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Abstract: This paper presents a deep learning approach to identify and classify various defects
in the laser-directed energy manufactured components. It mainly focuses on the Convolutional
Neural Network (CNN) architectures, such as VGG16, AlexNet, GoogLeNet and ResNet to perform
the automated classification of defects. The main objectives of this research are to manufacture
components using the laser-directed energy deposition process, prepare a dataset of horizontal
wall structure, vertical wall structure and cuboid structure with three defective classes such as
voids, flash formation, and rough textures, and one non-defective class, use this dataset with a deep
learning algorithm to classify the defect and use the efficient algorithm to detect defects. The next
objective is to compare the performance parameters of VGG16, AlexNet, GoogLeNet and ResNet
used for classifying defects. It has been observed that the best results were obtained when the VGG16
architecture was applied to an augmented dataset. With augmentation, the VGG16 architecture gave
a test accuracy of 94.7% and a precision of 80.0%. The recall value is 89.3% and an F1-Score is 89.5%.
The VGG16 architecture with augmentation is highly reliable for automating the defect detection
process and classifying defects in the laser additive manufactured components.

Keywords: deep learning; directed energy deposition; defect detection; additive manufacturing;
CNN architecture; classification

1. Introduction

Additive manufacturing (AM) of metallic material is the process by which 3D com-
ponents can be built in a layer upon layer fashion. The material deposition is carried out
directly by using the 3D model of the part to be manufactured. The metal AM industry
is a growing sector and is using processes such as powder bed fusion, directed energy
deposition, binder jetting, and sheet lamination. The industry’s most used metal AM
process is the Powder Bed Fusion (PBF) process. It utilizes a laser or electron beam for
selectively melting a powder which leads to the deposition of metal layers. This powder is
spread over the build platform in the build chamber. Melting is carried out as a cyclical
process; once a cycle is completed, a new layer is spread over the build platform using
a recoater blade, roller, or rake. Figure la depicts the schematic view of the PBF process.
On the other hand, the Directed Energy Deposition (DED) process is also attracting the
attention of AM industries. DED processes such as laser-based and arc-based are developed
for the AM industries. In the DED process, heat sources such as a laser and arc are used to
melt the metallic deposition material. The melted deposition material is deposited layer
by layer which manufactures components additively. These processes provide flexibility
of deposition material such as in wire and powder form. Figure 1b depicts the schematic
view of powder-based DED process. The main difference between PBF and DED is the
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method of depositing the deposition material. In PBF, the deposition material is spread
over the substrate material while in DED it is blown through a nozzle. Another difference
is, that the PBF is preferred for manufacturing complex geometries while DED is used for
simple geometries. Defects in parts manufactured through the PBF process are inclusions,
cracks, porosity, incomplete fusion, etc. These defects are formed due to irregularities or
contaminations during powder recoating, poor interaction between laser and material, and
partial solidification [1]. These defects are of concern among researchers and manufacturers
owing to their negative effects on the mechanical properties of manufactured parts [2—4].
However, the defects in the components manufactured by the DED process are flash forma-
tion, voids, cracks, porosity, surface lines, and high surface roughness. So, whether it is
the PBF process or the DED process, defects in the deposition are the main problem, and
solving this is quite complicated and challenging.
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Figure 1. Schematic view of (a) PBF [5] and (b) laser-DED process [6].

