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Pigment epithelial detachment 
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We provide an automated analysis of the pigment epithelial detachments (PEDs) in neovascular age‑
related macular degeneration (nAMD) and estimate areas of serous, neovascular, and fibrous tissues 
within PEDs. A retrospective analysis of high‑definition spectral‑domain OCT B‑scans from 43 eyes of 
37 patients with nAMD with presence of fibrovascular PED was done. PEDs were manually segmented 
and then filtered using 2D kernels to classify pixels within the PED as serous, neovascular, or fibrous. 
A set of PED composition indices were calculated on a per‑image basis using relative PED area of 
serous (PEDCI‑S), neovascular (PEDCI‑N), and fibrous (PEDCI‑F) tissue. Accuracy of segmentation and 
classification within the PED were graded in masked fashion. Mean overall intra‑observer repeatability 
and inter‑observer reproducibility were 0.86 ± 0.07 and 0.86 ± 0.03 respectively using intraclass 
correlations. The mean graded scores were 96.99 ± 8.18, 92.12 ± 7.97, 91.48 ± 8.93, and 92.29 ± 8.97 
for segmentation, serous, neovascular, and fibrous respectively. Mean (range) PEDCI‑S, PEDCI‑N, 
and PEDCI‑F were 0.253 (0–0.952), 0.554 (0–1), and 0.193 (0–0.693). A kernel‑based image processing 
approach demonstrates potential for approximating PED composition. Evaluating follow up changes 
during nAMD treatment with respect to PEDCI would be useful for further clinical applications.

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world, primarily 
affecting individuals over the age of 60 years and accounting for 8.7% of all the blindness  worldwide1,2. Wet 
AMD, also referred to as exudative or neovascular AMD (nAMD), is the less common type. It accounts for 
only 10–15% of cases but is responsible for the majority of severe central vision loss in patients with  AMD3,4. 
Choroidal neovascularization (CNV) is the hallmark feature of nAMD, which can lead to rapidly progressive 
vision  loss5. In CNV, abnormal blood vessels grow from the choroidal vasculature leading to disruption of the 
Bruch’s membrane. These vessels can also leak blood and filtrate into the retina leading to fluid in the intraretinal, 
subretinal, and sub-retinal pigment epithelial (RPE)  spaces6,7.

Elevation of the RPE layer, referred to as a pigment epithelial detachment (PED), is a frequent finding seen 
in patients with nAMD and usually indicates the presence of  CNV4. Different types of PEDs exist depending on 
the type of material found within them. To name a few, PEDs may be filled with drusenoid material, serous fluid, 
neovascular tissue, and/or fibrous tissue. The size and type of PED can greatly influence disease  progression8–10. 
For example, PEDs with fibrous and neovascular tissue are a risk factor for RPE rips and tears with an incidence 
around 10%11. The presence of PEDs is prognostic of poor visual outcomes and thus are closely evaluated by 
 clinicians4,12,13.

Patients with nAMD undergo routine optical coherence tomography (OCT) imaging to help guide treatment 
and monitor disease  progression1,3. OCTs provide a non-invasive, non-contact method of visualizing cross-
sections of the retinal and choroidal structures. OCT scans can therefore provide clear views of abnormal fluid 
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and tissues within these  structures10. PEDs can be identified by hyporeflective, hyperreflective, and/or irregu-
larly reflective pixels beneath the RPE. PEDs with drusenoid material are usually uniform, hyperreflective, and 
rounded in  shape4. PEDs with serous fluid are usually uniform and hyporeflective with a smooth contour. PEDs 
with neovascular and/or fibrous tissue, also termed fibrovascular PED, have a more varied appearance. They can 
have an irregular shape with varying  reflectivity4.

The term fibrovascular refers to neovascular infiltration associated with fibrotic tissue, and therefore is an 
encompassing term that captures both neovascular and fibrous  tissue5. This commonly used term is a result of 
the difficulty associated with distinguishing between neovascular tissue and fibrous tissue. On fundus image, 
the two tissues often overlap spatially making it nearly impossible for clinicians to differentiate. However, with 
the advent of OCT, and particularly high-definition OCT imaging, PEDs can be viewed in greater detail. Yet, 
similar raw intensity values between the tissue types and noise within the image make the task difficult to per-
form with the naked eye.

In this study, we use an automated method for analyzing the OCT-based reflectivity to quantify presumed 
components of PEDs. We hypothesize that there are inherent differences between serous, neovascular, and fibrous 
material within PEDs on OCTs that can be revealed by using image processing techniques. Our objective is to 
use a series of image processing techniques to approximate these components and estimate the relative areas of 
each tissue type within PEDs in patients with nAMD.

