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The correct choice of the calibration strategy method is a step that can ensure the accuracy of carbon determination
in soils by laser-induced breakdown spectroscopy. In this paper, we evaluate and discuss the intrinsic character-
istics of univariate and multivariate calibration strategies in overcoming soil matrix effects and their influence
on the magnitude of calibration and prediction error values. The matrix-matching calibration with previous cor-
rection of Al spectral interference in the C I line at 193.03 nm was the best strategy of the 13 univariate models
evaluated [root-mean-square error of calibration—(RMSEP) = 0.2 wt.% C]. In the multivariate evaluation of
the 22 models obtained, the artificial neural network allowed obtaining a lower value of prediction error for C
(RMSEP = 0.1 wt.% C) with very good accuracy (98%) for the set samples of validation. The observation of these
results was justified considering the advantages and limitations of each calibration strategy explored. © 2023

Optica PublishingGroup

https://doi.org/10.1364/JOSAB.482644

1. INTRODUCTION

Determining soil organic carbon (SOC) is essential due to its
high storage potential. Soils can store carbon (C) amounts three
times greater than the atmosphere and four times greater than
plants [1,2] being very important for the CO2 reduction in
the atmosphere, minimizing the effects of global warming and
climate change [2], increasing soil productivity, and moderating
the water cycle [3]. Therefore, determining soil C content is
the present and future focus of international negotiations and
treaties related to global climate change.

For many years, the wet combustion method, Walkley–Black,
based on the measurement of emitted CO2 or sample weight
changes, was the standard method used for measuring soil car-
bon [4]. Currently, dry combustion by an elemental analyzer is
the official technique used to determine SOC [5,6] quantita-
tively. However, many other techniques have been used for soil
C measurements, such as mid-infrared spectroscopy (MIRS)
[7], near-infrared spectroscopy [8], inelastic neutron scattering
(INS) [9], and laser-induced breakdown spectroscopy (LIBS)
[5,10–12].

The methodology for improved agricultural land manage-
ment [13], approved by Verra, recognized INS, LIBS, MIR, and
visual-near infrared as emerging technologies to determine SOC
content. However, LIBS has stood out in this scenario due to its
inherent characteristics, such as minimal sample preparation,
relative simplicity, high analytical frequency (on the order of
seconds), multielement analysis, and relatively low maintenance
cost [14]. Furthermore, the LIBS has the potential for minia-
turization and application of portable instrumentation that can
be used directly in situ for rapid measurement of soil samples
[6,14].

LIBS is a versatile technique that enables multielement quali-
tative and quantitative analysis of solid, liquid, and gas samples.
The interaction of the laser pulse with a solid sample, e.g., in the
form of a pellet, leads to the ablation of micrograms of sample,
rupture of chemical bonds in the material, and formation of a
microplasma, whose initial temperature is close to 100,000 K
[15,16]. The plasma formed is composed of several species
(ions, atoms, molecules, and electrons) that collide with each
other. The thermal energy of the plasma promotes the excitation
of ions, atoms, and molecules present in the composition of
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Fig. 1. Illustration of the main components of a LIBS system.

the sample. When returning to the ground state, each of these
species emit its characteristic radiation, creating a fingerprint of
the sample [17,18]. With the collection of this emitted radiation
(with the cooling of the plasma formed (close to 10,000 K) and
lower emission of continuum radiation), using an optical fiber
and using a spectrometer, it is possible to obtain a LIBS emission
spectrum, whose wavelengths refer to if the atomic–ionic-
molecular emission characteristic of the elemental composition
of the sample. The intensity and area of the lines (or bands, in
the case of monitoring the emission of diatomic molecules)
are proportional to the concentration of species present in the
sample [15,16,19]. Using spectral pretreatments and appro-
priate calibration strategies, it is possible to obtain accurate and
robust quantitative models and, thus, determine the elemental
concentration [20].

A LIBS system basically consists of (i) a laser (such as a solid-
state Nd:YAG laser), (ii) mirrors and lenses (which direct and
focus the laser pulse on the sample), (iii) a sample holder, (iv) a
plasma radiation collection system (fiber optics), (v) a spectrom-
eter, a (vi) detector, as well as (vii) a delay generator (between the
start of the laser pulse and the collection of the radiation emitted
by the plasma). Figure 1 illustrates the main components of the
LIBS system used in the analysis of soil samples.

The LIBS, when compared to other plasma-based spectro-
scopic elemental analysis techniques, such as inductively
coupled plasma optical emission spectrometry (ICP OES),
microwave-induced plasma optical emission spectrometry
(MIP OES), and inductively coupled plasma mass spectrometry
(ICP MS), has some advantages, such as (i) not requiring the
solid sample to be converted into a solution to be introduced
into the equipment, (ii) and, consequently, does not require
oxidizing inorganic acids in the sample preparation step, (iii)
minimal waste generation (the residue is the sample itself ),
and (iv) requires a smaller amount of sample for analysis (few
micrograms of the sample). However, some limitations of the
technique are mainly related to (i) matrix effects arising from the
full sample analysis (which in some cases can severely compro-
mise the accuracy of the determinations) [20], (ii) the difficulty

of obtaining solid standards of calibration certificates for analy-
sis of micrograms of sample, and (iii) high limits of detection
(LOD) values of the method (which may preclude the use of
LIBS in monitoring some elements in certain types of samples).
However, these limitations can be circumvented using some
strategies, such as the use of other reference techniques to obtain
calibration standards, evaluation of univariate and multivari-
ate calibration strategies, and use of double pulse systems and
nanoparticles (to increase sensitivity and decrease LOD values).

