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Abstract

Let (X1, . . . , Xn) be a random vector distributed according to a time-

transformed exponential model. This is a special class of exchangeable models,

which, in particular, includes multivariate distributions with Schur-constant sur-

vival functions and with identical marginals. Let for 1 ≤ i ≤ n, Xi:n denote the

corresponding ith order statistic. We consider the problem of comparing the

strength of dependence between any pair of Xi’s with that of the corresponding

order statistics. It is proved that for m = 2, . . . , n, the dependence of X2:m on

X1:m is more than that of X2 on X1 according to more stochastic increasingness

(positive monotone regression) order, which in turn implies that (X1:m, X2:m) is

more concordant than (X1, X2). It will be interesting to examine whether these

results can be extended to other exchangeable models.
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1 Introduction

Let {X1, . . . , Xn} be a set of n random variables and let for 1 ≤ i ≤ n, Xi:n denote the

corresponding ith order statistic. The problem of dependence among order statistics

has been well studied in the literature when the random variables Xi’s are indepen-

dent and identically distributed. It is well known that in this case, any pair of order

statistics are positively dependent according to likelihood ratio dependence, a very

strong notion of positive dependence. Averous, Genest and Kochar (2005) studied

the problem of comparing the relative degree of dependence among two pairs of order

statistics based on independent and identically distributed continuous random vari-

ables. Besides other results, they proved that for any 1 ≤ i < j ≤ n, the dependence

of Xj:n on Xi:n decreases in the sense of more stochastic increasingness (also known as

more monotone regression dependence) as i and j draw further apart. Genest, Kochar

and Xu (2009) and Kochar (2022 a) extended some of these results to the case when

the parent observations are independent with proportional hazard rates. See Boland

et al. (1996) and Chapter 8 of Kochar (2022 b) for more details and other results on

this topic.

However, this problem of dependence among order statistics has not been fully

studied when the Xi’s are dependent. It is well known that when the Xi’s are associ-

ated, so are the order statistics based on them (cf. Barlow and Proschan, 1981) which

implies in turn that cov(Xi:n, Xj:n) ≥ 0 for any 1 ≤ i ≤ j ≤ n. One might think

that the order statistics are always positively dependent. However, this is not always

true as shown in Boland et al. (1996). Further in this paper, towards the end of their

paper, they posed the question to explore the conditions on the joint distribution of

the Xi’s, under which the order statistics are positively associated.
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Another question of interest is to examine whether the degree of dependence among

order statistics is more than that exist between the parent observations. This is

certainly true when the observations are independent. We investigate this second

problem in this paper. Navarro and Balakrishnan (2012) obtained expressions for the

Pearson’s coefficient of correlation, Kendall’s τ and Spearman’s ρ coefficient between

the first two order statistics for some exchangeable bivariate distributions. Kochar and

Xu (2013) proved that in the case of exchangeable bivariate Pareto distribution, the

dependence of the second order statistic on the first order statistic is more than that

of the parent observations according to more stochastic increasingness order. This

problem has also been briefly discussed in Chapter 8 of Kochar (2022 b).

While the general solution is still elusive, we analyze the case when the joint distri-

bution of the observations has a Schur-constant survival function or, more generally,

when the case of a time-transformed exponential model is considered. Besides allow-

ing for clear solutions, these models are of interest in view of some specific aspects

emerging in the analysis of dependence properties for Archimedean copulas. It is

proved that, for m = 2, . . . , n, the dependence of X2:m on X1:m is more than that

of X2 on X1 according to more stochastic increasingness order. As the concept of

more stochastic increasingness order as defined in the next section is copula based,

it follows that κ(X1, Xi) ≤ κ(X1:m, X2:m), for i = 1, . . . ,m and for any margin-free

measure of concordance κ satisfying the axioms of Scarsini (1984), e.g., Kendall’s tau

or Spearman’s rho. We also find conditions under which different types of stochastic

dependence relations between X2:m and X1:m hold. It will be interesting to examine

whether these results can be extended to other exchangeable models.

The plan of the paper is as follows. In Section 2, we review some concepts of

positive dependence and dependence orders. In Section 3, some basic definitions and

properties of the multivariate distributions of the type time-transformed exponential

model are recalled. A special case of the latter class is described by the condition that

the joint survival function is Schur-constant. For this case, we give some basic results
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that will be used for the analysis of the general case of time-transformed exponential

model. The main results of this paper are presented in the last section.

2 Some dependence concepts and dependence or-

ders

In the literature there exist several notions of monotone dependence between random

variables. Researchers have also developed the corresponding dependence (partial)

orderings which compare the degree of (monotone) dependence within the compo-

nents of different random vectors of the same length. For details, see the pioneering

paper of Lehmann(1966) and Chapter 5 of Barlow and Proschan (1981) for different

notions of positive dependence, and that of Kimeldorf and Sampson (1989) for a uni-

fied presentation of families, orderings and measures of monotone dependence. Other

details about these concepts may be found in the Chapter 2 of Joe (1997), Chapter

5 of Nelsen (1999) and Chapters 5 and 8 of Kochar (2022 b). See also Foschi and

Spizzichino (2013).

