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Abstract—Understanding billboard visibility is vital when
considering the value of each billboard to advertisers, hence
the growing demand for artificial intelligence based approaches
to visibility measurement. Addressing this need, this research
paper presents a comprehensive approach to billboard detection
using street-view images. We have developed a robust billboard
detection system by leveraging state-of-the-art object detection
models, such as You Only Look Once (YOLOv8), YOLOv5,
Faster-Region-based Convolutional Neural Network (RCNN) and
CenterNet resulting in high model accuracy. We have introduced
an innovative foveated approach, based on the human visual
systems, that applies a Gaussian function to assign weights to
billboards to determine which is the most significant billboard
based on a combination of confidence and location with respect to
the image centre. The approach demonstrates an improvement in
overall accuracy of the detection process. In particular YOLOv8
experienced a high accuracy increase from 63.40 to 82.71 percent.
This research provides valuable insights and practical solutions
for billboard detection in real-time.

Index Terms—Object Detection; Deep Learning; YOLO; Convo-
lutional Neural Network.

I. INTRODUCTION

Billboards play a significant role in outdoor advertising,
aiming to capture the attention of individuals and deliver brand
messages effectively. Understanding the visibility of a bill-
board can help advertisers place value on those which are more
desirable considering the likelihood that the advertisement
can be clearly observed. Detecting billboards automatically
with computer vision can provide valuable insights for this
purpose. It allows advertisers and marketers to assess the
impact and reach of their advertisement campaigns. It also
helps them to evaluate the effectiveness of their strategies and
facilitates data driven decision-making tools. Such insights can
guide businesses in making informed decisions and optimise
their advertising strategies for maximum impact and return on
investment. With the ever-increasing presence of billboards in
urban areas, the need to detect and analyse billboard visibility
has become essential [1].

However, accurately identifying billboards remains a chal-
lenging task due to their diverse shapes, sizes, types and the
environment within which they reside. Additionally, occlu-
sions, obstructions, and lighting variations further complicate
the detection process for the network. Developing a universal

billboard detection algorithm that works accurately across
different types of billboards requires training on a diverse
dataset for robust detection [2]. Hence, in this paper, we
present a novel approach to billboard detection using state-
of-the-art object detection models, combined with a function
that prioritises billboards in desired locations.

This paper makes significant contributions in the field of
billboard detection using street-view images with a compre-
hensive dataset, development of a robust detection algorithm
and an approach to prioritising billboards dependent on their
location within a scene. Through extensive experimentation
and evaluation, we demonstrate the effectiveness of this ap-
proach in achieving higher accuracy in comparison to popular
models, such as CenterNet [3], Faster-RCNN [4], YOLOv5
[5] and latest version of YOLO [6]- YOLOv8 [7]. The
results indicate that our proposed method achieves significant
performance using data in the wild, reaching 82.71% correctly
detected billboards on unseen data. Our work offers valuable
insights and practical solutions that can be utilised in various
applications, including urban planning, advertising analysis,
and outdoor media management.

This paper is structured as follows: In Section II, we
examine the state-of-the-art in billboard detection, identifying
key gaps that our study aims to fill with new insights. We
outline our chosen model, dataset, and training process in
Section III, followed by the implementation details in Sec-
tion IV which highlights our efforts to enhance each model
through hyperparameter tuning, showcasing the refinement of
each network architecture. The introduction of the Gaussian
weighting algorithm further improves model accuracy. Finally,
in Section V, we present the outcomes of our study through
an extensive analysis of the results, providing valuable insights
for future research in this field, as summarised in Section VI.

II. STATE OF ART

For object detection, feature-based detection methods
widely utilise approaches such as Scale-Invariant Feature
Transform (SIFT), Histogram of Oriented Gradients (HOG),
Speeded-Up Robust Features (SURF), and Oriented FAST
and Rotated BRIEF (ORB) [8]. However, these methods
possess inherent limitations. They have low detection rates,



are sensitive to changes in illumination and struggle with
complex backgrounds, occlusions, and variations in rotation.
Moreover, these approaches are slow and encounter difficulties
when dealing with multiple objects in low-quality images. As
a result, Convolutional Neural Network (CNN) have emerged
as a popular solution, offering high-speed object detection
and recognition [9]. CNNs have revolutionised the field by
enabling automatic feature learning directly from raw image
data. Specifically designed CNN models for object detection
can effectively detect patterns in image data and leverage
transfer learning for improved performance [10].

