment on the forecast accuracy by penalizing large
errors relatively heavily and is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

½Fi −Oi�2
s

ð8Þ

where Fi and Oi are the forecast and corresponding observed value,
respectively, and ‘n’ is the number of data points. The Pearson cor-
relation coefficient (ρ) quantifies the linear association between fore-
casts and corresponding observations and is given by

ρ ¼
1
N

P
n
i¼1ðFi − F̄Þ · ðOi − ŌÞ

SF · SO
ð9Þ

where SF and SO correspond to the standard deviations of forecasts
and observations, respectively. An accurate forecast should yield a
bias of one, RMSE of zero, and ρ of one.

Crop Water and Yield Dynamics

A total of five scenarios with observed, raw forecasts, and bias-
corrected forecast sets of ‘P’ and ‘ET0’ were considered to analyze
water balance and yield dynamics during crop growth. These sce-
narios can be described as:
1. Conventional irrigation (CI)—irrigation practiced in the region

based on the farmers’ knowledge and established practices. This
method does not use any kind of weather forecasts or irrigation
decisions;

2. Hypothetical perfect forecast-based irrigation (HF)—crop
simulation model run in the past in retrospective mode using
observed values as future forecasts, and is considered as the
reference scenario;

3. Raw forecast-based irrigation (F-RAW)—crop simulation model
with rule-based irrigation schedules considering raw weather
forecasts at different lead times;

4. LS-corrected, forecast-based irrigation (F-LS)—crop simula-
tion model with rule-based irrigation schedules considering
LS-corrected P and ET0 forecasts at different lead times; and

© ASCE 04022079-4 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(2): 04022079 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"I
nd

ia
n 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y,

 H
yd

er
ab

ad
" 

on
 0

8/
20

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



5. EQM-corrected, forecast-based irrigation (F-EQM)—crop sim-
ulation model with rule-based irrigation schedules considering
EQM-corrected P and ET0 forecasts at different lead times.
A simple water balance model conserving various fluxes of

water entering and leaving the field plot was applied for each time
step during the crop period as

ðWLi −WLi−1Þ ¼ ðPi þ IrriÞ − ðETi −DPiÞ ð10Þ

whereWLi andWLi−1 are the field water depths (mm) at the end of
day ‘i’ and ‘i-1’, with the difference term ðWLi −WLi−1Þ repre-
senting ponding deficit, i.e., the depth by which the field is short of
required ponding (Table 2). Pi, Irri, ETi, and DPi correspond to
precipitation, applied irrigation, actual evapotranspiration, and
deep percolation at the end of day ‘i’, and are all represented in
‘mm’ of water. Actual ETwas calculated from the crop coefficient
ðKcÞ approach, with stage-specific ðKcÞ values taken from
Anupoju and Kambhammettu (2020) (Table 1). The rice fields are
grown under submerged conditions, so the effect of water stress
coefficient ðKsÞ is not considered. Deep percolation for each
day is computed from Darcy’s law with a hydraulic gradient de-
rived from the available ponding depth. One of the possible four
irrigation depths (NI: no irrigation, LI: light irrigation, MI: medium
irrigation, HI: high irrigation) is triggered for each time step using a
set of ‘if-then’ rules with an objective to bring the ponding depth
back to the limiting value (Table 2). CI is accompanied with a fixed

irrigation amount and frequency and is guided by the availability of
resources. Similarly, forecast scenarios estimate irrigation amount to
compensate ponding deficit. Hence, differences in water fluxes be-
tween CI and forecast-based scenarios are attributed to the combined
effect of weather forecast and irrigation decisions. To highlight the
benefits of CI alone, an additional scenario with rule-based irrigation
decisions in the absence of weather forecast was considered.

Crop yield at the end of each growth stage is computed using a
simple growth algorithm and given by�

1 − Yk
a

Yk
p

�
¼ Kk

y

�
1 −

P
ETk

aP
ETk

p

�
ð11Þ

where Yk
a and Yk

p correspond to actual and potential above-ground
biomass for a given growth stage ‘ k’, respectively, Kk

y is the yield
response factor for growth stage ‘ k’ (Table 1),

P
ETk

a and
P

ETk
p

correspond to actual and potential cumulative ET, respectively,
from the beginning of crop season to the current growth stage ‘k’.
A number of researchers have demonstrated the efficacy of simple
transpiration or ET-based crop growth models in simulating biomass
and crop yield (Pereira et al. 2003; Choudhury and Singh 2016; Cao
et al. 2019; Foster et al. 2017). All simulations were performed using
Microsoft Excel, with source code and results available at: Github
link https://github.com/ShubhamGedam/AgriIITH.