Soil is a highly complex matrix due to several factors, such
as moisture, physicochemical properties, soil organic mat-
ter, and inorganic C (in carbonate forms), being these some
components that can insert uncertainties in C determination
by LIBS [6]. Calibration curves built for C determination
in soil samples by LIBS have been reported in the literature
from emission intensity and/or area of the LIBS peak versus
C content determined by an elemental analyzer [2]. However,
due to above-mentioned matrix complexity, some univari-
ate calibration strategies have been applied to improve the C
determination, such as matrix-matching calibration (MMC),
internal standardization (IS), standard addition, multienergy
calibration, one-point calibration (OPC) [21,22]; and multi-
variate methods, such as principal component regression
(PCR), partial least squares (PLS), support vector machine
(SVM), multiple linear regression (MLR), and artificial neural
networks (ANNs) [21,22].

Although many C emission lines are found in databases
[23], those usually used to build calibration models for the C
determination are at 193.03 nm and 247.86 nm [5,10,12,24].
This choice is because they are the strongest lines and have
a greater emission probability (Einstein’s coefficient). Still,
when the analyses are performed under the air atmosphere,
the line at 193.03 nm is attenuated by the O2 absorption
[15]. Furthermore, the C I emission lines at 193.03 nm and
247.86 nm are interfered by the Al II line at 193.04 nm and
the Fe I line at 247.98 nm, respectively [5]. These interferences
make it even more challenging to build calibration models to
determine C in Brazilian soils as they have a high concentration
of both elements. Another challenge for the development of
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LIBS calibration models is the matrix effect, which is very accen-
tuated in the LIBS technique, especially for complex samples,
such as soils, which have varied compositions in terms of texture,
granulometry, and chemical composition [25].

Thus, the objective of this paper is to present and compare
several calibration strategies for determining C in soils via LIBS.
It will be evaluated the linear univariate and multivariate models
(MLR, PCR, and PLS). Also, the ANN will be used to minimize
matrix effects, overcome spectral interference in the C lines,
and mitigate self-absorption, aiming to improve sensitivity and
precision. In addition, the advantages and limitations of each
strategy will be discussed.

2. MATERIALS AND METHODS

A. Sampling and Experimental Site

Soil samples were collected at EMBRAPA Pecuária Sudeste,
a research center in São Carlos-SP, Brazil (GPS coordinates:
−21.956094316858977 and −47.84542273769212). The
study site includes four livestock managements and an adjacent
native forest region. The soil collection was performed at eight
depths from 0 cm to 100 cm with six replicates per manage-
ment, totalizing 240 soil samples with C content ranging from
0.50 wt.% to 5.0 wt.%.

B. Samples Characterizations and Pretreatments

The soil samples were sent to the laboratory and air dried until
constant mass. First, the soil texture was determined by the
reference method (Robinson pipette method). The purpose is to
evaluate the distribution by size of particles smaller than 2 mm
using Stokes’ law, that is, the ratio between particle size and sedi-
mentation rate [26]. Then, the soil samples were classified based
on the United States of Agriculture (USDA) textural triangle
(Fig. 2).

The textural triangle can verify an extensive range of sam-
ple textures. The collection field is located at a transition soil
area between a red Latosol and red Alfisol. Beyond the tex-
ture characterization, the total C content was determined

Fig. 2. Classification of all soils set by the USDA textural triangle.

using dry combustion by 2400 CHNS elemental analyzer by
Perkin-Elmer as described by Nicolodelli et al . [5].

The elemental quantification using the LIBS technique has a
high dependency on the matrix, then the sample preparation is
considered an essential step in the whole analysis process [6,10].
First, the samples at 2 mm of particle size were crushed with
mortar and pestle, then passed through a 100 mesh (0.150 mm)
sieve. Finally, soil pellets with radii of 1 cm and weight of 500 mg
were prepared using a hydraulic press.

C. LIBS Instrumentation and Measurements
Conditions

The LIBS system used in this paper belongs to Embrapa
Instrumentation, a research center located in São Carlos. It
is a commercial LIBS system manufactured by Ocean Optics,
LIBS2500+ model, equipped with a Q-switched Nd:YAG
laser at 1064 nm produced by Quantel, Big Sky Laser Ultra 50
with a laser pulse of 50 mJ energy, 0.5 mm of laser spot, and
duration of 8 ns. The LIBS2500+ has seven spectrometers
gifted with a charge-coupled device (CCD) array. It provides
spectral analysis across a wide 188–980 nm range at a resolution
of approximately 0.1 nm resolution (full width half maximum).
The acquisition conditions were delay time (Q-switch delay
correlated) and integration time used were 10 µs and 2 ms,
respectively.

For each sample, 60 spectra were acquired to reduce the vari-
ability among the shots (matrix heterogeneity). Each spectrum
obtained corresponds to three shots accumulated, one cleaner
shot and two shots generating an average spectrum.

In this paper, 20 spectra were collected for each soil sam-
ple (each spectrum obtained referring to the average of two
individual spectra) in different regions of the pellet to get a
representative analysis. This process was repeated three times,
totaling 60 spectra per sample.

D. Spectral Pretreatment

Spectral deconvolution was performed to minimize the inherent
spectral interference of the C I line at 193.03 nm line by the Al
lines [5,12]. Figure 2 shows a typical LIBS spectrum obtained
by commercial LIBS 2500+. The C I line at 193.03 nm and the
interferences of the Al lines are highlighted at the upper inset in
Fig. 3.