Methods
This was a retrospective cross-sectional study involving patients with nAMD who attended the University of 
Pittsburgh Medical Center Eye and Ear Institute. The study was carried out in accordance with the Declaration 
of Helsinki and approved by the institutional review board (IRB) from the University of Pittsburgh. Written 
informed consent was obtained from all study participants.

All subjects received a complete history and comprehensive ophthalmological exam including best-corrected 
visual acuity (BCVA), intraocular pressure measurement, slit-lamp microscopy, and dilated fundus exam to 
confirm nAMD and rule out other ocular pathologies. Inclusion criteria for this study included patients with 
confirmed nAMD with at least one PED captured by B-scan. The minimum height and width of evaluated 
PEDs were 100 microns. Exclusion criteria included complicated nAMD, drusenoid PED, and the presence of 
other ocular diseases besides nAMD. Complicated nAMDs were defined as cases where RPE rips were present. 
Drusenoid PEDs were defined by clinical evaluation and excluded to narrow the focus of the study to nAMD. 
Eyes that received prior anti-vascular endothelial growth factor (anti-VEGF) treatment and eyes that were treat-
ment naïve were both included.

Spectral Domain Optical Coherence Tomography (SD-OCT) images were acquired using the Heidelberg 
Spectralis Device (Heidelberg Engineering, Heidelberg, Germany) for all patients. Single scan passing through 
the fovea was used for image analysis. Each B-scan had a resolution of 1536 × 496 pixels with an intensity range 
of 0–255.

Image pre‑processing. To ensure accurate analysis of OCT images, a series of pre-processing steps were 
applied: (1) linear normalization and (2) shadow  compensation14. The acquired scans displayed varied intensity 
distributions. To account for these differences, all B-scans were standardized using linear normalization to a 
range of 0–1. Since the area of interest lies below the RPE layer, another concern was signal extinction, visualized 
as shadows, caused by fluid and vessels in the  retina15,16. To correct for this signal extinction, shadow compensa-
tion was applied to all scans. This method corrected for shadows by calculating a unique compensation factor on 
a per-pixel basis by evaluating idiosyncrasies in the  OCT16. Scans adjusted by pre-processing steps are referred 
to as original processed images (I0).

Segmentation of PED. Subsequently, PEDs from each scan were manually segmented by a trained annota-
tor and verified by an expert clinician. Segmentations delineated the outer boundary of the entire PED and were 
performed using the ImageJ software v1.53m. The polygon selector tool was used to outline the suspected PED, 
and the “Fit Spline” feature was used to smooth the segmentation.

PED analysis. To characterize the fluid and tissue within a PED, a method of delineating serous, neovas-
cular, and fibrous tissue was desired. To perform this segmentation step, multiple image processing techniques 
were explored including adaptive thresholding using Otsu’s method and unsupervised learning via a K-means 
based algorithm. While Otsu’s method and similar adaptive thresholding techniques have shown promise in 
deriving other OCT biomarkers such as choroidal vascularity index, such techniques yielded suboptimal results 
for PED  characterization15,17. Therefore, a custom pixel-wise scarring likelihood metric was computed for each 
pixel within the PED using multiple filtering steps. This metric, ranging from 0 to 1, was designed to estimate 
a given pixel’s likelihood of belonging to either serous fluid, neovascular tissue, or fibrous tissue. Neovascular 
tissue is defined as having a predominately vascular component, while fibrous tissue is defined as having a 
predominately extracellular matrix component. A score of zero corresponds to serous fluid, a low-intermediate 
score (0–0.6) corresponds to neovascular tissue, and a high score (0.6–1) corresponds to fibrous tissue. To quan-
tify the composition of material within the PED, a collection of PED composition indices (PEDCI) was derived 
by calculating the relative area of serous (PEDCI-S), neovascular (PEDCI-N), and fibrous (PEDCI-F) material. 
To calculate the pixel-wise scarring likelihood and PEDCI scores, a series of filters were applied to generate 
modified images. Prior to these filtering steps, the PED region was padded using symmetric reflection at the 
boundary. A schematic of the overall methodology is shown in Fig. 1.



