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The nonlocality revealed in a multiparty multisource network Bell experiment is conceptually different than
the standard multiparty Bell nonlocality involving a single common source. Here, by introducing variants of
asymmetric bilocal as well as trilocal network scenarios, we go beyond the typical bilocal network scenario
where both the edge parties have an equal number of measurement settings. We first introduce an asymmetric
bilocal network where one of the edge parties (say, Alice) receives 2n−1 inputs and the other edge party (say,
Charlie) receives n inputs. We derive two variants of asymmetric bilocality inequalities and demonstrate their
optimal quantum violations. Further, we explore two types of asymmetric trilocal scenarios: (i) when two edge
parties receive 2n−1 inputs each and the other edge party receives n inputs, and (ii) when one edge party receives
2n−1 inputs and the other two edge parties have n inputs each. We use an elegant sum-of-squares technique
that enables us to evaluate the quantum optimal values of the proposed network inequalities without assuming
the dimension of the systems for both the asymmetric bilocal as well as the trilocal scenarios. Further, we
demonstrate the robustness of the quantum violations of the proposed inequalities in the presence of white noise.
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I. INTRODUCTION

The study of quantum nonlocality in the network scenario
[1] has recently been receiving considerable attention. Such
a form of nonlocality is conceptually different from the stan-
dard Bell nonlocality [2]. While a multiparty Bell experiment
involves a single common source, the multiparty network Bell
experiment involves several independent sources. Each source
distributes a physical system to subsequent parties, and each
party performs a measurement on their subsystem prepared
from different sources.

The simplest nontrivial network scenario [3–5] features
three parties and two independent sources, commonly re-
ferred to as the bilocality scenario. The quantum nonlocality
in a network is demonstrated through the quantum viola-
tion of suitably formulated nonlinear bilocality inequality. A
straightforward generalization of the bilocality scenario is the
n-locality scenario [6–8] involving an arbitrary n number of
sources. For example, a star network may have n number of
sources and edge parties. Each edge party shares the physi-
cal system with a central party. In recent times, the network
nonlocality has been extensively studied in various topologies
[8–23].

The reported interesting results such as possibility of
observing quantum nonlocality without inputs [24,25] or
showing the nonlocality of certain entangled states which do
not exhibit nonlocality in the usual Bell scenario [26,27] es-
tablishes the fundamental importance of viewing nonlocality
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in terms of the symmetric network scenario in contrast to the
standard Bell scenario. Characterization of network nonlocal-
ity and its correspondence with the bipartite Bell nonlocality
has been studied [7]. Several theoretical proposals have also
been experimentally verified [7,28–34]. Recently, genuine
network nonlocality has also been introduced that cannot be
traced back to Bell nonlocality [23,35,36]. Self-testing proto-
cols using the quantum network have recently been proposed
[37–40]. Further, by using a quantum network, it has been
established [38,41,42] that the real quantum theory can be
experimentally falsified, i.e., quantum theory inevitably needs
complex numbers. To this end, different forms of network
scenarios like the star network [6], chain-shaped network [19],
and cycle network [24] have been explored.

We note here that while most of the studies concerning
the star-network scenario have been investigated for the sym-
metric input scenario, i.e., each edge party performs the same
number of measurements, a generalised study of network non-
locality in asymmetric input scenarios remains unexplored. In
this regard, by introducing the asymmetric bilocal network
scenario that comprises two edge parties performing three
and six measurements, respectively, and the central party per-
forming four measurements, a couple of recent works [38,42]
have shown that complex numbers are necessary for quantum
predictions. It is crucial to remark here that such a study
is based on the two-qubit system. Here, the purpose of this
work is to probe hitherto unexplored generalized asymmetric
network nonlocality in a device-independent way. In partic-
ular, by considering the bilocality scenario, we first derive
asymmetric nonlinear inequality for the scenario in which one
of the two edge parties (say, Alice) has four measurement
settings and the other edge party (say, Charlie) has three
measurement settings. In addition to that, we extend the study
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from the asymmetric bilocality scenario to the asymmetric
trilocality scenario involving three independent sources. In the
trilocal network scenario, we explore two particular variants
of asymmetric trilocality. First, we consider one edge party
(Alice) has four measurement settings and the other two edge
parties (Charlie and Diana) have three measurement settings
each. Then we consider one edge party has three measurement
settings (Charlie) and the other two edge parties have four
measurement settings each (Alice and Diana).

Then, by using an elegant sum-of-squares (SOS) approach
developed in [43–45], we analytically obtain the optimal
quantum violations of the asymmetric bilocality as well as the
asymmetric trilocality inequalities. It is important to note that
we evaluate such optimal quantum bounds without assuming
the dimension of the systems. In this process, we evaluate
the required constraints on the observables of each party for
achieving the optimal quantum violation. For the asymmetric
bilocality scenario, we demonstrate that the quantum optimal
value will be achieved if each of the both Alice-Bob and
Bob-Charlie shares at least a single copy of maximally entan-
gled two-qubit state. Moreover, for the considered asymmetric
trilocality scenario, as similar to the bilocality scenario, we
find that the optimal quantum value will be obtained if each of
all the edge parties shares at least a single copy of maximally
entangled two-qubit state with the central party Bob.

Furthermore, we extend our study for any arbitrary num-
ber of measurement settings. In particular, we consider an
asymmetric bilocal network where one of the edge parties
receives 2n−1 inputs and the other edge party receives n inputs.
We explore two types of asymmetric trilocal scenarios for
arbitrary inputs: (i) when two edge parties receive 2n−1 inputs
each and the other edge party receives n inputs, and (ii) when
one edge party receives 2n−1 inputs and the other two edge
parties have n inputs each. Finally, we illustrate the robustness
of the quantum violations of the proposed inequalities in the
presence of the white noise for both the cases of bilocality and
trilocality scenarios. We find that the proposed asymmetric in-
equality is most robust to white noise in the simplest bilocality
network scenario.

This paper is organized as follows. To begin with, in Sec. II,
by invoking the SOS approach [43,44], we derive the optimal
quantum violation of the standard bilocal network inequal-
ity without assuming the dimension of the system. Next, in
Secs. III and IV, we introduce two variants of asymmetric
bilocal scenario and propose two different bilocal network
inequalities. Then, we obtain the optimal quantum bounds
along with the states and observables corresponding to the
optimal quantum values (Secs. III A and III B). In Secs. V
and VI, by going beyond the bilocality network scenario, we
introduce asymmetricity in the trilocal network and propose
two different types of asymmetric trilocal inequalities. We
also evaluate the corresponding optimal quantum bounds as
well as the states and observables required for attaining such
optimal quantum values (Secs. V A and V B). In particular, we
illustrate that in order to achieve the optimal quantum bound
for both the asymmetric bilocal and trilocal cases, each of all
the edge parties must share at least a single copy of maximally
entangled state with the central party Bob. Then, in Sec. VII,
we have generalized the asymmetric bilocal and trilocal net-
work scenario for arbitrary number of measurement settings.

∈ {0,1} ∈ {0,1}∈ {0,1}

∈ {1,2} ∈ {1,2} ∈ {1,2}

FIG. 1. The standard bilocal scenario featuring two edge parties
(Alice and Charlie) and the central party Bob. The source S1 (S2)
emits physical system for Alice (Charlie) and Bob. The sources are
assumed to be independent to each other.

Further, in Sec. VIII, we provide an analysis regarding the ro-
bustness of quantum violations of the proposed inequalities to
white noise. Finally, in Sec. IX, we discuss the salient features
of our work and propose some interesting open questions.

II. PRELIMINARIES: THE STANDARD BILOCAL
NETWORK SCENARIO

The standard bilocal network scenario (see Fig. 1) com-
prises of three spatially separated parties: Alice, Bob, and
Charlie. Two independent sources S1 and S2 prepare a
bipartite physical system for Alice-Bob and Bob-Charlie, re-
spectively. Upon receiving the system from the respective
source, Alice performs one of mA local measurements, de-
noted by An,x ∈ {An,1, An,2, . . . , An,mA}. Similarly, for Bob and
Charlie the respective measurements are denoted by Bn, j ∈
{Bn,1, Bn,2, . . . , Bn,mB} and Cn,z ∈ {Cn,1,Cn,2, . . . ,Cn,mC }. The
outcomes for Alice, Bob, and Charlie are denoted by a, b, c ∈
{0, 1}. The standard bilocal scenario is a symmetric scenario
that implies an equal number of measurement settings for
the edge parties, i.e., mA = mC . On the other hand, in this
work we consider two types of asymmetric bilocal network
scenario: (i) Alice performs one of mA = 2n−1 measurements;
Charlie and the central party Bob perform one of mC = mB =
n measurements. (ii) Alice and Bob perform one of mA =
mB = 2n−1 measurements; Charlie performs one of mC = n
measurements. The index n appearing in the subscript denotes
the scenario involving the number of measurement settings
considered. For example, n = 2 corresponds the standard bilo-
cal network scenario comprising two measurement settings
for each party.

Now, in the ontological model of the tripartite standard Bell
scenario, it is assumed that the source prepares a common
hidden variable λ. Then the reproducibility condition is given
by

P(a, b, c|x, j, z) =
∫

dλ μ(λ)P(a|x, λ)P(b| j, λ)P(c|z, λ).

(1)
In contrast to the ontological model of tripartite standard

Bell scenario, the ontological model of bilocality scenario is
that each source S1 and S2 prepares the physical system in
the state λ1 ∈ �1 and λ2 ∈ �2 with a probability distribution
μ(λ1) and μ(λ2), respectively, with

∫
�k

μ(λk )dλk = 1. The
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crucial assumption here is that the sources S1 and S2 are in-
dependent to each other. This means that the joint probability
distribution μ(λ1, λ2) can be written in the factorized form
as μ(λ1, λ2) = μ(λ1)μ(λ2). Now, in order to reproduce the
quantum theoretical prediction from the bilocal ontic model,
the following reproducibility condition needs to be satisfied:

P(a, b, c|x, j, z) =
∫∫

dλ1dλ2 μ(λ1)μ(λ2)P(a|x, λ1)

× P(b| j, λ1, λ2)P(c|z, λ2). (2)

Note that in the two measurements per party scenario
(mA = mB = mC = 2), it has been shown [5] that any op-
erational theory satisfying the above Eq. (2) satisfies the
nonlinear inequality

B2 ≡
√

|I2,1| +
√

|I2,2| � (B2)bl = 2, (3)

where I2,2 are suitably defined linear combinations of the
tripartite correlations, given by

I2,1 = 〈(A2,1 + A2,2) ⊗ B2,1 ⊗ (C2,1 + C2,2)〉, (4)

I2,2 = 〈(A2,1 − A2,2) ⊗ B2,2 ⊗ (C2,2 − C2,1)〉 (5)

with1 〈An,xBn, jCn,z〉 = ∑
a,b,c(−1)a+b+cP(a, b, c|x, j, z) and

P(a, b, c|x, j, z) is the joint probability for obtaining the
outcomes (a, b, c) corresponding to the dichotomic measure-
ments performed by Alice, Bob, and Charlie. In quantum
theory, the joint probability P(a, b, c|x, j, z) is given as

P(a, b, c|x, j, z) = Tr
[
(ρAB ⊗ ρBC ) �a

An,x
⊗ �b

Bn, j
⊗ �c

Cn,z

]
,

(6)
where ρAB and ρBC are bipartite states produced from two
independent sources S1 and S2, respectively.