Emission lines used to build all calibration models were C
I at 193.03 nm, Al I at 193.58 nm, Al II at 198.99 nm, Si I at
212.41 nm, Mg II at 279.55 nm, Mg II at 280.27 nm, and
Mg I at 285.21 nm. Furthermore, two different methods were
used to remove outliers: the spectral angle mapper (SAM) and
median absolute deviation (MAD) [27,28]. Both ways are
explained by Stenio et al . [12]. In this paper, we used SAM and
MAD to identify spectra called outliers, eliminating an average
of two anomalous spectra per sample [27]. After the outlier’s
elimination, the remaining spectra were used to compose the
average spectrum. In addition, spectral baseline correction was
performed. Python programming language was used for the
spectral pretreatments.

A MATLAB software routine (version 2010—MathWorks,
Natick, MA, USA) was developed to calculate the area and
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Fig. 3. LIBS spectral profile ranging 189 nm–293 nm with C I at
the 193.03 nm peak highlighted at the top of the figure.

intensity of the C I line at 193.03 nm. Furthermore, eight
spectral treatments (STs) to compensate for fluctuations in the
analytical signal were evaluated [29], namely, ST 1 and ST 5:
average and sum of the spectrum, respectively; ST 2 and ST 6:
each individual spectrum is divided by its Euclidean norm. After
this, the average (2) or sum (6) is calculated; ST 3 and ST 7:
Each individual spectrum is divided by its area (sum of all signal
intensities). After this, the average (3) or sum (7) is calculated;
and ST 4 and ST 8: Each individual spectrum is divided by its
maximum intensity value. After this, the average (4) or sum (8)
is calculated.

The spectral treatment that provided the best analytical per-
formance parameters for the models evaluated was ST 1 (average
of the spectra). Among the spectral treatments evaluated, ST 1
provided satisfactory accuracy and precision in the C determina-
tions. However, depending on the calibration strategy, using the
C line’s area or intensity allowed us to obtain a model with better
predictive capacity.

E. Proposition of Calibration Models

Univariate calibration approaches normally use information as
line intensities, area, or intensity (y axis) against the reference
values (x axis), determined by the elemental analyzer (CHNS)
to obtain a regression. Thus, 13 models were calculated evalu-
ating the strategies: (a) MMC: MMC is a simple and widely
used strategy in proposing quantitative models using LIBS.
This strategy uses a set of samples as calibration standards,
previously analyzed by another technique to obtain a reference
value for the C content in the soil (in this case, dry combustion
with an elemental analyzer—CHNS). This method uses the
approximation between the samples matrix to reduce signal
oscillations caused by the sample surface variabilities [30]; (b)
IS: In this case, an element present in the samples with known
concentration is used to normalize the LIBS spectra; (c) inverse
regression (IR): the least-squares regression is obtained using the
intensity of the C content and other emission lines acquired by
LIBS as the independent variable (x axis) and reference values of
the C content as the dependent variable (y axis) [22]. IS with IR

(IS–IR) and (e) MMC with spectral correction (SC): uses emis-
sion from the C I line at 193.03 nm, which is highly interfered
with by emissions from the Al I line at 193.58 nm and the Al II
line at 193.04 nm. However, considering that the interference
is linear, it is possible to perform the deconvolution of C and
Al areas and use a correction method proposed by Nicolodelli
et al . [5] to remove the Al interference in the C line, according to
Eq. (1),

AC = AC+ Al − α1 AAl, (1)

where AC is the carbon area, AC+ Al is the interfered area of
C+ Al, α1 is a correction coefficient obtained by optimizing
the best determination coefficient (R2) of the calibration curve,
and AAl is the area of the Al (Al I or Al II) used as a reference. It is
also possible to perform the correction using the two Al species
where one more correction coefficientα2 is introduced, and two
variables are optimized as presented in Eq. (2),

AC = AC+ Al − α1 AAl I − α2 Al II. (2)

After univariate approaches, four multivariate calibration
strategies were evaluated: MLR [31], PCR [32], PLS [32], and
ANNs [31,33].

The 3D plane model is a method for determining C in soils
with wide textural variability using the LIBS spectrum [12]. In
this case, the peak information was used, such as the intensity
and area, to fit a regression model applying a 3D plane. First, in
this approach, it was used on the C+ Al peak at 193.03 nm and
Al peak at 193.58 nm. It uses MLR for the case where there are
only two variables: the intensity of a C emission and the inten-
sity of the interference (which might be Al or Fe). Using that
information makes it possible to generate a plane in space (3D)
and, from its equation, make predictions with good recoveries
and few errors.

PCR and PLS were also evaluated as multivariate strategies.
Briefly, the PCR algorithm will transform the data matrix
containing the independent variables (X ) into a new calcu-
lated matrix with latent variables, which concentrates all the
information regarding the samples in a small set of vectors
called principal components. On the other hand, such as PCR,
the PLS algorithm transforms the data matrix containing the
independent variables into a more compact one with latent
variables. Still, the difference is that the variables are calculated
to best explain the information regarding dependent (Y ) and
independent (X ) variables [32].

ANN is a logical-mathematical structure run with “machine
learning” composed of several processing elements that seek to
mimic the processing and functions of the brain. ANNs consist
of a set of processing units called artificial neurons, a group
of synapses characterized by a weight (w) with an individual
value for each input. An adder, also known as a linear combiner,
whose function is to add the input signals weighted by the
respective synaptic weights of the neurons in the input layer.
The bias increases or decreases the values obtained in the adder
for the activation function; the activation function normalizes
the permissible range of the values obtained by the adder and
the output layer (y ) that receives the activation function values
[33]. ANN was processed in Python using machine learning
from the Keras framework.
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Accuracy results for all models (univariate and multivari-
ate) were defined by recovery range between 80% and 120%
according to Eq. (3),

Recovery(%)=
ŷ · 100

y i
, (3)

where y i is the C content determined by reference technique and
ŷ is the C content estimated by the prediction model.