Over the past two decades, numerous ground breaking
object detection models have been published and extensively
studied [11]. These models include SSD (Single Shot Detector)
[12], CenterNet [3], RCNN [13], Fast RCNN [14], Faster
RCNN [4], YOLO [6], Feature Pyramid Network (FPN) [15],
Retina-Net [16], RefineDet [17], Spatial Pyramid Pooling
Network (SPPNet) [18], Deformable Part-based Model (DPM)
[19], TridentNet [20], Fully Convolutional One-Stage Detector
(FCOS) [21], Hybrid Task Cascade (HTC) [22], Deformable
DETR [23], and many more. Recent cutting-edge advancement
in the field of image segmentation is the Segment Anything
Model (SAM) developed by Meta AI Research [24]. SAM is
an instance segmentation model trained on an extensive dataset
comprising 11 million images and 1.1 billion segmentation
masks. Its state-of-the-art performance makes it highly accu-
rate for real-time applications. However, despite these recent
developments, the YOLO model remains widely popular in
object detection applications due to its real-time high accuracy
[6] [11]. YOLO has evolved from its initial version, YOLOv1,
to the most recent version, YOLOv8 [5] [7]. YOLOv8 is
capable of performing segmentation, classification, detection,
tracking, and pose detection, making it a versatile and powerful
model in the field.

For the specific application of billboard detection, previous
studies have primarily concentrated on detecting advertising
billboards using techniques, such as edge detection and planar
object detection [25] [26]. However, these researches en-
counter localisation difficulties when confronted with multiple
objects present in the scene. Additionally, research has targeted
billboards specifically in soccer fields and sport TV broadcasts,
employing methods like the Fast Fourier Transform and Hough
transforms [27] [28]. Yet, it is crucial to acknowledge that their
ability to accurately detect billboards was reliant on the use of
a high-accuracy camera capable of capturing high-resolution
pictures.

Further research has been conducted in the field of billboard
detection, with a particular emphasis on the text and content
displayed within advertisements. One machine learning-based
approach aimed to identify illegal advertisements by analysing
the extracted content from the advertisements themselves [29].
In another study, the detection of photo manipulation on
billboards was accomplished using a novel forensic technique
that assessed adherence to the rules of perspective projection
[30]. Additionally, a study employed Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) to

recognise text present on billboards [31]. Compliance-related
research explored the use of computer vision techniques to
identify advertisements on buildings, as demonstrated by [32].
The billboard detection examples in [29]–[32] primarily fo-
cuses on text or content recognition, lacking a comprehensive
approach to detect billboards regardless of their content.
Therefore, in our research, we aimed to delve into the detection
process irrespective of the billboard’s content.

Shifting the focus to video frames, the development of the
ADNet architecture allowed for the detection of advertising
instances, with the utilisation of the Microsoft COCO (Com-
mon Objects in Context) dataset for training purposes [33].
A significant drawback of ADNet is its lack of scalability,
which raises concerns about its ability to perform effectively
in diverse real-world scenarios.

Research by Liu et al. [34] introduced combining attention-
based multi-scale features with Faster RCNN for the purpose
of billboard detection. They acknowledged billboard detection
challenges such as small object sizes, cluttered backgrounds,
and low resolutions impose limitations on accuracy improve-
ment. A comparative study regarding urban billboard detection
comparing SSD and YOLO models exhibited promising results
[35]. However, both research studies in [34] and [35] demon-
strated satisfactory performance within the constraints of their
respective high-resolution limited datasets. Furthermore, the
research conducted by Chavan et al. [2] demonstrated suc-
cessful outcomes in billboard classification and detection.
Overall, the implementation of state of art object detection
models shows promise in overcoming real-world application
challenges.

