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ABSTRACT: The baculovirus expression vector system (BEVS) is one of the
well-known versatile platforms for the recombinant protein/vaccine production.
Mathematical modeling and optimization of a baculovirus−insect cell system can
have significant industrial relevance as this reduces the number of expensive
experiments and time involved in the experiment-based optimization. However,
modeling and control of such a nonlinear system remains challenging due to the
presence of uncertainties in the model. In this context, we propose a novel
computational framework combining the principles of systems biology and
dynamic optimization under uncertainty for optimizing a semibatch baculovirus−
insect cell system. Toward this, first, a mathematical model replicating the dynamic
experimental data on cell and virus growth was identified. Next, the proposed
model was used for deterministic multiobjective dynamic optimization of the
control variables, substrate, and multiplicity of infection (MOI) to achieve the
conflicting objectives of productivity maximization and substrate minimization,
simultaneously. Finally, based on the sensitivity analysis, six of the most influential parameters depicting model uncertainties have
been considered for the robust multiobjective optimal control of the system. A comprehensive comparison displays up to 114% and
76% increases in the cell densities for the deterministic and stochastic semibatch processes, respectively, compared to the batch
process. Semibatch operation also favors a minimum 40% reduction in MOI required to achieve the same level of infected cell
density compared to the batch operation. This study provides a generic methodology for exhibiting a proof of concept that a
semibatch suspension culture considering uncertainty in model parameters can give better productivity compared to a batch
suspension culture for a BEVS.

1. INTRODUCTION
The baculovirus expression vector system (BEVS), which was
first used in 1980s for the production of human β-interferons,1

has now been successfully employed for the production of
vaccines, antibodies, and many recombinant proteins.2,3

Although, CHO (Chinese Hamster Ovary) cell-based manu-
facturing dominates over the other modes of recombinant
protein-expression systems, insect cell-based BEVS assumes
significance since the process is scalable and provides a cost-
effective platform for protein synthesis.4 In addition to protein/
vaccine production, baculoviruses have also been used for
biopesticide production because of their specificity to insects
and environment friendliness.5 However, as compared to
chemical pesticide, the large-scale continuous production of
baculovirus is costly. In principle, expression vectors on
baculovirus are developed by expressing any gene of interest
in BEVS. The host/insect cells are then infected with the
baculovirus carrying the foreign gene, which further results in
production of targeted products, e.g., virus-like particles (VLP),
recombinant protein, or gene therapy vectors.2 The FDA-
approved human papilloma virus (HPV) vaccine is a VLP-based

vaccine produced using BEVS. The BEVS has also been used for
obtaining prophylactic vaccine candidates against several other
diseases like influenza, Chikungunya, HIV 1, and severe acute
respiratory syndrome (SARS).3 Thus, BEVS remains crucial for
vaccine/protein production, and hence, optimization of the
baculovirus production process can have significant industrial
impact for economic and large-scale production of vaccines,
recombinant proteins, and biopesticides.6

Experimental process optimization for production of different
vaccines and viruses has been reported in literature.7−9 For
optimum production, variables including concentration, pH,
temperature, cell culture conditions, multiplicity of infection
(MOI), etc. have been taken into account. To find the optimal
value for each parameter, various sets of experiments were run
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using different control values. Especially, experimental opti-
mization and a large number of expensive fermenter runs make it
more challenging in translating the biomolecule for industrial
production and commercialization. This necessitates the
development of a computational framework combining
experimental techniques with modeling and optimal control
strategies for process optimization in cases of virus/vaccine
production.

Although computational model construction is crucial in this
context, often, when the protein or antibody productions are
performed in fed-batch and batch reactors, there is limited
mechanistic information on viral protein production. Hence,
identification of a detailed mechanistic model that can
simultaneously emulate the experimental data on cell density,
cell viability, cell death, and protein expression, remains
challenging. To overcome this challenge, unstructured models
for quantifying the growth kinetics of cells are often formulated
using several empirical mathematical functions available in the
literature.10 The formulation of such predictive models is
required for the efficient and extensive industrial production of
vaccinations. The need for costly resources, such as sterilization,
media, and cell maintenance schedules, as well as lengthy
experimental times, further drives the development and
identification of optimal unstructured models, which demand
very little computational time for simulation and can be used for
process optimization.10

For large-scale production via BEVS, batch and fed-batch are
the two most preferred modes of operations due to their
simplicity and flexibility. However, since all the nutrients and
biomass are initially added in a batch culture, it results in an
accumulation of metabolites as well as depletion of nutrients.2

Hence, in a batch culture, only limited maximum cell
concentrations can be achieved resulting in less productivity.
The semibatch culture, where a continuous or intermittent feed
addition is applied, can overcome these challenges and, thus,
improve the productivity manifold as compared to the batch
culture.11−13 A large number of mathematical models14 have
been developed to simulate the protein expression in a
baculovirus system in a batch culture. However, once an
adequate kinetic model to mimic the process dynamics is
developed, a crucial engineering problem to be solved concerns
the development of an optimal operating recipe for transitioning
a batch operation to a semibatch mode for optimal operation.15

In this scenario, if the optimal control can be applied to the
bioreactor, it can save costs of extensive experimentation to
determine the optimal operating policies for product max-
imization. However, even if the mathematical model to replicate
the bioprocess is available, solving this engineering problem is
not an easy task due to the presence of multiple objectives, which
are often conflicting in nature, apart from the technological
constraints as well as uncertainties originating from multiple
sources.16,17 Since the problem is case dependent, the optimal
operating recipe cannot be predetermined and must be derived
from the dynamic optimization of the model, which can replicate
the key process variable dynamics.

The dynamic optimization problem, also called an optimal
control problem (OCP), can be solved by iterative dynamic
programming, indirect and direct methods. Indirect approaches
transform the original OCP into a Boundary Value Problem
(BVP) using Pontryagin’s Maximum Principle which can then
be solved by gradient, collocation, or multiple shooting
methods.18 Direct methods transform the OCP into a nonlinear
programming problem which can be solved using sequential

(control vector parametrization, CVP) or simultaneous
approaches. CVP has been commonly used for dynamic
optimization of bioreactors. Case studies on dynamic
optimization of semibatch reactors for ethanol, penicillin, and
secreted protein have been reported, where many different
approaches have been applied to solve the OCP.8,19−22

However, in none of the prior studies has modeling and optimal
control strategy been combined for determining the optimal
operating recipe of a semibatch bioreactor for a baculovirus
infection system.