It has been shown [5,44] that the maximum quantum value
(B2)opt

Q = 2
√

2 is obtained when Alice’s and Charlie’s ob-
servables are mutually anticommuting and Bob’s observables
are mutually commuting. An example of such choices of
observables in two-dimensional Hilbert space (H2) is given
as follows:

A2,1 = C2,1 = (σz + σx )/
√

2, B2,1 = σz ⊗ σz,

A2,2 = C2,2 = (σz − σx )/
√

2, B2,2 = σx ⊗ σx. (7)

Note that while the optimal quantum value of (B2)opt
Q was

earlier derived [5] by taking a pair of the two-qubit entan-
gled state, the dimension-independent derivation of (B2)opt

Q
has recently been proposed [44]. Throughout this work, we
adopt the SOS approach introduced in [43] and derive the
optimal quantum bound without assuming the dimension of
the system. Thus, our optimal value possesses the the potential
to be used as device-independent certification of quantum
correlations.

Optimal quantum bound for B2

Here, by invoking the elegant SOS approach [44], we eval-
uate the optimal quantum value of (B2)Q. Without loss of
generality, one can always construct a suitable operator γ2 sat-
isfying 〈γ2〉 = β2 − (B2)Q such that 〈γ2〉 � 0. The existence

1From now on we will denote 〈An,x ⊗ Bn, j ⊗ Cn,z〉 as 〈An,xBn, jCn,z〉.

of such operator γ2 can be shown by suitably considering
a set of operators M2, j, ∀ j ∈ {1, 2}, which are polynomial
functions of A2,x, B2, j , and C2,z:

〈γ2〉 =
2∑

j=1

√
ω2, j

2
|M2, j |ψ〉 |2, (8)

where ω2, j � 0 are suitable positive numbers that will be
specified soon. We choose the operator M2, j as follows:2

|M2,1 |ψ〉 | =
√√√√∣∣∣∣
(

A2,1 + A2,2

ωA
2,1

⊗ Id ⊗ C2,1 + C2,2

ωC
2,1

)
|ψ〉

∣∣∣∣
−√|Id ⊗ B2,1 ⊗ Id |ψ〉 |,

|M2,2 |ψ〉 | =
√√√√∣∣∣∣
(

A2,1 − A2,2

ωA
2,2

⊗ Id ⊗ C2,1 − C2,2

ωC
2,2

)
|ψ〉

∣∣∣∣
−√|Id ⊗ B2,2 ⊗ Id |ψ〉 |, (9)

ωA
2,1 = ||(A2,1 + A2,2) |ψ〉 ||2 = √

2 + 〈{A2,1, A2,2}〉,
ωA

2,2 = ||(A2,1 − A2,2) |ψ〉 ||2 = √
2 − 〈{A2,1, A2,2}〉,

ωC
2,1 = ||(C2,1 + C2,2) |ψ〉 ||2 = √

2 + 〈{C2,1,C2,2}〉,
ωC

2,2 = ||(C2,1 − C2,2) |ψ〉 ||2 = √
2 − 〈{C2,1,C2,2}〉, (10)

where || · ||2 denotes the Frobenious norm given by || O ||2 =√
〈ψ |O†O |ψ〉.
Now, since Alice, Bob, and Charlie are spacelike separated,

their observables are mutually commuting. Thus, the opera-
tors (A2, j ⊗ Id ⊗ Id ), (Id ⊗ B2, j ⊗ Id ), and (Id ⊗ Id ⊗ C2, j)
are also mutually commuting. Hence, these three observables
must have at least one common eigenstate. Without loss of
generality, |ψ〉 is taken to be one of the common eigen-
states. Therefore, by evaluating the quantity |M2, j |ψ〉 |2 from
Eq. (9), a simple algebraic manipulation gives us from Eq. (8)
the following:

〈γ2〉 = (
√

ω2,1 + √
ω2,2) − (B2)Q, (11)

where ω2, j = ωA
2, j ωC

2, j .
Now, since by construction 〈γ2〉 � 0, it is evident that from

Eq. (11) that the optimal quantum value of B2 corresponds to
〈γ2〉 = 0. Therefore, the quantum optimal value is given as

(B2)opt
Q =

√
ωA

2,1 ωC
2,1 +

√
ωA

2,2 ωC
2,2. (12)

Next, using the inequality
√

r1s1 + √
r2s2 �√

r1 + r2
√

s1 + s2 ∀ r1, s1, r2, s2 � 0, we can write Eq. (12)
as

(B2)opt
Q =

√(
ωA

2,1 + ωA
2,2

)(
ωC

2,1 + ωC
2,2

)
=
√

(
√

2 + 〈{A2,1, A2,2}〉 +√
2 − 〈{A2,1, A2,2}〉)

×
√

(
√

2 + 〈{C2,1,C2,2}〉 +√
2 − 〈{C2,1,C2,2}〉).

(13)

2From now on, we will write An,x ⊗ I ⊗ Cn,z as An,x ⊗ Cn,z and Id ⊗
Bn, j ⊗ Id as Bn, j .
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FIG. 2. Asymmetric bilocal network scenario featuring two edge
parties (Alice and Charlie) and a central party Bob. The independent
sources S1 and S2 emit physical systems for Alice-Bob and Charlie-
Bob, respectively.

Equation (13) is optimised when {A2,1, A2,2} =
{C2,1,C2,2} = 0 and the optimal quantum value is then
given by

(B2)opt
Q = 2

√
2. (14)

Note that the evaluated optimal quantum value (B2)opt
Q = 2

√
2

is same as that obtained when the state between three parties
is assumed to be pair of maximally entangled two-qubit state.
This means that for the two-settings bilocality scenario, the
optimal quantum violation of the bilocal inequality remains
the same even if one considers higher-dimensional maximally
entangled states.

III. ASYMMETRIC BILOCAL NETWORK: SCENARIO I

Here we introduce a variant of asymmetric bilocal net-
work scenario for n = 3, in which Alice performs one of
the four dichotomic measurements and the other edge party
(Charlie) performs one of three dichotomic measurements
(see Fig. 2). For our purpose, we consider that the central
party performs one of three dichotomic measurements. Note
that the two-settings bilocality scenario is the same as the
symmetric bilocal scenario, where each party has an equal
number (two) of measurement settings. In the following, we
derive a family of nonlinear asymmetric bilocality inequalities
and also evaluate their optimal quantum violations.

In this scenario, let us consider the nonlinear bilocal in-
equality of the form

B3 =
3∑

j=1

√
|I3, j | � (B3)bl , (15)

where (B3)bl is the bilocal bound of B3 and the quantity

I3, j = 〈Ã3, jB3, jC̃3, j〉. We define the quantities Ã3, j and C̃3, j

as

Ã3,1 = A3,1 + A3,2 + A3,3 − A3,4,

Ã3,2 = A3,1 + A3,2 − A3,3 + A3,4,

Ã3,3 = A3,1 − A3,2 + A3,3 + A3,4,

C̃3, j = C3, j + C3, j+1 with C3,4 = −C3,1. (16)

In an ontological model λ1 ∈ �1 and λ2 ∈ �2 completely
determine the statistics of all the measurements. This means

that in the ontological model, we can write the following:

〈A3,x〉λ1 =
∑

a

(−1)aP(a|x, λ1), ∀ x ∈ {1, 2, 3, 4}

〈C3,z〉λ2 =
∑

c

(−1)cP(c|z, λ2), ∀ z ∈ {1, 2, 3}

〈B3, j〉λ1,λ2 =
∑

b

(−1)bP(b| j, λ1, λ2), ∀ j ∈ {1, 2, 3}.

(17)

Now, invoking the reproducibility condition given by Eq. (2)
it follows that

I3,1 =
∫∫

dλ1dλ2 μ(λ1)μ(λ2)
[〈C3,1〉λ2

+〈C3,2〉λ2

] 〈B3,1〉λ1,λ2

[〈A3,1〉λ1 + 〈A3,2〉λ1 + 〈A3,3〉λ1

−〈A3,4〉λ1

]
. (18)

Since |〈B3,1〉λ1,λ2 | � 1, we obtain

|I3,1| �
∫∫

dλ1dλ2 μ(λ1)μ(λ2)
∣∣〈C3,1〉λ2 + 〈C3,2〉λ2

∣∣
× ∣∣〈A3,1〉λ1 + 〈A3,2〉λ1 + 〈A3,3〉λ1 − 〈A3,4〉λ1

∣∣.
(19)

The terms |I3,2| and |I3,3| can also be written in a similar
manner as Eq. (19). Now, for our purpose, by utilizing the
inequality3 proved in [6], we obtain the following:

(B3)bl �
(∫∫

dλ1dλ2 μ(λ1)μ(λ2) δ1 δ2

) 1
2

, (20)

where δ1 = [|〈A3,1〉λ1 + 〈A3,2〉λ1 + 〈A3,3〉λ1 − 〈A3,4〉λ1 | +
|〈A3,1〉λ1 + 〈A3,2〉λ1 − 〈A3,3〉λ1+〈A3,4〉λ1 |+|〈A3,1〉λ1−〈A3,2〉λ1+
〈A3,3〉λ1 + 〈A3,4〉λ1 |] and δ2 = [|〈C3,1〉λ2 + 〈C3,2〉λ2 | +
|〈C3,2〉λ2 + 〈C3,3〉λ2 | + |〈C3,3〉λ2 − 〈C3,1〉λ2 |].

Since all the observables are dichotomic with eigenvalues
±1, it is straightforward to derive that δ1 � 6 and δ2 � 4.
Therefore, from Eq. (20), integrating over λ1 and λ2 we obtain

(B3)bl � 2
√

6 ≈ 4.89. (21)

We show that there are suitable states and observables for
which the bilocal bound can be violated in quantum the-
ory. Now, in the following, we evaluate the quantum optimal
bound of B3.

A. Optimal quantum bound of the asymmetric bilocality
inequality in scenario I

To derive the optimal quantum bound of B3 without as-
suming the dimension of the system, we again invoke the

3The inequality proved in Appendix A of [6]

t∑
i=1

( r∏
k=1

zi
k

) 1
r

�
r∏

k=1

( t∑
i=1

zi
k

) 1
r

, ∀ zi
k � 0.

