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Abstract
Neural representations of space in the hippocampus
and related brain areas change over timescales of days-
weeks, even when there are no apparent behavioural
changes. This ‘representational drift’ occurs even af-
ter animals are fully familiar with a given context. Many
qualities of this phenomenon are unknown, yet few tools
exist to aid analysis. Here we present a novel deep-
learning approach for robust quantification and analy-
sis of ensemble level representational drift. Using this
method, we analyse a longitudinal dataset of 0.5-475Hz
broadband local field potential (LFP) data taken from Hip-
pocampal, Prefrontal-Cortex and Parietal-Cortex of rats
collected over multiple days, before and after a contextual
rule change in a spatial navigation learning task. First,
we observed clear spatial representations in all consid-
ered brain regions, despite the low frequency LFP data
used. Second, we show statistically significant drift in
these representations in all brain regions. Lastly, we
show a statistically significant increase in the stability of
representations for all considered brain regions as time
and experience increases. Our general strategy for using
deep neural networks to quantify drift in broadband LFP
data opens up new possibilities for flexibly dissecting the
features of drift in large-scale neural recordings, and how
they relate to animal behaviour.

Keywords: Representational Drift; Decoding; Deep Learning;
Place Cells; Spatial Representations

Data Collection
Data was collected from 6 adult, male Long-Evans rats nav-
igating a memory and decision-making task to find sucrose
rewards on a 130 × 180cm maze for ∼30 days (Jones & Wil-
son, 2005). The rats had little experience with the maze upon
first recording (< 2 days). Rats had to choose between left
and right maze arms based on the direction of an initial guided
turn (see Figure 1), and were trained initially under a “match
turn” rule (i.e. if initially forced to turn right, turn right again
at the choice point). After rats had achieved task competency
(around 25 training days), the rule was inverted to an “oppo-
site turn” rule (i.e. if initially forced right, turn left at the choice
point).

Data collection was performed using 16 chronically-
implanted adjustable tetrodes placed in three distinct brain

Figure 1: Visualization of memory and decision-making task,
rule is flipped when rodent has achieved task competency.

Figure 2: Local field potential data is transformed into wavelet
images (a), and used to train a deep neural decoding system
to predict location (b).

regions of each rat; dorsal CA1 of hippocampus (CA1), pre-
frontal cortex (PFC), and the parietal cortex (PC). Local field
potentials from each tetrode were bandpass filtered at 0.5-
475Hz and reflect the spatially weighted aggregate activity of
populations of neurons and synapses near the tetrode tip. The
animals’ location, speed, and direction data was also calcu-
lated by tracking head-mounted LEDs at 25Hz.

Drift Quantification
To quantify drift, we first trained deep convolutional neural net-
works (CNNs) to decode position from wavelet decomposition
images of local field potentials (Frey et al., 2021) (see Fig-
ure 2), with distinct networks trained using data from differ-
ent days. We trained separate networks for each rat using
data from all brain regions measured, as well as three sepa-
rate networks for each rat trained on data only from CA1 (5
tetrodes), PFC (5 tetrodes) and PC (6 tetrodes). In this way
we can examine both local as well as distributed representa-
tion dynamics.

Notably, as this system takes minimally-processed input, it
is able to perform sensory decoding without spike sorting (a
computationally-intensive process for detecting action poten-
tials and assigning them to specific neurons (Lewicki, 1998)).
Necessarily, spike sorting discards information in frequency
bands outside of the spike range which potentially introduces
biases implicit in the algorithm. In this way our approach
can allow for a more expansive analysis of neuronal drift
than the more classical Bayesian decoding approach (Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998)

Once networks are trained, accuracy data is gathered by
calculating the error for networks trained for each day of data
and each rat on all other days, generating a table of train-
test-lag accuracy scores. By calculating decoding accuracy of
CNNs trained on data from different days we quantify repre-
sentational stability of spatial encodings in these regions. The
idea here is that the better a network trained on day i per-
forms on day i+1, the more similarities there will be between
the spatial representation used by the animal on those days.
The end result is, for 30 days of collected data, a 30 × 30
accuracy table containing the accuracy scores for all train-test
day pairings (see Figure 3).
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Figure 3: Accuracy table for all rats, with darker regions in-
dicating lower error - individual models were trained for each
day, and tested on all days. The diagonal represents tests with
zero train-test-lag. Tables are presented for models trained on
multi-brain regions, as well as single regions. Red lines indi-
cate day of rule change.

Results
For multi brain region models, the average error for zero train-
test-lag tests was 57.2cm. For CA1-only networks the error
was 64.6cm, PFC was 68.5cm, and PC was 69.2cm. Purely
random location estimators achieve average error of 81.6cm,
indicating spatial representations in all brain regions consid-
ered, even using 0.5-475Hz LFP.

Using results generated from both models trained using
data from all considered brain regions (the “multi-region” mod-
els), as well as all single-region models, we observed three
key findings. First, that average decoding error increased as
time from training day increased, for all considered rats, indi-
cating statistically significant representational drift even in the
low frequency LFP data used (p 1× 10−5. for multi-region,
CA1, PFC, and PC models).

We observed that mean normalised accuracy was well de-
scribed by exponential decay curves – we found similar decay
time constants λ for each rat (see Figure 5). These values
seemed to differ by brain region (see Figure 4), though this

Figure 4: Decay time constants for multi-region and all single
region models.

Figure 5: Decoder error against train-test lag for all rats, and
for models trained on multi-brain regions, as well as single
regions. The mean values of these error curves is shown in
yellow, and fitted exponential decay curves are also shown in
red, with their drift time constants displayed.

was not found to be statistically significant.
Last, and most notably, we found a statistically significant

increase in drift time constants as training day increased for
all rats, for both multi-region and single region models (p =
0.0189 0.0092, 0.0191, 0.0444 for multi-region, CA1, PFC,
PC respectively). This shows an increase in stability of spa-
tial representations over time in all considered brain regions.
As the rats were learning the task during recording, This re-
sult suggests that fast ensemble level drift occurs upon first
exposure to a new context, decreasing to a background level
as familiarity is gained, or as time from first exposure in in-
creased.

Interestingly, we observed no significant effects of the rule
change on the power of representational drift, for any consid-
ered brain region.

Conclusion
Our findings illustrate that using deep networks to de-
code wideband LFP enables quantification of representa-
tional dynamics over distributed brain regions and multi-day
timescales, establishing a framework potentially applicable to
a range of experimental contexts and data modalities.

We have demonstrated how this approach can be used to
show increased stability of spatial representations in the hip-
pocampus, prefrontal cortex, and pariatel cortex.

Further work will focus on looking closer at possible cor-
relations between drift and task performance, look closer into
within day drift dynamics, and examine drift behaviours for dis-
tinct frequency bands, yielding insight about stability of neural
codes within these bands.
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