In this section we first review some of the notions of monotone dependence for

a bivariate vector (X, Y ) with joint cdf H(x, y), joint survival function H, and with

marginal cdf’s F and G, respectively. Remind that the joint survival function of

(X, Y ) is defined by

H(x, y) = P [X > x, Y > y] = 1− F (x)−G(y) +H(x, y) (2.1)

In the case when the distributions F and G are absolutely continuous with unique

inverses, F−1 and G−1, the connecting copula associated with H is defined as

C(u, v) = H(F−1(u), G−1(v)), (u, v) ∈ (0, 1)2.

In other words, C is the distribution of the pair (U, V ) ≡ (F (X), G(Y )) whose margins

are uniform on the interval (0, 1). The survival copula is defined by

Ĉ (u, v) = H
(
F

−1
(u), G

−1
(v)

)
4



See, for example, Chapter 1 of Nelsen (1999) for details.

Perhaps the most widely used and understood notion of positive dependence is

that of positive quadrant dependence as defined below.

Definition 2.1 Let (X, Y ) be a bivariate random vector with joint distribution func-

tion H. X and Y are said to be positively quadrant dependent (PQD) if

P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y] for all (x, y) ∈ R2,

or equivalently if

P [X ≤ F−1(u), Y ≤ G−1(v)] ≥ P [X ≤ F−1(u)]P [Y ≤ G−1(v)] for all (u, v) ∈ [0, 1]2,

in case the random variables are continuous with unique inverses. That is, (X, Y ) are

PQD if and only if

C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2.

Notice that C(u, v) ≥ u · v if and only if Ĉ(u, v) ≥ u · v.

A well known partial order to compare dependence between two pairs of random

variables is that of more positive quadrant dependence order as defined below.

Definition 2.2 (X2, Y2) is said to be more positive quadrant dependent than (X1, Y1),

denoted by (X1, Y1) ≺PQD (X2, Y2), if and only if,

C1(u, v) ≤ C2(u, v) for all u, v ∈ (0, 1), (2.2)

or equivalently if

Ĉ1(u, v) ≤ Ĉ2(u, v)

where Ĉ1, Ĉ2 are the survival copulas of (Xi, Yi), i = 1, 2, respectively.

In the literature the more PQD order is also known as the more concordance order

(cf. Joe, 1997 pp 36). It is also well known that (X1, Y1) ≺PQD (X2, Y2) ⇒ κ(X1, Y1) ≤

κ(X2, Y2), where κ(S, T ) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient,
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or indeed any other copula-based measure of concordance satisfying the axioms of

Scarsini (1984).

Lehmann (1966) in his seminal work introduced the notion of monotone regression

dependence (MRD) which is also known in the literature as stochastic increasingness

(SI).

Definition 2.3 For a bivariate random vector (X, Y ), Y is said to be stochastically

increasing (SI) in X if for all (x, x′)s ∈ IR2,

x < x′ ⇒ P (Y ≥ y| X = x′) ≥ P (Y ≥ y| X = x), for all y ∈ IR. (2.3)

If we denote by Hx the survival function of the conditional distribution of Y given

X = x, then (2.3) can be rewritten as

x < x′ ⇒ Hx′ ◦H−1

x (u) ≥ u, for 0 ≤ u ≤ 1. (2.4)

Note that in case X and Y are independent, Hx′ ◦H−1

x (u) = u, for 0 ≤ u ≤ 1 and for

all (x, x′). The SI property is a very strong notion of positive dependence and many

of the other notions of positive dependence follow from it. In particular it implies

association (and hence positive correlation) between X and Y . Also note that SI

property, in general, is not symmetric in X and Y ; however it obviously is symmetric

in the case of exchangeability.

Denoting by ξp = FX
−1(p) the p-th quantile of the marginal distribution of X, we

see that (2.4) will hold if and only if for all 0 ≤ u ≤ 1,

0 ≤ p < q ≤ 1 ⇒ Hξq ◦H
−1

ξp (u) ≥ u. (2.5)

Suppose we have two pairs of continuous random variables (Xi, Yi) with joint cu-

mulative distribution functions Hi and marginals Fi and Gi for i = 1, 2. We would

like to compare these two pairs according to the strength of stochastic increasingness

(monotone regression dependence) between them.
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Definition 2.4 Y2 is said to be more stochastically increasing in X2 than Y1 is in X1,

denoted by (Y1|X1) ≺SI (Y2|X2) or H1 ≺SI H2, if

0 < p ≤ q < 1 =⇒ H2,ξ2q ◦H
−1

2,ξ2p
(u) ≥ H1,ξ1q ◦H

−1

1,ξ1p
(u), (2.6)

for all u ∈ (0, 1), where for i = 1, 2, H i,s denotes the conditional survival function of Yi

given Xi = s, and ξip = F−1
i (p) stands for the pth quantile of the marginal distribution

of Xi.

Note that (2.6) implies that if Y1 is SI in X1, then so is Y2 in X2 and conversely if

Y2 is stochastically decreasing in X2, then so will be Y1 in X1.

Remark 2.1 It can be checked that the definition of “more SI” as given above is equiv-

alent to the one given by Capéraà and Genest (1990) as applied to their copulas.

This is also equivalent to the one given by Avérous, Genest and Kochar (2005) who

define “more SI” in terms of conditional distribution functions instead of conditional

survival functions as defined above.

