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ABSTRACT 26 

Meat quality traits are economically important because they impact consumers’ 27 

acceptance which, in turn, influences the demand for beef. However, selection to improve meat 28 

quality is limited by the small numbers of animals on which meat tenderness can be evaluated 29 

due to the cost of performing shear force analysis and the resultant damage to the carcass. 30 

Genome wide-association studies (GWAS) for Warner-Bratzler shear force (WBSF) measured at  31 

different times of meat aging, backfat thickness (BFT), ribeye muscle area (REA), scanning 32 

parameters (Lightness (L*), redness (a*) and yellowness (b*) to ascertain color characteristics of 33 

meat and fat, water-holding capacity (WHC), cooking loss (CL) and muscle pH, were conducted 34 

using genotype data from the Illumina BovineHD BeadChip array to identify quantitative trait 35 

loci (QTL) in all phenotyped Nelore cattle. Phenotype count for these animals ranged from 430 36 

to 536 across traits. Meat quality traits in Nelore are controlled by numerous QTL of small 37 

effect, except for a small number of large-effect QTL identified for a*fat, CL and pH. Genomic 38 

regions harboring these QTL and the pathways in which the genes from these regions act appear 39 

to differ from those identified in taurine cattle for meat quality traits. These results will guide 40 

future QTL mapping studies and the development of models for the prediction of genetic merit to 41 

implement genomic selection for meat quality in Nelore cattle. 42 

 43 

INTRODUCTION 44 

For decades, cattle breeding programs have focused on improving growth (3,13), despite 45 

the importance of meat quality and yield traits such as meat tenderness, backfat thickness (BFT) 46 

and ribeye muscle area (REA) due to their impact on consumer satisfaction and product pricing. 47 

Less attention has been paid to the genetic improvement of these traits because they are costly 48 

and difficult to measure and are observed only after an animal has been slaughtered. Meat 49 

tenderness has been identified as a major issue of the beef industry, especially in animals with 50 

indicine ancestry. It is known that crossbreed animals with higher degrees of Bos indicus 51 

contribution have decreased meat tenderness (26).  52 

Traditional breeding programs select animals based on estimated breeding values 53 

calculated from phenotypic records and pedigrees, and using an estimate of the heritability of 54 
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each trait, however, this method makes no attempt at identifying the genes and pathways 55 

involved in the target traits and the process is slow if the trait can only be measured late in life or 56 

postmortem as is the case for meat tenderness (20). Research conducted primarily in Bos taurus 57 

cattle has identified QTL on chromosomes 1, 2, 4, 5, 7, 8, 10, 11, 15, 18, 20, 25 and 29 for meat 58 

quality traits (2, 6, 7, 8, 9, 12, 16, 17, 18, 25, 27, 38, 39, 46, 55). However, it is not clear whether 59 

these loci contribute to variation in the same traits in Bos indicus cattle.  Furthermore, genome-60 

wide association studies (GWAS) performed using Bayesian or Genomic Best Linear Unbiased 61 

Prediction (GBLUP) models which may be used to estimate molecular breeding values in the 62 

deployment of genomic selection are increasingly being used to identify Quantitative Trait Loci 63 

(QTL) associated with complex traits (14, 15, 31, 32, 36, 52). This approach requires that 64 

thousands of molecular markers spanning the entire genome be genotyped in a population of 65 

phenotyped individuals and that the number of markers is calibrated relative to the extent of 66 

linkage disequilibrium (LD) within the population to ensure that QTL of large effect are not 67 

missed simply because they are beyond the range of LD of the nearest markers.  68 

The success of genomic selection depends on the exploitation of LD between the markers 69 

and the QTL affecting a target trait (40). Before genetic information can be efficiently used 70 

within breeding programs, studies involving the breeds and populations targeted for 71 

improvement are essential to accurately describe the marker/QTL associations and phase 72 

relationships for important production traits in each population. Cattle breeds differ in phase 73 

relationships between marker and QTL alleles and also in allele frequencies, and consequently, 74 

the significance of QTL effects can differ between breeds. This study identifies genomic regions 75 

that putatively harbor genes related to variation in Warner-Bratzler shear force (WBSF) 76 

measured following different times of meat aging, backfat thickness (BFT), ribeye muscle area 77 