Results and Discussion

Analysis of IMD Forecasts

One-to-one association of rainfall forecasts with observed values
and its temporal distribution are analyzed via scatter and time-series
plots, respectively (Fig. 2). Both plots suggest a significant number
of ‘zero’ rainy days happening during the non-monsoon period.
High precipitation values were observed during the monsoon
period. This is true for this part of the region; thus, the results in-
dicate the forecast’s ability to capture both daily and seasonal var-
iations. However, the number of forecasted zero rainy days are
relatively low (248 to 270 for different forecast lead times) as com-
pared to the observed zero rainy days, i.e., 310. Only a few

Table 2. Rule-based irrigation schedules considered in the water balance
model

Condition Irrigation category Irrigation amount

ðpd defÞi ≥ 0.75 × ðpd limÞi High irrigation (HI) 0.75 × ðpd limÞi
0.5× ðpd limÞi ≤ ðpd defÞi <
0.75× ðpd limÞi

Medium irrigation (MI) 0.50 × ðpd limÞi
0.25× ðpd limÞi ≤ ðpd defÞi <
0.5× ðpd limÞi

Low irrigation (LI) 0.25 × ðpd limÞi
ðpd defÞi < 0.25 × ðpd limÞi No irrigation (NI) 0.00

Note: ðpd defÞi = deficit ponding depth estimated from water balance
model for a given growth stage, i; and ðpd limÞi = limiting ponding
depth for a given growth stage, i (Refer to Table 1).

Fig. 2. Temporal distribution of observed and IMD-published forecasts of precipitation at different lead times. Inset: Scatterplots showing the
correspondence between two datasets.
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forecasts were correctly mapped with observed zero rainy days.
This is seen in terms of non-zero (zero) rainfall forecasts corre-
sponding to zero (non-zero) observed rainfall in scatterplots. This
concludes that the number of misses and false alarms with zero
precipitation are relatively high. The one-to-one correspondence
between forecast and observed rainfall values is quantified using
the Pearson correlation coefficient (ρ), and is found to be 0.35,
0.28, 0.36, 0.41, and 0.26 for 1 to 5 days lead time, respectively.
Cumulative precipitation observed during Kharif (monsoon) and
Rabi (winter) seasons are 643 mm and 8 mm, respectively, which
are 6.25% and 91.1% less than the normal rainfall for the respective
seasons. The site has recorded their highest daily rainfalls in
100 years in September, and the IMD forecasts did not capture
it (top rows in Fig. 2). Removing these three highest daily rainfall
values has significantly increased the ρ values to 0.98, 0.95, 0.97,
0.96, and 0.94, when only calculated for rainy days. Both rainfall
magnitude and number of rainy days were underestimated at all
lead times with a bias ranging from 0.39 to 0.76.

The reference ET ðET0Þ is typically estimated using solar radi-
ation (Rn); however, we used cloud cover (CC) data in lieu of Rn for
effective utilization of IMD forecast data. ET0 computed from CC
forecasts agrees with those computed from observed Rn datasets
(ρ ¼ 0.8, RMSE ¼ 8.32 mm). A good agreement between ob-
served and forecasted ET0 was observed due to non-zero, close
range (1.5 to 6 mm) datasets. This concludes that the analytical

method proposed by Cai et al. (2007) can be used to estimate
ET0 forecasts. Similar to rainfall, scatter plots and time-series plots
were developed to compare forecast- and observed-ET0 estimates
(Fig. 3). As compared to ‘P’ forecasts, ‘ET0’ forecasts appear to be
more reliable, i.e., the values were scattered around the 1:1 line.
This is reflected in medium- to high-correlation coefficient values,
i.e., ρ values of 0.60, 0.58, 0.60, 0.60, and 0.58 observed for 1 to
5 days lead time, respectively. The time-series plots suggest high
ET0 in summer months followed by low ET0 in winter months,
which is consistent with literature (Goparaju and Ahmad 2019;
Tyagi et al. 2000).