III. METHODOLOGY

The methodology section provides a comprehensive outline
of the research approach employed in this study, offering
a clear roadmap for model selection, data collection, data
cleaning and training a custom model using a dataset contain-
ing ground truth bounding boxes for billboards. We fine-tune
the models using a large number of images, annotations and
hyperparameters. To further enhance the accuracy, we apply
a Gaussian distribution-based weighting [36] to the centre of
the detected objects during testing to deal with real world
challenges such as multiple billboards within a scene.

A. Model Selection

After conducting extensive research on the current state-
of-the-art models [11], we carefully selected four networks:
Faster RCNN, CenterNet, YOLOv5, and YOLOv8.

• Faster RCNN stands out for its exceptional accuracy in
object detection. By utilising a region proposal network, it
generates potential object locations and then fine tunes the
model for improved localisation and recognition, which
is essential for applications requiring reliable results [4].

• CenterNet focuses on estimating the centre points of
objects. It can accurately determine the position of the
object, enabling precise centre detection and localisation
of billboards. Its centre point estimation approach allows



it to handle and distinguish multiple objects efficiently,
making it suitable for scenarios where multiple billboards
may be present in the scene [3].

• YOLO is renowned for its impressive speed in object
detection. It can process images in real-time. Moreover,
YOLOv8, the latest version released in 2023, is designed
to be computationally efficient enabling faster processing,
which can be advantageous in scenarios where quick
detection is crucial [6].

B. Image Dataset

We obtained longitudinal and latitudinal coordinates from
an Out of Home (OOH) industry partner [37] for billboard lo-
cations in the United Kingdom, which were used as reference
points for retrieving corresponding street-view images pro-
grammatically. A meticulous cleaning process was completed
to ensure the dataset’s quality and relevance. This involved
removing duplicate images and filtering any irrelevant or low-
quality images (as depicted in Figure 1) that did not accurately
represent the billboard locations. After cleaning the dataset, we
have 3,437 images (examples of which are shown in Figure 2),
which were subsequently divided into three subsets: a training
set comprising 2,500 images, a validation set consisting of
700 images, and a test set containing 238 images. The split
of approximately 73% training, 20% validation, and 7% test
optimises a substantial training dataset for model training,
a validation set for precise hyperparameter tuning, and a
carefully selected test set for an unbiased final evaluation [38].

The dataset consists of images obtained from various loca-
tions across the UK, with different types of billboards, includ-
ing digital and static billboards, street furniture, spectacular
billboards, and illuminated billboards. The billboards exhibit
a wide range of designs, layouts, and content, showcasing
promotional messages for products, services and events. Fur-
thermore, the images also capture contextual elements such
as trees, buildings, roads, pedestrians, and vehicles illustrates
the difficulty in detection. By following this comprehensive
data extraction process - created the custom billboard dataset,
which involved obtaining billboard coordinates, extracting
street view images surrounding each billboard to obtain an
image dataset, cleaning and dividing the data and performing
manual annotation. The manual annotation step entailed re-
viewing each image and accurately labeling the billboards by
placing bounding boxes around them.

C. Training Process

The training process involves optimising the models pa-
rameters and weights through an iterative process to ensure
accurate detection and localisation of billboards. The models
(Faster RCNN, CenterNet, YOLOv5, and YOLOv8) were fine-
tuned using the annotated dataset, allowing them to learn and
adapt to the specific characteristics of billboard images in the
UK regions. This is the general flow of the system:

• Input images - fed into the object detection model.
• Loss function - calculated based on the model predictions

and ground truth.

Fig. 1. Example of a low-quality or irrelevant image (blurry image) filtered
during dataset cleaning process.

Fig. 2. Training sample from image dataset for UK region showcasing
billboards in real-life environments with surrounding vehicles and background
scenery.

• Model parameters - updated using gradient descent opti-
misation, minimising the loss.

• The training process iterates over the dataset multiple
times depending on the number of steps/epochs to im-
prove the model’s performance.

This comprehensive training process enabled the models to
achieve superior performance and effectiveness in detecting
and recognising billboards in various real-life scenarios.

We trained Faster RCNN, CenterNet, and two versions of
YOLO; these were compared based on their accuracy. We
analysed their training and testing accuracy, and robustness to
varying billboard images with single and multiple billboards
in one image. In Section V, we conducted an evaluation of
the models, focusing on their ability to generalise to unseen
urban scenes (test set of 238 images).