Definition 2.5 For a bivariate random vector (X, Y ), Y is said to be right tail in-

creasing (RTI) in X if for all (x, x′)s ∈ IR2,

x < x′ ⇒ P (Y ≥ y| X ≥ x′) ≥ P (Y ≥ y| X ≥ x), for all y ∈ IR. (2.7)

By conditioning on the quantiles in the definition of more RTI as proposed by

Avérous and Dortet-Bernadet (2000), Dolati, Genest and Kochar (2008) proposed a

weaker dependence order for comparing two bivariate random vectors based on RTI

considerations .

Definition 2.6 Y2 is said to be more right-tail increasing (RTI) in X2 than Y1 is in

X1, denoted by (Y1|X1) ⪯RTI (Y2|X2), if and only if, for 0 ≤ u ≤ 1,

0 < p < q < 1 ⇒ H∗
2, ξ2q

◦H∗−1
2, ξ2p

(u) ≤ H∗
1, ξ1q

◦H∗−1
1, ξ1p

(u), (2.8)

where ξip = F−1
i (p) stands for the pth quantile of the marginal distribution of Xi, and

H∗
i, s denotes the conditional distribution of Yi given Xi > s, for i = 1, 2.

7



Likewise, Y is said to be left tail decreasing (LTD) in X if for all (x, x′)s ∈ IR2,

x < x′ ⇒ P (Y ≤ y| X ≤ x′) ≤ P (Y ≤ y| X ≤ x), for all y ∈ IR. (2.9)

Avérous and Dortet-Bernadet (2000) analogously defined the concept of more LTD

(after conditioning on the quantiles instead) and noted the following following chains

of implications

(Y1|X1) ⪯SI (Y2|X2) ⇒ (Y1|X1) ⪯RTI (Y2|X2) ⇒ (X1, Y1) ⪯PQD (X2, Y2),

(Y1|X1) ⪯SI (Y2|X2) ⇒ (Y1|X1) ⪯LTD (Y2|X2) ⇒ (X1, Y1) ⪯PQD (X2, Y2).

An interesting feature of more SI, more RTI and more LTD orders as defined in

this section is that, though they are copula based, one does not need the expressions

for the copulas in explicit forms.

3 Schur-constant models, Archimedean copulas and

related dependence properties

Let X = (X1, X2, . . . , Xn) be an n-dimensional random vector with absolutely con-

tinuous joint distribution. We fix attention on the case when X1, X2, . . . , Xn are

non-negative random variables and describe their joint distribution in terms of their

joint survival function

S(x1, . . . , xn) = P [X > x] = P [X1 > x1, . . . , Xn > xn].

In particular, we start by considering the special case of Schur-constant survival func-

tion:

S(x1, . . . , xn) = G(x1 + · · ·+ xn), (3.10)

for any x = (x1, . . . , xn) in [0,∞)n and for an appropriate univariate survival function

G over [0,∞). First of all, we assume that G is strictly decreasing all over the interval
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[0,∞). Moreover, we assume that G is n times differentiable and n-monotonic:

g(m)(x) = (−1)m
dm

dxm

G(x) > 0,m = 1, ..., n.

Then the joint probability density of X exists and is given by

f (x1, ..., xn) = g(n)(
∑n

j=1xj).

In particular we will use the symbol g = g(1) for the probability density function

of G. For any m = 2, ..., n, G and g respectively are the common one-dimensional

survival function and the common density function of the random variables X1..., Xm.

Schur-constant survival functions and some of their basic properties were initially

discussed, in particular, in Barlow and Mendel (1993), Caramellino and Spizzichino

(1994, 1996), Spizzichino (2001), Bassan and Spizzichino (2005) and Nelsen (2005).

It is obvious that ifX has a Schur-constant joint survival function, then the compo-

nents ofX are exchangeable and all lower dimensional marginal joint survival functions

are also Schur-constant.

There is a strict relation between Schur-constant survival models and Archimedean

copulas (see e.g. Nelsen (2005) and Durante and Sempi (2016)). In fact the survival

copula ĈG of the model in (3.10) is the Archimedean copula with the inverse of G

as a generator. This property is immediately checked by observing that, by the very

definition of survival copula, one can write:

ĈG(u1, ..., un) : = S(G
−1
(u1), . . . , G

−1
(un))

= G(G
−1
(u1) + · · ·+G

−1
(un)). (3.11)

Note that the survival copula (and hence the stochastic dependence properties

thereof) is uniquely determined by the univariate survival function G which is an

immediate consequence of the fact that the joint probability distribution is fully de-

termined as soon as the univariate survival function G is specified. In particular, under

the assumption of Schur-constant model, the components of X are independent if and

only if they are exponentially distributed.
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One main reason of interest for Schur-constant models dwells in the following

property: for any i ̸= j in {1, 2, . . . , n}, and x ∈ [0,∞)n, and any t ≥ 0,

P [Xi − xi > t|X > x] =
G(x1 + · · ·+ xn + t)

G(x1 + · · ·+ xn)
= P [Xj − xj > t|X > x], (3.12)

that is, the residual lifetimes of Xi−xi and Xj−xj of two components of two different

ages, xi and xj, respectively, have the same conditional distributions, conditional on

the observed survival data (X > x). More generally, conditional on (X > x), the

joint survival function of all the residual lifetimes Xi − xi (for i = 1, ..., n) is still

exchangeable and Schur-constant. In fact we can write

P [X− x > t|X > x] =
G(x1 + · · ·+ xn + t1 + ...+ tn)

G(x1 + · · ·+ xn)
.