3

Vol.:(0123456789)

Scientific Reports |           (2023) 13:68  | https://doi.org/10.1038/s41598-022-27078-x

www.nature.com/scientificreports/

The filtering steps used were as follows. A 7 × 7 averaging kernel was applied to the original processed image, 
I0, generating I1. A 7 × 7 standard deviation filter was applied to I0, generating I2. I2 was divided by I1 on a per 
pixel basis generating I3. I3 was subtracted from I0, generating I4. A 11 × 11 averaging filter was applied to I4, 
generating I5. A 9 × 9 averaging filter was applied to I0, generating I6. I7 was computed within the PED segmenta-
tion by comparing values in I6 against a global threshold (GT1). If the value of the pixel in I6 was less than GT1, 
the corresponding pixel in I7 was set to 0, otherwise the pixel in I7 was set to the corresponding pixel in I5. The 

Figure 1.  Proposed methodology for classification of serous, neovascular, and fibrous tissues in pigment 
epithelial detachments (PED) and derivation of PED composition indices (PEDCI). Starting with the original 
B-scan image in the top left, pre-processing steps including linear normalization and shadow compensation 
were applied. The segmented PED was subsequently used to pad the region of interest in the processed image, I0. 
The transformation between I0 to I7 involves a series of kernel-based filtering steps. Classification of components 
within the PED was performed using I7. PEDCI-S was derived from the ratio of the serous component area to 
total PED area, PEDCI-N was derived from the ratio of the neovascular component area to total PED area, and 
PEDCI-F was derived from the ratio of the fibrous component area to total PED area.
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intensity of pixels of I7 reflects the pixel-wise scarring likelihood. The 7 × 7 filters were used to derive the local 
heterogeneity of the image while the larger 9 × 9 and 11 × 11 filters were used near the end of the algorithm when 
aggregation of pixels was desired.

Each pixel was subsequently categorized as serous, neovascular, or fibrous using I7. A value of 0 was catego-
rized as serous fluid. To categorize non-serous pixels, a global threshold (GT2) was used. Scores greater than GT2 
were categorized as fibrous, and scores lower than GT2 were categorized as neovascular. Initially, GT1 and GT2 
were arbitrarily set, but repeated trials were reviewed by an expert clinician to determine final thresholds. On final 
analysis, GT1 and GT2 were held at constant values for all images, set independently of evaluators. These filtering 
steps are summarized in Eqs. (1) and (2). Finally, PEDCI was determined using the calculations represented in 
Eqs. (3–5). Pre-processing and image analysis steps were performed using Matlab 2020b.

The image processing algorithm, including the tuning of global threshold values and filter operations, were deter-
mined using a training dataset of 15 eyes from 15 patients with neovascular age-related macular degeneration. 
These eyes were independent from the validation dataset and were excluded from evaluation.

Evaluation strategy. Relative and absolute areas of each fluid and tissue type were calculated within the 
PED. These regions were then overlaid on the original processed image for visualization. While ground truth 
classification of the material within the PED is important for evaluation of algorithm accuracy, delineating 
between the different tissue types using the naked eye alone is challenging. Therefore, we evaluated the accuracy 
of the algorithm using masked observer grading. Two expert clinicians were tasked with grading the accuracy 
of the segmentation and classification within the PED in a masked fashion. If a certain fluid or tissue type was 
absent, no grade was given. Each grader evaluated each PED at two different timepoints taken at least 24 h apart 
and were masked to their own grades as well as other observer’s grades. Images were presented in a randomized 
order. Intraclass correlations (ICC) were used to evaluate for intra-observer repeatability (between the same 
grader) and inter-observer reproducibility (between different graders). Scores were reported on a scale of 0–100, 
with 0 being inaccurate and 100 being accurate. Graders were masked to their own grades and to the grades of 
other graders. Statistical analysis was performed using Stata16 and ExcelStats.

Results
A total 43 eyes from 37 patients (23 female, 14 male) with nAMD were included for validation of the proposed 
methodology in the study. The mean age of the validation cohort was 75.2 ± 14.4 years. Serous fluid, neovascular 
tissue, and fibrous tissue were identified in 26, 38, and 24 of the 43 eyes respectively.

Mean total PED area was 0.28 ± 0.41  mm2. When present, mean absolute serous, neovascular, and fibrous areas 
in  mm2 were 0.16 ± 0.36, 0.15 ± 0.20, and 0.06 ± 0.06 respectively. When present, mean relative serous, neovascular, 
and fibrous areas were 41.7% ± 29.8%, 58.3% ± 28.2%, and 21.1% ± 21.3% respectively. The discrepancy of serous 
fluid and neovascular tissue areas and percentages can be attributed to relative PED size. This is reflected by the 
median absolute serous, neovascular, and fibrous areas in  mm2, which were 0.06, 0.09, and 0.04 respectively. The 
mean PEDCI-S score was 0.253 ± 0.309, with a range of 0 to 0.952. The mean PEDCI-N score was 0.554 ± 0.267, 
with a range of 0 to 1. The mean PEDCI-F score was 0.193 ± 0.209, with a range of 0 to 0.693. An example of the 
classified PED from one of the patients is shown in Fig. 2. Distribution of image intensities across all patients 
are shown for each PED component in Fig. 3.