IV. MODEL IMPLEMENTATION

The following section elaborates on the practical implemen-
tation of each network, elucidating the architectural details
employed in this research.

A. Faster RCNN

Faster RCNN is a popular framework for object detection in
computer vision. It consists of a convolutional neural network
(CNN) backbone, such as ResNet or VGGNet, for feature



extraction. As shown in Figure 3, Faster RCNN combines a
Region Proposal Network (RPN) with a CNN-based object
detection network to efficiently detect objects in an image.

Fig. 3. Faster RCNN Architecture.

The RPN generates a set of region proposals. It generates
candidate object proposals, which are then refined using a
Region of Interest (RoI) pooling layer and passed through
fully connected layers for classification and bounding box
regression. RPN then shares full-image convolutional features
with a detection network, thus enabling nearly cost-free region
proposals. Faster RCNN merges the RPN and Fast RCNN
into a single network by sharing their convolutional features
’attention’ mechanism. The RPN component tells the unified
network where to look. The key steps involved in an RPN
for object detection framework cover the following aspects in
sequence:

• Input: Image of size W ×H
• Convolutional feature map: F = CNN(Image)
• Anchor generation: Generate a set of fixed-size anchor

boxes at different scales and aspect ratios.
• Anchor classification: For each anchor, predict the prob-

ability of it containing an object (foreground) or not
(background).

• Anchor regression: For each foreground anchor, refine the
coordinates of the bounding box to better fit the object.

The Object Detection Network processes RoIs and performs
object classification and bounding box regression. Convolu-
tional feature maps can be used for generating region propos-
als. This is constructed by adding a few more convolutional
layers so that the model performs both localisation and regres-
sion tasks at the same time, thus a FCN (Fully Convolutional
Neural Network) can be trained end to end specifically for the
task of generating detection proposals. The main components
of an object detection framework encompass the following
aspects in sequence:

• Input: Convolutional feature map F from the RPN and
region proposals.

• RoI pooling: Crop and resize the features within each
region proposal to a fixed size.

• Fully connected layers: Pass the RoI-pooled features
through a series of fully connected layers.

• Classification: Predict the class probabilities for each
region proposal.

• Bounding box regression: Refine the coordinates of the
bounding boxes.

In the framework, the loss function is used to train the
model and optimise the network parameters. The loss function
consists of two components: the classification loss (Lcls) and
the regression loss (Lreg). The overall loss for the RPN is
denoted as Lrpn and defined as the sum of the classification
loss and the regression loss, with the regression loss multiplied
by a balancing parameter (keeping λ = 10) [4]:

Lrpn = Lcls(p, t) + λ · Lreg(t
b, tbi ) (1)

The classification loss (Lcls) is computed for each anchor and
averaged over the number of classes (Ncls):

Lcls =
1

Ncls

∑
c

Lcls(pc, tc) + λ · Lreg(tb, t
b
i ) (2)

Here, ti is the ground truth label for the anchor, tbi is the
ground truth bounding box regression targets, Lcls(pc, tc) is
the binary logistic loss between the predicted probability pc
and the ground truth label tc, and Lreg(tb, t

b
i ) is the smooth

L1 loss for bounding box regression. The term λ is a balanc-
ing parameter that determines the relative importance of the
classification and regression components in the overall loss.
By minimising this loss function during training, the Faster
RCNN model learns to generate accurate region proposals and
accurately classify and localise objects within those regions.
Faster RCNN achieves impressive accuracy but is relatively
slow compared to some newer models [39].

B. CenterNet

CenterNet is an innovative and efficient single-shot object
detection model that deviates from traditional methods by
focusing on predicting the center points of objects instead of
explicitly predicting bounding boxes. By regressing the center
point and object size, CenterNet achieves high accuracy and
efficiency. Unlike other object detectors that rely on bound-
ing box estimation, CenterNet adopts a keypoint estimation
approach. It detects each object as a triplet of keypoints,
specifically the object’s center point and the two corners of
its bounding box.