Although such a modeling and optimization exercise can offer
significant advantages for large-scale process development, in
practice, this analysis can lead to suboptimal or even infeasible
estimates without considering the uncertainties which are
inherently present in the model.23 These uncertainties can
arise due to several factors such as parameter estimation using
noisy data, external process disturbances, high degree of
nonlinearity, limited experimental data causing model identifi-
ability problems, model assumptions, etc.23 Thus, incorporation
of such uncertainties is important while performing the
optimization in order to obtain robust control profiles (i.e.,
manipulated variables during the process), which guarantee
better objective estimates without violation of any constraints.
In the literature, a number of approaches for handling
uncertainty while performing optimization have been reported.
Among them, some of the more well-known ones include
stochastic programming (SP), expected value model (EVM),
chance constrained programming (CCP), fuzzy mathematical
programming (FMP), and robust optimization (RO).24 The
first three techniques belong to the class of probability-based
approaches, which assume that the statistical distribution of
uncertain parameters can be made available through data.25

One such popular SP technique where decision variables can
be used in two stages is two stage stochastic programming
(TSSP).26 Decision variables that are not linked to uncertain
parameters are solved in the first step. In the second stage,
realizations of uncertain parameters are revealed, and decision
factors related to those realizations are also determined. The
objective function is defined as the reduction of the total cost
associated with the variables in the first stage and the expectation
of the variables in the second stage with the related penalty terms
for recourse. Assuming various combinations of scenarios for
uncertain parameters, several realizations of uncertainties are
simulated. The expansion in problem size caused by the increase
in the number of unknown parameters and uncertain scenarios is
one of the main issues with this technique. Also, decomposing
the issue into two parts as indicated above may not always be
simple.27 Additionally, EVM employs constraints and expected
values of objectives to counteract the effect of uncertainty, which
could lead to conservative solutions.28,29 Instead of requiring a
prior knowledge of the distribution of uncertain parameters,
Zimmerman’s FMP represents uncertain parameters as fuzzy
integers.30 Despite the fact that it can handle a large number of
uncertain parameters without the issue of an explosion in the
problem size, FMP has the disadvantage of only partly utilizing
the uncertain parameter space.31,32 Another popular approach,
CCP, handles the uncertainty by specifying a confidence level on
constraint satisfaction.33 Here, the concepts of probability are
used to express the levels of constraint satisfaction. Thus, a
higher probability of constraint violation results in a less reliable
solution. However, the solutions obtained by the CCP may not
be always robust and largely depend on the probability of
constraint satisfaction. Hence, in this work, a Robust
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optimization framework has been applied for uncertainty
handling, which ensures a feasible solution irrespective of the
realization of the uncertainty in the parameters.34 In the RO
framework, the stochastic optimization problem is converted
into an equivalent deterministic problem, known as the robust
counterpart (RC), where the stochastic objective functions and
constraints are computed for various realizations of uncertain
parameters, and the problem can be solved using standard
deterministic optimization techniques.

Optimization under uncertainty has also been applied for
other biological processes.23,34−39 Liu et al. applied the concepts
of parametric uncertainty for ensemble modeling of a hybridoma
cell culture for maximizing monoclonal antibody production.36

Optimization under uncertainty has also been performed for
various biochemical networks with single objectives as well as
the conflicting objectives of minimizing the energy consumption
while maximizing the production of a specific metabolite.35,37

Logist et al. applied multiobjective dynamic optimization for the
optimal design and operation of a jacketed tubular reactor and a
fed-batch bioreactor with conflicting objectives.38 However, to
the best of our knowledge, this kind of framework has not been
applied before for optimizing a baculovirus expression vector
system. In practice, a robust multiobjective dynamic optimiza-
tion problem, when combined with nonlinear dynamic models,
can emerge as a very complex and nonconvex optimization task.

The goal of the proposed work is to devise a methodology,
combining the experimental studies with modeling and a robust
optimal control framework, to determine the optimal feeding
recipe of the control variables, which can maximize the final cell
density while limiting the consumption of the substrate in a
baculovirus−insect cell system. To the best of our knowledge,
this work represents the first instance where a multiobjective
optimal control (MOOC) under an uncertainty study has been
conducted for optimizing the semibatch productivity in context
of BEVS. Here, first, the experimental study was conducted by
infecting the insect cells with baculovirus in a shaker. Second, a
mathematical model of the baculovirus infection process in the
insect cells was proposed based on the experimental study
conducted. Further, model validations with experimental data

from the literature were also performed. Next, the proposed
model was used for deterministic multiobjective dynamic
optimization of the control variables to achieve the conflicting
objectives of productivity maximization and substrate mini-
mization. Finally, based on the parametric sensitivity analysis, six
of the most influential parameters depicting uncertainties in the
model and feed stream have been considered for robust
multiobjective optimal control. A comprehensive comparison
study has been conducted to illustrate (a) the effects of changing
parametric uncertainty levels, (b) the effects of deterministic and
stochastic optimizations on output, and (c) the performance of a
semibatch operation as compared to the batch operation in
terms of productivity and raw material consumption.

The rest of the paper is organized as follows: Section 2
describes the experimental data generation process followed by
modeling, parameter estimation, and sensitivity analysis
strategies. This section gives the details on deterministic
multiobjective problem formulation and optimization under
an uncertainty framework. Section 3 provides the detailed results
and discussion followed by the concluding remarks presented in
Section 4.

2. MATERIALS AND METHODS
2.1. Viral Strains and Culture Conditions. The

Spodoptera f rugiperda (Sf-21) cell line was grown at 27 °C in
Sf-900II (Gibco) medium (without serum and antibiotics) in a
125 mL flask. AcMNPV E240 was propagated in Sf-21 cells in a
125 mL shaker flask. A recombinant baculovirus denoted as Ac-
FPm was constructed to remove the 13 TTAA transposon target
sites in the AcMNPV fp25k gene such that the amino acid
sequence of the FP25K protein remained unchanged.41 Sf-900II
growth medium supplemented with 10% fetal bovine serum
(FBS) (Gibco, Carlsbad, CA) was used for virus infections with
AcMNPV and Ac-FPm during the passaging experiments.42 The
addition of FBS stabilizes the baculovirus stocks stored at 4 °C.
Continuous passaging of the two viruses was simulated as
described in ref 41.