1.1. Imaging Defects

A common approach to minimizing defects in the laser-based depositions process is
monitoring melt pool geometries. Monitoring melt pools using IR cameras can provide an
overall insight into processes and parts. However, the most challenging thing in IR cameras
is the emissivity calibration of the melt pool resulting in complications in the analysis [7].
Another method involves capturing images by using postprocessing techniques. The de-
fects can be located either by destructive or non-destructive postprocessing techniques. In
destructive, manufactured samples are cross-sectioned at certain locations, and then by
using metallographic procedures the samples are prepared and the defects are captured
using optical imaging [8]. In Non-Destructive Testing (NDT), the X-ray Computed Tomog-
raphy (X-CT) of the sample is carried out to locate the defects within the manufactured
components [9]. Spierings et al. [10] explained in detail the features of CT scanning, metallo-
graphic imaging, and Archimedes method, which are primarily used to analyse the porosity
in the PBF build components. It has been identified that when compared to the Archimedes
method, the detection of voids using CT images is dependent on the threshold size selected
for voids detections, i.e., setting a higher value of threshold to bypass the detection of
smaller voids. In another study carried out by Wits et al. [11], comparative inspection
results are highlighted using three techniques, i.e., the CT method, the microscopic method,
and the Archimedes method. It has been ascertained that all these methods predict the
same porosities, but there is an added advantage in using the CT scanning technique that
enables the quantification of part porosity. Kim and Saldana [12] used a CT scan to locate
the porosity within the internal thin-walled structure made of IN625 using a laser-based
DED process. For a similar AM process, Kersten et al. [13] inspected the orientation of
thin-walled structures using the CT scanning technique. They investigated the effect of
wall orientation on mechanical properties in which the CT scanning technology was used
for capturing the thin wall orientation for various combinations of process parameters.
Zheng et al. [14] used X-CT scanning technology to understand the evolution of defects
in the 316L SS components manufactured by the laser-DED process. Using X-CT, they
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precisely captured the pores and spatial distance between them. In NDT, eddy current
testing is another way to capture the defects within the components. Saddoud et al. [15]
used an eddy testing method to capture defects within the components manufactured
by the laser PBF process. It was found that the method can detect surface and shallow
defects in a conductive material. For a similar process, Gelatko et al. [16] used eddy current
sensors on the artificially generated defects in samples made up of 316L stainless steel.
The study found that the testing method not only detected the defects but also helped
in characterising the shape and size of defects. Harkin et al. [8] used both NDT and the
destructive characterisation method to capture the lack of fusion defects. In NDT, XCT scan,
and destructive characterisation, the optical imaging method was used. The research work
by Kobryn et al. [17] investigated the effect of process parameters of the laser-based directed
energy deposition process on internal defects such as porosity. They used a metallographic
procedure to capture the lack of fusion and gas pores within the components. Using a
similar metallographic procedure, Galarraga et al. [18] captured the lack of fusion and gas
porosity in the components manufactured by the electron beam-based powder bed fusion
process.

1.2. Classification and Detection of Defects

Along with capturing the images of internal and external defects, their detection,
categorisation, and analysis are important. Aminzadeh and Kurfess [19] developed the
defect detection methodology in an additively manufactured part. They used visual
inspection sensors which were operated online and thereafter coupled the sensors with
different classifiers such as Support Vector Machines (SVM’s) or Neural Networks. The
execution of Supervised machine learning was carried out in two steps. In the first step,
the system training was executed, which means the set of data with known labels was
trained which estimates the parameters of the classification scheme. The SVM classification
requirement of the training step is to create a decision boundary capable of separating the
data sets based on trained data sets with labels [20]. In the second step, the data sets for the
classification of boundaries are tested by creating labels based on the prediction made by
the classification scheme. Performance assessment of the classification scheme is executed
based on comparing metrics such as false-negative rate and false-positive rate obtained for
trained labels and predicted labels of the test data set. Guo et al. [21] captured the porosity
defect in the thin-walled structure built by the laser metal deposition using a pyrometer.
Furthermore, they applied a deep learning model on the thermal images captured by the
pyrometer dataset to predict the porosity in the depositions. Cui et al. [22] proposed a
Convolution Neural Network (CNN) model to inspect internal and surface defects such as
porosity, lack of fusion, and cracks. They used this CNN model to classify the defects with
automatic defect recognition more accurately. Garcia—-Moreno [23] developed an artificial
vision methodology to quantify the porosity with high accuracy suitable for any additive
manufacturing process. The methodology was divided into three steps, first was image
soothing using filters, second was segmenting the pores using Hough transform and third
was automatic classification of the defects. The proposed approach was validated on the
defects formed during the manufacture of components using the laser metal deposition
process. For the PBF process, Zhang et al. [24] proposed a CNN model that can classify and
detect the melt pool, plume, and spatter during the deposition process. The advantage of
the methodology was that it reduced the computation time by saving the image processing
step and making the algorithm more suitable for online monitoring of the process.

