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Characterization of an
unanticipated indium-sulfur
metallocycle complex
Joshua J. Morris1, Adam Nevin1, Joel Cornelio1,2 and
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We have produced a novel indium-based metallocycle complex
(In-MeSH), which we initially observed as an unanticipated
side-product in metal–organic framework (MOF) syntheses.
The serendipitously synthesized metallocycle forms via the
acid-catalysed decomposition of dimethyl sulfoxide (DMSO)
during solvothermal reactions in the presence of indium
nitrate, dimethylformamide and nitric acid. A search through
the Cambridge Structural Database revealed isostructural
zinc, ruthenium and palladium metallocycle complexes
formed by other routes. The ruthenium analogue is
catalytically active and the In-MeSH structure similarly
displays accessible open metal sites around the outside of the
ring. Furthermore, this study also gives access to the
relatively uncommon oxidation state of In(II), the targeted
synthesis of which can be challenging. In(II) complexes have
been reported as having potentially important applications in
areas such as catalytic water splitting.
1. Introduction
There has been significant interest in the synthesis of metallocycle
compounds due to their potential in sensing [1–3], catalysis [4],
molecular magnetism [5,6] and biological applications [7,8].
Metallocycles have been studied in particular as heterogeneous
catalysts with very promising results due to the accessibility of
active metal sites and unusual oxidation states often found in
these relatively large complexes [9–11]. However, many such
compounds are made with rare or precious metals and
replacing them with more abundant and cheaper alternatives
such as indium has become a necessity [12].

Indium compounds such as indium(III) chloride have been used
as catalysts for many organic reactions including the hydroarylation
of biaryls and cycloisomerization of cyclohexenylalkynes [13].
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Indium(III) fluoride and indium(III) triflate promote the cyanation of aldehydes and Diels–Alder reaction of

imines [14,15]. Catalysis by indium(II) compounds is relatively uncommon [16]. In(II) selenide has been
employed in two-dimensional semiconductors for the fabrication of thin film cells for optoelectronic
applications and for water splitting [17,18]. Furthermore, the In(III) state is thermodynamically favoured
so the number of reported In(II) compounds is relatively few [19]. Indeed, in this study we were originally
using In(III) nitrate as a precursor in reactions intended to make metal–organic frameworks (MOFs), an
area of growing interest [20–26], and were surprised to find an In(II) product formed. The synthesis
processes of MOFs is an area of particular interest, but relatively little consideration has been given to
identifying the side-products when phase-pure materials are not formed [27,28]. After further
investigation, we report herein the synthesis and crystal structure of an intriguing and unexpected
indium(II)-methanethiolate complex.
l/rsos
R.Soc.Open
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2. Material and methods
Synthesis of the In-MeSH metallocycle is based on a traditional solvothermal route commonly used for
MOF syntheses. In our first synthesis of In-MeSH, we included an aromatic dicarboxylic acid linker with
the intention of forming a MOF. Subsequent reactions showed that the presence of this dicarboxylic acid
plays no appreciable role in the formation of the product, since In-MeSH forms in the analogous reaction
without the dicarboxylic acid present.

Dimethyl sulfoxide (DMSO, 1.0 ml) was added to a solution of indium nitrate hydrate (92.0 mg,
0.198 mmol) in dimethylformamide (DMSO, 3.0 ml). To this, 6 M HNO3 (100 µl) was added, and the
resulting solution was heated in a sealed Wheaton vial at 65°C for 17 h. The reaction yielded
pale yellow cubic crystals of In-MeSH. The as-synthesized crystals were analysed by powder X-ray
diffraction (PXRD) and the crystal structure was determined by single-crystal X-ray diffraction
(SCXRD). Attempts to optimize the synthesis showed that the reaction will not proceed unless DMF is
present.