2.2. Experimental Data. Insect cells (Sf-9) were cultured in
nutrient media in 250 mL shaker flasks with working volumes of

Table 1. Model Description in Terms of ODEs of Model Variables

Variables ODEs Description
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1 1st term: uninfected cells generation; 2nd term: virus attachment to the uninfected cells; 3rd

term: uninfected cells death rate dependent on substrate.
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a V U k Id1 1st term: rate of infected cells generation; 2nd term: infected cells death
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k I k Va dv 1st term: virus production from infected cells; 2nd term: virus decay
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1st term: carbon-dioxide transfer rate; 2nd term: carbon-dioxide produced from uninfected
and infected cells
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100 mL. The insect cell was infected with the wild type
baculovirus (AcMNPV), in the batch suspension culture. The
initial concentration of the virus used was ten times the
concentration of the cells (MOI = 10). Observations of cell
density and % viable cells were made every 24 h from t = 0 to t =
96 h. Thus, the dynamic data were recorded and analyzed at five
time points between 0 to 96 h. Triplicate responses for viable cell
density and percent cell viability were collected.

2.3. Model Formulation. Identification of a general
mathematical structure and estimation of corresponding kinetic
parameters are essential for predicting the growth and death
profiles of any infection process as infection experiments are
costly and time consuming. Hence, the specific challenges in
analysis of baculovirus infection processes can be described as
follows: (1) identification of a general mathematical model
based on a system of nonlinear ODEs that will match with
experiments performed in different days and (2) estimations of
kinetic parameters that can be used for experiments performed
on different days.

In this work, a mathematical model, as described in Table 1,
has been proposed to capture the coupled interaction of the cell
growth pattern, substrate consumption, oxygen consumption,
carbon dioxide production, virus growth rate, and infected cell
growth rate, when insect cells are infected with baculovirus. In
accordance with the viral growth models, the wild type
baculovirus (AcMNPV) first infects the insect cells (SF-9
cells) in the presence of the substrate and oxygen followed by
carbon dioxide release. The infection leads to an increase in the
number of infected cells, which subsequently produce more
virus-like-particles. Specifically, substrate (S) depletion occurs
due to consumption by uninfected and infected cells. Here, the
yields (amount of cells produced per unit substrate consumed)
of uninfected and infected cells have been considered the same.
Similar assumptions have been made in the past for modeling a
baculovirus−insect cell system.43 As described by Power et al.,43

this assumption is identical to assuming that a cell’s metabolic
activity remains same throughout the culture, whereas the end
product changes from cell mass to recombinant products for
infected cells. Next, the dissolved oxygen O2 concentration has
been measured as a function of the oxygen transfer and oxygen
uptake rate by uninfected and infected cells. The first term in
uninfected cell (U) kinetics shows the generation rate followed
by the term for the virus attachment to the uninfected cells. The
third term shows the substrate-dependent death of the cells,
which implies a death rate increase if there is shortage of food/
substrate for the cells.44,45 Similar substrate-dependent death
terms have also been used to model bacterial cultures in the
past.10,46 Next, infected cells (I) are formed due to infection of
unifected cells by virus followed by the death term. The infected
cells are known to halt the process of cell division due to
alteration of the cell cycle checkpoints by the viral protein
expression; hence, no multiplication term has been considered
for cells infected by viruses.43,47 The dead cell density (D) has
been formulated by combining the death terms for the unifected
and infected cells. The virus (V) kinetics has been formulated as
a function of virus production from the infected cells as followed
by decay. Finally, the first term for CO2 shows a transfer rate
similar to that of O2, and the second term shows the production
rate of CO2 due to uninfected and infected cells.

The set of coupled ordinary differential equation initial value
problems (ODE-IVPs), thus formulated (Table 1), was solved
using fa ourth-order Runge−Kutta scheme using MATLAB
ODE solver ODE45. For biological models, the estimation of

kinetic parameters can often be formulated as an optimization
problem. Here, the objective function is taken as the root-mean-
square of differences (RMSE) between the simulated data
generated using kinetic parameters from the model and the
corresponding experimental measurements. The optimization
algorithm then tries to optimize the kinetic parameters that
generate outputs closest to the experimental measurements. All
the simulations for model fitting and kinetic parameter
estimation have been performed using the sequential quadratic
programming algorithm in the MATLAB optimizer f mincon.

2.4. Defining the Deterministic Multiobjective Opti-
mization Problem. Experimental studies have shown that a
semibatch culture with controlled addition of feed material
improves the productivity of the insect cell culture as compared
to the batch culture.2 Hence, the batch culture is not considered
as an optimal bioreactor system to achieve high insect cell
densities in suspension. During the batch operation, the
substrate, virus, and cells are initially loaded; however, the
semibatch operation is more complex, as the feeding recipe,
whether continuous or intermittent, needs to be controlled
throughout the process to ensure the optimal yields. The
multiobjective optimal control (MOOC) problem formulated
here is based on the semibatch process to show the effects of
different addition amounts and patterns on the performance of
the baculovirus infection process. Let us consider a general
dynamical system of the form

=

·
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[ ]
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where t, x(t) and u(t) represent time, state vector, and control
input, respectively. X(t) represents the set of all the states that
can be obtained by simulating the dynamic system in the given
time horizon.48X(t) can also be written as a formal differential
equation of the form

=X t F t X t u t( ) ( , ( ), ( )) (2)