Here r is the number of edge party in a star network. Note that for
our bilocal case r = 2.
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SOS approach discussed in the preceding Sec. II. Follow-
ing the similar argument presented earlier in Sec. II, we
first show that there exists a suitable operator γ3 satisfying
〈γ3〉 = β3 − (B3)Q such that 〈γ3〉 � 0. Note that the power of
SOS approach in evaluating the optimal quantum bound of
a particular Bell functional lies in the suitable construction
of the operator γ3 in such a way so that it is a semidefinite
operator and can be reduced to the form of the concerned Bell
functional. Now, in order to evaluate the quantum optimal
bound of B3, we construct γ3 in terms of a set of operators
M3, j, ∀ j ∈ {1, 2, 3}, in the following way:

〈γ3〉 =
3∑

j=1

√
ω3, j

2
|M3, j |ψ〉 |2, (22)

where ω3, j � 0 are suitable positive numbers and ω3, j =
ωA

3, jω
C
3, j that will be specified soon. In the following ∀ j ∈

{1, 2, 3}, we choose the operator M3, j and the quantity ω3, j :

|M3, j |ψ〉 | =
√√√√∣∣∣∣∣
(
Ã3, j

ωA
3, j

⊗ C̃3, j

ωC
3, j

)
|ψ〉
∣∣∣∣∣−√|B3, j |ψ〉 |, (23)

ωA
3, j = ||Ã3, j |ψ〉 ||2; ωC

3, j = ||C̃3, j |ψ〉 ||2. (24)

Putting M3, j from Eq. (23) into Eq. (22), after a simple al-
gebraic evaluation, we obtain 〈γ3〉 = ∑3

j=1
√

ω3, j − (B3)Q.
Then, it follows that the quantum optimal value corresponds
〈γ3〉 = 0. Therefore,

(B3)opt
Q = max

3∑
j=1

√
ωA

3, jω
C
3, j (25)

which in turn gives the optimization condition as follows:

|M3, j |ψ〉 | = 0 ⇒ M3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3}. (26)

Now, in order to evaluate the optimal quantum value (B3)opt
Q

and thus the quantity
∑3

j=1

√
ωA

3, jω
C
3, j , we invoke the in-

equality given in the footnote 3. Then, the right-hand side of
Eq. (25) reduces to

3∑
j=1

⎛
⎝ ∏

k=A,C

ωk
3, j

⎞
⎠

1
2

�
∏

k=A,C

⎛
⎝ 3∑

j=1

ωk
3, j

⎞
⎠

1
2

. (27)

Further, by applying the convex inequality,4 the quantity∑3
j=1 ωk

3, j can be written as

3∑
j=1

(
ωk

3, j

)
�

√√√√3
3∑

j=1

(
ωk

3, j

)2
. (28)

4From the Jensen’s inequality given by f (
∑t

k=1 rkxk ) �∑t
k=1 rk f (xk ) where

∑t
k=1 rk = 1, the following inequality can

be derived:
t∑

k=1

ωk �

√√√√ t
t∑

k=1

ω2
k .

Then, by combining Eqs. (27) and (28), from Eq. (25) we
obtain

(B3)opt
Q = max

⎡
⎣ ∏

k=A,C

⎛
⎝3

3∑
j=1

(
ωk

3, j

)2

⎞
⎠
⎤
⎦

1
4

, (29)

where each (ωk
3, j )

2 is evaluated from Eq. (24) as follows:(
ωA

3,1

)2 = 〈ψ | (4 + {A3,1, (A3,2 + A3,3 − A3,4)}
+ {A3,2, (A3,3 − A3,4)} − {A3,3, A3,4}) |ψ〉 ,(

ωA
3,2

)2 = 〈ψ | (4 + {A3,1, (A3,2 − A3,3 + A3,4)}
+ {A3,2, (−A3,3 + A3,4)} − {A3,3, A3,4}) |ψ〉 ,(

ωA
3,3

)2 = 〈ψ | (4 + {A3,1, (−A3,2 + A3,3 + A3,4)}
− {A3,2, (A3,3 + A3,4)} + {A3,3, A3,4}) |ψ〉 , (30)(
ωC

3,1

)2 = 〈ψ | (2 + {C3,1,C3,2}) |ψ〉 ,(
ωC

3,2

)2 = 〈ψ | (2 + {C3,2,C3,3}) |ψ〉 ,(
ωC

3,3

)2 = 〈ψ | (2 − {C3,1,C3,3}) |ψ〉 . (31)

Now, in the following we calculate
∑3

j=1(ωA
3, j )

2 from

Eq. (30) and
∑3

j=1(ωC
3, j )

2 from Eq. (31) separately.

1. Evaluation of
∑3

j=1(ωA
3, j )

2

3∑
j=1

(
ωA

3, j

)2 = 〈ψ | (12 + {A3,1, (A3,2 − A3,3 + A3,4)}

− {A3,2, (A3,3 + A3,4)} − {A3,3, A3,4}) |ψ〉
= 〈ψ | (12 + �3) |ψ〉 , (32)

where �3 = {A3,1, (A3,2 − A3,3 + A3,4)} − {A3,2, (A3,3 +
A3,4)} − {A3,3, A3,4}. Without loss of generality we can
always write |ψ ′〉 = (A3,1 + A3,2 + A3,3 − A3,4) |ψ〉 such
that |ψ〉 �= 0. Therefore, 〈ψ ′|ψ ′〉 = 〈ψ | (4 − �3) |ψ〉 implies
〈�3〉 = 4 − 〈ψ ′|ψ ′〉. Then it immediately follows that
〈�3〉max is obtained iff 〈ψ ′|ψ ′〉 = 0. Since |ψ〉 �= 0, then the
following relation must satisfy

A3,1 − A3,2 − A3,3 − A3,4 = 0. (33)

Hence, in order to obtain the quantum optimal value of
(B3)opt

Q , observables of Alice must satisfy the linear condition
given by Eq. (33). Therefore, 〈�3〉max = 4 leads to

3∑
j=1

(
ωA

3, j

)2 = 〈ψ | (12 + �3) |ψ〉 � 16. (34)

2. Evaluation of
∑3

j=1(ωC
3, j )

2

3∑
j=1

(
ωC

3, j

)2

= 〈ψ | (6 + {C3,2, (C3,1 + C3,3)} − {C3,1,C3,3}) |ψ〉
= 〈ψ | (6 + 3I − (C3,1 − C3,2 + C3,3)2) |ψ〉 � 9. (35)
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Equation (35) is maximized when

C3,1 − C3,2 + C3,3 = 0. (36)

Finally, we obtain the optimal quantum value from Eqs. (25),
(34), and (35) as

(B3)opt
Q = 6. (37)

It is important to remark here that the optimal quantum value
(B3)opt

Q = 6 is evaluated without specifying the dimension of
both the system and observables. The optimal value fixes the
states, and the observables are the following.

B. The state and observables for the optimal
quantum violation of B3

We further obtain relationships between the observables of
all the parties for achieving the optimal quantum violation.
Such relationships are given in Eqs. (33) and (36), which in
turn provide the relationship between the observables in terms
of the anticommuting relations:

{A3,1, A3,2} = {A3,1, A3,3} = {A3,1, A3,4} = 2
3Id ,

{A3,2, A3,3} = {A3,2, A3,4} = {A3,3, A3,4} = − 2
3Id ,

{C3,1,C3,2} = {C3,2,C3,3} = −{C3,1,C3,3} = Id . (38)

By using the above relations between the observables given
by Eq. (38) on the observables, one can always construct a
set of observables for Alice and Charlie in the Hilbert space
dimensionHd , ∀ d � 2.

Next, we recall the optimization condition obtained in
the SOS method from Eq. (26) to find the constraints on
Bob’s observable. The specific condition M3, j |ψ〉 = 0 , ∀ j ∈
{1, 2, 3}, implies

B3, j = Ã3, j

ωA
3, j

⊗ C̃3, j

ωC
3, j

. (39)

In the following, we then explicitly construct a set of observ-
ables for the Hilbert space dimensionH2:

C3,1 = σz, C3,2 =
(√

3

2
σx + σz

2

)
, C3,3 =

(√
3

2
σx − σz

2

)
;

A3,1 = σx + σy + σz√
3

, A3,2 = σx + σy − σz√
3

,

A3,3 = σx − σy + σz√
3

, A3,4 = −σx + σy + σz√
3

. (40)

Note that employing the above-mentioned observables, we
find that the quantum optimal value (B3)opt

Q = 6 is achieved
when two maximally entangled two-qubit states are shared
between Alice-Bob and Bob-Charlie.

IV. ASYMMETRIC BILOCAL NETWORK: SCENARIO II

Here we consider (see Fig. 3) the central party Bob per-
forms equal number of measurements (four) as Alice in
contrast to the preceding scenario discussed in Sec. III where
the number of measurements for Bob and Charlie was consid-
ered to be equal. In this scenario, let us consider the nonlinear

∈ {0,1} ∈ {0,1}∈ {0,1}

∈ {1,2,3,4} ∈ {1,2,3,4} ∈ {1,2,3}

FIG. 3. Asymmetric bilocal network scenario featuring two edge
parties (Alice and Charlie) and a central party Bob. The independent
sources S1 and S2 emit physical systems for Alice-Bob and Charlie-
Bob, respectively.

bilocal inequality of the form

B′
3 =

4∑
j=1

√ ∣∣〈Ã′
3, jB3, jC̃′

3, j

〉∣∣ � (B′
3)bl , (41)

where (B′
3)bl is the bilocal bound of B′

3 and Ã′
3, j = A3, j +

A3, j+1 satisfying A3,4 = −A3,1; C̃′
3,1 = C3,1 + C3,2 + C3,3;

C̃′
3,2 = C3,1 + C3,2 − C3,3; C̃′

3,3 = C3,1 − C3,2 + C3,3; C̃′
3,4 =

−C3,1 + C3,2 + C3,3. We find (see Appendix A 1) that the bilo-
cal bound in this scenario is (B′

3)bl = 6. It can be shown that
there are suitable states and observables for which quantum
correlations violate the bilocal bound. In the following, we
evaluate the quantum optimal bound of B′

3.
The optimal quantum bound of B′

3 without assuming the
dimension of the system is derived by suitably invoking the
SOS approach. The explicit construction of the SOS method
is provided in Appendix A 2. The optimal quantum bound is
found to be

(B′
3)opt

Q = 4[3(2 +
√

2)]
1
4 ≈ 7.16. (42)

It is to be noted here that the obtained optimal quantum bound
((B′

3)opt
Q ≈ 7.16) in this scenario is greater than that obtained

((B3)opt
Q = 6) in the earlier scenario I. Thus, the bilocal as well

as the quantum optimal bound depends on how the asymmetry
is invoked in the bilocal scenario. The corresponding state and
observables for which the quantum optimal bound is achieved
are given in Appendix A 3.