The mean graded score of the segmentation of the PED was 96.99 ± 8.18. The mean graded scores of the clas-
sification of serous, neovascular, and fibrous tissue were 92.12 ± 7.97, 91.48 ± 8.93, and 92.29 ± 8.97 respectively 
as graded by two independent clinicians.

The ICCs for repeatability for grader 1 were 0.98, 0.86, 0.88, and 0.84; for grader 2 were 0.95, 0.76, 0.79, 
and 0.82 for accuracy of segmentation and classification of serous, neovascular, and fibrous tissue respectively. 
The mean ICCs for repeatability was 0.86 ± 0.07. The ICC for reproducibility were 0.89, 0.84, 0.82, and 0.87 for 
accuracy of segmentation and classification of serous, neovascular, and fibrous tissue respectively. The mean 
ICCs for reproducibility was 0.86 ± 0.03. Bland–Altman plots for ICCs for reproducibility are shown in Fig. 4.
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Results from explored image processing techniques are shown in Fig. 5. In addition to the described meth-
odology, segmentation results from adaptive thresholding and unsupervised machine learning are displayed. 
Qualitatively, these techniques displayed increased heterogeneity in segmented components and were more 
sensitive to noise, which led to greater misclassification of pixels. Unsupervised learning methods were prone 
to underestimation of serous components. Delineation of the fibrous tissue cannot be clearly seen in either of 
these techniques.

Preliminary analysis of clinical correlation. While the aim of this study is to provide an automated 
method of quantifying PEDs via the PEDCI biomarkers, we suspect that such biomarkers, particularly PEDCI-
F which infers presumed scarring, will be used by clinicians to assess for treatment response in patients with 
nAMD. To explore this clinical application for follow-up evaluation, we have included a testing dataset of SD-
OCT B-scans from a patient with nAMD. B-scans were taken at a baseline treatment-naïve visit and 12-month 

Figure 2.  Classification of pixels within a pigment epithelial detachment (PED) of a patient with neovascular 
age-related macular degeneration. The original B-scan was taken using spectral domain optical coherence 
tomography. Results from subsequent shadow compensation and computed per-pixel scarring likelihood 
are shown. Classified areas include serous (red), neovascular (blue), and fibrous (green) components of the 
PED. Classified areas were used to compute the PED composition indices: serous (PEDCI-S), neovascular 
(PEDCI-N), and fibrous (PEDCI-F).

Figure 3.  Violin plot showing the distribution of pixel intensities from different components of a pigment 
epithelial detachment (PED). Pixel intensities correspond to pre-processed spectral-domain optical coherence 
tomography images taken from 43 eyes with neovascular age-related macular degeneration. Mutually exclusive 
classified components include serous, neovascular, and fibrous. Fibrovascular is the combined distribution of 
neovascular and fibrous tissue. Total PED is the combined distribution of serous, neovascular, and fibrous tissue. 
The overlap in the distributions indicates the difficulty in separating tissue types, particularly neovascular and 
fibrous tissue. The skewed distribution of fibrovascular tissue indicates more than one underlying tissue type.
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follow-up visit following anti-vascular endothelial growth factor (anti-VEGF) treatment. OCT images along 
with best-corrected visual acuity and PEDCI analysis are shown in Fig. 6.

The patient received six intravitreal aflibercept injections by the 12-month visit. An improvement in BCVA 
was observed at the follow-up visit from 20/40 at baseline to 20/25 at the 12-month follow-up. PEDCI-F increased 
from 0 at baseline to 0.823 at follow-up and PEDCI-S decreased from 0.966 to 0.022. The patient had a primarily 
serous composition at baseline followed by a primarily fibrous composition at follow-up.

Discussion
Our study provides an automated method for analyzing PEDs within high resolution SD-OCT B-scans in patients 
with nAMD. We found that a kernel-based approach can discriminate between serous, neovascular, and fibrous 
tissue within a PED, with a mean ICC for repeatability and reproducibility of 0.86 ± 0.07 and 0.86 ± 0.03 respec-
tively. To quantify the PED components, PEDCI biomarkers were calculated. Since these biomarkers were calcu-
lated as a ratio of individual components to total PED area, the repeatability and reproducibility of classification 
accuracies serves as a good proxy for the evaluation of PEDCI.