A general deterministic multiobjective dynamic optimization
problem for such a system can be formulated as
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Here, the goal is to devise a control strategy which minimizes
the objectives {J1,···,Jm} subject to various constraints hi(x,u,t)∈

i.
During batch operation, the substrate, virus, and cells are

initially loaded; however the semibatch operation involves
addition of control variables at different time points to achieve
the desired objectives. Thus, the optimization problem for the
semibatch operation of a baculovirus−insect cell system is
formulated as described below.
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2.4.1. Selection of Objectives. For any baculovirus−insect
cell system, the main goal is to maximize the production of the
infected cells. This is because the final product of interest such as
recombinant protein or virus-like particles are obtained from the
infected cells. Hence, one of the objectives for the MOOC
problem is considered as the maximization of the infected cell
density. Despite years of insect cell culture, high culture media
costs in batch fermentation continue to hamper the application
of insect cells.49 Thus, the second objective is formulated as
minimizing the total substrate (amount of media in g/L) fed to
the semibatch system. The production of infected cells and
substrate is not dichotomous, and minimizing the substrate leads
to a decrease in the cell density. Hence, an optimization problem
considering the conflicting objectives of maximizing infected cell
density and minimizing substrate has been formulated. The
optimization exercise is expected to provide a set of decision
variables which maximizes the product output while minimizing
the substrate input, simultaneously.
2.4.2. Selection of Control Variables. Experimental studies

have been performed to manipulate the nutrient addition for
maximizing baculovirus production in a semibatch culture.50,51

Experimental studies have also been performed to optimize the
number of infected particles (MOI) for achieving high cell
density culture.9,52,53 These studies have proved that a
semibatch addition where feeding is done at different time
points during the operation substantially improves cell growth in
a BEVS as compared to a batch addition. However, through
experimental study, search of the optimal feeding strategy of
control variables is not practically possible due to the huge cost
and time involved in trial and error using experimentation.
Hence, in this study, intermittent additions of the substrate and
virus have been analyzed as a way to control the production in
the BEVS system. Thus, substrate and virus have been added in a
semibatch fashion at different time points. The decision/control
variable space consists of discrete time values of substrate
addition (described here as U1(tj)) and virus addition
(described here as U2(tj)). Here, U1 and U2 are the two vectors
of decision variables (substrate and virus), and tj is the jth time
instant at which semibatch addition is performed. Thus, U1(tj))
implies the amount of substrate added to the system at jth time
instant.

The MOOP, thus formulated, has been described as follows:
Objectives:

Max TICD
U U,1 2 (4)

=
U tMin ( )

U U j

N

j
, 1

1
1 2 (5)

The first objective represents maximizing total infected cell
density (TICD), which is calculated by the area under the curve
of the infected cells from t = 0 to 96 h. The second objective
represents the minimization of total substrate fed to the system.
Since the substrate is a control/decision variable defined by the
vector U1, the total amount of substrate is the sum of all the
elements of that vector which represents the substrate addition
to the system at different time points. These are subject to

Decision variable bounds:

= =U U t U i j( ) 1,2 and 1,..,4i i j i
min max

(6)

N denotes the equally spaced time arcs obtained as =t
t

N
f

where tf = 96 h represents final time. In this study, for the sake of
practicality in the considered biological system, the value of N is
set to 4, which implies that the intermittent addition happens
every 24 h in the bioreactor. Thus, both the profiles (U1(tj)) and
U2(tj)) are discretized into four equally spaced points (one for
each time instant tj = 0, 24, 48, 72 h), thereby making the total
number of decision variables as eight. Each of these variables is
forced to lie between a lower bound (Ui

min) and an upper (Ui
max)

bound. The upper bounds for decision variables were set same as
the batch amounts for substrate and virus. The minimum bound
was set to a very small amount, e.g., 0.01 mg/mL for the
substrate and 100 mg/mL for the virus (which is equivalent to
0.001 MOI for this system).

Deterministic optimization provides a solution only for a
particular instance and can be easily impacted by any possible
variation in the uncertain set ξ.25 In practice, this approach
suffers from the drawback of under/overproduction, when the
actual uncertain data are above or below the nominal condition.
In general, mathematical models might have inherent
uncertainties, which could be either due to intrinsic factors or
external disturbances.35 For the given problem, both the
objectives (eqs 4 and 5) and decision variables are functions
of certain model parameters as shown in Table 1. In this work, it
is assumed that the presence of uncertainty is due to the model
parameters. Such parametric uncertainty could be due to the
sources of variations during experiments as well as the numerical
uncertainty involved during regression.35 To avoid the biased
model prediction and control actions, such uncertainties are
taken into account for robust optimal control of the process.
Generally, these parameters are assumed to be known and fixed
to their base (e.g., nominal) values when the optimization
problem is solved in deterministic fashion. This, of course,
makes the analysis of the problem easier. As these parameters are
subject to uncertainty, a more realistic case is to assume them
varying, and this way of handling uncertain parameters during
the course of optimization is tackled under the paradigm of
optimization under uncertainty.33 In this study, a robust
optimization (RO) framework has been adopted for modeling
the parametric uncertainty in the baculovirus infection system as
described in Section 2.4.
2.4.3. Sensitivity Analysis. Sensitivity analysis is an important

tool that is used to identify the parameters affecting the response
variable. We carried out a parametric sensitivity analysis of the
model to determine the most influential parameters affecting the
final infected cell density concentrations. The sensitivities were
calculated as the effect of change in the input parameters on the
model output over a time span of 96 h. The sensitivities of the
system F (eq 7) were calculated by differentiating the system
with respect to the kinetic parameter p, which gives a new ODE
system to be simultaneously solved along with the original
system.

=F t y y p( , , , ) 0 (7)

where the sensitivity with respect to a parameter p can be defined
as

=s
dy
dpi

i (8)

As proposed in ref 54, the sensitivity system may be
approximated through a directional derivative finite difference
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approximation. The normalized sensitivity coefficient for each
parameter pi was computed as follows:

=s
y t

p

p

y t
( )

( )i
i

i

(9)

2.5. Multiobjective Dynamic Optimization under
Uncertainty. Here, a robust optimization framework has
been used to identify the multiobjective Pareto trade-off
solutions between the total infected cell density and the
substrate concentration under the influence of uncertain
parameters selected based on sensitivity analysis. The targeted
problem under parametric uncertainties has to be solved
considering all uncertain realizations so that the decision
variable vector can converge to the robust optimal solutions
immune to all such uncertain scenarios. Let us consider a
dynamic system as described in eq 1 with a general multi-
objective optimization problem defined in eq 3 with M
objectives and I constraints. Now, for the uncertain case,
where both the objectives and constraints are functions of
uncertain parameters ξ, this problem can be reformulated as
follows:

Objectives:
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This standard OUU formulation can be presented in the
worst-case robust optimization (Figure 1) framework as
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First, the robust feasible solution set is obtained by selecting
only those decision variable combinations for which the solution
remains feasible across all possible uncertain realizations. Next,
the supremum of the objective values (i.e., the worst case)
obtained from the robust feasible solution set is minimized
across decision variable space. This way of propagating
uncertainties into the objective function is also called the
worst-case formulation because the worst objective value with
respect to the uncertain parameters (ξ) is minimized.