Performance of Bias Correction Methods

Both raw- and bias-corrected P and ET0 forecasts were evaluated
using three indices, i.e., multiplicative bias, RMSE, and ρ (Figs. 4
and 5). Biases greater than one were observed for raw rainfall fore-
casts, and the values increased for the first three forecast lead days.
Values greater than one imply overestimated forecasts, and the fore-
casts are relatively low by 30% or more, except for one and four
lead days. The contrasts with RMSE values, which were found to
be the same at all lead times implying similar accuracy in raw fore-
casts for all forecast lead days. The correlation coefficient values
varied with lead time, but their low values indicate no significant
one-to-one association. The bias-corrected forecasts exhibited de-
creased multiplicative bias and no change in one-to-one association

Fig. 3. Temporal distribution of observed and IMD-derived forecasts of evapotranspiration at different lead times. Inset: Scatterplots showing the
correspondence between two datasets.

(a) (b) (c)

Fig. 4. Forecast skills of raw and bias-corrected precipitation as a function of lead time. Metrics considered include: (a) Bias; (b) RMSE;
and (c) correlation coefficient (ρ).
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with the observed values. However, the EQM forecasts exhibited
increased RMSE values. The results suggest no clear addition of
value by bias correction techniques, and it may chiefly be due
to the absence of bias (i.e., systematic pattern in error) and lack
of information content in raw forecasts. Nonetheless, the bias cor-
rection techniques assisted in the increased performance of raw
ET0 forecasts. The raw ET0 forecasts, unlike as one would expect,
exhibited similar values for all three-verification metrics; note that
the bias values are not significantly different, but interestingly de-
creased with increasing lead time. Both bias correction techniques
removed the bias in raw forecasts at all lead times, whereas the
EQM-corrected forecasts resulted in much lower RMSE values, un-
like the LS-corrected forecasts, which resulted in slightly increased
RMSE values. No significant changes in correlation values sug-
gested no improvement in performance in one-to-one association.
As crop yield is influenced by meteorological processes and irri-
gation schedule over a period of time, i.e., around 120 days, it is
intuitive and important to analyze whether the forecasts map onto
the observed values in their various distributional aspects. In this
regard, cumulative density functions (CDFs) were developed for
both observed values, raw forecasts and biased forecasts, of P and

ET0 for each lead time (Fig. 6). The CDF of observed rainfall sug-
gests zero rainfall for much of the year, i.e., 80% of the time,
whereas the CDF of raw forecasts suggests zero rainfall for rela-
tively decreased percentage of time. Close observations of the
CDFs reveal the following: (1) raw forecasts of lead time of one
day are different from the forecasts of other lead times for non-zero
rainfall amounts; (2) smaller rainfall amounts are less likely as
compared to the higher rainfall amounts for raw forecasts; (3) ap-
proximately similar CDFs for both LS-corrected and raw forecasts;
(4) approximately similar CDFs for both observed and EQM-
corrected forecasts at all lead times. The above observations sug-
gest an inability of raw forecasts and LS-corrected forecasts to
match the distributional properties of observed rainfall, while the
EQM-corrected forecast is able to match this property. As com-
pared to rainfall CDFs, ET0CDFs are widely spread and reflect
a wide range of ET0 values. The CDFs of raw forecasts at all lead
times are approximately similar but significantly different from the
CDFs of observed values. Similar to rainfall forecasts, LS tech-
niques did not modify the CDFs of raw forecasts for ET0; however,
the EQM-adjusted forecast closely matches the corresponding ob-
served values. These results suggest preserving the distributional

(a) (b) (c)

Fig. 5. Forecast skills of raw and bias-corrected evapotranspiration as a function of lead time. Metrics considered include: (a) Bias; (b) RMSE;
and (c) correlation coefficient (ρ).

Fig. 6. Cumulative distribution functions (CDFs) of raw and bias-corrected forecasts of (a) precipitation; and (b) evapotranspiration with different
lead times.
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properties of the observed values in EQM-adjusted forecasts for
both rainfall and ET0, which results in increased accuracy for
ET0 forecasts.