V. ASYMMETRIC TRILOCAL NETWORK: SCENARIO I

Here we introduce a variant of asymmetric trilocal network
scenarios in which one of the edge party Charlie performs one
of three dichotomic measurements and rest of the edge parties
Alice and Diana as well as the central party Bob perform four
dichotomic measurements (see Fig. 4). In this scenario, let us
introduce the nonlinear trilocal inequality of the form

T3 =
4∑

j=1

|J3, j | 1
3 � (T3)t l , (43)

where (T3)t l is the local bound of T3 and the quantity J3, j =
〈 ˜A3, jB3, jC̃3, jD̃3, j〉. We define the quantities ˜A3, j , C̃3, j , and
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FIG. 4. Asymmetric trilocal network scenario featuring three
edge parties (Alice, Charlie, and Diana) and a central party Bob.
The independent sources S1, S2, and S3 emit physical systems for
Alice-Bob, Charlie-Bob, and Diana-Bob, respectively.

D̃3, j as follows:

˜A3, j = A3, j + A3, j+1 with A3,5 = −A3,1,

C̃3,1 = C3,1 + C3,2 + C3,3, C̃3,2 = C3,1 + C3,2 − C3,3,

C̃3,3 = C3,1 − C3,2 + C3,3, C̃3,4 = −C3,1 + C3,2 + C3,3,

D̃3,1 = D3,1 + D3,2 + D3,3 + D3,4,

D̃3,2 = D3,1 + D3,2 + D3,3 − D3,4,

D̃3,3 = D3,1 + D3,2 − D3,3 − D3,4,

D̃3,4 = D3,1 − D3,2 − D3,3 − D3,4. (44)

Now, invoking the reproducibility condition given by
Eq. (2) it follows that

J3,1 =
∫∫∫

dλ1dλ2dλ3 μ(λ1)μ(λ2)μ(λ3)

× [〈A3,1〉λ1 + 〈A3,2〉λ1

]
× [〈B3,1〉λ1,λ2,λ3

][〈C3,1〉λ2 + 〈C3,2〉λ2 + 〈C3,3〉λ2

]
× [〈D3,1〉λ3 + 〈D3,2〉λ3 + 〈D3,3〉λ3 + 〈D3,4〉λ3

]
. (45)

Since |〈B3,1〉λ1,λ2,λ3 | � 1, we obtain

|J3,1| =
∫∫∫

dλ1dλ2dλ3 μ(λ1)μ(λ2)μ(λ3)

× ∣∣〈A3,1〉λ1 + 〈A3,2〉λ1

∣∣
× ∣∣〈C3,1〉λ2 + 〈C3,2〉λ2 + 〈C3,3〉λ2

∣∣
× ∣∣〈D3,1〉λ3 + 〈D3,2〉λ3 + 〈D3,3 + 〈D3,4〉λ3

∣∣. (46)

The terms |J3,2|, |J3,3|, and |J3,4| can also be written in a
similar manner as Eq. (46). Then, we obtain

(T3)t l �
(∫∫∫

dλ1dλ2dλ3 μ(λ1)μ(λ2)μ(λ3) η1η2η3

) 1
3

,

(47)

where η1 = [|〈A3,1〉λ1 + 〈A3,2〉λ1 |+ |〈A3,2〉λ1 + 〈A3,3〉λ1 |+
|〈A3,3〉λ1 + 〈A3,4〉λ1 |+ |〈A3,4〉λ1 − 〈A3,1〉λ1 |], η2=[|〈C3,1〉λ2+
〈C3,2〉λ2 +〈C3,3〉λ2 |+|〈C3,1〉λ2 +〈C3,2〉λ2 −〈C3,3〉λ2 |+|〈C3,1〉λ2−
〈C3,2〉λ2 + 〈C3,3〉λ2 | + | − 〈C3,1〉λ2 + 〈C3,2〉λ2 + 〈C3,3〉λ2 |],
and η3 = [|〈D3,1〉λ3 + 〈D3,2〉λ3 + 〈D3,3〉λ3 + 〈D3,4〉λ3 | +
|〈D3,1〉λ3 + 〈D3,2〉λ3 + 〈D3,3〉λ3 − 〈D3,4〉λ3 | + |〈D3,1〉λ3 +
〈D3,2〉λ3 − 〈D3,3〉λ3 − 〈D3,4〉λ3 | + |〈D3,1〉λ3 − 〈D3,2〉λ3 −
〈D3,3〉λ3 − 〈D3,4〉λ3 |].

Since all the observables are dichotomic with eigenvalues
±1, it is straightforward to derive that η1 � 6, η2 � 6, and
η3 � 8. Therefore, from Eq. (47), integrating over λ1, λ2, and
λ3 we get

(T3)t l � 2(6)
2
3 ≈ 6.60, (48)

i.e., the trilocal bound (T3)t l = 2(6)
2
3 ≈ 6.60. There are suit-

able states and observables for which the trilocal bound can
be violated in quantum theory. Now, in the following, we
evaluate the quantum optimal bound of T3.

A. Optimal quantum bound of the asymmetric trilocality
inequality for scenario I

Here, by invoking the SOS approach, we evaluate the opti-
mal quantum bound of T3 without assuming the dimension
of the system. We first show that there exists a positive-
semidefinite operator �3 satisfying 〈�3〉 = ζ3 − (T3)Q. The
existence of such operator can be proved by considering a set
of operators L3, j, ∀ j ∈ {1, 2, 3, 4}, such that

〈�3〉 =
4∑

j=1

(ω3, j )
1
3

2
|L3, j |ψ〉 |2, (49)

where ω3, j � 0 and ω3, j = ωA
3, jω

C
3, jω

D
3, j . We choose L3, j and

ω3, j as

|L3, j |ψ〉 | =
∣∣∣∣∣
(

˜A3, j

ωA
3, j

⊗ C̃3, j

ωC
3, j

⊗ D̃3, j

ωD
3, j

)
|ψ〉
∣∣∣∣∣

1
3

− |B3, j |ψ〉 | 1
3 ,

(50)

ωA
3, j = || ˜A3, j |ψ〉 ||2, ωC

3, j = ||C̃3, j |ψ〉 ||2,
ωD

3, j = ||D̃3, j |ψ〉 ||2. (51)

Now, putting |L3, j |ψ〉 | from Eq. (50) into Eq. (49),
after a simple algebraic evaluation, we obtain 〈�3〉 =∑3

j=1(ω3, j )
1
3 − (T3)Q. Then, it follows that the quantum op-

timal value corresponds 〈�3〉 = 0. Therefore,

(T3)opt
Q =

4∑
j=1

(
ωA

3, jω
C
3, jω

D
3, j

) 1
3 . (52)

Such optimal quantum value will occur under the following
optimization condition:

L3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3, 4}. (53)

Hence, from Eq. (52) and by using the inequalities given
in footnotes 3 and 4, we obtain the quantum optimal value as
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follows:

(T3)opt
Q = 2

⎡
⎣ ∏

k=A,C,D

⎛
⎝max

4∑
j=1

(
ωk

3, j

)2

⎞
⎠
⎤
⎦

1
6

. (54)

Note that the quantities
∑3

j=1(ωA
3, j )

2 � 4(2 + √
2) and∑3

j=1(ωC
3, j )

2 � 12 have already derived in Appendixes (A 2 a)

and (A 2 b). Now, we evaluate the quantity
∑4

j=1(ωD
3, j )

2 from
Eq. (51) as follows:

4∑
j=1

(
ωD

3, j

)2 = 〈ψ | (16 + 2({D3,1, (D3,2 − D3,4)}

+ {D3,3, (D3,2 + D3,4)}) |ψ〉 . (55)

Since the quantities D3,1 and D3,3 appeared indepen-
dently with {D3,1, (D3,2 − D3,4)} and {D3,3, (D3,2 + D3,4)},
respectively, without loss of generality, we chose D3,1 =
(D3,2 − D3,4)/ν1 and D3,3 = (D3,2 + D3,4)/ν1, where ν1 =
||(D3,2 − D3,4) |ψ〉 ||2 and ν2 = ||(D3,2 + D3,4) |ψ〉 ||2. There-
fore, Eq. (55) reduces to

4∑
j=1

(
ωD

4, j

)2 = 16 + 4[
√

2 − 〈{D3,2, D3,4}〉

+√2 − 〈{D3,2, D3,4}〉]. (56)

The maximum value of
∑4

j=1(ωD
4, j )

2 = 8(2 + √
2) is then

achieved when {D3,2, D3,4} = 0 which automatically implies
ν1 = ν2 = √

2. Therefore, for the optimal quantum violation,
the linear constraints on Diana’s observables are given as

D3,4 −
√

2 D3,1 − D3,2 = D3,2 + D3,4 −
√

2 D3,3 = 0. (57)

Therefore, we obtain the quantum optimal value as given
by

(T3)opt
Q = 4 [2

√
3(1 +

√
2)]

1
3 ≈ 8.12. (58)

It is important to remark here that the optimal quantum value
(T3)opt

Q = 4 [2
√

3(1 + √
2)]

1
3 ≈ 8.12 is evaluated without

specifying the dimension of both the system and observables.
The states, and the observables for which the optimal value
will be achieved, are given in the following.

B. The state and observables for the optimal
quantum violation of (T )3

We further obtain relationships between the observables
of all the parties in terms of the anticommuting relations
for achieving the optimal quantum violation. The anticom-
mutation relations for Alice’s and Charlie’s observables are
evaluated from Eqs. (A11) and (A13). The anticommutation
relations for Diana’s observables are evaluated from Eq. (57).
All the relations are given as follows:

{A3,1, A3,2} = {A3,2, A3,3} = {A3,3, A3,4}
= −{A3,1, A3,4} =

√
2 Id ,

{A3,1, A3,3} = {A3,2, A3,4} = 0;

{D3,1, D3,3} = {D3,2, D3,4} = 0,

{D3,1, D3,2} = {D3,2, D3,3} = {D3,3, D3,4}
= −{D3,1, D3,4} =

√
2 Id ,

{C3,1,C3,2} = {C3,2,C3,3} = −{C3,1,C3,3} = Id . (59)

By using the above relations between the observables given
by Eq. (59) on the observables, one can always construct a
set of observables for Alice and Charlie in the Hilbert space
dimensionHd , ∀ d � 2.