From the past literature, it can be concluded that machine learning/deep learning
algorithms can be used to detect and classify defects from large-sized datasets of images
captured using post-processing methodology. However, exploring the potential of deep
learning in the field of additive manufacturing, this paper presents a deep learning method-
ology that can automatically classify and detect defects in the components obtained from
the laser-directed energy deposition process. The objectives of the present research work
are as follows:
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e  To use laser-directed energy deposition process to manufacture horizontal wall struc-
tures, vertical wall structures and cuboid structures using different combinations of
process parameters followed by cross-sectioning of the manufactured structures to
capture images for a dataset.

e To prepare a dataset of horizontal wall structure, vertical wall structure and cuboid
structure with three defective classes such as rough textures, flash formation, and
voids, and one non-defective class.

e Identify a deep learning algorithm capable of classifying defective and non-defective
components and detecting different defects in the components manufactured by the
laser-directed energy deposition process.

e Investigate and compare the performance parameters of various deep learning models
such as VGG16, AlexNet, GoogLeNet and ResNet used for classifying and detecting
defects.

2. Materials and Methods

This section describes the process of deposition, and process parameters used for
the laser DED process. It also includes details of image acquisition instruments and the
deep learning models used to classify and identify defects in the additively manufactured
components.

2.1. Experimental and Acquisition of Image

In the present work, the components were additively manufactured with Inconel
625 deposition material in powder form. The deposition material has been deposited on the
mild steel substrate by using the laser DED process. Figure 2 represents the experimental
setup of the laser DED process used at Magod Fusion Technologies Pvt. Ltd., Pune, India.
The horizontal wall structure, vertical wall structure and cuboid structure as depicted in
Figure 3a—c, respectively were additively manufactured using the laser DED process. The
process parameters of the manufacturing process are described in Table 1.

Table 1. Process parameters.

Laser power 800 W to 1100 W

Powder feed rate 5 g/min to 10 g/min

Heat Source travel rate 500 mm/min to 700 mm/min
Laser spot diameter 2mm

Hatch spacing 1 mm

Slicing thickness 1 mm

Scan pattern Zigzag

The type of dataset images captured in this work is by using a post-processing tech-
nique. After the depositions were executed, an electro-discharge machine was used to
cross-section the samples along the height. These sectioned samples are used for imaging
purposes. To eliminate the effects of shadow, these samples are kept on a flat plate with a
grey background. A Canon (Model 1500 D) camera is used for image acquisition under
natural light conditions. The camera and the surface plate are kept parallel during image
acquisition to avoid asymmetricity. Sectioned samples for the acquisition of images of de-
position geometry are represented in Figure 4a—c, respectively, for horizontal wall structure,
vertical wall structure and cuboid structure. Figure 5 shows three defects such as void,
rough texture, and flash formation in the manufactured components.
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Figure 3. 3D geometry of the Laser additive manufactured components (a) horizontal wall struc-
ture [25], (b) vertical wall structure [25] and (c) cuboid structure.
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Figure 4. Cross-section of the sample images (a) horizontal wall structure [25], (b) vertical wall
structure [25] and (c) cuboid structure.

Figure 5. Various defects in laser additive manufactured components.

2.2. Dataset

The dataset generated comprises 6127 images of deposition geometries. Images with
different anomalies arising during acquisition or unfavorable light conditions (extraneous
images) were withdrawn from the set. After that, images in good condition were distributed
manually amongst three defective classes, i.e., void, rough texture, flash formations, and one
non-defective class, using the expertise and knowledge of the manufacturing process. Each
class consists of 1500 images therefore, the final dataset consisted of 6000 images combined
over all classes. To standardize the data ranges and enhance the data modelling process,
pre-processing of the numerical dataset was executed using Z-score data normalization [26].
Z-score data normalization is represented in Equation (1).