The CenterNet architecture comprises a backbone network,
intermediate heatmaps for keypoint estimation, and offset
regression maps for bounding box prediction, as shown in
Figure 4. It incorporates two custom modules: cascade corner
pooling and center pooling. Cascade corner pooling enriches
information gathered from the top-left and bottom-right cor-
ners of objects, while center pooling provides more notable
information from the central regions. This combination en-
hances the model’s ability to capture both corner and center
characteristics. The output includes corner heatmaps and cen-
ter heatmaps, indicating the likelihood of object corners and



Fig. 4. CenterNet structure.

centers at different spatial locations. Additionally, embedding
offsets refine localisation by providing displacement informa-
tion. The final step involves localising the object center using
the corner heatmaps, center heatmaps, and embedding offsets.

During inference, CenterNet utilises the predicted corner
keypoints to generate proposals, and then checks if there is
a center keypoint of the same class falling within the central
region of each proposal. If a centre keypoint of the same class
is found, it confirms the proposal as a valid object.

The loss function in CenterNet comprises the heatmap
loss, which measures the dissimilarity between predicted and
ground truth heatmaps using binary cross-entropy. Regression
loss refines bounding box coordinates using the smooth L1
loss. The total loss combines the heatmap loss and regression
loss, with a balancing parameter to control their relative
importance. Mathematically, the loss function in CenterNet
can be summarised as [3]:

Ltotal = Lheatmap + λ · Lreg (3)

where Lheatmap represents the binary cross-entropy loss be-
tween predicted and ground truth heatmaps, and Lreg denotes
the smooth L1 loss for refining bounding box coordinates. λ
is the balancing parameter [40].

CenterNet achieves accurate object detection while main-
taining efficiency in terms of computational resources and
processing time [3].

C. YOLO

YOLO is a real-time object detection framework that aims
to achieve high detection accuracy with fast inference speed.
It divides the input image into a grid and predicts bounding
boxes and class probabilities directly. The YOLO architecture
[41] employs a CNN backbone (as shown in Figure 5),
followed by a series of convolutional layers. These layers
simultaneously predict the bounding box coordinates, object-
ness score, and class probabilities at multiple grid scales,
allowing for accurate and efficient object detection. YOLO
can be described as a deformable parts model that utilises
a sliding window approach. The network performs multiple
tasks concurrently, including feature extraction, bounding box

prediction, non-maximal suppression, and contextual reason-
ing. This unified approach contributes to its efficiency and
real-time object detection capabilities [6].

In contrast to traditional methods like RCNN, YOLO uses
grid cells to propose potential bounding boxes and scores for
objects. However, YOLO applies spatial constraints to these
grid cell proposals, which helps mitigate multiple detections
and leads to far fewer bounding box proposals. One of the
notable advantages of YOLO is that it is a unified model for
object detection. It can be directly trained on full images,
unlike classifier-based approaches. YOLO models, such as
YOLOv3 and YOLOv4, have shown good performance on
various object detection benchmarks. We have chosen to use
both YOLOv5 and YOLOv8 for billboard detection [42].

YOLOv5 has gained widespread recognition and popularity
in the field of object detection. It stands out for its exceptional
performance, achieving good results in terms of accuracy and
speed using various benchmark datasets. This makes it a highly
promising choice for object detection tasks. One significant
advantage of YOLOv5 is its efficiency and lightweight nature.
It utilises a CSPDarknet53 backbone, which enhances feature
extraction capabilities and contributes to improved detection
accuracy. The YOLOv5 network architecture consists of 20
convolutional layers, followed by an average-pooling layer and
a fully connected layer. By incorporating both convolutional
and connected layers, the ImageNet pre-trained YOLOv5
model has shown improved performance in object detection
tasks [43].

YOLOv8 is the latest version of the YOLO model. Although
it shares the same architecture as its predecessors, it introduces
several improvements. These improvements include a new
neural network architecture that combines the Feature Pyramid
Network (FPN) and the Path Aggregation Network (PAN). The
FPN in YOLOv8 gradually reduces the spatial resolution of the
input image while increasing the number of feature channels.
This results in the creation of feature maps that can effectively
detect objects at different scales and resolutions. On the other
hand, the PAN architecture aggregates features from multiple
levels of the network using skip connections. By doing so, the
network can capture features at various scales and resolutions



Fig. 5. YOLOv8 Architecture.

more comprehensively, which is vital for accurate detection of
objects with different sizes and shapes [41].