(REA), L*, a*, b* color parameters (L* = Lightness; a* = redness; and b* = yellowness) for 78 

meat and fat, water-holding capacity (WHC), cooking loss (CL), and pH in Nelore beef cattle 79 

using genotypes produced from the Illumina BovineHD BeadChip (Illumina Inc., San Diego, 80 

CA). 81 

 82 

 83 
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MATERIALS AND METHODS 84 

Animal and phenotype collection. Nelore steers derived from 34 sires representing the 85 

main breeding lineages of Brazil, were genotyped. Half-sib families were produced by artificial 86 

insemination of commercial and purebred Nelore dams. Animals were raised and allocated to 87 

two feedlots, as previously described (50).  The animals were slaughtered at an average endpoint 88 

of five mm of back fat thickness. The phenotype count for these animals ranged from 430 to 536 89 

across traits. The research was approved by the Embrapa Pecuária Sudeste (São Carlos, São 90 

Paulo, Brazil) ethics committee. 91 

Phenotypes for WBSF (kg), BFT (mm), REA (cm2), WHC (%), L*, a*, b* color 92 

parameters for meat and fat, and CL (%) were measured from 2.5 cm thick steaks harvested as a 93 

cross section of the longissimus dorsi muscle between the 11th and 13th ribs collected at 94 

slaughter. The steak from the 12th rib was used to measure BFT, REA, WHC, L*, a*, b* color 95 

parameters, and CL at 24 hr postmortem. Measurements of WBSF were conducted on three 96 

steaks obtained between the 11th and 13th ribs after 24 hr (WBSF0), seven days (WBSF7) and 14 97 

days (WBSF14) of aging at 2 °C in a cold chamber manufactured by Macquay Heatcraft do 98 

Brasil Ltda (São José dos Campos, São Paulo, Brazil).  Briefly, the fresh steak samples were 99 

used to measure BFT, REA, WHC and color parameters. The color parameters L* (lightness), a* 100 

(redness), and b* (yellowness) were determined after exposing the steaks to atmospheric oxygen 101 

for thirty minutes prior to analysis, and each trait was measured at three locations across the 102 

surface of the steak using a Hunter Lab colorimeter model MiniScan XE with Universal 103 

Software v. 4.10 (Hunter Associates Laboratory, Inc., Reston, VA, USA), illuminant D65 and 104 

10° standard observer.  Muscle pH also was measured at three locations across the steak using a 105 

Testo pH measuring instrument, model 230 (Testo AG, Lenzkirch, Germany). Water-holding 106 

capacity was determined using a compression technique in which a 0.2 kg meat sample was 107 

compressed at a force of 10 kg for 5 min and WHC was estimated as the difference between the 108 

weight of the sample before and after compression (21). After these analyses, the steaks were 109 

weighed and cooked in a Tedesco combined oven, model TC 06 (Tedesco, Caxias do Sul, RS, 110 

Brazil), at 170 °C until the temperature at the center of each sample reached 70 °C, controlled by 111 

thermocouples linked to FE-MUX software (Flyever, São Carlos, SP, Brazil) to measure CL and 112 

WBSF. The WBSF measures were obtained using the texture analyzer TA — XT2i coupled to a 113 
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Warner–Bratzler blade with 1.016 mm thickness. Cooking loss was measured using the grilled 114 

steaks as the difference in weights before and after cooking, expressed as percentage. 115 

 116 

DNA extraction and Genotyping.  Straws of frozen semen obtained from Brazilian 117 

artificial insemination centers were used to extract DNA from bulls using a standard phenol-118 

chloroform method (43). For the steer progeny, 5 mL blood samples were collected and DNA 119 

extractions were performed using a salting out method. DNA concentration was measured by 120 

spectrophotometry, and quality was verified by the 260/280 optical density ratio, followed by 121 

inspection of integrity through agarose gel electrophoresis. All animals were genotyped using the 122 

Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA) either at the USDA ARS Bovine 123 

Functional Genomics Laboratory in Beltsville, MD or at the ESALQ Genomics Center, 124 

Piracicaba, São Paulo, Brazil. Genotypes were called in the Illumina Genome Studio software. 125 

Animals were filtered according to call rate (<90%) and heterozygosity (>40%). Loci were 126 

deleted if they could not be uniquely localized to an autosome or the X chromosome in the 127 

UMD3.1 sequence assembly, call rate (<85%), minor allele frequency (<0.1%), and Hardy 128 

Weinberg Equilibrium  2
1  > 100.0). Only effects of Single Nucleotide Polymorphisms (SNPs) 129 

located on the autosomal chromosomes were considered for association analysis. 130 

Genome Wide Association Analysis. Missing genotypes were imputed using BEAGLE (5) 131 

without the use of pedigree information. Meat quality traits were analyzed under a Bayesian 132 

model using GenSel software (15). The BayesC approach, which is less sensitive to starting 133 

values for additive genetic and residual variances was first used to estimate these variances, 134 

assuming the π parameter was zero (i.e., assuming that all SNPs contributed to explaining 135 

genetic variance in each trait). The estimated additive genetic and residual variances from the 136 

BayesC0 analyses were then used as starting values in BayesCπ analyses to estimate the π 137 

parameter for each trait. The estimated values for the additive genetic and residual variances and 138 

π were finally used to run BayesB analyses to estimate the SNPs effects. The BayesB analysis 139 

fits separate variances for every SNP in the model allowing large effect SNP to be estimated 140 

without overly regressing their effects towards zero. The statistical model included fixed effects 141 

of birth and feedlot locations, breeding season, slaughter group and animal age at slaughter as a 142 

covariate. 143 
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The Bayesian estimation of SNP effects was performed based on the model below: 144 

ܡ ൌ ߤ1 ൅ ෍ jܠ

௞

௝ୀଵ

βj δj ൅  ܍

where y is the vector of phenotypic values, μ is an overall mean, k is the number of marker loci 145 

in the panel, xj is the column vector representing the genotype covariate at locus j, βj is the 146 

random allele substitution effect for locus j, which is conditional on σ2
β and is assumed normally 147 

distributed N(0, σ2
β); when δj =1 but βj =0 when δj =0, δj is a random 0/1 variable indicating the 148 

absence (with probability π) or presence (with probability 1 − π) of locus j in the model, and e is 149 

the vector of random residual effects assumed normally distributed N(0, σ2
e). 150 

Based on the magnitude of the π parameter estimated in the BayesCπ analysis, we 151 

identified all genes within ±10 kb of the largest effect 651,259 × (1 - ̂) SNPs to search for 152 

candidate genes for the detected QTL. The genomic regions associated with each trait were 153 

examined for candidate genes using Map Viewer (NCBI). The enriched annotation and pathways 154 

in which genes within these regions are involved were evaluated using the Database for 155 

Annotation, Visualization and Integrated Discovery (DAVID) software (23). 156 

 157 

RESULTS 158 

 159 

Summary Statistics. Raw means, standard deviations, variance components, heritability 160 

and  estimates for each trait are in Table 1.  The estimates of heritability are based on small 161 

sample sizes and consequently possess considerable sampling variance. Heritability estimates 162 

varied between 0.05 for L*fat and 0.28 for b*muscle.  163 

Genome Wide Association Study. After selecting SNPs based on call rate, allele 164 

frequency and Hardy-Weinberg equilibrium, as described in the methodology, genotypes were 165 

available for 651,259 SNP loci scored in both the steers and their sires and 0.80% of missing 166 

genotypes were imputed. The sire genotypes were included in the analysis to enable the 167 

estimation of molecular breeding values for these important animals. We found that the 168 

evaluated meat quality traits were primarily influenced by QTLs of small effect and that no 169 
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genes of large effect such as attributed to CAPN1 and CAST in taurine cattle (4, 10, 35, 44) were 170 

detected. 171 

The software DAVID v6.7 was used to search for enriched functional clusters and 172 

pathways based upon our supplied gene lists. For WBSF0, we identified 858 candidate loci 173 