Xo_MX

5 M

XzN =
where, X, is the intensity of each pixel in an original input image, Xzy is normalized pixel
intensity for an input image, My is the mean pixel intensity of the entire original input
image and Sy is the standard deviation of pixel intensity in an original input image.
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Subsequently, random distribution of the normalized dataset into three subsets was
executed. Three sets prepared are a training set (70%) which is used for training the model,
a testing set (15%) for model testing, and a validation set (15%) for model validation.
The images of the deposition geometry dataset have been pre-processed according to
the method suggested by Patil et al. [27]. To focus only on the area of interest with the
maximum possible relevant information following pre-processing steps were performed:

e Conversion RGB to grayscale
e  Gaussian filter applied to enhance image pixel intensity.
o  Resize the image

2.3. Deep Learning Model

The flow diagram of the methodology adopted to classify and detect defects has been
presented in Figure 6.

( Start ]

[ Slicing Dimension ]

Hyper Parameter Adam
Tu_rii_ng l Optimisation l

— CNN Training
-»[ Training dataset ]_'[ Model
-

[ CNN Prediction ]

Model

Feature
Extraction [ Cost Function ]

1 Evolution

CNN
features

extraction

CNN Optimised
Model
!

->[ Testing dataset

¥
[ Defect Detection ] [ Defect Classification ]

Figure 6. Workflow adopted in the present study.

The structure of the model as shown in Figure 6 is divided into two separate modules:

1.  Computational analysis of images within the dataset
2. Defect classification and detection model.

For computational analysis, the dataset is a very important element. In this work the
dataset has been considered in two ways, the first is without augmented dataset, in which
the dataset is considered in its original state. The second is with the augmented dataset, in
which the dataset is artificially modified using an existing dataset. Data augmentation was
executed as a regulatory measure to prevent the model from overfitting training data [28].
In data augmentation, several operations on images such as rescaling with a factor of
1/227, flipping the image horizontally, and zooming on the specific area of interest were
carried out. The next step is slicing dimensions also known as blockwise slicing of the
images. In blockwise slicing, the block corresponding to a sample size of 224 x 224 pixels is
prepared. In the pre-processing of the image data, hyperparameter settings were important
for training the CNN models. The classification model exhibiting the best performance for
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images of laser DED-manufactured components was obtained after numerous iterations
and combinations of hyperparameters. The values were compared with the values of
the hyperparameters presented for metal additive manufacturing processes in the past
literature [29]. Table 2 lists CNN model hyperparameters used in the current work. The
adaptive moment estimation (Adam) optimizer has been used to estimate the adaptive
learning rate for each weight in the neural network. Patience defines the number of epochs
to wait before learning rate decay and early stopping.

Table 2. CNN Hyperparameters.

Cost Function Learning Rate Optimizer No. Epochs  Batch Size Learning Rate Decay Early Stopping

Binar Adam

Cross—};ntro 0.0001 1 =0.85 35 48 Patience = 8 Patience = 32
Y By = 0.988

2.3.1. Convolutional Neural Network and Architectures Used in This Work

The approach of Machine Learning (ML) toward image recognition is a two-step pro-
cess. Feature extraction is the first step that attempts to extract relevant data structures with
the help of different algorithms from the raw image data. Classification is the second step in
which using ML algorithm attempts are made to bring out a pattern capable of mapping the
data structures with the target variable, provided that extraction of these patterns has been
executed during feature extraction for learning. Each stage comprises three layers in CNN:
Convolution layer, Rectified Linear Unit (ReLU) layer, and Max Pooling. The images in the
dataset are usually presented in the matrix having pixels/numbers. To extract the features
from the image using mathematical operation, the convolution layer plays a very significant
role. Detection of the local conjunction of features of the previous layer and mapping its
appearance on a feature map is the prime task of the convolution layer. In CNN, ReLU
is used to increase the prediction accuracy of the models. It is similar to an activation
function applied through the layers of neurons. It is a specific type of implementation used
to combine non-linearity and rectification layers which help to overcome the problem of
vanishing gradient. Preservation of features detected in a small representation is the aim
of the pooling operation, which it does by discarding less significant data at the cost of
spatial data. Spatial data is a type of data that stores information related to the shape, size,
and location of the features within images. There are three types of pooling, minimum
pooling, average pooling, and maximum pooling. In Max pooling, with each pooling layer
spatial size of interesting features of the input image is reduced to half of its size. After
Max pooling, the model becomes robust to small variations in the location of features in
the previous layer. The final step is connecting all neurons in the CNN model. This is
executed by mapping the last activation volume using a fully connected layer on a class of
probability distribution at the output.