Model Calibration

The performance of the crop coefficient-assisted FAO Penman–
Monteith method to estimate actual ET ðETaÞ was evaluated in
comparison with eddy covariance (EC) flux observations. Prior
to calibration, the quality of EC measurements was assessed by
linearly regressing the available energy ðRn-GÞ with the turbulent
fluxes (H þ LE) considering daytime unstable flux measurements.
The slope and intercept of the best fit line were found to be 0.76,
28.80 for Kharif season, and 0.86, 10.62 for Rabi season, respec-
tively. Model calibration ensured changing the stage-specific crop
coefficients (Table 1) and the AM parameters used in converting the
cloud cover data into solar radiation. Fig. 7 compares the daily
means of ETa estimated from the FAO-Kc approach with flux
tower observations for two crop seasons. Cumulative ETa during
Kharif season (383 mm) was found to be higher than in Rabi season
(269 mm) due to favorable agro-climatic conditions (high VPD).
We observed a close agreement between estimated and observed
ETa fluxes during both Kharif (R2 ¼ 0.63, NSE ¼ 0.53, RMSE ¼
0.47 mm) and Rabi (R2 ¼ 0.82, NSE ¼ 0.75, RMSE ¼ 0.52 mm)
seasons.

Comparison of Irrigation Scenarios

Conventional irrigation (CI) and hypothetical forecast (HF) scenar-
ios only use observed weather data for water balance and crop
growth simulations. The two scenarios can also be considered as
a benchmark to define the two extreme irrigation treatments
(CI for highest water use with low yield, and HF for lowest water
use with high yield). Fig. 8 represents the stage-wise accumulation
of major water fluxes (irrigation and deep percolation) and relative
yield for the two extreme treatments. CI has resulted in the highest
use of irrigation water at all growth stages, accumulating to 820 mm
in Kharif and 880 mm in Rabi seasons. The corresponding values
with the HF scenario are 660 mm and 710 mm, respectively. A high
irrigation amount in Rabi season can be attributed to low rainfall.
Deep percolation with CI accounts for 1,140 mm in Kharif and
680 mm in Rabi season. The corresponding values with HF are
980 mm and 500 mm, respectively. Due to a high, uneven rainfall
distribution, a high percolation in excess of irrigation was observed
in the Kharif season. We observed a steep rise in deep percolation
during vegetative and reproduction stages for both seasons. Due to
the low crop water requirements, both irrigation (62.50� 27.5 mm)
and deep percolation (196.26� 175.8 mm) are minimal during the
ripening stage. Deep percolation as a fraction of total water applied
(P+I) was found to be 76.5% with CI and 69.5% with HF. This
concludes that a significant amount of DP can be saved by the
effective utilization of weather parameters. For ease of comparison,

Fig. 7. Calibration (period: 2019-Kharif) and evaluation (period: 2020-Rabi) of water balance model for daily means of ETa fluxes against the flux
tower observations. Model performance is evaluated using the residual statistical indices including R2, NSE, and RMSE.

Fig. 8. Stage-wise accumulation of irrigation water (irr), deep percolation (dp), and relative yield (ry) for conventional and reference (hypothetical,
5-day perfect forecast) irrigation scenarios as represented in two different hues, for the two growing seasons: (a) Rabi; and (b) Kharif.
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we assumed the highest yield was achieved with the HF scenario,
resulting in a relative yield (RY) of 1.0. Accordingly, CI has re-
sulted in a RY of 0.88 in Kharif and 0.87 in Rabi, slightly lower
than the potential yield observed in the region (3,040 kg ha−1 in
Kharif and 2,462 kg ha−1 in Rabi). CI with rule-based irrigation
decisions based on farmers experience has consumed 733 mm and
895 mm of irrigation water during Kharif and Rabi seasons, respec-
tively. Deep percolation by this method amounts to 1,035 mm and
679 mm during Kharif and Rabi seasons, respectively. This con-
cludes that farmers’ experience in considering rule-based irrigation
can slightly minimize irrigation amounts and deep percolation
losses, particularly during Kharif season.