Figure 4.  Bland–Altman plots capturing the difference in graded scores between two expert clinicians in 
evaluating accuracy of segmentation and classification of serous, neovascular, and fibrous components of 
pigment epithelial detachments (PED). Shaded areas capture two standard deviations from the mean. Significant 
outliers in segmentation scores demonstrated disagreement of neovascular vs non-neovascular PED.

Figure 5.  Classified components of a pigment epithelial detachment (PED) using different image techniques 
on an optical coherence tomography B-scan taken from a patient with neovascular age-related macular 
degeneration. Classified areas of the PED include serous (red), neovascular (blue), and fibrous (green) 
components. Original b-scan (A). Adaptive thresholding using Otsu’s method (B). Unsupervised learning via 
K-means clustering (C). Final pigment epithelial detachment composition index technique using kernel-based 
image processing techniques (D).
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To determine the methodology of our image processing approach, we started with a general schema of known 
OCT signatures. Serous fluid is generally hyporeflective and uniform on SD-OCT4,10. Therefore, to determine if a 
pixel was representative of serous fluid, a global threshold was applied along with an averaging filter to limit the 
effects of erroneous pixels caused by image acquisition noise. Distinguishing between neovascular and fibrous 
tissue was a more challenging task due to their overlapping raw pixel intensity distribution (Fig. 3). Inclusion 
of drusen, which have distinct clinical features from fibrovascular lesions but similar pixel intensity distribu-
tions, would complicate a pixel-wise separation approach further. This is an additional reason why this study 
was limited to non-drusenoid PEDs in nAMD. When analyzing fibrovascular lesions, both neovascular and 
fibrous tissues are found in PEDs with a generally irregular appearance and neighboring SRF, which makes clear 
delineation  difficult13. However, given enough resolution within a B-scan, neovascular tissue should have more 
heterogeneity in its reflectiveness. Within neovascular tissue, hyperreflective areas of supporting tissues should 
be speckled by hyporeflective pockets of fluid within the abnormal small blood vessels. In contrast, fibrous tissue 
should be uniformly hyperreflective from fibrosis and the increased collagen  content18. Furthermore, as lesions 
become less vascular and more fibrous, they become more hyperreflective on  OCT19. Despite this theoretical 
understanding, it is incredibly difficult to discriminate the two types of tissue on OCT in practice. As a result, 
in the literature, such PEDs are referred to as fibrovascular PEDs, a mix of fibrous and neovascular  tissue4,13. To 
discriminate between the two, we used preprocessing steps to reduce noise and applied a standard deviation filter 
to characterize local heterogeneity. We then subtracted a factor of this value from the raw intensity. Therefore, 
pixels with greater local heterogeneity and lower pixel intensity were more likely to be classified as neovascular, 
aligning with the theoretical understanding of the tissue.

While evaluating different areas within PED, we noticed that serous fluid had the greatest absolute area, while 
neovascular tissue had the greatest relative percentage. Serous fluid was found in many of the very large PEDs 
whereas neovascular tissue was found in both large and small PEDs. The mean PED area greatly varied between 
scans, as did the mean areas of each tissue type. Despite this, repeatability and reproducibility remained greater 
than 0.80 for all measurements except serous and neovascular ICC for repeatability for grader 2.

Although neovascular and fibrous tissue have similar appearances on OCT, they have different prognostic 
value. Neovascular tissue is prone to leaking fluid into the PED and surrounding subretinal space. Fibrous tissue, 
in the form of increased collagen content and reflectivity on OCT, is a sign of response to treatment during anti-
VEGF therapy. Fibrovascular PEDs therefore encompass a range of lesions, which can be described by multiple 
subtypes depending on the presence and amount of neovascular and fibrous tissue. These subtypes have been 
shown to lead to different patterns of  CNV20. As a result, knowing the presence and relative size of the type of 
material within a PED is critical in evaluating disease progression and response to treatment on routine OCT 
examination of nAMD patients. In our dataset, 17 of the eyes did not have a serous component, of which 13 
had both a neovascular and fibrous components. Therefore, quantifying the relative area of fibrous tissue from 
neovascular tissue provides an additional level of analysis that could not be derived from describing the region 
as fibrovascular. Furthermore, easy-to-understand metrics estimating the degree of scarring, PEDCI-F, and 

Figure 6.  Optical coherence tomography images from a patient with neovascular age-related macular 
degeneration at baseline and 12-month follow-up. Baseline images are treatment naïve. The patient received six 
intravitreal aflibercept injections before the 12-month visit. Best-corrected visual acuities (BCVA) are reported 
along with calculated PED composition indices: serous (PEDCI-S), neovascular (PEDCI-N), and fibrous 
(PEDCI-F). Classified areas include serous (red), neovascular (blue), and fibrous (green) components of the 
PED.
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amount of serous fluid, PEDCI-S, can aid clinicians in directly comparing PEDs during follow up visits while on 
anti-VEGF therapy. As shown in Fig. 6, the change in composition of the PED was captured by PEDCI metrics 
and may help quantify treatment response.