The loss function in YOLO guides the optimisation process
by aligning predicted bounding box coordinates, improving
object localisation accuracy, and encouraging accurate object
presence estimation and class prediction. The balancing pa-
rameters λcls , λloc, λobj provides the flexibility to fine-tune the
significance of different components in the loss function. This
allows for optimising the model’s performance during training
by adjusting the importance given to each specific loss term.
The loss function helps the model learn and improve its object
detection capabilities, leading to more accurate predictions
during inference than predictions made without utilising the
loss function [7].

Lyolo = λloc · Lloc + λobj · Lobj + λcls · Lcls (4)

where Lloc is the localisation loss, Lobj is the objectness loss,
and Lcls is the classification loss.

D. Hyper-Parameters

It is important to note that the selection of hyperparameters
is a crucial aspect of training deep learning models. The
chosen values are influenced by factors such as the dataset
characteristics, model architecture, available computational
resources, and desired trade-off between speed and accuracy.
Faster RCNN, CenterNet, YOLOv5 and YOLOv8 default
settings served as a starting point for our experiments, and we
further fine-tuned the hyperparameters to optimise the model’s
performance on our specific dataset using the values shown in
Table I. The batch size is the number of samples processed
at once during training. Larger batch sizes can lead to faster
convergence, but it can also require more memory. The step
size decides the total number of training iterations. Whereas
the learning rate determines how quickly model learns and
updates its parameters during optimisation. It affects both the
speed at which the model converges and the accuracy achieved
during the training process. An optimizer is a mathematical
algorithm used in machine learning to adjust the parameters
of a model in order to minimise an error function or maximise
a desired output. It plays a vital role in improving the per-
formance and efficiency of models. The following optimizers
have been used:

• Momentum optimizer: The momentum optimizer incor-
porates a momentum term to accelerate convergence

TABLE I
HYPERPARAMETER

Model Faster RCNN CenterNet YoloV5 YoloV8
Image Size 640 512 416 800
Batch Size 1 1 32 16
Optimizer Momentum Adam SGD SGD
Step Size / Epoch 0-2000 0-2000 0-100 0-50
Warm up Learning Rate 0.001 0.001 0.001 0.001
Step Size / Epoch 2000-25,000 2000-25,000 0-100 0-50
Final Learning Rate 0.004 0.004 0.001 0.001

by considering the accumulated velocity from previous
updates. The equations for the momentum optimizer are
as follows:

vt = γ · vt−1 + α · ∇J(Wt) (5)

Wt+1 = Wt − vt (6)

Here, vt represents the velocity at time step t, γ is the
momentum coefficient, α is the learning rate, ∇J(Wt)
is the gradient of the loss function with respect to the
weights Wt, and Wt+1 is the updated weights [44].

• Adam optimizer: The Adam optimizer combines concepts
from Momentum and root mean square propagation (RM-
Sprop), adapting the learning rate for each parameter
based on past gradients. The equations for the Adam
optimizer are as follows:

mt = β1 ·mt−1 + (1− β1) · ∇J(Wt) (7)

vt = β2 · vt−1 + (1− β2) · (∇J(Wt))
2 (8)

Wt+1 = Wt −
α

√
vt + ϵ

·mt (9)

Here, mt represents the first moment estimate (mean) at
time step t, β1 is the decay rate for the first moment
estimate, mt−1 is the first moment estimate at time step
t−1, vt represents the second moment estimate (variance)
at time step t, β2 is the decay rate for the second moment
estimate, ∇J(Wt) is the gradient of the loss function with
respect to the weights Wt, Wt is the weights at time step
t, Wt+1 is the updated weights at time step t + 1, α is
the learning rate, and ϵ is a small value for numerical
stability [44].

• Stochastic Gradient Descent (SGD) optimizer: SGD is a
basic optimization algorithm that updates the parameters
based on the gradient of the loss function computed using



a small subset (batch) of training data. The equation for
the SGD optimizer is:

Wt+1 = Wt − α · ∇J(Wt) (10)

Here, Wt represents the weights at time step t, Wt+1 is
the updated weights at time step t+ 1, α is the learning
rate, and ∇J(Wt) is the gradient of the loss function with
respect to the weights Wt [44].