Other parameters, such as Pearson’s correlation coefficient
(r ), root-mean-square error of calibration (RMSEC) and root-
mean-square error of prediction (RMSEP) were calculated to
evaluate the quality of the generated models. The results were
evaluated in terms of RMSEP, calculated from Eq. (4),

RMSEP=

√∑n
i=1 (y i− ŷ i )

2

n
, (4)

where y i is the C content determined by reference technique,
ŷ i represents the C content estimated by prediction model, and
n is the total number of samples used in the prediction set.

3. RESULTS AND DISCUSSION

A. Spectral Pretreatments: Contributing to the
Accuracy and Precision of Measurements

Instrumental conditions can influence the acquisition of LIBS
emission spectra from each sample. They must always be opti-
mized considering the intrinsic characteristics of the set of soil
samples that will be analyzed and the LIBS system used. In addi-
tion, matrix effects can significantly influence the acquisition
of analytical signals from the analyzed sample. To minimize
spectral fluctuations, some procedures must be used before and
during the acquisition of spectra, such as standardization of
granulometry, humidity, and pressure used in the preparation
of the pellets of soil samples [22]; verification of the stability of
the laser source (constant laser pulse energy), immobile optical
parameters (the distance from mirrors, focusing lenses, and the
collection optical fibers must be immobile during the entire
spectra collection procedure), among other precautions.

However, even taking all these precautions when acquiring
the data, some fluctuations in the emission spectra may occur.
For this, spectral preprocessing should always be used, mainly
for quantitative purposes, to minimize these instrumental
fluctuations and some matrix effects in acquiring analytical
information from the sample [34,35]. Thus, the identification
and removal of anomalous spectra (outlier), spectral normaliza-
tion, baseline correction, and correction of spectral interference
are necessary preprocessing for the use of the area or intensity
of a C emission line to be used in the proposition of calibration
models.

Considering that the analyte is homogeneously distributed
in the soil sample, it is possible to obtain reproducible emission
spectra without significant fluctuations in the emission lines.
However, in some regions of the sample pellet, a high concentra-
tion of C, called a “hotspot,” can influence the spectral quality.
In addition, the nonrecording of a spectrum or spectrum col-
lected in a hotspot can generate spectra called outliers and must
be eliminated from the spectra obtained. Some statistical tools

can be used to overcome these situations and help to remove
specific spectra, such as the Grubbs test, SAM [27], and MAD
[12], among others. Another spectral pretreatment that can be
applied and provided improvement in the results of calibration
models was the baseline correction.

Besides, it is always necessary to evaluate different spectral
pretreatments and kinds of signals because, depending on the
intrinsic characteristics and complexity of the samples (for
example, soil) and the analyte emission line, a spectral treatment
can further the achievement of better statistical quality cali-
bration models. To summarize, the performance of calibration
models is closely related to the spectral pretreatment used.

B. Univariate Calibration Approaches

Matrix-matching calibration-MMC and IS (both using least-
squares regressions with direct regression or IR) were evaluated
in univariate modeling. Thirteen models were obtained using
these two strategies, differing in pretreatments and choice of
emission lines in spectral normalization (for IS) as presented in
Table 1.

In the MMC standards make the sample matrix compat-
ible, and to be efficient it is necessary that the physicochemical
properties of the soil samples are similar. Applying this strategy
with direct regression, low accuracy in C determinations were
obtained with high values of RMSEC (0.8 wt.% C) and RMSEP
(1 wt.% C). Since the samples used in this paper presented
differences in their compositions in texture (Fig. 2), depth of
collection and soil management practices, low accuracy in C
determinations is justified, demonstrating that MMC with
direct regression was inefficient to overcome matrix effects.

However, in addition to the intrinsic characteristics of
MMC, the choice of regression also influenced the accuracy of
the determinations. Using MMC–IR RMSEC (0.5 wt.% C)
and RMSEP (0.5 wt.% C) values were 38% and 50% lower,
respectively, than those obtained using direct MMC regression
(Table 1). These values show the importance of choosing the
dependent and independent variables in the modeling used in
the least-squares regression. Using IR (an independent vari-
able as analytical signal measured by monitoring the C I line at
193.03 nm and a dependent variable as the C content obtained
by the reference technique) enabled better accuracy. This indi-
cates that the independent variable presents a smaller source of
errors when compared to the C values obtained by the reference
technique. Even taking care in homogenization, weighing the
soil sample (approximately 10 mg) for analysis by dry combus-
tion; the measurement of the analytical signal by LIBS (emission
intensity) has a smaller source of errors. Thus, the MMC–IR
allowed smaller errors in the determination when compared to
the MMC with direct regression.

The C emission line at 193.03 nm is interfered with an Al
II line at 193.04 nm and two Al I lines, one at 193.16 nm and
another at 193.58 nm as can be seen in Fig. 3. Although the
emission line at 193.58 nm can be obtained with a peak fit
algorithm, the other two Al lines cannot be separated from the
C I line at 193.03 nm. Knowing these spectral interferences,
three MMC–SC models were built based in model proposed
by Nicolodelli et al . [5], [Eq. (1)] along with the emission line
of Al I line at 193.58 nm, an accuracy of 52% (recovery range
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values between 80% and 120%) was obtained for 25 of 48
samples in the validation set. The employment of the Al II line
at the 198.99 nm line, resulted in an accuracy improvement
to 67% (32 samples) as shown in Table 1. The best model was
generated with the two emissions lines Al I line at 193.58 nm
and Al II line at 198.99 nm achieving rval = 0.83, R2

val = 0.69,
RMSEP= 0.2 wt.% C and 81% accuracy.