The proposed methodology aims to classify serous, neovascular, and fibrous tissue within a PED to estimate 
the composition of PED. This task can be represented as a semantic segmentation problem within the region 
of interest, namely the PED. In recent years, the rise of artificial intelligence (AI), specifically deep learning, 
has shown great promise in accurately completing these  tasks21. Convolutional neural networks (CNNs) have 
already been trained to segment lesions such as intraretinal fluid, hyperreflective foci, and  drusen22–24. However, 
these methods require large datasets and ground truth labels for training. Unsupervised AI algorithms, as seen 
in Fig. 5c, do not require ground truth labels for training but are inferior to the more popular supervised AI 
 algorithms25. Furthermore, they have increased computational cost compared to traditional image processing. 
As the accuracy of unsupervised learning algorithms improves, the aforementioned methodology should be 
revisited. OCT angiography (OCTA) has been postulated to provide vascularity information within a PED, 
however lack of external validation makes OCTA a poor substitute for ground truth.

A primary limitation of our study was the effect of noise on our analysis. One of the key characteristics we 
attempted to quantify was local heterogeneity through the local standard deviation of a pixel. However, the nature 
of OCT imaging introduces signal noise that can be characterized by this same heterogeneity. Normally to correct 
for such noise, an averaging filter can be utilized, but this would also decrease our ability to capture the desired 
characteristic. Therefore, averaging filters were only applied after determining the local standard deviation.

Other limiting factors include the sample size and resolution of SD-OCT. As a result of strict inclusion cri-
teria, the sample size used to develop the algorithm was small. Additional studies with external validation are 
planned. The technology for OCT has vastly improved over the last decade, but clinically available high-resolution 
SD-OCT can only capture at 4 and 7 µm per pixel in the axial and transverse direction respectively. The average 
diameter of a capillary is just around 2.5 to 10 µm, which would be only a few pixels in size on an SD-OCT26. 
Therefore, the high-resolution scans used in this study may have had difficulty capturing the dense capillary 
network of neovascular PEDs. Further studies with higher resolution SD-OCT scans need to be performed to 
uncover the potential of image processing in PED tissue classification and utility of PEDCI biomarkers.

Other future directions include automated segmentation, volumetric analysis, clinical correlation, and tem-
poral analysis. Automated segmentation of the PED is necessary to limit human error and decrease the time 
intensive task of manual segmentation. Over the past decade, researchers have been able to segment different 
lesions within the retina, including PEDs, using CNNs. We plan to integrate CNNs to automate this pipeline. 
Further investigation must also be conducted to assess the PEDCI within a volumetric space. 3D OCT scans can 
provide spatial data and may better capture heterogeneity within tissues and fluid. Volumes calculated from such 
scans will provide more representative relative sizes of serous, neovascular, and fibrous tissue.

In our preliminary analysis, we showed an example of how PEDCI could be used to evaluate changes in PED 
composition over the course of treatment. Shifts in PED compartments were observed in the holdout patient 
on follow-up visit, notably an increase in scarring and a reduction in serous fluid. These shifts demonstrated the 
utility of PEDCI in capturing treatment related changes in a PED for which the total area remained relatively 
consistent. An increase in PEDCI-F and decrease in PEDCI-S reflect an increase and decrease of fibrous and 
serous components respectively, which are accompanied by an improvement in visual acuity. While an additional 
study is underway to assess the clinical correlations of PEDCI over time, these initial findings show promise 
in the utility of the biomarker. This will allow us to confirm our hypothesis and determine how compartments 
within the PED shift due to treatment and disease progression.

In conclusion, our study reports an automated image processing approach to estimate the relative sizes of 
serous, neovascular, and fibrous tissue which showed high agreement between expert clinicians. We also show 
how these classifications can be used to calculate an easy to digest PEDCI metrics. Knowledge about the com-
position of a PED can help inform clinicians of the best course of treatment. We hope to conduct future studies 
on how these areas and PEDCI change with treatment and disease progression.

Data availability
The data generated and analyzed in the current study are not publicly available due to protection of patient 
privacy and are available upon reasonable request from the corresponding author.