(including uncharacterized loci, pseudogenes and predicted proteins, Table S1) in the vicinity of 174 

the 4563 associated SNPs selected based on the π parameter estimated for this trait (Table 1). 175 

Genes that have already been reported as candidates for meat tenderness QTL were found in 176 

these analyses. One SNP associated with WBSF0 was located in the vicinity of calpain 2, (m/II) 177 

large subunit (CAPN2) and four were in calpain 5 (CAPN5); SNPs associated with WBSF0 were 178 

also found in collagen family (COL15A1 and COL23A1) genes. However, no associated SNP 179 

was found within 10 kb of calpastatin (CAST) which has been shown to be associated with 180 

WBSF in taurine breeds.  BTA7 was found to harbor SNPs which explained the greatest amount 181 

of additive genetic variance in WBSF0 (Figure 1), however these SNPs were not located near 182 

any annotated genes suggesting that the causal mutations may be regulatory in nature. The 183 

largest QTL identified for WBSF0 was located on BTA23 at 24 Mb (Table 2), the QTL in this 184 

genomic region accounted for only 0.11% of the additive genetic variance in WBSF0. There are 185 

several genes located within the vicinity of this QTL including the glutathione S-transferase 186 

alpha gene family (GSTA2, GSTA3, GSTA5, GSTA4). We also identified candidate genes in other 187 

QTL regions such as SERPIN2 which encodes a serine protease protein and is located near to 188 

associated SNPs on BTA2. Serpin genes are known to control proteolysis in molecular pathways 189 

associated with cell survival and development (45). The DAVID functional analysis revealed 190 

clusters involved in potassium and calcium channel activity and the enriched pathways found 191 

were Neuroactive ligand-receptor interaction, TGF-beta signaling, vascular smooth muscle 192 

contraction, focal adhesion, calcium signaling and ribosome (Table S1).  193 

We identified 4161 genes within regions tagged by the SNPs that were associated with 194 

WBSF7 (Table S1). Two associated SNPs were found in the vicinity of calpain 1, (mu/I) large 195 

subunit (CAPN1, four in CAPN2 , three in CAPN5 and two in CAST; in addition to the collagen 196 

gene family members (COL1A1, COL24A1, COL28A,COL2A1, COL4A3 and COL6A3) which 197 

were also enriched in this analysis. A candidate gene (ASAP1: ArfGAP with SH3 domain, 198 

ankyrin repeat and PH domain 1) previously reported in a candidate gene study employing part 199 

of this Nelore population (50) was also found in this analysis to be among those loci most 200 
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strongly associated with WBSF.  The QTL region that explained the greatest proportion of 201 

additive genetic variance (0.10%) was located on BTA13 at 71 Mb where the genes for protein 202 

tyrosine phosphatase, receptor type, T (PTPRT) and histone H2B type 1-like (LOC614378) are 203 

located. The single SNP on BTA11 that explained the greatest amount of variation in WBSF7 204 

tags a region harboring two candidate genes: RAB11FIP5 (RAB11 family interacting protein 5) 205 

which is involved in protein trafficking from apical recycling endosomes to the apical plasma 206 

membrane and SFXN5 (sideroflexin 5) which transports citrate. The functional clusters enriched 207 

were glycoprotein, bisulfite bound and metal-binding. Interesting pathways including 208 