The CNN models used in the present research work for training and prediction are
VGG16, AlexNet, GoogLeNet and ResNet. VGG 16 architecture was originally designed
and developed by Simonyan and Zisserman [30]. Figure 7 represents the structure of the
VGG16 network architecture. This architecture is a pre-trained CNN model developed by
the Visual Geometry Group (VGG) of Oxford University. To recognise the object this model
uses sixteen network layers [31] and this increases the depth of current CNN architectures.
The size of the input image is 224 x 224 pixels with 3 channels i.e., RGB. The input image
is passed through the 64 filters of the convolution layer with each filter of 3 x 3 pixels.
Images are passed from a block of convolution layers with a convolution step size of 1 pixel.
The red block represents the input image from the previous layer while the blue block
represents the processing of the image within the layers. After the convolution layer, the
image passes through five layers of max pooling with 128, 256, 512, 512, and 512 filter
sizes in each max pooling layer. The window size of the max pooling layer is 2 x 2 pixels
embedded with a convolution step of 2 pixels for compressing spatial representation of
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224x224x3

224 x 224 x 64

input images. After the Max pooling layer, the VGG16 model has three fully connected
layers out of which the first two layers consist of 4096 neurons and the third connected
layer used for classification consists of 1000 neurons for different classes. At last layer of
the VGG16 model is a softmax layer with 1000 neurons.

112x112x128

56 x 56 x 256

28x28x512
14 x 14 x 512

Tx7x512

1x1x4096 1x1x4096
1x1x1000 1x1 x 1000
b

—

Figure 7. The architecture of the VGG16 CNN model [29].

Krizhevsky [32] proposed a deep learning model by the name AlexNet, which is
also a variant of CNN. This model has eight layers, of which five are convolutional layers,
following which there are three fully connected layers. Max pooling layers also follow some
convolutional layers of the model. The network uses the ReLU function as an activation
function that exhibits better performance than the tanh and sigmoid functions. In five
convolutional layers, the network contains filters or kernels having sizes 5 x 5,3 x 3,3 x 3,
and 3 x 3. Figure 8 represents the structure of the AlexNet network architecture.

Figure 8. The overall architecture of AlexNet [33].

Szegedy et al. [34] proposed GoogLeNet architecture as shown in Figure 9 and is
slightly different from CNN. It has an increased number of units called the inception
module, which has the size of 1 x 1,3 x 3and 5 x 5 in each convolution layer. To make
the architecture computationally more efficient, the inception module with dimensionality
reduction has been added to the architecture. Within this inception module, a series of
Gabor filters having different sizes are added to GoogleNet architecture to handle multiple
scales.
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Figure 9. The architecture of GoogLeNet [35].

In a deep CNN architecture, a vanishing gradient problem could occur if more layers
are stacked. Due to the vanishing gradient, the deep learning model showed worse
performance while training and testing and caused overfitting even though intermediate
initialization and normalization were used to handle the problem. Some researchers [36,37]
used a pre-trained shallower network as additional layers with the deep learning model to
solve the vanishing gradient problem. This resulted in an integrated performance when the
deep learning model and pre-trained shallower networks were operated at the same level.
On the other hand, He et al. [38] developed a ResNet architecture to solve the vanishing
gradient problem. The developed architecture consists of 3 x 3 convolutional layers stacked
residual blocks as shown in Figure 10.

Convl Pool ziﬁ_?f ; 12 gi{
Patch: 7x7 _ Patch: 3x3 - Ve

Stride:2 Stride:2 Cobieis ey

i Conv:1x1,512

3x Conv5s X 36 x Convd4 X 8x Conv3 X
Conv:1x1,512 Conv:1x1,256 Conv:1x1,128
Conv:3x3,512 Conv:3x3,256 Conv:3x3,128
Conv:1x1,2048 Conv:1x1,1024 Conv:1x1,512

Figure 10. The architecture of ResNet [35].