E. Gaussian Weighting Algorithm

To further enhance the accuracy of billboard detection, a
Gaussian weighting was applied to the detected object’s centre.
During testing, the bounding boxes generated by each network
were filtered using a Gaussian function centred at the detected
object’s centroid. This additional step aimed to refine the
object localisation and improve the model’s accuracy [36].

To implement the Gaussian Distribution algorithm, the pre-
trained billboard model is loaded, and a confidence threshold
of 50% is set for detection. For each test image, the algorithm
calculates the coordinates of the image center and the center
coordinates of the detected object. The distance x between
the object center and the image center is computed as the
euclidean distance. The object’s weight, denoted as σ, is set
to one-fourth of the image width w

4 . The Gaussian weight is
obtained by applying the Gaussian function with the distance,
where the mean µ is set to 0 for the center. The equation for
the Gaussian Distribution is given by [45] [46]:

Gaussian Distribution = exp

(
− (x− µ)2

2σ2

)
(11)

The Gaussian weight is then multiplied by the confidence score
of the detected object, resulting in the combined score. If the
combined score surpasses the threshold of 50%, the algorithm
identifies the billboard as the center one of interest and draws
a green bounding box around it. Conversely, if the combined
score is below the threshold, a red bounding box is drawn
to indicate that the billboard is not located at the center. This
can be observed in Figures 6 and 7. The Gaussian Distribution
algorithm plays a crucial role in refining the results of billboard
detection.

V. RESULT ANALYSIS

We conducted experiments using a dataset of 238 unseen
images to analyse the generalisation capabilities of our model.
The Mean Average Precision (mAP) is widely used as a metric
to evaluate the object detection models [47], as it compares the
ground-truth bounding box to the detected box and provides
a score that reflects the accuracy of the model’s detections. A
higher score indicates more accurate detections [48].

TABLE II
MODEL COMPARISON RESULTS

Model Faster RCNN CenterNet YoloV5 YoloV8
Step Size / Epoch 25,000 25,000 100 50
Training Accuracy (mAP.50) 59% 75.70% 64.50% 87.40%
Testing Accuracy (mAP.50) 54.30% 57.20% 52.60% 63.40%
With Gaussian - Testing Accuracy 65.43% 55.55% 80.24% 82.71%

Table II provides a comprehensive comparison of the
performance of four different models: Faster RCNN, Cen-
terNet, YOLOv5, and YOLOv8. The models were trained
with different step sizes/epochs, and their performance was
evaluated based on training accuracy and testing accuracy
using mean Average Precision at 0.50 Intersection over Union
(mAP@0.50). Furthermore, the testing accuracy was assessed
through the application of Gaussian distribution weighting.

The training accuracy results for the models are as follows:
Faster RCNN achieved a training accuracy of 59%, CenterNet
achieved 75.70%, YOLOv5 achieved 64.50%, and YOLOv8
exhibited an impressive training accuracy of 87.40%. These
results indicate the model’s ability to learn and detect billboard
features during the training process.

Using the testing dataset, the results are as follows: Faster
RCNN achieved a testing accuracy of 54.30%, CenterNet
achieved 57.20%, YOLOv5 achieved 52.60%, and YOLOv8
achieved 63.40%. These scores demonstrate the model’s per-
formance in accurately detecting billboards in unseen images.
These results demonstrate that the YOLOv8 model obtains
good performance compared with other models with respect
to both training and testing.

In order to further enhance the accuracy of detecting bill-
boards, we employed a Gaussian weighting technique specif-
ically on the centre of the detected objects. This modification
aimed to improve overall network performance by reducing
incorrect classifications in a number of situations, namely
those with multiple detections within a scene when wish to
select the object that is closest to the centre of the image with
a high confidence interval for the billboard class.