By considering raw and bias-corrected forecasts with different
lead times, components of water balance for the Kharif season are
presented in Fig. 9. Except at 1-day lead times, the raw forecasts
have underestimated the precipitation, thereby utilizing higher ir-
rigation amounts. Precipitation and ETa contributed to 39.7%�
6.51% and 25.1%� 1.82% of the total water balance, respectively.
While precipitation showed a general decreasing trend with lead
time, we could not observe a clear pattern. ETa has shown a clear
increasing trend with lead time. Overall, deep percolation using the
forecasted datasets was found to be significantly lower than the CI
scenario and marginally lower than the HF scenario. This concludes
that raw forecasts can minimize the deep percolation losses at the
cost of increasing the irrigation. It can also be observed that relative
yield was not compromised with raw forecast information. The LS-
corrected precipitation values are much closer to the HF scenario
than raw forecasts, thus lowering the irrigation amounts. Deep per-
colation with LS corrections are in the range of 910 to 1,010 mm,
with the HF-derived value falling in between. This concludes that
LS-corrected forecasts result in water balance fluxes that are close

to the reference values. We observed a surge in the EQM-corrected
precipitation values (910 to 1,320 mm) at all lead times; these val-
ues are impractical, hence resulting in spurious deep percolation
values that are 31% to 53% higher than the reference value, respec-
tively. EQM correction has decreased the performance of irrigation
schedules due to a large number of mismatched pairs of ‘zero’ pre-
cipitations both in the observed and raw forecasts. IMD weather
forecasts with LS bias correction have outperformed all other sce-
narios with a 15%–28% savings in irrigation water and 10%–19%
savings in deep percolation over CI.

In considering raw and bias-corrected forecasts with different
lead times, the components of water balance for the Rabi season
are presented in Fig. 10. Precipitation and ETa contributed to
4.8%� 1.32% and 31.6%� 0.96% of the total water balance,
respectively. Even though the raw forecasts have overestimated
the precipitation at all lead times, their magnitude is significantly
low (50� 6 mm). Since the contribution of precipitation to the to-
tal water balance is very low, both irrigation and deep percolation
were fairly constant at all lead times and are in close agreement
with the two extreme scenarios (CI and HF). LS-corrected forecasts
have slightly increased the precipitation but could not alter the other
fluxes. We observed a similar response with EQM-corrected irri-
gation scenarios. Overall, the water balance components of all
forecast scenarios are closer to the CI values, concluding that the
irrigation schedules are insensitive to weather forecasts (with or
without bias correction) for the Rabi season. A low magnitude of
highly uncertain variable precipitation along with a highly consis-
tent and stable ETa data has made Rabi season less dependent on
weather forecasts for irrigation scheduling.

Though LS- and EQM-corrected forecasts have slightly im-
proved the forecasting skill (Figs. 4 and 5), their performance with

Fig. 9. Components of water balance for the 2019-Kharif season rice crop considering: IMD raw forecasts (F-RAW), LS bias-corrected forecasts
(F-LS), and EQM bias-corrected forecasts (F-EQM) with different lead times.
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irrigation and crop growth models is antithetical (Fig. 11). While
LS correction has improved the performance of the irrigation
model, EQM correction has resulted in spurious percolation losses
inferior to raw forecast scenarios. This concludes that selecting the
appropriate bias correction technique is vital for the improvement
of irrigation schedules. Due to averaging over the forecast horizon,
a close cluster of data points for each scenario (Fig. 11) concludes
that the inaccuracies in weather forecast will diminish as they
propagate into irrigation models.

Selection of Optimal Forecast Scenario

Conventional and forecast-driven irrigation scenarios were evalu-
ated in relation to HF, which is considered a benchmark (Fig. 11).

All scenarios were evaluated by comparing the deviation in major
water fluxes (irrigation and deep percolation) from HF outputs.
Irrigation and DP for the HF scenario (marked as ‘*’) during Kharif
season are 680 mm and 980 mm, respectively. The corresponding
values for the CI scenario (marked as ‘♦’) are 820 mm and
1140 mm. This concludes that CI has resulted in a 20% waste
of irrigation water and 16% waste of DP due to ignoring perfect
weather forecast information and rule-based decisions. Except for
EQM-corrected forecasts, all other scenarios have performed better
than CI, of which, the LS-corrected forecasts have resulted in a
close match of water fluxes with the HF scenario. It should be noted
that savings in irrigation water and deep percolation are attributed
to the effect of considering weather forecasts in conjunction with

Fig. 10. Components of water balance for the 2020-Rabi season rice crop considering: IMD raw forecasts (F-RAW), LS bias-corrected forecasts
(F-LS), and EQM bias-corrected forecasts (F-EQM) with different lead times.