This is thus one way to extend the no-aging concept and the memory-less property

of the univariate exponential distribution to the multivariate case. See the above

references for more details about this aspect of Schur-constant survival functions.

Two important families of bivariate distributions with Schur-constant survival

functions are:

1. Bivariate Pareto distribution with survival function,

S1(x, y) = (1 + ax+ ay)−θ, (3.13)

where x, y ≥ 0 and a > 0 and θ > 2 are called the scale and the shape parameters.

The corresponding copula is

C1(u, v) = (u−1/θ + v−1/θ − 1)−θ. (3.14)

2. Bivariate Weibull distribution with survival function,

S(x, y) = exp[−(x+ y)θ],

where x, y ≥ 0 and θ ∈ (0, 1].
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Here G(x) = exp{−xθ} and, for z ∈ (0, 1), G
−1
(z) = (− log z)

1
θ , so that

Ĉ(u, v) = S(G
−1
(u), G

−1
(v))

= exp

{
−
[
(− log u)

1
θ + (− log v)

1
θ

]θ}
= G

(
G

−1
(u) +G

−1
(v)

)
.

REMARK : The condition θ ∈ (0, 1] in the Weibull model is required in order to

satisfy the requirement that G is convex.

Some important properties of Schur-constant survival functions are summarized in

the next theorem.

Theorem 3.1 Let X be a random vector with a Schur-constant survival function

given by (3.10). Then for m = 2, ..., n− 1,

(a)

P (X2 > x2, ..., Xm > xm|X1 = x) =
g(x+

∑m
j=2 xj)

g(x)
. (3.15)

(b) For t > x, one has

P (X2:m > t|X1:m = x) =
g(x+ (m− 1)t)

g(mx)
. (3.16)

(c)

P (X2 > x2, ..., Xm > xm|X1 > x) =
G(x+

∑m
j=2xj)

G (x)
. (3.17)

Proof

(a)

P (x ≤ X1 ≤ x+∆x,X2 > x2, ..., Xm > xm) (3.18)

=

∫ x+∆x

x

∫ ∞

x2

...

∫ ∞

xm

f (m) (ξ1, ..., ξm) dξ1...dξm

=

∫ x+∆x

x

∫ ∞

x2

...

∫ ∞

xm

g(m)(ξ1 +
m∑
j=2

ξj)dξ1...dξm.
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By progressively integrating with respect to the variables ξm, ξm−1, ..., ξ2, we arrive to

the identity

∫ x+∆x

x

∫ ∞

x2

...

∫ ∞

xm

g(m)(ξ1 +
∑m

j=2ξj)dξ1...dξm =
∫ x+∆x

x
g(ξ1 +

∑m
j=2xj)dξ1.

Whence (3.15) follows immediately.

(b) By using the exchangeability of X, it follows that

P (X2:m > t|X1:m = x) = P (X2 > t, ..., Xm > t|X1 = x,X2 > x, ..., Xm > x)

=
P (X2 > t, ..., Xm > t|X1 = x)

P (X2 > x, ..., Xm > x|X1 = x)
.

Thus the required result is obtained by rewriting in terms of formula (3.15) both the

numerator and the denominator in the above r.h.s.:

P (X2:m > t|X1:m = x) =
g (x+ (m− 1)t)

g(x)
· g (x)

g (x+ (m− 1)x)
.

(c) This is an immediate consequence of (3.10).

Remark 3.1 By taking into account that we start from the condition that∫ ∞

0

∫ ∞

0

...

∫ ∞

0

g(n)(
∑n

j=1ξj)dξ1...dξn = 1,

we notice that no convergence problem can arise along the integrations in the above

formula (3.18).

Now, in the rest of this section, we concentrate our attention on the simple case

n = 2. Let us then consider two non-negative random variables X1 and X2 with joint

survival function

S(x1, x2) = G (x1 + x2) .

X1 and X2 are then identically distributed with marginal survival function G and

Archimedean survival copula given by

ĈG(u, v) = G
(
G

−1
(u) +G

−1
(v)

)
, u, v ∈ [0, 1]× [0, 1] . (3.19)
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By specializing the claims on Theorem 3.1, we first of all obtain the two simple

formulas that, in such a case, can be respectively given for the conditional probabilities

P [X2 > y|X1>x] and P [X2 > y|X1=x]:

P [X2 > y|X1>x] =
G(x+ y)

G(x)
, (3.20)

P [X2 > y|X1=x] =
g(x+ y)

g(x)
. (3.21)

These formulas can in particular be applied to show that the positive dependence

properties of positive quadrant dependence (PQD), right tail increasing (RTI), and

stochastically increasing (SI) are respectively characterized by simple properties of

negative ageing for the univariate distribution of X1, X2. In fact, the following result

can be easily obtained in terms of the above formulas.

Theorem 3.2 Let X1, X2 be jointly distributed according to a Schur–constant survival

model, characterized by the univariate survival function G. Then

(a) (X1, X2) PQD ⇔ G NBU

(b) (X1, X2) RTI ⇔ G DFR

(c) (X1, X2) SI ⇔ g log-convex.