Next, we recall the optimization condition obtained in
the SOS method from Eq. (53) to find the constraints on
Bob’s observable. The specific condition L3, j |ψ〉 = 0, ∀ j ∈
{1, 2, 3, 4}, implies the following:

B3, j =
˜A3, j

ωA
3, j

⊗ C̃3, j

ωC
3, j

⊗ D̃3, j

ωC
3, j

. (60)

We explicitly construct a set of observables of Alice, Charlie,
and Diana for the Hilbert space dimensionH2 as follows:

A3,1 = r σx +
√

1 − r2σz, A3,2 = t σx +
√

1 − t2σz,

A3,3 = t σx −
√

1 − t2 σz, A3,4 = r σx −
√

1 − r2 σz,

D3,1 = −t σx +
√

1 − t2σz, D3,2 = −t σx −
√

1 − t2σz,

D3,3 = −r σx −
√

1 − r2 σz, D3,4 = r σx −
√

1 − r2 σz,

C3,1 = σx, C3,2 = σy, C3,3 = σz, (61)

where r = 1
2

√
2 − √

2 and t = 1
2

√
2 + √

2. Note that em-
ploying the above-mentioned observables, we find that the
quantum optimal value (T3)opt

Q ≈ 7.23 is achieved when three
maximally entangled two-qubit states are shared between
Alice-Bob, Charlie-Bob, and Diana-Bob.

VI. ASYMMETRIC TRILOCAL NETWORK: SCENARIO-II

Here we present another asymmetric trilocal network sce-
nario in which one of the edge party Alice performs one of
four dichotomic measurements and rest of the edge parties
Charlie and Diana as well as the central party Bob perform
three dichotomic measurements (see Fig. 5). In this scenario,
let us consider the nonlinear trilocal inequality of the form

T ′
3 =

3∑
j=1

∣∣〈 ˜A ′
3, jB3, jC̃

′
3, jD̃

′
3, j

〉∣∣ 1
3 � (T ′

3)t l , (62)

where (T ′
3)t l is the local bound of T ′

3 and the quantities
˜A ′
3,1 = A3,1 + A3,2 + A3,3 − A3,4; D̃ ′

3,1 = D3,1 + D3,2 + D3,3;
˜A ′
3,2 = A3,1 + A3,2 − A3,3 + A3,4; D̃ ′

3,2 = D3,1 − D3,2 + D3,3;
˜A ′
3,3 = A3,1 − A3,2 + A3,3 + A3,4; D̃ ′

3,3 = D3,1 − D3,2 − D3,3;
C̃ ′

3,1 = C3, j + C3, j+1 satisfying C3,4 = −C3,1. We find (see
Appendix B 1) that the trilocal bound in this scenario is given
by

(T ′
3)t l = 2(15)

1
3 ≈ 4.93. (63)

It can be shown that there are suitable states and observables
for which quantum correlations violate the trilocal bound. In
the following, we evaluate the quantum optimal bound of T ′

3.
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FIG. 5. Asymmetric trilocal network scenario featuring three
edge parties (Alice, Charlie, and Diana) and a central party Bob.
The independent sources S1, S2, and S3 emit physical systems for
Alice-Bob, Charlie-Bob, and Diana-Bob, respectively.

The optimal quantum bound of T ′
3 without assuming the

dimension of the system is derived by suitably invoking the
SOS approach as discussed earlier. The explicit construction
of the SOS method is provided in Appendix B 2. The optimal
quantum bound is found to be

(T ′
3)opt

Q = 6. (64)

It is to be noted here that the obtained optimal quantum bound
((T ′

3)opt
Q = 6) in this scenario is lesser than that obtained

((T3)opt
Q ≈ 7.23) in the earlier scenario I. Thus, the trilocal

as well as the quantum optimal bound depend on how the
asymmetry invoked in the trilocal scenario.

The corresponding state and observables for which
the quantum optimal bound is achieved are given in
Appendix B 3.

VII. ASYMMETRIC NETWORK FOR ARBITRARY n

Let us now provide a sketch of the result in an asymmetric
bilocal network scenario for arbitrary n. Alice performs one
of mA = 2n−1 dichotomic measurements and both the central
party (Bob) and Charlie perform one of mB = n and mc = n
dichotomic measurements, respectively. In this scenario, we
consider the nonlinear asymmetric bilocality inequality for
arbitrary input n of the form

Bn =
n∑

j=1

√
|In, j | � (Bn)bl , (65)

where (Bn)bl is the bilocal bound of Bn and In, j = 〈Ãn, j ⊗
Bn, j ⊗ C̃n, j〉 with Ãn, j and C̃n, j are unnormalized observables
given as follows:

Ãn, j =
2n−1∑
x=1

(−1)yx
j An,x; C̃n, j =

n∑
z=1

(Cn,z + Cn,z+1) (66)

with Cn,n+1 = −Cn,1 and yx
j ∈ {0, 1}, ∀ j ∈ [n]. For our pur-

pose, by using the encoding scheme which was earlier
introduced in the context of random access codes (RACs)
[43–47] protocol, we fix the values of yx

j in the following
way. Let us consider a random variable yα ∈ {0, 1}n with α ∈
{1, 2 . . . 2n}. Each element of the bit string can be written as
yα = yα

j=1yα
j=2yα

j=3 . . . yα
j=n. For example, if yα = 011 . . . 00,

then yα
j=1 = 0, yα

j=2 = 1, yα
j=3 = 1 and so on. We denote the

n-bit binary strings as yx. Here we consider the bit strings
such that for any two x and x′, yx ⊕2 yx′ = 11 . . . 1. Clearly,
we have x ∈ {1, 2 . . . 2n−1} constituting the inputs for Alice.
If x = 1, we get all the first bit of each bit string y j for every
j ∈ {1, 2 . . . n}.

Now it follows from the reproducibility condition given by
Eq. (2) that

In,1 =
∫∫

μ(λ1)μ(λ2)dλ1dλ2〈Ãn,1〉λ1〈Bn,1〉λ1,λ2〈C̃n,1〉λ1 .

(67)
Since |〈Bn,1〉λ1,λ2 | � 1, we obtain from Eq. (67)

|In, j | �
∫∫

μ(λ1)μ(λ2)dλ1dλ2

∣∣〈Ãn, j
〉
λ1

∣∣ ∣∣〈C̃n, j
〉
λ2

∣∣,
∀ j ∈ {1, 2, . . . , n}. (68)

By putting the values of Eq. (68) in (65) and, then by
applying the property of the inequality given in footnote 3,
we obtain

(Bn)bl �
√∫

dλ1μ(λ1)
∣∣〈Ãn, j

〉
λ1

∣∣
√∫

dλ2μ(λ2)
∣∣〈C̃n, j

〉
λ2

∣∣.
(69)

Note that all the observables An,x and Cn,z are dichotomic
with eigenvalues ±1. In [44,45] it was derived that the value
of |〈Ãn〉λ1

| = n
( n−1
� n−1

2 �
)

and |〈C̃n〉λ2
| = (2n − 2). Hence, the

bilocal bound is given by

(Bn)bl =
√

2n(n − 1)

(
n − 1

� n−1
2 �
)

, (70)

where �x� denotes the largest integer smaller or equal to x.
We derive the optimal quantum value of (Bn)Q of the bilo-

cality inequality proposed in Eq. (65) by again invoking the
SOS approach. We consider a positive-semidefinite operator
〈γn〉 � 0, that can be expressed as 〈γn〉 = βnI − (Bn)Q, where
βn is the optimal value that can be obtained when 〈γn〉 is equal
to zero. This can be proved by considering a set of positive
operators Mn, j which are polynomial functions of An,x, Cn,z,
Bn, j such that

〈γn〉 =
n∑

j=1

(ωn, j )
1
2

2
〈ψ |(Mn, j )

†(Mn, j )|ψ〉, (71)

where ωn, j are suitable positive numbers and ωn, j =
(ωA

n, j ) (ωC
n, j ). The optimal quantum value of (Bn)Q is obtained

if 〈γn〉 = 0, implying that Mn, j |ψ〉 = 0. We choose a suitable
set of positive operators Mn, j (with j ∈ [n]), such that

Mn, j |ψ〉 =
√∣∣(An, j ⊗ Cn, j

)|ψ〉∣∣−√∣∣Bn, j |ψ〉∣∣, (72)

022425-9



SASMAL, MAHATO, AND PAN PHYSICAL REVIEW A 107, 022425 (2023)

where An, j = Ãn, j

ωA
n, j

and Cn, j = C̃n, j

ωC
n, j

with ωA
n, j = ||Ãn, j |ψ〉||2

and ωC
n, j = ||C̃n, j |ψ〉||2. By inserting Eq. (72) in (71), we

obtain 〈γn〉 = −(Bn)Q +∑n
j=1(ωn, j )

1
2 . The optimal value of

(Bn)Q is obtained if 〈γn〉 = 0. Therefore, the optimal value is
given as follows:

(Bn)opt
Q = max

⎛
⎝ n∑

j=1

(ωn, j )
1
2

⎞
⎠. (73)

Now, by using the inequality given in footnote 3 along with
the convex inequality given in the footnote 4, we obtain

(Bn)opt
Q = max

⎡
⎢⎣ ∏

k=A,C

⎛
⎝n

n∑
j=1

(
ωk

n, j

)2

⎞
⎠

1
2

⎤
⎥⎦

1
2

. (74)

We can always evaluate each term (ωA
n, j )

2 and (ωC
n, j )

2 by fol-
lowing the procedure discussed for the n = 3 case. However,
such evaluation will take rigorous algebraic treatment which
we are skipping here. Thus, instead of following the same
path, in the following, we present an argument that leads to
the optimal quantum value of (Bn)Q.

To begin with, let us revisit the expression Bn given by
Eq. (65). Since all In, j are real numbers and positive by
construction, we can always invoke the convex inequality (as
mentioned in footnote 4) to obtain

(Bn)Q �

⎛
⎝n

n∑
j=1

In, j

⎞
⎠

1
2

. (75)

Then the quantity
∑n

j=1 In, j is evaluated from Eq. (16):

n∑
j=1

In, j =
〈

n∑
j=1

(Ãn, j ⊗ Bn, j ⊗ C̃n, j )

〉
. (76)

Now, by noting the optimization condition Mn, j |ψ〉 = 0
form the SOS method, we write

Bn, j = An, j ⊗ Cn, j, ∀ j ∈ {1, 2, . . . , n}. (77)

Hence, from Eq. (77), we conclude that for achieving the
quantum optimal value, it is sufficient to assume that Bob
measures his system on a product basis. Thus, Bob’s observ-
ables are given by Bn, j = BA

n, j ⊗ BC
n, j , where BA

n, j and BC
n, j are

normalized observables. The ability to express Bob’s observ-
ables in such a way buoyed up the fact that for the optimal
value, the quantity

∑n
j=1 In, j can be expressed as

max
n∑

j=1

In, j = (Sn)opt
Q (Ln)opt

Q , (78)

where Sn is the Bell functional proposed in [47] and Ln is the
n-settings Chain-Bell functional [48]. Note that the optimal
quantum values of Sn and Ln have already been derived
as (S)opt

Q = 2n−1√n and (Ln)opt
Q = 2n cos π

2n , respectively
[47,49]. By combining these results, it is straightforward to

obtain the quantum optimal bound of (Bn)Q:

(Bn)opt
Q =

(
2n n

3
2 cos

π

2n

) 1
2

(79)

which violates the local bound (Bn) for any arbitrary n.