After applying the Gaussian weighting, we observed the
following results in terms of testing accuracy for each model:
Faster RCNN improved from 54.30% to 65.43%, CenterNet
experienced a slight decrease from 57.20% to 55.55%, it
performed relatively poorly during testing, indicating that al-
though it had previously exhibited good generalisation during
training by accurately detecting the object centres, it struggled
to accurately identify the centres of billboard objects in the
testing phase. YOLOv5 achieved a significant increase from
52.60% to 80.24%. Notably, YOLOv8 exhibited the most
remarkable improvement in testing accuracy after the appli-
cation of the Gaussian weighting technique. With an increase
from 63.40% to an impressive 82.71%, it emerged as the top-
performing model in terms of accurately detecting billboards
for this dataset. These findings highlight the effectiveness of
the Gaussian weighting technique in significantly enhancing
the performance of the models.

Figures 6 and 7 illustrate examples of the application of the
Gaussian distribution algorithm to detect the centre billboard
in the case of multiple objects present in the scene and justifies
the YOLOv8 testing accuracy increase. In Figure 6, the green
bounding box highlights the selection of the center billboard,
with a detection score of 80.60%. Significantly, even though
there was an alternative billboard exhibiting a higher detection
score of 94.66% (depicted by the adjacent red bounding box),
its Gaussian weight of 15.06 was relatively lower, resulting in a



Fig. 6. Center Billboard Detection
Results Using the Gaussian Distribu-
tion Algorithm.

Fig. 7. Center Billboard Selection
based on Combined Weights with
Gaussian Algorithm.

combined weight that fell below the designated 50% threshold.
Similarly, two additional billboards in the scene surpassed the
50% detection threshold with scores of 73.76% and 68.31%.
However, due to their comparatively lower combined weights,
they were not deemed as the center billboards of interest
(indicated by the red bounding boxes).

Analogous findings were observed in Figure 7, reflecting
the similar results depicted in Figure 6. The centre billboard
was selected based on its confidence score of 84.89% and
a Gaussian weight of 99.65%, outweighing another billboard
that had a detection score of 92.45% but a lower Gaussian
weight of 22.36% resulting in a combined weight of 20.67%,
making it unsuitable for the center position. Furthermore, there
was an additional billboard with a detection score of 70.00%
and a Gaussian weight of 66.85%. However, the combination
of this detection score and Gaussian weight fell below the
threshold criteria of 50%, thus it was also not chosen as the
centre billboard.

These results provide strong evidence supporting our hy-
pothesis that applying a Gaussian weighting approach to
objects based on their proximity to the centre of the image can
greatly improve the accuracy of billboard detection. In sum-
mary, the comparison of the model’s performance reveals that
YOLOv8 consistently outperforms the other models in terms
of both training and testing accuracy. However, it is important
to consider other factors such as computational requirements,
model complexity, and specific use case requirements when
selecting the most suitable model for a given scenario.

VI. CONCLUSION

This research paper addresses the need for accurate bill-
board detection in advertising analytics. We have made no-
table contributions in several areas. Firstly, we developed a
robust billboard detection system using advanced models like
YOLOv8, YOLOv5, Faster-RCNN, and CenterNet. Challenges
involved in this endeavor included finding optimal hyper-
parameters, mitigating over-fitting, and efficiently managing
computational resources during the training process, all of
which we adeptly addressed and resolved during the devel-
opment of these networks. Hence, these models demonstrate
high accuracy in detecting billboards in real-world scenarios.

Furthermore, we introduced an innovative approach by
applying a Gaussian weighting technique to determine the

most central billboards. This significantly improved the overall
accuracy of the detection process, particularly in the case of
YOLOv8, which achieved an impressive accuracy of 82.71%
after the application of the Gaussian weighting. The combi-
nation of accurate detection models and the novel Gaussian
weighting approach proves to be a promising direction for
improving billboard detection in various domains. This ad-
vancement holds significant potential for applications such as
urban planning, advertisement analysis, and traffic monitoring.

Future work could explore further refinements to optimise
the proposed approach and extend it to real-time billboard
detection systems, encompassing the task of verifying the rel-
evance of displayed information. This would involve ensuring
that billboards continuously present accurate and up-to-date
content, addressing scenarios where some billboards may no
longer convey valid information. Furthermore, exploring the
billboard visibility based on environmental conditions, as well
as the unique perspectives offered by different viewing angles,
resulting in more effective outdoor advertising.
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