2.3.2. Transfer Learning

Training of the CNN model requires a lot of data and is also computationally time-
consuming. Often prediction of results becomes difficult or less accurate when the CNN
models are applied to less amount of data. To overcome this Transfer learning (TL) method
is adopted. TL is a complex prediction technique in which features of the CNN model that
were earlier trained were used for initializing the training of the CNN model, which is
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used for classification. Tsiakmaki et al. [39] also state that using features generated from
a trained CNN model based on a large dataset for initializing a CNN model on a small
data set is an effective machine-learning method. Implementation of this method is usually
informative even in cases where a new classification differs by large from the classification
on which the original model was trained. In the present study, the top layer of the used
CNN model is pre-trained using the TL approach to obtain better results for features
extraction from the images of the desired dataset. The VGG16, AlexNet, GoogLeNet and
ResNet models used in this are pre-trained on the ImageNet database. It contains more
than a million high-resolution images and is capable of classifying 1000 different classes
within the ImageNet dataset.

3. Results and Discussion
3.1. Defects Classification

VGG16, AlexNet, GoogLeNet and ResNet architectures are used in the current work
for the classification of defects. For each architecture, one set without applying data
augmentation and another set with data augmentation is used. The resultant CNN ar-
chitectures are trained using training data and validated using validation data. Training
of the pre-trained network and the classifier is executed with the data in the first stage,
while in the second, optimisation is carried out using renewed training and fine-tuning.
Figure 11 represents the variation of accuracy and loss on the two settings performed on
training data and validation data during the process of fine-tuning. After the variants of
the CNN models used in this study were trained, optimised, and validated, they were used
for examining image data. The same data set was utilized in both the models and in all
settings.
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Figure 11. Accuracy and loss of VGG16, AlexNet, GoogLeNet and ResNet architecture. (a) training
accuracy plot (b) validation accuracy plot (c) training loss plot (d) validation loss plot.

In the first setting i.e., without data augmentation, the training accuracy of VGG16,
AlexNet, GoogLeNet and ResNet architecture was 0.92, 0.85, 0.73 and 0.62, respectively,
as represented in Figure 11a. The respective training loss was 0.08, 0.15, 0.27 and 0.38 as
represented in Figure 11c. The validation accuracy of the VGG16, AlexNet, GoogLeNet
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and ResNet models is 0.91 0.82, 0.76 and 0.66, respectively, as represented in Figure 11b.
The respective validation loss is 0.09, 0.18, 0.24 and 0.34 as represented in Figure 11d. In
the second experimentation with data augmentation, VGG16, AlexNet, GoogLeNet and
ResNet model training accuracy is 1.00, 0.89, 0.72 and 0.67, respectively, as represented
in Figure 11a, and respective training loss was 0.00, 0.11, 0.28 and 0.33 as represented
in Figure 11c. The validation accuracy of the VGG16, AlexNet, GoogLeNet and ResNet
models is 0.947, 0.89, 0.78 and 0.69, respectively, as represented in Figure 11b. The respective
validation loss is 0.053, 0.11, 0.22 and 0.31 as represented in Figure 11d.

After the training and validation of the models, the testing process has been carried
out. The testing dataset consists of 15% unseen images from the actual dataset. Therefore, a
total of 900 images were used for testing purposes out of which 225 images were equally
divided in each class. A Confusion Matrix (CM) is a special matrix used to summaries
a classification task. CM is used to compare the features predicted by models against
the features in the actual class. Table 3 represents a CM for three defective classes such
as voids, flash formation, and rough textures, and one non-defective class in the dataset.
This table shows the correct and incorrect classification of the number of images in the
test dataset with respect to the features in the images of the actual dataset. The diagonal
values presented in bold in the table represent the number of images with correct classified
features while the off-diagonal presents the number of images in certain classes that have
been incorrectly classified. The confusion matrix derives all performance matrices listed
in this section. TP refers to True Positive, TN refers to True negative, FP refers to False
Positive, and FN refers to False Negative. Performance parameters used for ascertaining
model effectiveness are F1 Score, Recall, Precision and Accuracy, as shown in Equations
(2)—(5). Table 4 represents the result of all performance parameters, with the best value
highlighted in bold.