Similarly, a best-case formulation can also be presented (eq
12) by replacing the supremum operator in the inner
optimization loop by the infimum operator. This case might
be very idealistic to achieve practically under uncertain
conditions.
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The algorithm of the worst-case RO formulation is shown in
Figure 1.

Figure 1. Step by step procedure for the worst-case Robust optimization (eq 11).
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Here, first the population of decision variable values
(population of chromosomes) have been initialized randomly
within the given bounds under a multiobjective optimization
algorithm framework (NSGA-II in this case). Next, for every
chromosome in the population, several instances of uncertain
parameters are generated in the given uncertain parameter
bounds. Corresponding to every uncertain parameter realiza-
tion, objective and constraint values are evaluated. A
chromosome is declared as the robust feasible solution, if all
the constraints are satisfied for all uncertain parameter
realizations; otherwise, the chromosome is declared as
infeasible. The maximum value of the objective function across
several instances of uncertain realizations for a robust feasible
solution (i.e., the worst case as we are targeting the minimization
problem) is then reported as the fitness value for the
chromosome. Once all population members (parent popula-
tion) are categorized as robust feasible and infeasible, the entire
population is sorted using the principles of constrain domination
based nondominated sorting and nondominating fronts with
different ranks are identified. Simulated binary crossover (SBX)
and polynomial mutations are used to generate the child
population. Elitist strategy as adopted in NSGA II is used to
merge parent and child populations before selecting best
solutions from the merged population (keeping the population
size same as it was in the beginning). Constrained tournament
selection is used for this purpose. This completes one generation
of NSGA-II, which is continued in an iterative fashion until a
user arrives at a predefined maximum number of generations.
Like any other evolutionary multiobjective optimization (EMO)
algorithm, NSGA II aims at finding a finite set of Pareto optimal

solution sets out of an entire feasible search space, and such a
Pareto optimal set provides useful insights about the trade-off
solutions of a MOOP. Several different EMOs have been
reported in the literature for solving a multiobjective
optimization problems.55 In this work, MOOCs with and
without uncertainty have been solved using NSGA-II56 under
the Platemo platform,57 where the choice of NSGA II is purely
based on the past success of it on several challenging problems
reported in the literature.

3. RESULTS AND DISCUSSION
Model Validation. The proposed model (Table 1) was first

validated with the experimental data for cell density and cell
viability obtained by infecting the Sf-9 insect cell with the wild
type baculovirus (AcMNPV). Figure 2 shows the comparison of
the experiment and the simulation results obtained by fitting the
model to the experimental data. The result shows that the model
was able to emulate the experimental data well, and an R2 of 0.99
(RMSE 0.16) was obtained for the fit. Figure S1 also shows the
dynamic profile of all the model variables obtained for the batch
case. Corresponding parameter values of the fit obtained are
presented in Table S1. Further, model validation was performed
by fitting the model with other sources of data available in the
literature. Figure S2 shows the model fit to experimental data on
cell density, cell viability, oxygen, and substrate obtained from
one of the studies.58 Here, the model was able to fit the
experimental data with an R2 of 0.97 (RMSE 0.18). The dynamic
data represent the growth of Sf-9 cells in a shaker flask and the
corresponding consumption of substrate and oxygen. Further
validation of dynamics was performed using another data set

Figure 2. Comparison between experimental and simulated data shown by (a, b) the parity plot and (c, d) the dynamic profiles for cell density and %
viability, respectively, obtained from the experimental study.
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where Sf-9 cells were used to produce virus-like particles,59 and
an R2 of 0.94 (RMSE 0.13) was obtained for the fit shown in
Figure S3. Overall, the result indicates that the model was able to
capture the dynamic trends of cell density, cell viability,
substrate, and oxygen consumption as obtained from different
studies. Unstructured and population based modeling studies
showing the growth of baculovirus−insect cell cultures have
been conducted in the past.43,47,60 Licari and Bailey61 proposed a
model for simulating the baculovirus infection in a nonmotile
insect cell with different MOIs in a confined environment
without nutrient limitation in a batch culture. Power et al.60

proposed a mathematical model to describe the growth and
infection of insect cells by recombinant baculovirus in a batch
suspension culture. Another model describing the dynamic
process of insect cell infection with the baculovirus at low
multiplicity of infection (MOI) in a batch culture was proposed
by Zhang and Merchuk.62 An updated model proposed by
Power et al.43 considers substrate depletion to account for a
decrease in product yield. These models describe the dynamic
interactions of cells and virus in batch cultures without
considering the roles of substrate, oxygen, and carbon dioxide
in the system dynamics. To the best of our knowledge, this work
reports the first instance where the proposed unstructured
model captures the dynamic interaction of cell and virus while
also considering the effect of other important growth affecting
molecules such as substrate, oxygen, and carbon dioxide.