Single-crystal X-ray diffraction data for In-MeSH was collected on an Agilent SuperNova Dual
Atlas diffractometer at 150 K using Mo Kα radiation (λ = 0.71073 Å). Crystals were immersed in
Fomblin before being loaded onto a MiTeGen Kapton micromount. Data collection and processing
were conducted using CrysAlisPro. Structures were solved via dual-space direct methods using
ShelXT and refined by full-matrix least-squares on F2 using ShelXL-2014 within the Olex2 software.
All non-hydrogenic atoms were refined anisotropically; hydrogen atoms were assigned using a riding
model only. A weighting scheme and absorption corrections were applied to the structure. The PXRD
pattern was collected at room temperature on a X’PertPro PANalytical Chiller 59 diffractometer using
CuKα radiation (λ = 1.5406 Å). The sample was loaded onto a zero-background silicon wafer directly
from the reaction solution, with excess solvent being wicked away with tissue paper before the
measurement.
3. Results
In table 1, analysis by single-crystal X-ray diffraction shows that In-MeSH crystallizes in the
rhombohedral R-3 space group, with unit cell parameters a = b = 17.6632 (9) Å, c = 8.7095 (5) Å, and a
unit cell volume of 2353.2 (3) Å3. The metallocycle asymmetric unit comprises two components: an
indium ion and two deprotonated methanethiol (CH3S

−) groups which bridge adjacent indium ions to
yield an In6(CH3S)12 metallocycle (figure 1).

Each indium ion is coordinated to four sulfur atoms, one from each of the four deprotonated
methanethiol molecules. These sulfur atoms each bridge two indium ions, giving a metallocycle ring
that exhibits a distorted square planar coordination around each indium centre; the S1-In-S2 angle is
97.7°, while the S1-In-S1 angle is 81.9°. Furthermore, viewing the metallocycle along the c-axis shows
the S1-In-S1 and S2-In-S2 angles to be 174.5° and 178.5° out of the plane of the four coordinated
sulfur atoms. The In–S distances in In-MeSH are between 2.321 and 2.332 Å, which are shorter than
both In(III)–S bonds (typically approx. 2.4–2.5 Å) and In(I)–S bonds (typically approx. 2.7 Å) [29–31].
The In–In distance is 3.214 Å, eliminating the possibility of In–In bonds, typically reported to be 2.7–
2.8 Å [16].

We compared these bond lengths and angles of In-MeSH with its Ru, Zn and Pd analogues, hereby
called Ru-MeSH, Zn-MeSH and Pd-MeSH, respectively (electronic supplementary material, tables S1–
S3) [32]. All these metallacycles crystallize in the same R-3 space group except for Zn-MeSH, which



Table 1. Crystal structure data for In-MeSH.

crystal data

chemical formula C12H36In6S12
Mr 1254.05

crystal system, space group Trigonal, R-3

temperature (K) 150.01

a, c (Å) 17.6543 (8), 8.7083 (4)

V (Å3) 2350.5 (2)

Z 3.0

radiation type, λ (Å) Mo Kα, 0.71073

μ (mm−1) 0.90

F (000) 1782.0

Dx (Mg m−3) 2.658

Θmin., Θmax. (°) 3.5, 29.1

data collection

diffractometer SuperNova-Duo, Atlas diffractometer

absorption correction Multi-scan CrysAlisPro SCALE3 ABSPACK

Tmin., Tmax. 0.933, 1.0000

measured reflections 4331

independent reflections 1326 [Rint = 0.0209, Rsigma = 0.0233]