Accuracy = 1P+ IN (2)
Y= TPYTN+FP+EN
TP
Precision = ——— 3
TP+ FP ®)
TP
Recall = ——— 4
TP+ FN @)
2TP
F1 Score = —————— 5
2TP +FP+ FN ©®)
Table 3. Confusion matrix.
Without Augmentation With Augmentation
. Flash Rough Non . Flash Rough Non
Void Formation  Texture Defective Void Formation  Texture Defective
190 16 12 7 203 7 6 9
14 188 8 15 3 210 5 7
VGG-16
13 195 10 14 7 192 12
17 15 8 185 11 8 11 195
182 18 14 11 189 15 13 8
24 154 19 28 22 180 10 13
AlexNet
18 16 176 15 12 15 186 12
22 25 12 166 25 27 17 156
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Table 3. Cont.
Without Augmentation With Augmentation
. Flash Rough Non . Flash Rough Non

Void Formation  Texture Defective Void Formation  Texture Defective

193 15 8 9 195 13 9 8

22 163 14 26 8 193 11 13
GooglLeNet

18 21 167 19 13 9 189 14

19 25 10 171 8 13 15 189

128 38 30 29 159 19 23 24

30 142 21 32 18 173 21 13
ResNet

27 30 136 32 10 13 186 16

32 29 32 132 12 18 16 179

Table 4. Performance parameters for the examined CNN architectures for the classification and
detection of defects.

Settings Model Accuracy Precision Recall F1-Score
VGG16 0.924 0.843 0.844 0.849
Without Alex net 0.876 0.760 0.747 0.746
augmentation GoogLeNet  0.882 0.783 0.791 0.768
ResNet 0.801 0.604 0.600 0.596
VGG16 0.947 0.890 0.893 0.895
With augmentation Alex net 0.899 0.792 0.767 0.789
GoogLeNet 0.928 0.857 0.853 0.855
ResNet 0.886 0.778 0.767 0.770

Figure 12 represents a comparative analysis of all performance parameters. It can
be seen that in the first setting, which is without data augmentation, the VGG16 model
delivers the best results. Using VGG16, an accuracy of 0.924 is achieved better than the
accuracy achieved using AlexNet, GoogLeNet and ResNet over the same dataset without
augmentation. Similar is the outcome of other performance metrics, proving that a better
classification is achieved using VGG16 over AlexNet, GoogLeNet and ResNet in the first
setting. The results obtained for the second setting resonate with the first setting in terms of
the classification model. Through the direct comparison of accuracies, it is evident that the
VGG16 model performs better than AlexNet, GoogLeNet and ResNet in the second setting
as well. From Table 4, it is seen that VGG16 exhibits an accuracy of 0.947, quite above the
accuracies obtained through the AlexNet, GoogLeNet and ResNet. The precision value
obtained with VGG16 is 0.890, which signifies the number of times the system is correct
when classifying an image as defective. It is significantly higher than 0.792, 0.857 and 0.778
obtained with AlexNet, GoogLeNet and ResNet, respectively. On the other hand, the recall
value is 0.893 with VGG16, 0.767 with AlexNet, 0.853 with GoogLeNet and 0.767 with
ResNet, which represents the fraction of times the system can correctly detect defects out of
all the images with the defect. The VGG16 model gave better results compared to another
model used in current research because the VGG16 model has approx. 138 million model
parameters which is a very large number. These parameters are relatively distributed over
a few layers (as shown in Figure 7) which help in carrying out an in-depth analysis of each
image in the dataset. VGG16 model with data augmentation gave good accuracy because it
avoids overfitting and generalizes the examined models.
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Figure 12. Performance measure result comparison (a) without and (b) with augmentation.

However, it is also recommended that recall always be considered with precision;
for instance, in some cases, having high precision and low recall indicates precise but
incomplete classification. Owing to this calculation of the F1-score (harmonic mean between
precision and recall) was also executed, which measures the robustness and preciseness
of the model’s performance on test data. A high Fl-score indicates a high-performing
model. Therefore, the VGG 16 model (F1-score 0.895), the AlexNet model (F1-score 0.789),
the GoogLeNet model (F1-score 0.855) and the ResNet model (F1-score 0.770) indicates
an effective and better classification of defects using images of components manufactured
using the laser additive manufacturing process.