Deterministic MOOC. The optimal control problem for the
considered baculovirus−insect cell system has two conflicting
objectives of maximizing total infected cell density and
minimizing the total amount of substrate fed to the reactor
with two control variables of virus and substrate addition at four
different time intervals. The deterministic problem is solved first
without considering any uncertainty involved in model
parameters. Thus, all the parameters have been fixed to their
nominal values as presented in Table S1, which has been
estimated by minimizing the error between experimental and
simulated data as described earlier. The deterministic MOOP
has been solved using NSGA-II,56 and the corresponding
NSGA-II parameters are reported in Table 2. The Pareto

optimal (PO) solutions obtained from NSGA-II are shown in
Figure 3. To obtain the PO solutions, first, random values of
eight decision variables (U1 and U2 vector of size four each) have
been initiated within their given bounds. After 50 generations
(maximum number of iterations), PO solutions obtained from
the last generation are marked as semibatch Pareto solutions in
Figure 3. Here, it can be seen that the emerged PO front is a
nonconvex one, which could have posed difficulties to be
obtained using classical derivative-based MOO techniques.55

Moreover, NSGA-II has provided a wide variety of non-
dominated solution alternatives to a decision maker due to its
ability to generate well spread PO solutions in a single
simulation run. Solutions in the PO set are conflicting in nature,

where improvement in one objective can be achieved at the cost
of the other objective. For the considered system with the
objective of minimizing substrate amount and maximizing
infected cell density, both the objectives cannot be achieved
simultaneously. Thus, minimization of substrate is obtained at
the cost of minimizing infected cell density, or in other words,
objectives of minimizing substrate and maximizing TICD are
conflicting (trade-off) in nature. This further means that none of
the PO solutions obtained are better than the others in terms of
both the objectives. Hence, it is not trivial to choose a single
point from the PO set declaring it as the best (as all of them are
nondominating in nature). Irrespective of objectives being
proportional or inversely proportional based on inherent system
behavior, the trade-offs between the objective functions in terms
of the objectives set while formulating the optimization problem
frame the ideal platform for multiobjective optimization.

Next, the results for optimized batch Pareto front are
presented. This was obtained by setting the upper and lower
bounds for all the decision variables (substrate and virus) as 0 for
all the intervals except for t = 0. It is because for the batch case all
the feed is added altogether at t = 0, and no intermittent addition
is done. The optimizer was run to obtain the optimal decision
variables for t = 0 for the batch operation. The obtained Pareto
front for the batch case is shown in Figure 3 marked as batch
Pareto. The result shows that a semibatch operation with an
intermittent injection of substrate and virus at different time
points provides a higher cell density as compared to a batch
operation in all the cases. We further compared the semibatch
process with the experimental batch point. Figure 3 shows the
preferred Pareto space when the batch experimental case is taken
as the reference point. The result shows that the Pareto solutions
in region 1 are better than the batch point in terms of both the
objectives. This implies that for the points in region 1, a
semibatch operation provides a higher cell density for the lower
amount of substrate as compared to the batch process. The
points in regions 2 and 4 are better than the batch point only in
terms of one of the objectives. Thus, the points in region 2 have
higher cell density, but those are obtained at the cost of higher

Table 2. List of Parameters for Solving MOOC Using NSGA-
II

NSGA-II Parameters Values

Number of generations 50
Population size 50
Number of real variables 8
Crossover Probability 0.9
Mutation Probability 0.01

Figure 3.Comparison between deterministic semibatch Pareto optimal
results obtained from the last generation simulation of NSGA-II with
the batch simulated and experimental results. Red dashed lines
represent the division of Pareto space taking batch point as reference
point (origin). Thus, the first region is where all the Pareto optimal
solutions are better than the batch case in terms of both the objectives.
Second and fourth regions are better than the batch case in terms of
only one objective, whereas points lying in the third region are worse
than the batch case in terms of both the objectives.
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substrate consumption, whereas points in region 4 have lower
cell density, but the amount of substrate consumption is also
reduced. It can also be seen that the points in region 3 are the
worst, as they are inferior to the batch point in terms of both the
objectives. Some of the randomly generated points in the first
generation of NSGA-II lie in the third region. However, none of
the Pareto optimal points obtained from the last generation lie in
the third region which proves the ability of NSGA-II in
providing the optimized objective values.

Deterministic MOOC: Quantitative Comparison of
Semibatch and Batch Case. A comparison between the
infected cell density, MOI, and substrate consumed in batch and
semibatch processes is presented in Table 3. From the final PO

solution for the semibatch process, two solutions have been
selected for comparison. For the first point, the amount of
substrate consumed is similar order of magnitude to the batch
case, whereas for the second point, the total infected cell density
is similar in order of magnitude to the batch case. The results
show that for the first case, where the amount of total substrate
added for the semibatch is same as the batch (6.6 mg/mL), the
total infected cell density obtained from the semibatch is more
than 2-fold (114%) higher as compared to the batch process.

Also, the amount of virus (MOI) required to achieve such a
higher cell density in the semibatch is 45% less as compared to
the batch case. For the second Pareto point, where the amount
of total infected cells obtained from the semibatch process is
similar to the batch case, the total substrate consumption was
34.8% less for the semibatch case as compared to the batch. For
the same setting, the MOI required for semibatch was 51% lesser
than the batch case. It was also observed that for all the final
Pareto solutions obtained for the semibatch process, the MOI
values were 45%−76% lesser compared to the batch process.
This way of formulating the optimal control problem is
advantageous since this enables handling either of a batch or
semibatch operation. This is because in a semibatch formulation,
all control variables added in the beginning could have
symbolized a batch operation, and it is purely the choice of
the optimizer to choose such a mode of operation, if found
optimal. In this case, none of the PO solutions are found to
symbolize batch operation. Hence, the results show that use of a
suitably formulated feed medium and optimizing the feeding
recipe in a semibatch process can substantially increase the
product formation in a BEVS relative to a batch culture. A similar
comparison between the batch and fed-batch operations for a
baculovirus−insect cell system has been done in the past using
the experimental methods.63−66 Elias et al.65 showed that by
carefully manipulating the feeding strategy of the nutrients, a
significantly higher cell density can be obtained using a fed-batch
culture as compared to a batch culture. Chan et al.63,64 also
reported a 2- to 3-fold increase in the productivity by using a fed-
batch operation for the baculovirus−insect cell culture instead of
the batch operation. Meghrous et al.66 reported a 2- to 3-fold
enhancement in the production of recombinant protein for the
production of influenza virus from the fed-batch process as
compared to the batch process. Thus, the optimization exercise
performed in this work shows an agreement with these findings.
However, experimental optimization of the feeding strategy is a
laborious and time-consuming task. Hence, this work can guide
in process optimization, as the Pareto optimal solutions can be

Table 3. Comparing the Pareto Optimal Solutions Obtained
from Deterministic and Nondeterministic MOOC with the
Batch Case

Reactor type
Total infected cell density

produced (mL)
Substrate

consumed (mL) MOI

Batch 9.95 × 107 6.61 10
Deterministic

Semibatch 1 2.13 × 108 6.64 5.49
Semibatch 2 1.04 × 108 4.37 4.94

RO (5% uncertainty)
Semibatch 1 1.7 × 108 6.4 6.11
Semibatch 2 9.7 × 107 4.66 5.78

Figure 4. Pareto optimal solutions obtained for deterministic MOOC using different MOEAs.
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experimentally validated saving the time and resources to run
multiple experiments for determining the optimal feeding
strategy to improve the productivity.