The state and observables for the optimal
quantum violation of (B)n

Note that the optimal quantum value (Bn)opt
Q is evaluated

without specifying the dimension of both the system and
observables. Importantly, from the argument presented in the
preceding section, the optimal value is achieved when both
the quantity Sn and Ln are optimized simultaneously. It has
earlier been shown [47] that the optimal of Bn implies the ob-
servables BA

n, j are mutually anticommuting, i.e., {BA
n, j, BA

n,i} =
0, ∀ i, j.

Thus, it is crucial to remark that to achieve the optimal
quantum violation of the asymmetric bilocality inequality,
there should be n mutually anticommuting operators. Further
it follows that An, j ∈ Hd

A with necessarily (dA)min = 2�n/2�.
Thus, Bob’s observables Bn, j = An, j ⊗ Cn, j must belong to
Hd

B with necessarily (dB)min > 2�n/2�. We can also conclude
that the optimal value cannot be achieved if Alice-Bob and
Bob-Charlie share a single copy of the maximally entangled
two-qubit state.

Hence, taking a cue from the preceding discussions, we
find that if there should be at least N = �n/2� copies of
maximally entangled two-qubit states between Alice-Bob and
at least a single copy of maximally entangled two-qubit state
between Bob-Charlie, then the quantum optimal value (Bn)opt

Q
will achieve for the observables in total dimension dmin =
2N × 2N+1 × 2 = 4N+1.

Now, following a similar argument, it is straightforward to
obtain the bilocal as well as the quantum optimal bound of
asymmetric bilocality inequality for scenario 2 where Alice
and Bob perform 2n−1 number of measurements and Charlie
performs n number of measurements. In this scenario, the
bilocal bound of the n-settings asymmetric bilocal inequality
is given by

B′
n=

2n−1∑
j=1

√∣∣〈Ã′
n, j ⊗ Bn, j ⊗ C̃′

n, j

〉∣∣�
√

2n(2n−1 − 1)

(
n − 1

� n−1
2 �
)

,

(80)
where Ãn, j = ∑2n−1

x=1 (Cn,z + Cn,z+1) with An,n+1 = −An,1 and
C̃n, j = ∑n

z=1(−1)yz
jCn,z. The optimal quantum bound in this

case is given by

(Bn)opt
Q =

(
22n−1 √

n cos
π

2n

) 1
2

. (81)

Next, for the asymmetric trilocal network scenario I, Alice,
Bob, and Diana perform 2n−1 measurements and Charlie per-
forms n measurements. In this scenario, the trilocal bound is
given by

(Tn)t l =
[

2n (2n−1 − 1)

(
n − 1

� n−1
2 �
) ⌊

22n−3 + 1

2

⌋] 1
3

. (82)
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The optimal quantum value can be written in the form
(Tn)opt

t l = (L2n−1 )opt
Q (G2n−1 )opt

Q (Sn)opt
Q . The Bell functional

Gn is the family of n-settings Bell inequalities proposed in
[50] with the optimal quantum value given by (Gn)opt

Q =
2n cos π

2n/ sin π
n . Thus, the corresponding optimal quantum

bound of (Tn)t l is given by

(Tn)opt
Q = 2n−1

(
2

√
n cot

π

2n

) 1
3

. (83)

Now, for the asymmetric trilocal network scenario II, the
respective trilocal and optimal quantum bound is given as
follows:

(T ′
n)t l =

[
2n(n − 1)

(
n − 1

� n−1
2 �
)⌊

n2 + 1

2

⌋] 1
3

, (84)

(T ′
n)opt

Q =
(

2nn
5
2 cot

π

2n

) 1
3
. (85)

The optimal quantum values (Tn)opt
Q > (Tn)t l and (T ′

n)opt
Q >

(T ′
n)t l for any value of n, thereby demonstrating the nonlocal-

ity in trilocal network featuring arbitrary inputs.

VIII. RESISTANCE TO WHITE NOISE

A. Resistance to white noise for bilocality scenarios I and II

Let us assume that each of the independent sources S1 and
S2 does not produce maximally entangled two-qubit state, but
a mixture of maximally entangled state with a white noise,
known as Werner state [51]. Let the two sources produce such
Werner states with different noise parameters v1 and v2. The
Werner states between Alice and Bob are ρw

AB(v1) and for Bob
and Charlie are ρw

BC (v2), given by ρw
AB(vk ) = vk |ψ〉 〈ψ | +

(1 − vk ) I4 with k ∈ {1, 2} and |ψ〉 〈ψ | is a maximally entan-
gled two-qubit state and the joint tripartite physical system is
given by ρw

ABC (v1, v2) = ρw
AB(v1) ⊗ ρw

BC (v2).
For convenience, we first evaluate the robustness of the

asymmetric bilocality scenario I for arbitrary n. Since the opti-
mal quantum violation ofBn is achieved when �n/2� copies of
maximally entangled two-qubit states shared between Alice-
Bob and a single copy of maximally entangled two-qubit state
is shared between Bob-Charlie. Thus, we take the Werner
states of the formW = ρAB(v1)⊗N ⊗ ρBC (v2) where we take
N = �n/2�. Then, by invoking the conditions on the observ-
ables given in Sec. VI, we obtain

(
Bn
)W

Q = (
vN

1 v2
) 1

2

(
2n n

3
2 cos

π

2n

) 1
2
. (86)

Therefore, in this noisy case if we take all the noise parameter
as the same (v), the quantum violation will be achieved when

vN+1 > 21−n √
n

(
1 − 1

n

) (
n − 1

� n−1
2 �
)

sec
π

2n
. (87)

Note that n = 2, 3 correspond N = 1. For n = 2 the critical
noise parameter for each of the Werner states is vc = 1/

√
2.

This is exactly to be expected because this is the critical noise
parameter for the Werner state for violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality. On the other hand,
for n = 3 the critical noise parameter vc = √

2/3 ≈ 0.82

which is greater that 1/
√

2. So, no advantage has been found
over the standard Bell nonlocality or bilocality scenario for
demonstrating the quantum nature of the noisy maximally
entangled bipartite states.

In the asymmetric bilocality scenario II, for demonstrating
nonlocality, the critical noise parameter is found to be

vN+1 >
√

n 21−n (1 − 21−n)

(
n − 1

� n−1
2 �
)

sec
( π

2n

)
. (88)

For n = 3, the critical parameter in scenario II is given by

vc = 3
4

√
3 − 3√

2
≈ 0.84. Thus, in the asymmetric bilocality

scenario, scenario I is more robust against the white noise than
the scenario II.

B. Resistance to white noise for trilocality scenarios I and II

In the trilocality scenario, all the independent sources
produce Werner state with noise parameters v1, v2, and
v3. The joint four-partite physical system is given by
ρw

ABCD(v1, v2, v3) = ρw
AB(v1) ⊗ ρw

BC (v2) ⊗ ρw
DB(v3).

In the asymmetric trilocality scenario I, the critical noise
parameter for demonstrating nonlocality is given by

vN+2 >
√

n 22(1−n) (1 − 21−n)

(
n − 1

� n−1
2 �

)

×
⌊

22n−3 + 1

2

⌋
tan
( π

2n

)
. (89)

For n = 3 critical noise parameter per Werner state is vc =√
3

3
√

2(
√

2+2)
≈ 0.92.

On the other hand, in the asymmetric trilocality scenario II,
the critical noise parameter is given by

vN+2 > 21−n 1√
n

(
1 − 1

n

) (
n − 1

� n−1
2 �

)⌊
n2 + 1

2

⌋
tan
( π

2n

)
.

(90)

For n = 3, the critical noise parameter per Werner state is
vc = ( 5

9 )
1
3 ≈ 0.82. Thus, in the asymmetric trilocality cases,

the scenario II is more robust to white noise than the
scenario I.

IX. SUMMARY AND DISCUSSION

In this work, we have explored the quantum nonlocality
in arbitrary n input asymmetric bilocal as well as trilocal
network scenario. The asymmetric bilocal scenario proposed
here features two edge parties Alice and Charlie who perform
2n−1 and n number of measurements, respectively. We derive
two families of bilocality inequalities specifically designed for
the asymmetric scenario when the central party Bob measures
n (Fig. 2) and 2n−1 number of measurements.

Furthermore, we have extended the asymmetric network
scenario into the trilocal network. In particular, we have intro-
duced two variants of asymmetric trilocal network: (i) when
one edge party, Alice, performs 2n−1 measurements, the other
two edge parties, Charlie and Diana, perform n measurements
each and the central party Bob performs 2n−1 measurements.
(ii) When one edge party, Charlie, performs n measurements,
the other two edge parties, Alice and Diana, perform 2n−1
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measurements each and the central party Bob performs n
measurements.

In Secs. III and IV, the detailed analytical treatments of
the bilocal bounds for the proposed asymmetric bilocal sce-
narios have been provided. It has been found that the bilocal
bounds depend on how the asymmetricity is invoked within
the bilocal scenario. In particular, the bilocal bounds have
been found to be 4.89 and 6 for scenarios I and II, respectively.
Subsequently, by invoking the SOS technique, the DI opti-
mal quantum bound for the asymmetric bilocality scenario I

((B3)opt
Q = 6) is found to be less than that obtained ((B′

3)opt
Q =

4[3(2 + √
2)]

1
4 ≈ 7.16) in the scenario II (Sec. III A). In both

the optimization processes corresponding to scenarios I and II,
we obtain the relational constraints on the observables along
with shared states required for Alice-Bob and Bob-Charlie
(Sec. III B and Appendix A 3). The constraints on the observ-
ables of all the parties in terms of the anticommuting relations
have also been provided in Secs. III and V.

For the asymmetric trilocality scenarios, the trilocal bounds
evaluated to be approximately 6.60 and 4.93 for the scenarios I
and II, respectively (Secs. V and VI). Consequently, using the
SOS method, while for the scenario I, the optimal quantum
bound is found to be (T3)opt

Q = 4(2
√

3 + √
6)

1
3 ≈ 7.23 for

scenario II, it is found to be (T ′
3)opt

Q = 6. In this process,
we have also obtained the constraint relations of all the par-
ties’ observables in terms of the anticommutation relations
(Sec. V B and Appendix B 3). We have demonstrated that
the optimal quantum bound will be achieved if all the edge
parties share three maximally entangled two-qubit states with
the central party Bob.