See Avérous and Dortet-Bernadet(2004), Caramellino and Spizzichino (1994, 1996),

Spizzichino (2001), Bassan and Spizzichino (2005), and Nelsen (2005) for details.

It is not surprising that positive dependence properties of (X1, X2) are related

to conditions on the survival function G, since there is a one-to-one correspondence

between G and the survival copula, ĈG. It is remarkable however that the conditions

on G, involved in such correspondence, have precisely the form of negative ageing

of G. In this vein, one can see that X1, X2 are independent if and only if they are

exponentially distributed.

Let now φ : R+ → R+ be a strictly increasing function with φ(0) = 0, φ(∞) =

∞ and consider the non-negative random variables X ′
1 = φ (X1) and X ′

2 = φ (X2).

13



Obviously, also X ′
1 and X ′

2 are exchangeable but (X ′
1, X

′
2) is not Schur-constant. The

joint survival function is given by

S ′(x1, x2) : = P [X ′
1 > x1, X

′
2 > x2]

= P [φ (X1) > x1, φ (X2) > x2]

= S
(
φ−1(x1), φ

−1(x2)
)

= G(φ−1(x1) + φ−1(x2)). (3.22)

X ′
1 and X ′

2 are identically distributed with survival function G(φ−1(x)) and their

survival copula is still ĈG.

The term Time Transformed Exponential model has been used in some papers to

designate the survival model in (3.22) (see e.g. Spizzichino (2001) and references cited

therein). In conclusion, a bivariate Time Transformed Exponential model is a survival

model characterized by the following two conditions: identical univariate distributions

and Archimedean survival copula as in (3.19).

Consider now a bivariate (Time-Transformed Exponential) model with survival

function given by

S(x1, x2) = W (R(x1) +R(x2)) , (3.23)

withW : [0,∞) → [0, 1] strictly decreasing and R : [0,∞) → [0,∞) strictly increasing.

The corresponding univariate survival function H(x) is given by H(x) = W (R(x)).

So that one has, for z ∈ (0, 1),

H
−1
(z) = R−1(W−1(z))

and the survival copula is then

ĈW (u, v) = W
(
W−1(u) +W−1(v)

)
. (3.24)

One can thus immediately obtain the following result.

Proposition 3.1 The Time Transformed Exponential model (3.23) shares the same

survival copula with the Schur-constant model with univariate survival function W .
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Let us now take into account that the properties PQD, RTI, SI hold for a bivariate

random vector (X1, X2) if and only if they respectively hold for the survival copula of

(X1, X2). As a first consequence of the above Proposition one can retrieve the following

result by Avérous and Dortet-Bernadet (2005). See also the results by Mosler and

Scarsini (2005).

Theorem 3.3 For an Archimedean copula KW as in (3.24), the following equiva-

lences hold:

(a) ĈW PQD ⇔ W NBU

(b) ĈW RTI ⇔ W DFR

(c) ĈW SI ⇔ w(x) = −W ′(x) log-convex.

More generally we can conclude with the following principle concerning copula-

based properties of dependence for bivariate survival models:

An arbitrary copula-based property of dependence holds for a Time-Transformed

Exponential model in (3.23) if and only if it holds for the Schur-constant model with

univariate survival function W .

This principle have inspired the developments that will be presented in the next

Section and that are initially formulated with reference to Schur-constant models.

4 Positive dependence properties between order

statistics for bivariate TTE models

In the previous sections we have reviewed the positive dependence properties of NBU,

LTD, RTI, SI and related characterizations in the case of Schur-constant models and,

slightly more generally, in the case of Time-transformed exponential models.

This section is devoted to describing sufficient conditions and characterizations of

the same dependence properties for corresponding cases of pairs of order statistics.

15



As it has been recalled above a number of different papers almost simultaneously,

but from different viewpoints, had pointed out the strict connection between positive

dependence properties and negative ageing properties for exchangeable pairs with

Archimedean copula. One path to obtain such results hinges on the identities (3.20)

and (3.21). The latter identities are also useful for the purposes of this section.

We will essentially concentrate attention on a pair of lifetimes (X1, X2) following

a Schur-constant model, where the joint survival function has then the form

S(x1, x2) = G(x1 + x2), (4.25)

with G decreasing and convex. We will also assume that G is differentiable two times

and use the notation

g(x) = −G
′
(x), γ(x) = −g′(x),

so that g(x) is the marginal density of X1, X2, and the joint density of (X1, X2) exists

and has the form

s(x1, x2) = γ(x1 + x2).

Towards the end, the obtained results will be reformulated for the Time-transformed

exponential case by simply applying Proposition 3.1.

Let us start by preliminarily recalling attention on the following properties and

simple results, concerning the pair (X1:2, X2:2).

F 1,2:2(s, t) = P (X1:2 > s,X2:2 > t) =

 2G(s+ t)−G(2t) for s < t

G(2s) for s > t
,

F 1:2(s) = P (X1:2 > s) = G(2s), F 2:2(t) = P (X2:2 > t) = 2G(t)−G(2t).