Fig. 11. Cluster representation of major water balance fluxes (irrigation and deep percolation) considering raw forecasts (green), LS-corrected
forecasts (blue), and EQM-corrected forecasts (red) with different lead times. For each forecast scenario, graduate symbols were used to relate
the size to the forecast horizon.
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rule-based irrigation. Our results conclude that IMD forecasts at
multiple lead times can significantly improve irrigation scheduling
by saving 28%� 6% irrigation water and 17%� 5% DP and im-
proving the relative yield by 2%. Water savings can be improved
further with LS-corrected irrigation scenarios. Also, variability in
the estimated water fluxes between the lead times is minimized
with the LS-corrected scenario. Irrigation and DP for the HF sce-
nario during Rabi season are 710 mm and 500 mm, respectively.
Both raw and bias-corrected forecasts have significantly deviated
from HF results, with high irrigation (860� 25 mm) and DP
(660� 35 mm) fluxes. A high offset from the HF scenario can
be attributed to low cumulative precipitation, both in the observed
(8 mm) and IMD-forecasted (45� 12 mm) datasets. This has sig-
nificantly overestimated the irrigation and DP values at all lead
times. Our results conclude that IMD forecasts with or without bias
correction provide no additional value to irrigation scheduling in
the Rabi season. The contribution of ‘P’ to the water balance fluxes
plays a significant role in deciding the role of weather forecasts on
improved irrigation schedules and crop yield.

Due to resource constraints, we considered the data of only two
irrigation seasons. Considering long-term data across multiple
years (dry, normal, wet) may improve our findings, which can be
taken up in future. Since irrigation via free power has no associated
cost in Indian setting, we have not analyzed the cost benefits of
using weather forecasts. We have considered deterministic, numeri-
cal forecasts as published by IMD. A binomial or categorical rep-
resentation of IMD forecasts (ex: rain versus no-rain condition)
may help in scheduling irrigation and easing field implementation.

Conclusions

This research is aimed at assessing the performance of IMD short-
term forecasts of ‘P’ and ‘ ETo’ when used in irrigation schedules
and crop growth models. Forecasting skills for both variables was
found to be low at all lead times. We observed a marginal improve-
ment in the forecasting skill of P with LS bias correction, whereas
EQM correction did not show much improvement. A high RMSE
(8 mm at a 2-day lead time to 25 mm at a5-day lead time) was
observed with raw P forecasts due to a systematic underestimation,
which was marginally improved after bias correction. The Mann–
Whitney rank sum test on bias-corrected and raw forecasts of ‘P’
and ETo concluded that bias-corrected ‘P’ at all lead times, LS-
corrected ETo at a 1-day lead time, and EQM-corrected ETo at
all lead times are significantly different from their respective ob-
servations at 95% significance level. CDFs for raw and forecasts
of P and ETo revealed that bias correction is hardly improved the
performance of the P forecast and significantly improved the per-
formance of the ETo forecast. The model was calibrated and eva-
luated with observed ET with a flux tower and showed a good
correspondence (NSE ¼ 0.625, R2 ¼ 0.72, RMSE ¼ 0.49 mm).
IMD weather forecasts for Kharif season with LS bias correction
outperformed other scenarios with approximately 15% to 28% sav-
ings in irrigation water and 10 to 19% savings in deep percolation
over CI. This scenario was reversed for Rabi season, where the ir-
rigation schedules were found to be insensitive to weather forecasts
(with or without bias correction). All scenarios were compared with
HF outputs of irrigation and deep percolation. Our results conclude
that CI has resulted in 20% waste of irrigation water and 16% waste
of DP due to ignoring weather forecast information. IMD forecasts
at multiple lead times can significantly improve the irrigation
scheduling by saving 28%� 6% irrigation water and 17%� 5%

DP and improving the relative yield by 2%.

Data Availability Statement

Some or all the data along with the model code used in this study
can be obtained from the corresponding author upon reasonable
request. Following datasets/simulation files are available in the on-
line repository (https://github.com/ShubhamGedam/AgriIITH).
1. Daily observations of meteorological datasets.
2. IMD-published rainfall with 1 to 5 day lead times (raw, bias-

corrected).
3. Penman–Monteith Estimates of ET for 1 to 5 day lead times

(raw, bias-corrected).
4. Daily water balance fluxes for each irrigation scenario (CI,

F-RAW, F-LS, F-EQM, HF).
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