Since then, the accuracy used the Al II emission line at
198.99 nm was greater than the Al I line at 193.58 nm, Al II
is likely the most responsible for the interference, primarily
due to the emission at 193.04 nm. The model improvement
when using the two emissions lines is due to the fact that both
Al species participate in the calculated area at 193.03 nm for C
content predictions. It is possible to build a model more robustly
and guarantee that the calculated peak area has a high correla-
tion with the C content by eliminating the area contribution
from both species [5]. However, the model for the interfered C I
line with the Al I and II lines is still susceptible to matrix effects
(line intensity dependent on the sample composition) and Al
ionization degree (which changes the proportion of the Al I and
Al II line intensities to the peak at 193.03 nm).

Another strategy widely used in calibration methods is IS.
Using the IS, spectral normalization of the C I line at 193.03 nm
can minimize matrix effects and signal bias due to instrumental
fluctuations and laser-sample interaction. An excellent internal
standard, in principle, should present a known concentration
in all soil samples, have similar physicochemical properties, be
affected by the same fluctuations during instrumental measure-
ments, and be measured simultaneously with the analyte [22].
However, choosing the IS and sample preparation (addition
of the internal standard to the sample via oxide or salt and sub-
sequent homogenization) can be time consuming in analyzing
solid samples. Thus, a strategy to speed up the analysis stage
evaluated the use of major chemical elements in the composition
of all soil samples. In this paper, Al and Si present in soil samples
as oxides (aluminosilicates) were evaluated.

The profile of the lines evaluated as IS for the peak at C I
193.03 nm are shown in Fig. 3. Note that these are lines that are
in a close spectral region (193 nm–212 nm) and that have dif-
ferent relative intensities. The excitation (Exc.) and ionization
(Ion.) energies for the lines are C I at 193.03 nm (Exc.: 6.42 eV
and Ion.: 11.26 eV), Al I at 193.58 nm (Exc.: 6.41 eV and Ion.:
5.98 eV), Al II at 198.99 nm (Exc.: 6.22 eV and Ion.: 18.82 eV),
and Si I at 212.41 nm (Exc.: 5.83 eV and Ion.: 8.15 eV) (NIST
Atomic Spectra Database Lines Data).

The profile and intensities of the three lines evaluated in
the spectral normalization are different, and indeed the Al I
line at 193.58 nm as it is partially superimposed on the C line
requires more attention in the steps of baseline correction and
calculation of the area or intensity. These pretreatments can
significantly influence the quality of the normalization of the C I
line at 193.03 nm. However, the Al II line at 198.99 and Si I line
at 212.41 nm show good spectral and relative intensity profiles.

Among the eight models calculated using IS as a calibra-
tion strategy, all models from IR had lower calibration errors
(0.3 wt.% C ≤ RMSEC ≤ 0.6 wt.% C) and were superior in
predictive capacity (0.3 wt.% C ≤ RMSEP ≤ 0.5 wt.% C)
when compared to direct regression (due to the same fact
previously explained for MMC).
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Although the Al I line at 193.58 nm presents excitation
energy similar to the C I line at 193.03 nm, this model gave one
of the most significant calibration errors for IS models. This
result can be related to the spectral profile of the line, which
may make it difficult to correct the baseline and accurately
calculate the area or intensity of the signal. However, even
using this line for spectral normalization, the RMSEP value
(IS–IR: 0.4 wt.% C) was 20% lower than the value obtained in
MMC–IR (0.5 wt.% C) without normalization, indicating an
improvement in the model by using spectral normalization and
its ability to improve the accuracy of determinations.

In addition to choosing the element to be used as an IS,
selecting the element’s line used in the normalization can also
significantly influence the results, as in the case of Al. The Al
atomic and ionic lines allowed to obtain models with different
adjustments [R2

= 0.2326 (IS–IR Al at I 193.58 nm) and
R2
= 0.7145 (IS–IR Al II at 198.99 nm)] and predictive capa-

bilities (Table 1) for the same set of samples used in calibration
and validation. The errors associated with the calibration and
validation of models using the Al II line at 198.99 nm in the
normalizations when compared to the Al I line at the 193.58 nm
line were 33% and 25% lower, respectively.

Using the sum of the intensities of the Al II line at 198.99 and
the Si I line at 212.41 nm for spectral normalization allowed us
to obtain errors minor than 0.4 wt.% C. Furthermore, this strat-
egy permitted evaluation of the contribution of these lines in
minimizing the matrix effects since they are significant elements
in the matrix of tropical soils.

Among all the internal standards evaluated (Al and Si), the Al
I line at 198.99 nm ionic line showed the lowest errors associated
with calibration (0.4 wt.% C) and prediction (0.3 wt.% C)
of total C (65% of the samples in the validation set showed
recovery range between 80% and 120%) (Table 1). The line
has similar excitation and ionization energy values (thus, it can
undergo fluctuations similar to the C in the formed plasma),
excellent sensitivity, and spectral profile. Furthermore, as the
C I line at the 193.03 nm line is interfered with Al emission
lines, part of this interference is removed by normalizing the C
line by this line. The choice of this line is then able to overcome
matrix effects (such as spectral fluctuations and soil sample
heterogeneity) and minimize spectral interference.

These results indicate the absolute need for and importance of
the right element and emission line of this element to be used in
spectral normalizations because they significantly influence the
accuracy and the predictive capacity of the IS model.

C. Multivariate Calibration Approaches

Several multivariate calibration strategies were evaluated, such
as MLR, PCR, PLS, and ANN, aiming for total C determina-
tion. In addition, five MLR strategies were evaluated: MLR
(1), using the peak intensity of C I line at 193.03 nm, plasma
temperature (PT) index and self-absorption (SA) index as inde-
pendent variables; MLR (2) using the same variables as MLR
(1) and adding sand (g kg−1); MLR (3) using peak intensity
of the C I line at 193.03 nm, the Al II line at 198.99 nm, the
Si I line at 212.41 nm, PT and SA indices; MLR (4) using the
same variables as MLR (3) and adding sand (g kg−1); and MLR

(5) using the C+ Al peak at 193.03 nm and the Al I peak at
193.58 nm on a 3D plane model proposed by Stenio et al . [12].