Received: 30 May 2022; Accepted: 26 December 2022

References
 1. Mitchell, P., Liew, G., Gopinath, B. & Wong, T. Y. Age-related macular degeneration. The Lancet 392, 1147–1159. https:// doi. org/ 

10. 1016/ s0140- 6736(18) 31550-2 (2018).
 2. Wong, W. L. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a 

systematic review and meta-analysis. Lancet Glob. Health 2, e106–e116. https:// doi. org/ 10. 1016/ s2214- 109x(13) 70145-1 (2014).
 3. Ambati, J., Ambati, B. K., Yoo, S. H., Ianchulev, S. & Adamis, A. P. Age-related macular degeneration: Etiology, pathogenesis, and 

therapeutic strategies. Surv. Ophthalmol. 48, 257–293. https:// doi. org/ 10. 1016/ s0039- 6257(03) 00030-4 (2003).
 4. Chhablani, J. & Ruiz-Medrano, J. Choroidal Disorders. (Elsevier/AP, Academic Press is an imprint of Elsevier, 2017).
 5. Spaide, R. F. et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data. Ophthalmology 127, 

616–636. https:// doi. org/ 10. 1016/j. ophtha. 2019. 11. 004 (2020).
 6. Rastoin, O., Pagès, G. & Dufies, M. Experimental models in neovascular age related macular degeneration. International Journal 

of Molecular Sciences 21, 66. https:// doi. org/ 10. 3390/ ijms2 11346 27 (2020).
 7. Jaffe, G. J. et al. Macular morphology and visual acuity in year five of the comparison of age-related macular degeneration treat-

ments trials. Ophthalmology 126, 252–260. https:// doi. org/ 10. 1016/j. ophtha. 2018. 08. 035 (2019).

https://doi.org/10.1016/s0140-6736(18)31550-2
https://doi.org/10.1016/s0140-6736(18)31550-2
https://doi.org/10.1016/s2214-109x(13)70145-1
https://doi.org/10.1016/s0039-6257(03)00030-4
https://doi.org/10.1016/j.ophtha.2019.11.004
https://doi.org/10.3390/ijms21134627
https://doi.org/10.1016/j.ophtha.2018.08.035


9

Vol.:(0123456789)

Scientific Reports |           (2023) 13:68  | https://doi.org/10.1038/s41598-022-27078-x

www.nature.com/scientificreports/

 8. Cunningham, E. T., Feiner, L., Chung, C., Tuomi, L. & Ehrlich, J. S. Incidence of retinal pigment epithelial tears after intravitreal 
ranibizumab injection for neovascular age-related macular degeneration. Ophthalmology 118, 2447–2452. https:// doi. org/ 10. 
1016/j. ophtha. 2011. 05. 026 (2011).

 9. Wu, P. C., Chen, Y. J. & Kuo, H. K. Retinal pigment epithelial tear after intravitreous triamcinolone acetonide injection for fibro-
vascular pigment epithelial detachment. Chang Gung Med. J. 34, 320–325 (2011).

 10. Spaide, R. F. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related 
macular degeneration. Am. J. Ophthalmol. 147, 644–652. https:// doi. org/ 10. 1016/j. ajo. 2008. 10. 005 (2009).

 11. Mrejen, S. & Spaide, R. F. Optical coherence tomography: Imaging of the choroid and beyond. Surv. Ophthalmol. 58, 387–429. 
https:// doi. org/ 10. 1016/j. survo phthal. 2012. 12. 001 (2013).

 12. Khanani, A. M., Eichenbaum, D., Schlottmann, P. G., Tuomi, L. & Sarraf, D. Optimal management of pigment epithelial detach-
ments in eyes with neovascular age-related macular degeneration. Retina 38, 2103–2117. https:// doi. org/ 10. 1097/ iae. 00000 00000 
002195 (2018).

 13. Hoerster, R., Muether, P. S., Sitnilska, V., Kirchhof, B. & Fauser, S. Fibrovascular pigment epithelial detachment is a risk factor for 
long-term visual decay in neovascular age-related macular degeneretion. Retina 34, 1767–1773. https:// doi. org/ 10. 1097/ iae. 00000 
00000 000188 (2014).

 14. Shah, M. et al. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med. Image Anal. 15, 267–282. 
https:// doi. org/ 10. 1016/j. media. 2010. 12. 003 (2011).

 15. Vupparaboina, K. K. et al. Quantitative shadow compensated optical coherence tomography of choroidal vasculature. Sci. Rep. 
https:// doi. org/ 10. 1038/ s41598- 018- 24577-8 (2018).