Figure 13 depicts the 64 feature maps for three defective classes and one non-defective
class captured by the VGG16 model. The above results revealed the performance of the
VGG16 model and found that the VGG16 is capable of classifying defects more accurately
than any other models used in this study. Therefore, 64 feature maps obtained through
the first convolution layer of VGG16 have been selected and presented in Figure 13. The
maps give a better understanding by visualising the feature extractions executed by the
model. From the feature maps images, it has been observed that the features required for
classification such as flash formation, rough texture, void, and non-defective are extracted
and can be easily seen through the features maps. The irregular shape in flash formation
was distinguished from the voids which were round in shape. The images in the other
convolution layers are very difficult to interpret due to high dimensional information
therefore the feature maps from other convolution layers are not included.
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Figure 13. Visualisation of the 64 feature maps of three defective and one non-defective class captured
by the first convolution layer of the VGG16 model.

3.2. Defect Detection

The VGG16 model applied to the augmentation dataset classified the defects with
high accuracy, the same model has been selected for the defect detection process. For defect
detection blockwise image slicing approach is adopted. The process of image slicing is
detailed in Figure 14a. In blockwise image slicing, the image of each structure is divided into
blocks corresponding to size 224 x 224 pixels as shown in the middle figure of Figure 14a.
Each image block is scanned for defects and based on classification results the block of the
image is highlighted with a coloured box. For example, if the presence of a flash formation
defect is predicted by the model in the image block, then the cyan-coloured box as shown
in Figure 14b will highlight the defect at the location in the original image. Similarly;,
the void defect is highlighted by a red coloured box, as represented in Figure 14c,d. The
rough texture defect is highlighted by a green coloured box as shown in Figure 14c,d. The
computational time required for detection and highlighting images with coloured boxes for
one image block is around 3 s; therefore, detecting defects for a complete large-sized image
requires about 624 s. The defect detection results for the horizontal wall structure, vertical
wall structure and cuboid structure carried out using the VGG16 model are depicted in
Figure 14b—d. This figure indicates good classification results achieved by the proposed
approach. In Figure 14b, only a flash formation defect in the vertical wall structure is
seen. In Figure 14c, void and rough texture defects are only observed in horizontal wall
structures. Similar defects are also observed in the cuboid structure in Figure 14d.

Blockwise image slicing
| | Ll ddel bl L L] ||

PrOETEES SRS EE e
= '5&;:--@.% -
B rdossRese 4

(d)

Figure 14. Defect detection result (a) block-wise image slicing process (b) defect detection in vertical
wall structure (c) horizontal wall structure (d) cuboid structure.
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The algorithm proposed in this study can automatically differentiate between de-
fective and non-defective components manufactured using the laser DED process. The
methodology adopted for deep learning can be relied upon to automate the defect detection
process and classify three defect classes such as void, flash formation and rough texture
and one non-defective class in laser additive manufactured components. The proposed
VGG16 deep learning approach detected defects more accurately, the method requires
further tuning considering complex geometries and other categories of defects.

4. Conclusions

This paper reports a deep learning approach to identify and classify the defects in the
laser DED manufactured components. The algorithm proposed in this study can be used to
automatically differentiate between defective and non-defective components manufactured
by the additive manufacturing process. Based on these, the following conclusions are
drawn:

e  The proposed robust methodology for deep learning is highly reliable for automating
the defect detection process and classifying defects such as void, flash formation and
rough texture in laser additive manufactured components.

e  The different deep learning models such as VGG16, AlexNet, GoogLeNet and ResNet
used to classify defects, showed good applicability for the additive manufactured
horizontal wall structure, vertical wall structure and cuboid structure.

e  The VGG16 CNN architecture achieved the best results and outperformed the results
of the other CNN architectures. With augmentation, the VGG16 approach obtained a
test accuracy of 0.947, as well as a precision of 0.890, a recall of 0.893, and an F1-Score
of 0.895.

e The VGG16 model gave a good Fl-score (Fl-score 0.895) compared to other CNN
models, this indicates that a VGG16 gave an effective and better classification of defects
using images of components manufactured using the laser additive process.

e  Although the proposed deep learning approach detected defects more accurately, the
method requires further tuning considering complex geometries and other categories
of defects.
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