PT and SA indices were calculated using the ratios of
Mg II at 279.55 nm/Mg II at 280.27 nm lines and Mg II at
280.27 nm/Mg I at 285.21 nm lines, respectively [36]. Both
indices were included as independent variables in the MLR
models to minimize their effects on the spectral profiles. As a
result, the model’s accuracy can increase significantly with a
precise determination of the self-absorption coefficient [20].

In addition, the variable sand, which is a component of soil
texture, was included in models aiming to bring information
about the matrix since it inherently correlates with Si because
most sand particles are derived from silica. Cousin et al . [37] also
found correlations between Si and sand in soil analyses.

The parameters for each MLR model are shown in Table 2.
Adding more independent variables to each MLR model signifi-
cantly improved all the calculated parameters. The worst model
(MLR 1) presented calculated r (0.3574), R2 (0.1277), RMSEP
(0.5 wt.% C), and the best model (MLR 4) presented calculated
r (0.9289), R2 (0.8628), and RMSEP (0.2 wt.% C).

The results show the accuracy within the validation set (48
soil samples) and how the model becomes more precise, fol-
lowing the order: MLR 1=MLR 2<MLR 5<MLR 3=
MLR 4. For MLRs 1 and 2, only 19 samples were into recovery
range between 80% to 120 %, whereas, the 3D model (MLR 5)
presented 29 samples. In contrast, MLR 3 and MLR 4 showed
the best accuracy (85%) with 41 of 48 soil samples into recovery
range.

The reduction of RMSEP from 0.5 wt.% C in the worst
model to 0.2 wt.% C in the best model, a prediction error 2.5
times lower, and an increase in an accuracy from 40% to 85%
reflect the different approaches in each calibration model.
For example, MLR 1 started with three variables, C I line at
193.03 nm, PT, and SA indices. In the MLR 2 model was added
sand (g kg−1). MLR 3 used five variables: C I at 193.03 nm,
Al I at 193.58 nm, Al II at 198.99 nm, Si I at 212.41 nm lines,
PT and SA. The best model (MLR 4) was built with all the
previous variables: C I at 193.03 nm, Al I at 193.58 nm, Al II at
198.99 nm, Si I at 212.41 nm lines, sand (g kg−1), and PT and
SA indices were fitted into the model.

The MLR 5 was built with a different approach from the
other MLR models. After removing outliers and performing
baseline correction, the intensity values of the C+ Al peak at
193.03 nm and the Al peak at 193.58 nm were calculated [12].
Then, the Linest [38] routine was used to estimate the plane’s
coefficients that best fit the data and with the adjusted values
[12]. The correlation between the reference values predicted by
LIBS for the calibration and validation sets were 0.89 and 0.79,
respectively. The low values of RMSEC and RMSEP show the
effectiveness of the 3D model for C prediction with an accuracy
of 60% for soil samples with different textures as presented in
Table 2.

For the presented models, adding Al and Si lines and sand
(g kg−1) as independent variables bring into the model’s infor-
mation about the matrix, resulting in more robust predictions
and higher accuracy. The advantage of MLR models over uni-
variate models is that in MLR, more emission lines can be used
to improve calibration [39]. Still, one important limitation
must be considered: The sample number must be greater than
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Table 2. Multivariate Calibration Models Obtained from MLR

Parameter MLR (1) MLR (2) MLR (3) MLR (4) MLR (5)

Variables C 193 C 193 C+Al peak at
C 193 C 193 Al 198 Al 198 193.03

PT index PT index Si 212 Si 212 +

SA index SA index PT index PT index Al I peak at
sand SA index SA index 193.58 (3D)

sand

r calibration 0.6340 0.6394 0.9182 0.9372 0.89
R2 calibration 0.4019 0.4088 0.8430 0.8785 0.79
RMSEC (%) 0.5 0.5 0.3 0.2 0.3
r validation 0.3574 0.3965 0.9042 0.9289 0.79
R2 validation 0.1277 0.1572 0.8175 0.8628 0.62
RMSEP (%) 0.5 0.5 0.2 0.2 0.3
Accuracy

a
19 (40%) 19 (40%) 41 (85%) 41 (85%) 29 (60%)

aRecovery range values between 80% and 120% for the validation set (48 soil samples); PT; SA.

the number of variables [27]. These characteristics justify the
better performance of the MLR 4 model and the lower value
of RMSEC (0.2 wt.% C). Using the variables, which bring
information from C, spectral interferences (Al), soil texture
(Si and sand), and parameters of plasma information and matrix
effects (PT and SA indices), this MLR model presented lower
calibration error, among the MLR models compared, Table 2.

Following the MLR models, PCR and PLS models were
calculated. The variables used to calculate all PCR and PLS
models are presented in Table 3. The C I at 193.03 nm, Al I at
193.58 nm, Al II at 198.99, Si I at 211.41 nm lines, PT and SA
indices, and texture [sand, clay, and silt (g kg−1)] were used as
independent variables for the proposition of the calibration
models. Although the five PCR models showed lower accuracy
(77%–79%) when compared with the best MLR model (MLR
4, 85% accuracy), the best PCR model (PCR 4) presented as an
efficient method, achieving 79% accuracy with parameters rval

(0.9374), Rval (0.8787), RMSEP (0.2 wt.% C), and 38 of 48
samples into recovery range between 80% and 120% (Table 3),
reflecting the importance of variable selection to modeling
improvement.