Moreover, we have generalised our results for arbitrary n.
For this purpose, using the SOS method, we first established
that it is sufficient for Bob to measure in the product basis
in order to obtain the optimal quantum violations in both the
bilocality and trilocality scenarios. Then, an interesting alge-
braic manipulation reduces the nonlinear bilocal inequalities
into a product of two standard Bell inequalities (Sec. VII).
Importantly, such reduction in terms of the product of two
standard Bell inequalities will only be possible at the op-
timal condition. It is crucial to note here that the rigorous
algebraic manipulation for the case of n = 3 buoyed up such
deep-seated understanding of the quantum optimal bound,
which then provides the necessary intuition for such a simple
proof for the case of arbitrary n. Then, following the similar
argument of the bilocality scenarios, the optimal quantum
bounds of asymmetric trilocality inequalities have also been
evaluated.

Finally, for both the asymmetric bilocal and trilocal sce-
narios, we have demonstrated the robustness of the quantum
violations of the proposed inequalities in the presence of white
noise. We found that the proposed asymmetric inequalities are
most robust to white noise in the simplest bilocal scenario
with two measurement settings for each party. In this case, two
Werner states exhibit nonlocality if v1v2 > 1

2 . Although, un-
fortunately, our proposed inequality becomes less robust with
increasing number of measurement settings or with increas-

ing party (or, source), it indeed possesses some independent
interests.

We conclude by raising some open questions which can be
studied in the future.

(i) Since the optimal quantum violations of the asymmet-
ric bilocality inequalities cannot always be achieved with the
single copy of maximally entangled two-qubit state. In fact,
for the asymmetric bilocality scenario I, while Alice-Bob
needs to share at least of �n/2� copies of maximally entangled
two-qubit state, Bob-Charlie need to share at least one copy
of it. Similar results can be proved for other scenarios also.
Thus, in the network scenario, our proposed inequality has the
potential to be used as a dimension witness. Construction of
such proof may lead to a wide variety of interesting results in
the field of self-testing of many copies of maximally entangled
two-qubit states, cryptographic applications, or randomness
generation protocols.

(ii) A straightforward extension of our proposed bilocality
inequality would be to invoke the four-outcome measurement
scenario for Bob. In this regard, for the symmetric bilocal
scenario, different bilocal inequalities have been tailored to
the four-outcome scenario in the context of both the Bell state
measurement and the elegant joint measurement scheme [35]
for Bob. Although the inequality with Bell state measurement
does not provide any advantage over the usual bilocal sce-
nario, the inequality involving elegant joint measurement is
more advantageous in presence of the noise than the earlier
bilocal or standard Bell inequalities. Thus, an extensive study
of such a scenario in the asymmetric case may lead to inter-
esting findings.

(iii) Of course, one can always generalize our asym-
metric bilocal scenario by going beyond the four-party
three-independent sources into a multiparty multisource sce-
nario. From our evaluation of the robustness to white noise,
the asymmetric bilocal scenario does not provide any advan-
tage over the noise tolerance over the standard Bell scenario.
However, with increasing the number of parties and sources,
one can introduce the asymmetry in many ways, which may
lead to a multiparty n-locality inequality that may provide
such advantages.

In sum, the essence of this work lies in constructing a fam-
ily of asymmetric bilocality as well as trilocality inequalities
and evaluating their quantum optimal bounds, importantly, by
not specifying the dimension of the system or the dichotomic
observables. Our work has the potential to open up interesting
avenues for future research such as self-testing of many copies
of entangled states, sequential sharing of quantum correla-
tions, unbounded generation of randomness, and secret key
sharing in one-to-many scenarios that calls for further study.

ACKNOWLEDGMENTS

S.S.M. acknowledges the UGC fellowship [Fellowship
No. 16-9(June 2018)/2019(NET/CSIR)]. S.S. acknowledges
the support from the project DST/ICPS/QuST/Theme
1/2019/4. A.K.P. acknowledges the support from the research
grant _SERB/CRG/2021/004258.

022425-12



NONLOCAL CORRELATIONS IN AN ASYMMETRIC … PHYSICAL REVIEW A 107, 022425 (2023)

APPENDIX A: DETAILED CALCULATION FOR THE ASYMMETRIC BILOCALITY NETWORK SCENARIO II

1. Bilocal bound for the asymmetric bilocality network scenario II

Note the following:

B′
3 =

4∑
j=1

√∣∣〈Ã′
3, jB3, jC̃′

3, j

〉∣∣ � (B′
3)bl , (A1)

where the quantities Ã′
3, j and C̃′

3, j are defined in Sec. IV. Now, invoking the reproducibility condition given by Eq. (2) and since
|〈B3,1〉λ1,λ2 | � 1, we obtain

|〈Ã′
3,1B3,1C̃′

3,1〉| �
∫∫

dλ1 dλ2 μ(λ1) μ(λ2)
∣∣〈A3,1〉λ1 + 〈A3,2〉λ1

∣∣∣∣〈C3,1〉λ2 + 〈C3,2〉λ2 + 〈C3,3〉λ2

∣∣. (A2)

The other terms can also be written in a similar manner as Eq. (A2). Thus, from Eq. (A1), we obtain

(B′
3)bl �

(∫∫
dλ1 dλ2 μ(λ1) μ(λ2) δ′

1 δ′
2

) 1
2

, (A3)

where δ′
1 = [|〈A3,1〉λ1 + 〈A3,2〉λ1 | + |〈A3,2〉λ1 + 〈A3,3〉λ1 | + |〈A3,3〉λ1 + 〈A3,4| + |〈A3,4〉λ1 − 〈A3,1〉λ1 |] and δ′

2 = [|〈C3,1〉λ2 +
〈C3,2〉λ2 + 〈C3,3〉λ2 | + |〈C3,1〉λ2 + 〈C3,2〉λ2 − 〈C3,3〉λ2 | + |〈C3,1〉λ2 − 〈C3,2〉λ2 + 〈C3,3〉λ2 | + | − 〈C3,1〉λ2 + 〈C3,2〉λ2 + 〈C3,3〉λ2 |].

Since all the observables are dichotomic with eigenvalues ±1, it is straightforward to derive that δ′
1 � 6 and δ′

2 � 6. Therefore,
from Eq. (A3), integrating over λ1 and λ2 we obtain

(B′
3)bl � 6. (A4)

2. Optimal quantum bound of the asymmetric bilocality inequality for scenario II

Let us consider a suitable positive-semidefinite operator γ ′
3 satisfying 〈γ ′

3〉 = β ′
3 − (B′

3)Q. The existence of such operator is
constructed by considering a set of operators M ′

3, j, ∀ j ∈ {1, 2, 3, 4}, such that

〈γ ′
3〉 =

4∑
j=1

√
ω3, j

2
|M ′

3, j |ψ〉 |2, (A5)

where ω3, j � 0 and ω3, j = ωA
3, j · ωC

3, j . We choose M ′
3, j and the quantity ω3, j as

∣∣M ′
3, j |ψ〉 ∣∣ =

√√√√∣∣∣∣∣
(
Ã′

3, j

ωA
3, j

⊗ C̃
′
3, j

ωC
3, j

)
|ψ〉
∣∣∣∣∣−√|B3, j |ψ〉 |, ∀ j ∈ {1, 2, 3, 4} (A6)

ωA
3, j = ||Ã′

3, j |ψ〉 ||2; ωC
3, j = ||C̃′

3, j |ψ〉 ||2. (A7)

Putting |M ′
3, j |ψ〉 | and ωk

3, j from Eq. (A6) into (A5) and, by using the inequalities given in footnotes 3 and 4, we obtain the
quantum optimal value as follows:

(
B′

3

)opt
Q = max

⎡
⎣ ∏

k=A,C

⎛
⎝4

4∑
j=1

(
ωk

3, j

)2

⎞
⎠
⎤
⎦

1
4

with the optimality condition M ′
3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3, 4}. (A8)

In the following we evaluate
∑4

j=1(ωA
3, j )

2 and
∑4

j=1(ωC
3, j )

2 from Eq. (A7) separately.

a. Evaluation of
∑4

j=1(ωA
3, j )

2

From Eq. (A7) we obtain

4∑
j=1

(
ωA

4, j

)2 = 〈ψ | (8 + {A4,2, (A4,1 + A4,3)} + {A4,4, (A4,3 − A4,1)}) |ψ〉 . (A9)

Note that in Eq. (A9) the quantities A4,2 and A4,4 appeared independently with {A4,2, (A4,1 + A4,3)} and {A4,4, (A4,3 − A4,1)},
respectively. Thus, we can always define A4,2 and A4,4 independently. Hence, without loss of generality, we chose A4,2 = (A4,3 +
A4,1)/ν1 and A4,4 = (A4,3 − A4,1)/ν2, where ν1 = || (A4,3 + A4,1) ||2 and ν2 = || (A4,3 − A4,1) ||2. Therefore, Eq. (A9) reduces
to

4∑
j=1

(
ωA

4, j

)2 = 8 + 2[
√

4 + 2
√

4 − 〈{A4,1, A4,3}〉] � 4(2 +
√

2). (A10)
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The maximum value of
∑4

j=1 ωA
4, j )

2 is then achieved when {A4,1, A4,3} = 0 which automatically implies ν1 = ν2 = √
2.

Therefore, for the optimal quantum violation, the linear constraints on Alice’s observables are given as

A4,1 −
√

2A4,2 + A4,3 = 0, −A4,1 + A4,3 −
√

2A4,4 = 0. (A11)

b. Evaluation of
∑3

j=1(ωC
3, j )

2

By Eq. (A7), a straightforward calculation leads to

4∑
j=1

(
ωC

3, j

)2 � 12 (A12)

with the constraints on Charlie’s observables given by

{C3,1,C3,2} = {C3,2,C3,3} = {C3,1,C3,3} = 0. (A13)

Finally, we obtain the optimal quantum value from Eqs. (A8), (A10), and (A12) as

(B′
3)opt

Q = 4[3(2 +
√

2)]
1
4 . (A14)

3. The state and observables for the optimal quantum violation of (B′ )3

We further obtain relationships between the observables of all the parties for achieving the optimal quantum violation in
terms of the anticommuting relations. The anticommutation relations for Charlie’s observables are already given in Eq. (36).
From Eq. (33), we obtain the anticommuting relations for Alice’s observables as

{A3,1, A3,2} = {A3,2, A3,3} = {A3,3, A3,4} = −{A3,1, A3,4} =
√

2 I2; {A3,1, A3,3} = {A3,2, A3,4} = 0. (A15)

By using the above relations between the observables given by Eqs. (A13) and (A15) on the observables, one can always
construct a set of observables for Alice and Charlie in the Hilbert space dimensionHd , ∀ d � 2.