Thus, denoting L̂[s](t) = P (X2:2 > t|X1:2 > s), for t > s one has

L̂[s](t) =
2G(s+ t)−G(2t)

G(2s)
. (4.26)
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We also remind that for the case n = 2, Theorem 3.1 in particular gives for t > s

Ĥ[s](t) = P (X2:2 > t|X1:2 = s) =
g(s+ t)

g(2s)
. (4.27)

The survival copula Ĉ(u, v) of (X1:2, X2:2) is given by

Ĉ(u, v) = F 1,2:2(F
−1

1:2(u), F
−1

2:2(v))

=

 2G(F
−1

1:2(u) + F
−1

2:2(v))−G(2F
−1

2:2(v)) for F
−1

1:2(u) < F
−1

2:2(v)

u for F
−1

1:2(u) > F
−1

2:2(v)
. (4.28)

In the following subsections, we separately analyze the different dependence prop-

erties. We notice that, for the Schur-constant model of the parent variables, the two

properties of RTI and LTD of (X1, X2) are equivalent (they are both equivalent to

the DFR property of G). Concerning with the ensuing analysis of (X1:2, X2:2), we

concentrate on RTI and omit the analysis of the LTD property.

4.1 SI Property

As a main goal of the paper, we first aim to show that, for a pair (X1, X2) following

a bivariate Schur-costant model, one has that (X2:m|X1:m) is more SI than (X2|X1).

A more general and related result, concerning with a random vector X following

a n-dimensional Schur-costant model (n > 2), will be presented at the end of this

subsection.

We will need the following notation.

For z ∈ (0, 1), let ξz = G
−1

(z), ζz = G
−1

(1) (z) =
1
2
G

−1
(z).

Recalling that,

H [s](t) = P (X2 > t|X1 = s) =
g (s+ t)

g (s)
,

we then have for s < t,

H [ξz ](t) =
g(G

−1
(z) + t)

g(G
−1
(z))

. (4.29)
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Using (4.27), we have for ζz < t,

Ĥ[ζz ](t) = P (X2:2 > t|X1:2 = ζz) =
g(1

2
G

−1
(z) + t)

g(G
−1

(z))
. (4.30)

Theorem 4.1 Let (X1, X2) be a random vector with a Schur-constant survival func-

tion given by (4.25). Then

(X2|X1) ≺SI (X2:2|X1:2) (4.31)

Proof From the identity (4.29) we can obtain that

H
−1

[ξp] (u) = g−1
(
u · g

(
G

−1
(p)

))
−G

−1
(p) ,

by reminding that g is invertible since it is strictly decreasing.

From this we can in turn write

Kp,q(u) = H [ξq ]

(
H

−1

[ξp] (u)
)

= H[ξq]

(
g−1

(
u · g

(
G

−1
(p)

))
−G

−1
(p)

)
=

g
(
G

−1
(q)−G

−1
(p) + g−1

(
u · g

(
G

−1
(p)

)))
g
(
G

−1
(q)

) (4.32)

We now consider the identity (4.30), whence we obtain

Ĥ−1
[ζp]

(u) =

[
g−1

(
u · g(G−1

(p))
)
− 1

2
G

−1
(p)

]
and

K̂p,q(u) = Ĥ[ζq ]

(
Ĥ−1

[ζp]
(u)

)
=

g
(

1
2
G

−1
(q) + g−1

(
u · g(G−1

(p))
)
− 1

m
G

−1
(p)

)
g(G

−1
(q))

=
g
(

1
2
{G−1

(q)−G
−1

(p)}+ g−1
(
u · g

(
G

−1
(p)

)))
g
(
G

−1
(q)

) . (4.33)

We are now ready to conclude our proof.
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Since g,G
−1

are decreasing and
(
G

−1
(q)−G

−1
(p)

)
is non-negative for 0 ≤ q <

p ≤ 1, it follows that for 0 ≤ q < p ≤ 1 and u ∈ (0, 1),

Kp,q(u) ≤ K̂p,q(u)

proving thereby the thesis (X2|X1) ≺SI (X2:m|X1:m) in view of the definition of ≺SI as

recalled in Section 2.

Also recalling from Sections 2 and 3 that the condition (X2|X1) SI is equivalent to

g being log-convex and that it means Kp,q(u) ≥ u (for 0 ≤ q < p ≤ 1, u ∈ (0, 1)), we

get the following sufficient condition for (X2:2|X1:2) SI

Corollary 4.1 If g is log-convex then X2:2 is stochastically increasing in X1:2.

We point out however that also a sufficient and necessary condition for (X2:2|X1:2)

SI is easily obtained. In view of the identity (4.27), we have in fact the following

characterization

Proposition 4.1 The condition (X2:2|X1:2) SI holds if and only if the function g(s+t)
g(2s)

is increasing in s, for any t > s.

Remark 4.1 In view of Proposition 4.1, we notice that Corollary 4.1 may also be

alternatively obtained by using the following argument: as it can be checked, the con-

dition g(s+t)
g(2s)

increasing in s is actually implied by the one that g(s+t)
g(s)

is increasing in

s. On the other hand, for what concerns the claim in Proposition 4.1, the condition

(X2:2|X1:2) SI can also be expressed by the inequality K̂p,q(u) ≥ u, for u ∈ (0, 1). It

can also be seen that this inequality is also equivalent to g(s+t)
g(2s)

being increasing in s.