 16. Girard, M. J. A., Strouthidis, N. G., Ethier, C. R. & Mari, J. M. Shadow removal and contrast enhancement in optical coherence 
tomography images of the human optic nerve head. Investig. Opthalmol. Vis. Sci. 52, 55. https:// doi. org/ 10. 1167/ iovs. 10- 6925 
(2011).

 17. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66. https:// doi. org/ 10. 
1109/ tsmc. 1979. 43100 76 (1979).

 18. Phillips, K. G. et al. Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and 
dermal edema within inflamed skin. J. Biomed. Opt. 16, 66. https:// doi. org/ 10. 1117/1. 35670 82 (2011).

 19. Keane, P. A. et al. Evaluation of age-related macular degeneration with optical coherence tomography. Surv. Ophthalmol. 57, 
389–414. https:// doi. org/ 10. 1016/j. survo phthal. 2012. 01. 006 (2012).

 20. Souied, E. H. et al. Spectral-domain optical coherence tomography analysis of fibrotic lesions in neovascular age-related macular 
degeneration. Am. J. Ophthalmol. 214, 151–171. https:// doi. org/ 10. 1016/j. ajo. 2020. 02. 016 (2020).

 21. Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M. & Bogunović, H. Artificial intelligence in retina. Prog. 
Retin. Eye Res. 67, 1–29. https:// doi. org/ 10. 1016/j. prete yeres. 2018. 07. 004 (2018).

 22. Gorgi Zadeh, S. et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Lecture Notes 
in Computer Science Ch. Chapter 8, 65–73 (2017).

 23. Schlegl, T. et al. Fully Automated Segmentation of Hyperreflective Foci in Optical Coherence Tomography Images (2018).
 24. Venhuizen, F. G. et al. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor 

optical coherence tomography. Biomed. Opt. Express 9, 1545–1569. https:// doi. org/ 10. 1364/ BOE.9. 001545 (2018).
 25. Gao, S. et al. Large-scale unsupervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 6, 66 (2022).
 26. Snodderly, D. M., Weinhaus, R. S. & Choi, J. C. Neural-vascular relationships in central retina of macaque monkeys (Macaca 

fascicularis). J. Neurosci. 12, 1169–1193. https:// doi. org/ 10. 1523/ jneur osci. 12- 04- 01169. 1992 (1992).

Acknowledgements
This work was supported by NIH CORE Grant P30 EY08098 to the Department of Ophthalmology, the Eye and 
Ear Foundation of Pittsburgh; the Shear Family Foundation Grant to the University of Pittsburgh Department of 
Ophthalmology; an unrestricted grant from Research to Prevent Blindness, New York, NY; and partly by Grant 
BT/PR16582/BID/7/667/2016.

Author contributions
A.S. 15%; S.R.S. 8%; S.A. 8%; M.P. 8%; A.K. 8%; S.S. 5%; J.O. 5%; M.A.R. 5%; S.R.M. 5%; M.N.I. 5%; J.A.S. 4%; 
K.K.V. 9%; J.C. 15%. A.S., K.K.V., and J.C. wrote the main manuscript text. S.R.S. and S.A. performed data 
analysis. M.P., A.K., and S.S. curated the dataset. J.O., M.A.R., S.R.M., M.N.I., and J.A.S. critically reviewed the 
manuscript and provided edits where necessary for submission.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1016/j.ophtha.2011.05.026
https://doi.org/10.1016/j.ophtha.2011.05.026
https://doi.org/10.1016/j.ajo.2008.10.005
https://doi.org/10.1016/j.survophthal.2012.12.001
https://doi.org/10.1097/iae.0000000000002195
https://doi.org/10.1097/iae.0000000000002195
https://doi.org/10.1097/iae.0000000000000188
https://doi.org/10.1097/iae.0000000000000188
https://doi.org/10.1016/j.media.2010.12.003
https://doi.org/10.1038/s41598-018-24577-8
https://doi.org/10.1167/iovs.10-6925
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1117/1.3567082
https://doi.org/10.1016/j.survophthal.2012.01.006
https://doi.org/10.1016/j.ajo.2020.02.016
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1364/BOE.9.001545
https://doi.org/10.1523/jneurosci.12-04-01169.1992
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Pigment epithelial detachment composition indices (PEDCI) in neovascular age-related macular degeneration
	Methods
	Image pre-processing. 
	Segmentation of PED. 
	PED analysis. 
	Evaluation strategy. 

	Results
	Preliminary analysis of clinical correlation. 

	Discussion
	References
	Acknowledgements