Deterministic MOOC: Comparison with Other Multi-
objective Evolutionary Algorithms (MOEAs). To check the
competence of NSGA-II with other novel MOO algorithms, the
MOOC has been solved using seven other novel algo-
rithms.57Figure 4 shows the results of the deterministic
MOOC solved using several such algorithms, e.g., knee point-
driven evolutionary algorithm (KnEA), kriging-assisted refer-
ence vector-guided evolutionary algorithm (K-RVEA), many-
objective evolutionary algorithm based on dominance and
decomposition (MOEA-DD), multiobjective evolutionary
algorithm based on an enhanced inverted generational distance
metric (MOEA/IGD-NS), NSGA-III, nondominated sorting
and local search (NSLS), and reference vector-guided evolu-
tionary algorithm (RVEA). The quality of the PO front obtained
by each algorithm has been compared using seven different

metrics:57 averaged Hausdorff distance (DeltaP), diversity
metric (DM), generation distance (GD), hyper-volume (HV),
inverted GD (IGD), pure diversity metric(PD), and spread. The
metric values corresponding to every algorithm are presented in
Table 4. The results show that performance of NSGA-II is
better/comparable to most of the novel MOO algorithms under
consideration for the baculovirus system. Therefore, it has been
decided to use NSGA-II for optimization related to other
nondeterministic cases. The rationale behind trying several
evolutionary algorithms is their stochastic nature. These
algorithms have been run several times before reporting the
PO solutions obtained from them. For reporting PO solutions
from each algorithm, they are run several times, and the
nondominated solutions obtained from solutions accumulated
over several runs are reported.

Sensitivity Analysis. Next, in order to identify the most
influential parameters, which affect the infected cell density and
substrate consumption, the parametric sensitivity analysis was

Table 4. Metrics Comparing the Quality of Pareto Fronts Obtained Using NSGA-II and Other Novel MOO Algorithms

Algorithms DeltaP (min) DM (max) GD (min) HV (max) IGD (min) PD (max) Spread (min)

NSGA-II 4344335.03 0.836 65334.3698 0.586 4344335.03 5182586255 0.635
KnEA 56126584.7 0.379 81102.1752 0.614 56126584.7 3040832762 0.896
K-RVEA 12320490.1 0.515 44465.5219 0.504 12320490.1 3533782444 1.259
MOEA-DD 316001593 0.167 1221153.54 0 316001593 3799245.15 0.999
MOEA-IGD/NS 7444034.16 0.724 92403.3685 0.613 7444034.16 4601057942 0.482
NSGA-III 6838796.26 0.694 92664.7714 0.586 6838796.26 4266591888 0.814
NSLS 20333700.8 0.646 104834.924 0.534 20333700.8 3074028126 1.684
RVEA 213034460 0.191 155870.391 0.183 213034460 530436952 1.05

Figure 5. Dynamic sensitivities of all the model variables with respect to all the model parameters (p1−p15). Here X-axis represents the seven model
variables in the order: uninfected cells, substrate, oxygen, carbon dioxide, dead cells, virus, and infected cells. Y-axis represents the time in hours. Color
bar represents the sensitivity values.
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performed. Figure 5 shows the dynamic sensitivity of model
variables with respect to all parameters as calculated by solving
the system given in eqs 8 and 9 for the proposed model. The
result shows that the highest sensitivity indices (>1) were
observed with respect to the parameters representing the growth
rate (μmax), half velocity constant (KOd2

), equilibrium constant
(K), yield with respect to substrate (YS), oxygen saturation
constant (O*), and virus attachment rate (a1). These highly
sensitive parameters were finally considered for the optimization
runs under model parameter uncertainty.

Optimization under Uncertainty (OUU). For solving the
MOOC problem under uncertainty, a six-dimensional uncertain
data set corresponding to six selected uncertain parameters has
been generated. Different numbers of uncertain parameter
samples were chosen as 50, 100, 200, and 500 to compare their
effects on the objective functions. The uncertain parameters
have been uniformly sampled using a Sobol sampling scheme
(reference) within ±5% of the base parameter (nominal) values
obtained from the parameter estimation exercise. Figure 6 shows

the comparison between the Pareto sets obtained through
deterministic and optimization under uncertainty formulations.
The IGD value of 4.3 × 106 was obtained for the deterministic
case, whereas an IGD value of 2.4 × 107 was obtained for the RO
formulation with 50 sample points. The result shows that with
RO formulation only a part of the deterministic Pareto optimal
front overlaps with the robust front. This means there are many
deterministic PO solutions, which seemed to be better and
feasible for the deterministic case, but found infeasible when
uncertainty in model parameters is considered. This is one of the
serious drawbacks of considering deterministic formulations
ignoring the sources of uncertainty, where the reality involves
uncertainty in parameters. PO solutions corresponding to the
RO formulation might appear conservative and inferior to the
deterministic case; however, this is natural as these solutions are
immune to various possible scenarios of uncertainty realizations
and are obtained through the worst-case RO formulation.

OUU: Quantitative Comparison with Batch Case. As
compared to the batch case, the robust solutions for the
semibatch results in 70% more production of total infected cell
density for a similar amount of substrate consumed (Table 3).
The amount of virus particles (MOI) was also 40% less as
compared to the batch case. Overall, the results show that the
RO Pareto solutions provide better yield as compared to the
batch case. Further, the effect of varying sample points on the

uncertain Pareto front was also studied (Figure S4). The
corresponding CPU time as well as IGD values for the uncertain
parameter samples of 50, 100, 200, and 500 are also reported in
Table S2. The result shows emergence of similar type of PO
solution set for different types of sample sizes as mentioned
above; however, a significant increase in the CPU time was
observed (703 s for 50 sample size to 7280 s for 500 sample size).
Hence, the sample size for uncertainty evaluation was chosen as
50 for rest of the analysis.