Along the same lines as followed in the proof of Theorem 4.1, one can obtain

the following result about a random vector (X1, X2, ..., Xn) with n > 2 and with a

Schur-constant survival function.
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Theorem 4.2 Let X be a random vector with a Schur-constant survival function

given by (3.10). Then for m = 2, ..., n− 1,

(a)

(X2|X1) ≺SI (X2:m|X1:m) , (4.34)

(b)

(X2:m|X1:m) ≺SI (X2:m+1|X1:m+1) . (4.35)

Proof

For the pair (X1, X2), the identity

Kp,q(u) =
g
(
G

−1
(q)−G

−1
(p) + g−1

(
u · g

(
G

−1
(p)

)))
g
(
G

−1
(q)

)
has been shown in the proof of Theorem 4.1. In place of the pair (X1:2, X2:2), that

has been moreover considered therein, we here consider the pairs (X1:m, X2:m). In this

respect we now set

F 1:m(x) = P (X1:m > x) = G(mx),

whence

ζm,z = F
−1

1:m(z) =
1

m
G

−1
(z) (4.36)

From (3.16) and (4.36), we get,

Ĥm,[ζm,z ] (t) = P (X2:m > t|X1:m = ζm,z) =
g( 1

m
G

−1
(z) + (m− 1) t)

g(G
−1

(z))
.

and

(
Ĥm,[ζm,z ]

)−1

(u) =
1

m− 1

[
g−1

(
u · g(G−1

(z))
)
− 1

m
G

−1
(z)

]
.
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Whence

K̂(m)
p,q (u) = Ĥm,[ζm,q ]

((
Ĥm,[ζm,p]

)−1

(u)

)

=
g
(

1
m
G

−1
(q) + g−1

(
u · g(G−1

(p))
)
− 1

m
G

−1
(p)

)
g(G

−1
(q))

=
g
(

1
m
{G−1

(q)−G
−1

(p)}+ g−1
(
u · g

(
G

−1
(p)

)))
g
(
G

−1
(q)

) . (4.37)

Since G
−1

(q)−G
−1

(p) is non-negative for 0 ≤ q < p ≤ 1, one has

1

m
{G−1

(q)−G
−1

(p)} ≤ {G−1
(q)−G

−1
(p)}

and
1

m+ 1
{G−1

(q)−G
−1

(p)} ≤ 1

m
{G−1

(q)−G
−1

(p)}.

Using the fact that g is decreasing, we obtain

Kp,q(u) ≤ K̂(m)
p,q (u)

K̂(m)
p,q (u) ≤ K̂(m+1)

p,q (u),

for 0 ≤ q < p ≤ 1, u ∈ (0, 1), m = 2, ..., n − 1, proving thereby (4.34) and (4.35),

respectively.

4.2 RTI Property

Analogously to the above subsection here we will examine, for a bivariate Schur-

constant model characterized by a survival function G, the following three questions

concerning with the RTI property for the pair (X1;2, X2:2):

(i) Does the order relation

(X2|X1) ≺RTI (X2:2|X1:2) hold? (4.38)

(ii) Does (X2|X1) RTI imply (X2:2|X1:2) RTI?
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(iii) What is a necessary and sufficient condition on the survival function G for the

RTI property of (X2:2|X1:2)?

Let us introduce some general notation. For p, q ∈ (0, 1) and a pair of lifetimes

X = (X1, X2) with F 1(s) = P (X1 > s) set

L
(X)
[s] (t) = P (X2 > t|X1 > s),

R(X)
p,q (u) = L

(X)

[F
−1
1 (q)]

((
L
(X)

[F
−1
1 (p)]

)−1

(u)

)
.

By reformulating under such notation the definition of the More RTI ordering, as

given in Dolati, Genest and Kochar (2006) and recalled above as Definition 2.6, for

two different pairs X′,X′′ we can write

X′ ⪯RTI X
′′ ⇔ R(X′)

p,q (u) ≤ R(X′′)
p,q (u), for q < p.

Since, for two independent lifetimes Z1, Z2 it is R(Z)
p,q (u) = u, it also follows that,

for q < p, u ∈ (0, 1),

X RTI ⇔ R(X)
p,q (u) ≥ u. (4.39)

By combining the above Theorem 4.1 with the chains of implications

SI ⇒ RTI ⇒ PQD,

as proved in Averous and Dortet-Bernadette (2000), one immediately obtains the an-

swer to the above question (i).

Corollary 4.2 Let (X1, X2) be a random vector with a Schur-constant survival func-

tion given by (4.25). Then

(X2|X1) ≺RTI (X2:2|X1:2) . (4.40)

By recalling from Section 3 that the condition (X2|X1) RTI is equivalent to G

being DFR and that it means R(X)
p,q (u) ≥ u (for 0 ≤ q < p ≤ 1, u ∈ (0, 1)), we get the

following sufficient condition for (X2:2|X1:2) to be RTI.
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Corollary 4.3 If G is DFR then the condition (X2:2|X1:2) RTI holds.

Also in this case, however, we can easily write down necessary and sufficient con-

dition for the property (X2:2|X1:2) RTI to hold.

Recalling in fact the formula (4.26) one can then obtain

Proposition 4.2 The condition (X2:2|X1:2) RTI holds if and only if, for any t, the

function L̂[s](t) =
2G(s+t)−G(2t)

G(2s)
is increasing for s ∈ (0, t].

Remark 4.2 Notice that the implication G DFR ⇒ (X2:2|X1:2) RTI can also be proved

directly, without using the above Theorem 4.1 and the general implication SI ⇒ RTI.