Neuroactive ligand-receptor interaction, O-Glycan biosynthesis and Focal adhesion were also 209 

enriched (Table S1). 210 

The QTL which explained the greatest amount of additive genetic variance for WBSF14 211 

was located on BTA2 at 73 Mb and accounted for 0.19% of the additive genetic variance. Few 212 

genes are located in this QTL region but include GLI family zinc finger 2 (GLI2), cytoplasmic 213 

linker associated protein 1 (CLASP1),  MKI67 (FHA domain) interacting nucleolar 214 

phosphoprotein (MKI67IP) and ubiquitin-conjugating enzyme E2 N-like (LOC100294993).  215 

From the 382 candidate genes related to WBSF14, protection of telomeres 1 homolog (S. pombe) 216 

(POT1) located on BTA4 explained the most additive genetic variance in WBSF14 and was 217 

detected by the associated markers; this gene is essential for the replication of chromosome 218 

termini. Among the significant enriched functional clusters were lipid binding, focal adhesion 219 

and exopeptidase activity; the most enriched pathway found for this meat aging time was Fc 220 

gamma R-mediated phagocytosis. 221 

A total of 56 genes were detected as candidates for meat tenderness from the analysis of 222 

all measures of WBSF, and the functional analysis of these concordant genes revealed three 223 

enriched functional clusters related to the regulation of transcription, membrane and metal-224 

binding (Table S1).  225 

From the GWAS for BFT (Figure 2), a QTL located on BTA11 explained the greatest 226 

amount of variation in BFT (0.36%). Few genes and uncharacterized loci are mapped to this 227 

region (Table 2), however none of them have a clear function in lipid anabolism or catabolism.  228 

TTF1 (transcription termination factor, RNA polymerase I), located on BTA9 was the gene 229 

which harbors the single SNP which explains the greatest additive genetic variance in BFT. The 230 

enrichment analyses identified clusters related to cofactor biosynthetic process,  amino-acid 231 
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biosynthesis, cell death, between other (Table S2). Previously identified candidate genes 232 

including Leptin (LEP) and diacylglycerol O-acyltransferase 1 (DGAT1) (48, 49) were not 233 

identified in this analysis. Enriched pathways included Drug metabolism, Pentose and 234 

glucuronate interconversions, Pantothenate and CoA biosynthesis and Neuroactive ligand-235 

receptor interaction (Table S2). 236 

Analyses for REA identified six QTL which individually explained 0.8% of the additive 237 

genetic variance as being the most important loci (Table S3). The same QTL described for 238 

WBSF0 at BTA23 appeared to also influence REA (Table 2).Genes related to protein kinase 239 

activity, ATP-binding, cell death and keratin filament were found to be enriched. EH-domain 240 

containing 2 (EHD2) gene located on BTA18 harbors one of the single SNPs explaining the most 241 

additive genetic variance in this trait (Figure 2). The enriched pathways were Adherens junction, 242 

Sphingolipid metabolism, O-Glycan biosynthesis and Glycosphingolipid biosynthesis (Table 243 

S2). 244 

The estimated π values for a*muscle and b*muscle color parameters were higher than for 245 

the other traits (Table 1) indicating that relatively few SNPs are associated with these traits 246 

(Figure 3). There were no annotated candidate genes identified within ±10 kb of the associated 247 

SNPs. For L*muscle, the most strongly associated SNP was found on BTA21 (Figure 3); this 248 

region harbors the fibronectin type III and SPRY domain containing 2 (FSD2) gene. (Table S4). 249 

The a* and b* color parameters for fat and L* for muscle seem to be influenced by 250 

similar large-effect genes (Figure 3, Table S4). Pathways related to lysine degradation, other 251 

glycan degradation and cell adhesion molecules, among others appear to be important for the 252 

maintenance of color in bovine postmortem muscle (Table S4). We identified a QTL at 58 Mb on 253 

BTA17 which has the largest effect (0.10% of additive genetic variance) on WHC (Table 2 and 254 