OUU: Comparison with Varying Degrees of Uncer-
tainty. Next, a comparison has been made between the varying
degrees of uncertainty in the parameters starting from 2.5% to
10% variation from the nominal value (Figure S5). As the degree
of uncertainty increases, the Pareto front becomes more
conservative, where a higher substrate amount is required to
achieve a given cell density. A comparison between the control
variable feeding recipe between the deterministic case as well as
the stochastic case with 5% and 10% uncertainties is also shown
in Figure 7. The results show that the deterministic case assumes
a lower substrate consumption and comparatively lower MOI
for achieving a higher cell density compared to the stochastic
case. However, in the presence of parametric uncertainty, the
deterministic solutions are practically meaningless, and
considering the practical scenario of uncertainty, a higher level
of uncertainty results in a more conservative solution. The CPU
time and IGD values for each varying degree are shown in Table
S3. As the uncertainty increases, the Pareto front becomes more
conservative, and thus, a higher substrate consumption is
required to achieve the same amount of infected cell density.

OUU: Considering Only Three Uncertain Parameters.
Further uncertainty analysis was performed by considering only
three uncertain parameter (KOd2

, O*, and μmax) as shown in
Figure S6. These three parameters were chosen based on the
effects of uncertain parameters on both the infected cell density
and substrate because infected cell density and substrate mainly
determine the objective values. Since the parameter a1 affected
infected cell levels and did not affect substrate, it was not
selected in the three-parameter group. Similarly, YS affected
substrate levels, but infected cells did not show any sensitivity
with respect to YS. This was also not considered. The remaining
four parameters K, μmax, KOd2

, and O* had influence on both
infected cells and substrate. However, parameters K and μmax
had similar influences and reported the same sensitivity indices
for both infected cells and substrate. Hence, only one of them is
chosen to represent the effect in the reduced three parameter set.
The IGD value for the three uncertain parameter case was 1.8 ×
107, which is less compared to the six uncertain parameter case.
The result shows that optimistic Pareto optimal solutions are
obtained when a smaller number of parameters are considered
uncertain. However, the lower part of the Pareto front almost
coincides in both the cases.

Finally, it can be concluded that in all the cases of uncertainty
considered for the semibatch process, a better performance in
terms of decreased substrate consumption and increased total
infected cell density as well as lower MOI can be obtained for the
semibatch process as compared to the batch process.

4. CONCLUSION
This work focuses on the modeling, multiobjective optimization,
and robust control of a baculovirus−insect cell system for
obtaining maximum cell density and minimum substrate
consumption, simultaneously. BEVS is crucial for the develop-

Figure 6. Comparison between deterministic and nondeterministic
Pareto solutions obtained by solving MOOC problem.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.2c03355
Ind. Eng. Chem. Res. 2023, 62, 111−125

121

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.2c03355/suppl_file/ie2c03355_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c03355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c03355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c03355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c03355?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.2c03355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ment of recombinant proteins, VLPs, and vaccines2,3 apart from
its extensive use as biopesticides.5 Hence, modeling and
optimization of the baculovirus infection system can greatly
contribute to the large-scale and economic production of
proteins/infected cells by limiting the use of expensive
experiment-based routes. Several experimental and modeling
studies have been conducted to study the growth of insect cells
in a baculovirus−insect cell system.6,13,14,59−62,67,68 However,
none of the previous studies amalgamates the experimental
findings with modeling and multiobjective dynamic robust
control in a semibatch mode to maximize the productivity for a
BEVS.

Here, we first conducted the experimental studies, where
insect cells (Sf-9 cells) were infected with baculovirus
(AcMNPV), and the dynamic evolutions of cell density and
cell viability were observed. Next, a mathematical model with an
objective of minimizing the error between experimental and
simulated data was proposed with uninfected cell density,
substrate, oxygen, carbon dioxide, dead cells, infected cells, and
virus as the main model variables. Model validation with the
obtained experimental data as well as other data obtained from
the literature show that the model is capable of emulating the
dynamic trends of cell density, cell viability, substrate, and
oxygen.

We further showed that instead of adopting a batch approach,
if a semibatch approach with intermittent addition of substrate
and virus was adopted, a considerable increase in the infected
cell density (more than 2 folds) could be obtained for a lesser
amount of substrate consumption. Previous experimental
studies also corroborate such facts of increase in productivity
by adopting a semibatch operation compared to a batch
operation.2,49,64,69 Next, we performed a directional derivative-
based parametric sensitivity analysis54 to identify the most
influential parameters for uncertainty analysis. In none of the
previous studies for baculovirus−insect cell systems has such an

analysis based on parameter uncertainty been performed to
check the feasibility of the results. A comprehensive comparison
between varying the sample size of uncertain parameters and
uncertainty levels indicates that with 5% variation in uncertain
parameters from their nominal values, a 70% higher cell density
production and up to 40% less MOI are possible for a semibatch
case compared to the batch process. It is also observed that
higher level of uncertainty results in more conservative solutions
to ascertain robustness.

The proposed model can also be updated by including aspects
for protein expression which can be further used for improving
performance of a BEVS. However, it remains challenging to
obtain data on protein expression at a higher resolution as
Western blot experiments are time intensive and tedious and
require larger sample volumes.70 Also, to build the dynamic
model, continuous protein expression measurements at multiple
time intervals are required, which is difficult to obtain. Further,
other variables such as oxygen and cell density can also be
manipulated using the proposed framework for process
optimization at a higher resolution.

Hence, this work provides a computational framework and
shows a proof of concept that an intermittent addition of
reactants can improve the yield in a BEVS, instead of a batch
operation. Alhough further experimental studies need to be
conducted to validate the obtained results, this work can act as a
starting point and significantly guide toward optimizing the
process development for large-scale production in a BEVS.
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