reflections with I > 2σ(I) 1225

refinement

R[F2 > 2σ(F2)] 0.0240

wR(F2) 0.1071

S 1.12

data/restraints/parameters 1326/0/48

hydrogen treatment H-atom parameters constrained

largest diff. peak/hole (e Å−3) 0.82/−0.58
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belongs to the P21/n space group. In-MeSH, Ru-MeSH and Pd-MeSH show very similar unit cell
lengths (a = b≈ 17.6–17.8 Å and c = 8.7 Å). For all four of these metallacycles, the M–S bond lengths
(approx. 2.3 Å) and M–M distances (approx. 3.1 Å) are also relatively similar (electronic
supplementary material, figure S1). In reported structures containing M–M bonds, we observe
example bond lengths for Ru–Ru, Zn–Zn and Pd–Pd bonds to be 2.848, 2.358 and 2.6–2.7 Å,
respectively [33–35]. Comparing these bond lengths with the M–M distances of the respective
metallocycles leads us to conclude that the four metallacycles do not possess M–M bonding.
4. Discussion
The synthesis forms a solid product, within which crystals of sufficient quality to obtain the single crystal
structure were identified. However, we also simulated a PXRD pattern from the SCXRD structure and
compared it with the experimental pattern of the bulk powder material (figure 2) to find that
In-MeSH does not form as a phase-pure solid. Peaks at 2θ = 10.1°, 15.2°, 18.3°, 20.2°, 26.6° and 39.8°
match those reflections simulated from the SCXRD structure, but comparison of the additional
observed peaks against indium nitrate hydrate, indium sulfide, cubic and rhombohedral indium
oxides, and indium oxyhydroxide did not afford any matches [36]. We suspect that the relatively
uncommon In(I) or In(II) oxides may be formed as the other phase in this reaction [37–39] but could
not source crystal structures or powder diffraction patterns for either. Furthermore, while the
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Figure 1. (a) The metallocycle viewed along the c-axis. (b) The metallocycle viewed along the a-axis, with the atom labels shown
and hydrogen atoms removed for clarity. (c) The asymmetric unit. (d) Two-dimensional packing viewed along the c-axis. (e) Space
filling diagram of In-MeSH showing no voids. Colour code: pink: indium, yellow: sulfur, black: carbon, white: hydrogen.
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Figure 2. A comparison of the PXRD pattern of synthesized In-MeSH (red) to the PXRD simulated from the SCXRD (black). Asterisks
indicate peaks that match with the simulated PXRD.
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precursor indium nitrate hydrate no longer appears to be present, there may be solid unreacted indium
nitrate present as a different solvate than at the start of the reaction.

The analogous Ru complex has an absorption band at 365 nm ascribed to an ligand-to-metal charge
transfer (LMCT) transition [32]. This LMCT band tails off in the blue region, around 420 nm, which gives
the Ru-complex a yellow colour. For In-MeSH, while the metal-based orbitals will certainly be different,
if the lowest unoccupied molecular orbital (LUMO) is primarily metal-based across the indium ions, a
charge transfer transition may again be the source of the pale-yellow colour observed for these
crystals [40]. A full spectroscopic characterization was unfortunately not possible with the limited
amount of material available but efforts are underway to make phase-pure In-MeSH and perform
both experimental and computational characterization of its optical and electronic properties.
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Figure 3. (a) Acid catalysed decomposition of DMSO generates methanethiol in situ, which subsequently binds to In(II) ions to form
In-MeSH; (b) DMF thermally decomposes, forming hydrogen or carbon monoxide which in turn could reduce In(III) to In(II); (c) DMF
oxidation to N,N-dimethyl carbamic acid could simultaneously reduce In(III) to In(II).
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As In-MeSH contains methanethiol, which was not one of the initial reactants, the solvothermal
conditions used must generate methanethiol in situ. If this is a slow or low-yielding process, that may
explain the observed low yield and phase-impure solid product. The decomposition of DMSO
into methanethiol (figure 3a) via an acid-catalysed Pummerer rearrangement has been well studied
[30,41–43]. In the presence of strong acids such as HNO3, DMSO forms formaldehyde hemithioacetal,
which decomposes to methanethiol and formaldehyde. We propose that this is the source of the
methanethiol which reacts with In(II) ions, the origin of which are discussed below.