Next, we recall the optimization condition obtained in the SOS method from Eq. (A8) to find the constraints on Bob’s
observable. The specific condition M ′

3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3}, implies the following:

B3, j = Ã
′
3, j

ωA
3, j

⊗ C̃
′
3, j

ωC
3, j

, ∀ j ∈ {1, 2, 3, 4}. (A16)

We explicitly construct a set of observables for the Hilbert space dimensionH2 as follows:

A3,1 = rσx +
√

1 − r2 σz, A3,2 = tσx +
√

1 − t2 σz, A3,3 = t σx −
√

1 − t2 σz, A3,4 = r σx −
√

1 − r2 σz,

C3,1 = σx, C3,2 = σy, C3,3 = σz

[
where r = 1

2

√
2 −

√
2 and t = 1

2

√
2 +

√
2

]
. (A17)

Bob’s observables can be constructed from Eq. (A16). Note that employing the above-mentioned observables, we find that the
quantum optimal value (B′

3)opt
Q = 6 is achieved when two maximally entangled two-qubit states are shared between Alice-Bob

and Bob-Charlie.

APPENDIX B: DETAILED CALCULATION FOR THE ASYMMETRIC TRILCALITY NETWORK SCENARIO -II

1. Trilocal bound for the asymmetric trilocality network scenario II

T ′
3 =

3∑
j=1

|J ′
3, j |

1
3 � (T ′

3)t l with J ′
3, j = 〈 ˜A ′

3, jB3, jC̃
′
3, jD̃

′
3, j〉, (B1)

where the quantities ˜A ′
3, j , C̃ ′

3, j , and D̃ ′
3, j are defined in Sec. VI of the main text. Now, invoking the reproducibility condition

given by Eq. (2) and since | 〈B3,1〉λ1,λ2,λ3
| � 1, we obtain

J ′
3,1 =

∫∫∫
dλ1dλ2dλ3 μ(λ1)μ(λ2)μ(λ3)

∣∣〈A3,1〉λ1 + 〈A3,2〉λ1 + 〈A3,3〉λ1 − 〈A3,4〉λ1

∣∣∣∣〈C3,1〉λ2 + 〈C3,2〉λ2

∣∣∣∣〈D3,1〉λ3

+〈D3,2〉λ3 + 〈D3,3〉λ3

∣∣. (B2)
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The terms |J ′
3,2|, and |J ′

3,3| given by Eq. (B1) can also be written in a similar manner as Eq. (B2). Then, we obtain the following:

(T ′
3)bl �

(∫∫∫
dλ1dλ2dλ3 μ(λ1)μ(λ2)μ(λ3) η′

1η
′
2η

′
3

) 1
3

, (B3)

where η′
1 = [|〈A3,1〉λ1 + 〈A3,2〉λ1 + 〈A3,3〉λ1 − 〈A3,4〉λ1 | + |〈A3,1〉λ1 + 〈A3,2〉λ1 − 〈A3,3〉λ1 + 〈A3,4〉λ1 | + |〈A3,1〉λ1 − 〈A3,2〉λ1 +

〈A3,3〉λ1 + 〈A3,4〉λ1 |], η′
2 = [|〈C3,1〉λ2 + 〈C3,2〉λ2 | + |〈C3,2〉λ2 + 〈C3,3〉λ2 | + |〈C3,3〉λ2 − 〈C3,1〉λ2 |], and η′

3 = [|〈D3,1〉λ3 + 〈D3,2〉λ3 +
〈D3,3〉λ3 | + |〈D3,1〉λ3 + 〈D3,2〉λ3 − 〈D3,3〉λ3 | + |〈D3,1〉λ3 − 〈D3,2〉λ3 − 〈D3,3〉λ3 |]. Since all the observables are dichotomic with
eigenvalues ±1, it is straightforward to derive that η′

1 � 6, η′
2 � 4, and η′

3 � 5. Therefore, from Eq. (B3), integrating over λ1

and λ2 we obtain

(T3)bl � 2(15)
1
3 ≈ 4.93. (B4)

2. Optimal quantum bound of the asymmetric trilocality inequality for scenario II

To derive the optimal quantum bound of T ′
3 without assuming the dimension of the system, we again invoke the SOS approach

discussed in the preceding Sec. II. Following the similar argument presented earlier in Sec. II, we first show that there exists a
positive-semidefinite operator 〈�′

3〉 = ζ ′
3 − (T ′

3)Q. The existence of such operator can be proved by considering a set of operators
L′

3, j, ∀ j ∈ {1, 2, 3}, such that

〈�′
3〉 =

4∑
j=1

(ω3, j )
1
3

2
|L′

3, j |ψ〉 |2, (B5)

where ω3, j � 0 and ω3, j = ωA
3, jω

C
3, jω

D
3, j . We choose L′

3, j and the quantity ω3, j as

|L′
3, j |ψ〉 | =

∣∣∣∣∣
(

˜A ′
3, j

ωA
3, j

⊗ C̃ ′
3, j

ωC
3, j

⊗ D̃ ′
3, j

ωC
3, j

)
|ψ〉
∣∣∣∣∣

1
3

− |B3, j |ψ〉 | 1
3 , ∀ j ∈ {1, 2, 3} (B6)

ωA
3, j = || ˜A ′

3, j |ψ〉 ||2; ωC
3, j = ||C̃ ′

3, j |ψ〉 ||2; ωD
3, j = ||D̃ ′

3, j |ψ〉 ||2, (B7)

where || · ||2 denotes the Frobenious norm given by || O ||2 =
√

〈ψ |O†O |ψ〉.
Putting L′

3, j and ω3, j from Eqs. (B6) and (B7) into Eq. (B5), and by using the inequalities given in footnotes 3 and 4, we
obtain the quantum optimal value as follows:

(T ′
3)opt

Q = max

⎡
⎣ ∏

k=A,C,D

⎛
⎝3

3∑
j=1

(
ωk

3, j

)2

⎞
⎠
⎤
⎦

1
6

with the optimality condition L′
3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3, 4}. (B8)

Note that from Eqs. (34) and (35), max
∑3

j=1 (ωA
3, j )

2 = 16 and max
∑3

j=1(ωC
3, j )

2 = 9, respectively. We evaluate
∑3

j=1 (ωD
3, j )

2

as follows:
3∑

j=1

(
ωD

3, j

)2 = 〈ψ | (9 + {D3,1, (D3,2 − D3,3)} + {D3,2, D3,3}) |ψ〉 = 〈ψ | (9 + 3I − (D3,1 − D3,2 + D3,3)2) |ψ〉 � 12. (B9)

Equation (B9) provides maximum value when

D3,1 − D3,2 + D3,3 = 0. (B10)

By placing the value of
∑3

j=1(ωA
3, j )

2,
∑3

j=1(ωC
3, j )

2, and
∑3

j=1(ωD
3, j )

2 in Eq. (B8) we obtain the optimal quantum bound as

(T ′
3)opt

Q = 6. (B11)

It is important to remark here that the optimal quantum value (T3)opt
Q = 6 is evaluated without specifying the dimension of both

the system and observables. The optimal value fixes the states, and the observables are the following.

3. The state and observables for the optimal quantum violation of T ′
3

We further obtain relationships between the observables of all the parties for achieving the optimal quantum violation.
It follows from the earlier derived results [Eqs. (33) and (36)] and Eq. (B10) the following anticommuting relations of the
observables for all the parties:

{A3,1, A3,2} = {A3,1, A3,3} = {A3,1, A3,4} = 2
3Id ; {A3,2, A3,3} = {A3,2, A3,4} = {A3,3, A3,4} = − 2

3Id , (B12)

{C3,1,C3,2} = {C3,2,C3,3} = −{C3,1,C3,3} = {D3,1,C3,2} = {D3,2, D3,3} = −{D3,1, D3,3} = Id . (B13)

022425-15



SASMAL, MAHATO, AND PAN PHYSICAL REVIEW A 107, 022425 (2023)

By using the above relations between the observables given by Eqs. (B12) and (B13) on the observables, one can always construct
a set of observables for Alice and Charlie in the Hilbert space dimensionHd , ∀ d � 2.

Next, we recall the optimization condition obtained in the SOS method from Eq. (B8) to find the constraints on Bob’s
observable. The specific condition L′

3, j |ψ〉 = 0, ∀ j ∈ {1, 2, 3}, implies the following:

B3, j =
˜A ′
3, j

ωA
3, j

⊗ C̃ ′
3, j

ωC
3, j

⊗ D̃ ′
3, j

ωC
3, j

. (B14)

We explicitly construct a set of observables for the Hilbert space dimensionH2 as follows:

A3,1 = σx + σy + σz√
3

, A3,2 = σx + σy − σz√
3

, A3,3 = σx − σy + σz√
3

, A3,4 = −σx + σy + σz√
3

; C3,1 = σz,

C3,2 =
(√

3

2
σx + σz

2

)
, C3,3 =

(√
3

2
σx − σz

2

)
; D3,3 = −σz, D3,1 =

(
−√

3

2
σx + σz

2

)
, D3,2 =

(
−

√
3

2
σx − σz

2

)
.

(B15)

Note that Bob’s observables can be constructed from Eq. (B14). Now, employing the above-mentioned observables, we find
that the quantum optimal value (T ′

3)opt
Q = 6 is achieved when three maximally entangled two-qubit states are shared between

Alice-Bob, Charlie-Bob, and Diana-Bob.
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[18] I. Šupić, J. D. Bancal, and N. Brunner, Quantum Nonlocality
in Networks Can Be Demonstrated with an Arbitrarily Small
Level of Independence between the Sources, Phys. Rev. Lett.
125, 240403 (2020).

[19] A. Kundu, M. K. Molla, I. Chattopadhyay, and D. Sarkar,
Maximal qubit violation of n -local inequalities in a quantum
network, Phys. Rev. A 102, 052222 (2020).

[20] X. Coiteux-Roy, E. Wolfe, and M. O. Renou, No Bipartite-
Nonlocal Causal Theory Can Explain Nature’s Correlations,
Phys. Rev. Lett. 127, 200401 (2021).

[21] P. Contreras-Tejada, C. Palazuelos, and J. I. D. Vicente, Gen-
uine Multipartite Nonlocality Is Intrinsic to Quantum Networks,
Phys. Rev. Lett. 126, 040501 (2021).

[22] B. D. M. Jones, I. Šupić, R. Uola, N. Brunner, and P.
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Šupić, J. Bowles, G. Carvacho, D. Cavalcanti, and F. Sciarrino,
Experimental robust self-testing of the state generated by a
quantum network, PRX Quantum 2, 020346 (2021).

[38] M. O. Renou, D. Trillo, M. Weilenmann, T. P. Le, A. Tavakoli,
N. Gisin, A. Acín, and M. Navascués, Quantum theory based on

real numbers can be experimentally falsified, Nature (London)
600, 625 (2021).

[39] I. Šupi c, J. Bowles, M.-O. Renou, A. Acín, and M. J.
Hoban, Quantum networks self-test all entangled states,
arXiv:2201.05032.
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