Although the RMSEP values of the PCR and PLS models
have not varied, the accuracy of the PLS models ranged from
79% to 90%, being superior to the PCR models as presented in
Table 3. PLS 1, which uses all the aforementioned independent
variables, is the accurate among the five proposed PLS mod-
els. The use of all the variables together, mainly the Si I line at
212.41 nm, which is a variable inherent to the sand can have
produced an antagonistic effect, generating the model (PLS 1)
with lower accuracy (79%). This observation is highlighted
when the same variables (C I 193.03 nm, Al I 193.58 nm, and
Al II at 198.99 nm lines) were used to build the PLS 5 adding
only the texture was achieved the highest accuracy (90%) among
all models PLS. The PLS 5 model showed the best results rval

(0.9403), R2
val (0.8842), RMSEP (0.2 wt.% C), and 40 of 48

samples in the recovery range. Furthermore, a single PLS model
can relate the independent variables (contained in the X matrix)
with one or more response variables (Y ), overcoming the PCR
modeling necessity to build one model for each (Y ) response
variable [32].

Finally, seven models from ANN were built using independ-
ent variables around the C, Al, and Si lines (C I at 193.03 nm, Al
I at 193.58 nm, Al II at 198.99, and Si I at 211.41 nm), and PT
and SA indices. ANN models showed better predictive ability
in comparison with those multivariate calibration strategies
(MLR, PCR, and PLS) evaluated.

Accuracy for all ANN models was equal or greater than 90%
with RMSEP values very low, ranging from 0.2 wt.% C to
0.1 wt.% C. An overview of the ANN models for the valida-
tion set with 48 samples, evaluating the accuracy, follows the
order ANN 7= ANN 4 (90% accuracy) < ANN 3= ANN 6
(92% accuracy) < ANN 1= ANN 5 (94% accuracy) < ANN
2 (98% accuracy) as presented in Table 4.

A more specific observation on the results of the models,
starting from ANN 1 to ANN 2, there is an improvement in the
results and a reduction in the RMSEP values from 0.2 0.1 wt.%
to 0.1 wt.% C when adding the variables of the Al line at II
198.99 nm, this being the best model (ANN 2). However, with
the addition of the variables of the Si I line at 212.41 nm and
PT and SA indices, there is no improvement in the results and
an increase in RMSEP values. Therefore, it can be inferred
that there is a synergism between the lines C I at 193.03 and
the Al II at 198.99 nm for these data, improving the modeling
with ANN. It was also observed in the univariate calibration
approaches (model MMC with SC-C I at 193.03+ Al I at
193.58+ Al II at 198.99 nm lines), being the most accurate
model (81%) among all univariate models.

The best model (ANN 2) was obtained using only inde-
pendent variables, the C I line at 193.03 nm, the Al I line at
193.58 nm, and the Al II line at 198.99 nm, achieving 98%
accuracy, i.e., 47 of 48 samples of the validation set into recovery
range between 80% and 120%. The recoveries of the ANN 2
model presented really good values both calibration and vali-
dation sets. Table S1 in Supplement 1 shows subsets samples
containing reference concentrations obtained by CHNS (refer-
ence method) and predicted by LIBS technique with its standard
deviations and recovery values. The parameters obtained for this
model (ANN 2) were rval (0.9669), R2

val (0.9349), and RMSEP
(0.1 wt.% C). The C content was determined by LIBS versus

https://doi.org/10.6084/m9.figshare.22592368
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Table 3. Multivariate Calibration Models Obtained from PCR and PLS

Parameter PCR (1) PCR (2) PCR (3) PCR (4) PCR (5) PLS (1) PLS (2) PLS (3) PLS (4) PLS (5)

Variables C 193 C 193
Al 193 C 193 C 193 Al 193 C 193
Al 198 Al 193 C 193 C 193 Al 193 Al 198 C 193 Al 193 C 193 C 193
Si 212 Al 198 Al 193 Al 193 Al 198 Si 212 Al 193 Al 198 Al 193 Al 193

PT Texture Si 212 Al 198 SA PT Al 198 SA Si 212 Al 198
SA PT SA PT Texture

Texture Texture

r calibration 0.9399 0.9391 0.9113 0.9362 0.9392 0.9462 0.9428 0.9463 0.9222 0.9466
R2 calibration 0.8834 0.8820 0.8305 0.8765 0.8821 0.8954 0.8889 0.8955 0.8504 0.8961
RMSEC (%) 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2
r validation 0.9231 0.9224 0.9088 0.9374 0.9310 0.9288 0.9371 0.9303 0.9282 0.9403
R2 validation 0.8521 0.8508 0.8260 0.8787 0.8668 0.8628 0.8781 0.8656 0.8615 0.8842
RMSEP (%) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Accuracy

a
37 (77 %) 37 (77 %) 37 (77%) 38 (79%) 38 (79%) 38 (79%) 39 (81%) 40 (83%) 40 (83%) 43 (90%)

aRecovery range values between 80% and 120% for the validation set (48 soil samples); PT; SA; Texture= clay, sand, and silt.