The 2+ oxidation state of the indium ions was determined by inspection of the asymmetric unit,
which consists of one indium ion and two methanethiol molecules, each of which formally
contributes a 1− charge. It is notable that the reaction only proceeds in the presence of DMF and
hence we suspect that DMF is responsible for the reduction of indium (III) to indium (II). Though we
could not find specific literature for the DMF reduction of In(III) to In(II), the utility of DMF for the
reduction of metal ions is well known, with reported examples including the reduction of Au(III) to
Au(0), Ag(I) to Ag(0), W(VI) to W(IV), Pd(II) to Pd(0) and, most pertinently given the existence of an
analogous isostructural ruthenium metallocycle, Ru(III) to Ru(II) [44–51]. As suggested by Nagata &
Obora, under heating DMF could react via two methods: (i) thermal breakdown via formic acid into
either water and carbon monoxide (figure 3b) or carbon dioxide and hydrogen, the latter of which in
both cases serves as the reducing species, or (ii) DMF reduces the In(III) to In(II), being oxidized to
N,N-dimethyl carbamic acid in the process (figure 3c) [45]. Our reaction medium is strongly acidic, in
principle inhibiting the second of these options. As a third alternative, formaldehyde generated from
decomposition of DMSO (figure 3a) could also be oxidized by HNO3 to formic acid, potentially
providing another route to reducing In(III) to In(II), but the absence of In-MeSH formation when
DMF is not present makes this appear a less likely pathway.

The metallocycle itself, it is worth noting, has no pores or voids capable of storing any
residual molecules of the solvents DMF or DMSO. Packing in the crystal structure appears to be
via weak van der Waals interactions and no stronger supramolecular interactions are apparent.
We have compared the crystal structure of In-MeSH with its zinc, ruthenium and palladium
analogues [32]. As for In-MeSH, the Zn(II), Ru(II) and Pd(II) analogues show distortions from the
ideal square planar angle of 90° to about 97.7° around each metal centre. The M(II)-S bond length in
all four metallocycles is between 2.2 and 2.3 Å. An astute reviewer of this manuscript suggested that
perhaps we had made the Pd-MeSH analogue as a result of trace Pd-impurities carried through from
linker synthesis via cross-coupling reactions. The existence of Pd-MeSH forming as a side product in
MOF reactions when Pd-catalysed cross-coupling reactions are used for ligand synthesis certainly
cannot be ruled out in such cases. The unit cell lengths of the Pd(II) analogue, Pd-MeSH are indeed
very similar to In-MeSH (electronic supplementary material, table S1). However, small differences
exist between the S2-M-S2 angles (electronic supplementary material, table S3) and between the M–M
distances: 3.214 Å for In-MeSH and 3.126 Å in Pd-MeSH (electronic supplementary material,
figure S1). Since we are able to synthesize In-MeSH without any organic ligand present we rule out
this possibility.
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The Ru analogue is reported to be catalytically active for the alkenylation of aryl pyridines [32].

Though there are not many reports of catalysis by In(II) compounds, we believe that due to the
comparatively high abundance of indium in the Earth’s crust and the significantly lower cost
compared with ruthenium (ca 250 times more abundant and ca 100 times cheaper) [52,53], In-MeSH
is a good candidate for future catalyst testing. The catalytic activity of the analogous ruthenium
metallacycle is ascribed to the vacant axial coordination site, present again here in the indium-based
structure. If obtainable as a phase-pure material, In-MeSH may also serve as an effective reducing
agent due to the fact that the In(III) state is thermodynamically preferred [19].
 .org/journal/rsos
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5. Conclusion
An unanticipated indium(II)-based metallocycle compound has been synthesized using indium nitrate,
DMF, HNO3 and DMSO. This compound may well be a common side product in many MOF
reactions, as it is formed via the partial decomposition of the DMSO solvent in an acidic environment.
The unusual metalloband structure contains indium ions in the relatively uncommon 2+ oxidation
state and their distorted square-planar geometry means they are potentially accessible by solvents or
catalytic substrates in an analogous manner to the previously reported ruthenium structural analogue.
Experiments to synthesize phase-pure In-MeSH and investigate catalytic activity are underway.
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