In fact, by computing the derivative of the function L̂[s](t) and after some manipula-

tions, one can show that the condition that L̂[s](t) is increasing is verified when G is

DFR.

4.3 PQD Property

Also in the present subsection we examine, for a bivariate Schur-constant model char-

acterized by a survival function G, questions that are analogous to(i), (ii), (iii) above.

Now we are concerned with the PQD property and consider

(i’) Does the order relation

(X1, X2) ≺PQD (X1:2, X2:2) hold? (4.41)

(ii’) Does (X1, X2) PQD imply (X1:2, X2:2) PQD?

(iii’) What is a necessary and sufficient condition on the survival function G for the

PQD property of (X1:2, X2:2)?

By combining Theorem 4.1 with the implication SI ⇒ PQD, one immediately

obtains answer to the question (i’).
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Corollary 4.4 Let (X1, X2) be a random vector with a Schur-constant survival func-

tion given by (4.25). Then

(X1, X2) ≺PQD (X1:2, X2:2) (4.42)

and as a result,

κ(X1, X2) ≤ κ(X1:m, X2:2) (4.43)

where κ(S, T ) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or in-

deed any other copula-based measure of concordance satisfying the axioms of Scarsini

(1984).

By recalling from Section 3 that the condition (X1, X2) PQD is equivalent to G

being NBU, we get the following sufficient condition.

Corollary 4.5 If G is NBU then the PQD property of (X1:2, X2:2) holds.

Also this time, however, we can easily write down a necessary and sufficient con-

dition for the property (X2:2|X1:2) PQD to hold.

Recalling in fact the formula (4.28), and that being PQD means that the survival

copula is greater then the copula of independence Π(u, v) = u · v, one can then obtain

Proposition 4.3 The condition (X1:2, X2:2) PQD holds if and only if

2G(
1

2
G

−1
(u) + F

−1

2:2(v))−G(2F
−1

2:2(v)) ≥ u · v

for F
−1

1:2(u) =
1
2
G

−1
(u) < F

−1

2:2(v).

A different characterization of PQD for (X1:2, X2:2), which can of course be obtained

by directly applying the definition of PQD, becomes:

2G(s+ t)−G(2t) ≥ G(2s) ·
(
2G(t)−G(2t)

)
,

for s < t.
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4.4 Conclusions concerning dependence properties of order

statistics for bivariate Time-transformed exponential mod-

els.

We here conclude by summarizing implications of the results that have been obtained

in the previous subsections. Actually, we will reformulate those results for the case

of a pair of lifetimes X1, X2, jointly distributed according to a Time-transformed

exponential model, characterized by a characterized by a survival function of the form

S(x1, x2) = W (R(x1) +R(x2)), as considered in (3.19). The functionW is assumed to

be two-times differentiable, strictly decreasing, and convex, whereas R(x) is assumed

to be increasing. Here, we set the notation

w(x) =
d

dx
W (x).

As it has been observed in Section 3 we remind that, in such a case, X1 and X2 are

identically distributed with a marginal survival function P (X1 > x) = W (R(x)) and

their survival copula is the Archimedean copula Ĉ(u, v) = W (W−1(u) +W−1(v)).

In what follows we can take into account such a form for Ĉ(u, v) and the circum-

stance that the dependence properties of PQD, RTI, and SI are copula-based. Also

recalling the previous Proposition 3.1, we can thus conclude that one can extend to the

pair (X1, X2) all the above dependence-type results valid for a Schur-constant model

characterized by a marginal survival function G(x) = W (x).

More explicitly we can list the following claims concerning with the pair of the

order statistics,

X1:2 = min (X1, X2) , X2:2 = max (X1, X2) .

1.

(X1:2, X2:2) ⪰SI (X1, X2) , (X1:2, X2:2) ⪰RTI (X1, X2) , (X1:2, X2:2) ⪰PQD (X1, X2) .

2. If w(x) is log-convex then (X1:2, X2:2) is SI
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3. If W (x) is DFR then (X1:2, X2:2) is RTI

4. If W (x) is NWU then (X1:2, X2:2) is PQD

5. (X1:2, X2:2) is SI if and only if the function

w(s+ t)

w(2s)

is increasing for s ∈ (0, t]

6. (X1:2, X2:2) is RTI if and only if the function

2W (s+ t)−W (2t)

W (2s)

is increasing for s ∈ (0, t].

7. (X1:2, X2:2) is PQD if and only if

2W (s+ t)−W (2t) ≥ W (2s) · (2W (t)−W (2t)) .

for s < t.

The claim presented in the above item 4. is equivalent to saying that, for bivariate

Time-transformed exponential models, the PQD property of the pair of the order

statistics is indeed implied by the same property for the parent variables.

Huang et al (2013) studied a related problem. They proved that if (X1, Y1), . . . , (Xn, Yn)

is a random sample from a bivariate distribution which is PQD, then so is the joint cdf

of (Xi:n, Yj:n), where X1:n ≤ · · · ≤ Xn:n and Y1:n ≤ · · · ≤ Yn:n are the orders statistics

of X1, . . . , Xn and Y1, . . . , Yn, respectively and 1 ≤ i < j ≤ n. However this result is

different from ours in that it is based on a completely different construction of pairs

of order statistics.
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