Table 4. Multivariate Calibration Models Obtained from ANN

Parameter ANN (1) ANN (2) ANN (3) ANN (4) ANN (5) ANN (6) ANN (7)

Variables C 193
C 193 C 193 C 193 C 193 C 193 Al 193

C193 Al 193 Al 193 Al 193 Al 193 Al 193 Al 198
Al 193 Al 198 Si 212 Al 198 Al 198 Si 212 Si 212

Si 212 SA SA SA
PT PT PT

r calibration 0.9621 0.9769 0.9790 0.9822 0.9783 0.9754 0.9835
R2 calibration 0.9257 0.9542 0.9585 0.9648 0.9570 0.9514 0.9673
RMSEC (%) 0.2 0.1 0.1 0.1 0.1 0.2 0.1
r validation 0.9461 0.9669 0.9400 0.9474 0.9571 0.9553 0.9477
R2 validation 0.8951 0.9349 0.8836 0.8976 0.9161 0.9127 0.8981
RMSEP (%) 0.1 0.1 0.2 0.2 0.1 0.1 0.2
Accuracy

a
45 (94%) 47 (98%) 44 (92%) 43 (90%) 45 (94%) 44 (92%) 43 (90%)

aRecovery range values between 80% and 120% for the validation set (48 soil samples); PT; SA.
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Fig. 4. Correlation between carbon content (wt.%) in soil predicted
by LIBS and C values determined by reference method (elemental ana-
lyzer - CHNS) for best ANN model (ANN 2).

the reference values obtained by elemental analyzer—CHNS as
shown in Fig. 4.

The superiority of ANNs over other multivariate calibration
strategies can be explained due to the capacity of calibration in
the presence of interferences, nonlinearly using several variables
that can contribute overcoming matrix effects and that can
explore more information from the analyzed samples [33,40].

Regression models are strongly related to the significance
levels of the independent variables, and in ANN, all data are
used with individual weights, making the models more accurate.
Modeling with ANN makes it possible to accurately predict the
total C content in soil samples analyzed directly by LIBS.

4. GUIDELINES FOR CALIBRATION
STRATEGIES IN SOIL SAMPLES

The several calibration strategies presented in this tutorial
demonstrated how the intrinsic characteristics of each modeling
strategy to improve the soil carbon predictions. In Fig. 5, we
show the advantages of each strategy, which can assist in the
decision for calibration strategy employment. The univariate
strategies (MMC and IS) simplify spectral treatment and mod-
eling. Evaluating the most straightforward strategy (MMC)
for C prediction using LIBS is based on the direct correlation
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Fig. 5. Guidelines for choosing calibration strategies.

between soil C concentration obtained by the reference method
and the analytical signal from LIBS spectra. However, MMC
assumes that there are not significant matrix effects and that
the samples have similar physicochemical properties, which
is unlikely due to the complexity of the matrix (soil). The IS
direct regression can partially correct matrix effects and instru-
mental fluctuations, an alternative to MMC. Still, a critical
step is selecting an excellent IS to be utilized. Both univariate
strategies are based on least-squares regression, and the adoption
of dependent and independent variables can significantly affect
the precision and accuracy of the model. The employment of
IR can result in a better model, increasing accuracy due to using
the analytical signal as an independent variable (minor error
source). However, the univariate strategies need of spectral
treatment to solve the spectral interference of Al I and Al II lines
in the C I line at 193.03 nm (Fig. 3). In this context, the spectral
correction can be applied to all calibration strategies (univariate
and multivariate) to overcome this effect.

When the univariate strategies cannot sufficiently overcome
matrix effects, we can employ multivariate calibrations once
they utilize multiple variables, which is a significant advantage
in improving modeling. Between the multivariate strategies
evaluated, MLR presents the advantage of simplicity in mod-
eling expertise. Still, one important limitation that needs to be
observed is that the number of samples utilized on calibration
needs to be higher than the number of selected variables. PCR
and PLS strategies allow the selection of multiple variables selec-
tion, overcoming MLR limitations. Still, PLS modeling enables
building a single model for multiple responses, an advantage
over PCR calibration.

Even so, some datasets can be so complex that neither of the
previously presented strategies can efficiently generate accurate
models due to the nonlinearity of the dataset. Thus, the ANN
must be adopted due to the ANN’s capacity to assign individual
weights to each variable added to the model calibration making
it possible to explore more information from the data set and
nonlinearly. However, there are also limitations for modeling

applying the ANN, which require a large number of samples
for calibration set and/or variables (the more information pro-
vided, the more robust the ANN model) and the analyst’s great
expertise.

5. CONCLUSION AND OUTLOOK

Several univariate and multivariate calibration strategies were
applied and presented their advantages and limitations, allow-
ing the user to decide which strategy can be used to quantify
C in soil samples using the LIBS technique. Furthermore, it
was demonstrated that more than one path could be chosen for
soil C quantification; according to the matrix physical–chemical
properties, the analyst decides which variables and calibration
strategy can be used in the modeling.

Although the univariate strategies presented more limitations
in soil C modeling and prediction, the MMC–SC strategy
resulted in a high-accuracy model (81%). The best models were
MLR 4, PLS 5, and ANN 2 with an accuracy of 85%, 90%, and
98%, respectively. These results demonstrated that the LIBS
technique had great potential to be consolidated to quantify
soil C.

In addition, other possibilities for modeling in more specific
contexts can be considered, for example, calibration-free (CF-
LIBS) [41] and OPC, not explored in this paper. In this case,
there was no need to build multivariate models or calibration
curves because the model was based on plasma parameters.
Based on the local thermodynamic equilibrium, the concentra-
tion of one species can be determined using the relationships
between the other species or by utilizing an element as an IS to
simplify the computations. The model became more robust and
less vulnerable to the matrix effect by considering the plasma
parameters (temperature, electron density, and emitter den-
sity). By combining the model with the correction of the OPC
method [42,43], there was an increase in the accuracy and preci-
sion of CF-LIBS even when the matrix effect was evident. This
CF-LIBS model had been used efficiently in agrienvironmental
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samples, such as soybean leaves [43] for nutrient quantification.
However, more research was needed to develop a CF-LIBS
data analysis procedure for measuring C and soil fertility; its
application in soils had a great potential.
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