Table S5). In this QTL region (Table 2) are located protein kinase, AMP-activated, beta 1 non-255 

catalytic subunit (PRKAB1) and heat shock 22 kDa protein 8 (HSPB8). DAVID revealed clusters 256 

such as organic and catabolic processes, activation of immune response and ubiquitin-dependent 257 

protein catabolic process for the genes in the genomic regions associated with WHC (Figure 4). 258 

The enriched pathways were Calcium signaling and Neuroactive ligand-receptor interaction 259 

(Table S5). As for WHC the largest effect QTL identified to influence CL is located on BTA23 260 

and explains 0.10% of the additive genetic variance, genes related to antigen processing and 261 

presentation pathway including heat shock proteins were enriched in this analysis. 262 
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A major QTL for muscle pH (24h) was identified on chromosome 8 at 87 Mb which 263 

explained 4.01% of the additive genetic variance.  264 

 265 

DISCUSSION  266 

 267 

WBSF values (Table 1) are higher than those normally reported for Bos taurus breeds 268 

(32), but this was expected and is in agreement with the observation that WBSF increases as the 269 

proportion of Bos indicus breeding increases in crossbred animals (26). We estimated the 270 

heritability of each trait using BayesC0 analyses because BayesC is less sensitive to sample size 271 

than BayesB, which requires the joint estimation of SNP effect variances for each of the markers 272 

included in the model (15). Nevertheless, most of the heritability estimates were moderate in size 273 

indicating that QTL exist for all of these traits in Nelore cattle. 274 

Many important production traits in taurine cattle are polygenic and are controlled by a 275 

large number of QTL (41,42). The identification of genes underlying variation in complex traits 276 

would enhance our understanding of the biology of phenotypic variation and would facilitate 277 

improved accuracy of selection. We performed a GWAS for 14 meat quality traits using a half-278 

sib Nelore population which enabled us to identify many QTL underlying these traits. With the 279 

exception of CL, a*fat and pH for which large effect QTL were identified; the detected QTLs 280 

were of very small effect. For meat tenderness, in particular, this finding is contrary to results in 281 

taurine cattle where QTL explaining 4.1 – 7.4% of the additive genetic variance in WBSF have 282 

been detected (32). The improvement of meat quality traits, including meat tenderness, could 283 

stimulate consumer purchases of beef because they expect desirable eating experiences and tend 284 

to divert their purchases to other sources of animal protein when they experience tough meat.  285 

Changes in texture and sensorial properties can occur due to the postmortem degradation 286 

processes that influence the quality attributes of beef. Much attention has been paid to the 287 

Calpain and Calpastatin genes which are involved in an important proteolytic system and 288 

variation in these genes has been found to affect meat tenderness in different cattle populations 289 

(10, 11, 35, 44). Although we found SNPs in CAPN1, CAPN2, CAPN5 and CAST that were 290 

associated with WBSF measures in this population, they had smaller effects than other QTL 291 

candidates (Table S1). This result may reflect the small sample size employed in this study. It is 292 

also possible that differences between taurine and indicine cattle for allele frequencies at the 293 
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CAPN1 and CAST causal mutations or the extent of LD between SNPs and these causal variants 294 

could result in different marker effects being detected in different breeds. The presence of 295 

epistasis could also influence the magnitude of SNP effects across different populations, since it 296 

is known that epistatic effects can explain large amounts of the variation in quantitative traits 297 

(24).  298 

The difference between genes and pathways identified in this Nelore study and those 299 

already reported for taurine breeds could reflect differences in metabolism or in the selection 300 

history of Zebu cattle. Functional clusters related to potassium and calcium transport as well as 301 

to metal binding were found to be enriched in our analyses of the WBSF measures. Potassium is 302 

necessary for muscle contraction, nerve impulses and also contributes to the proper balance of 303 

fluids in cells (29). Studies conducted with the same Nelore population showed that Potassium 304 

content in beef may affect meat tenderness (51). Further, the calpain system is highly sensitive to 305 

fluctuating levels of calcium ions, pH and temperature, and these three parameters all change 306 

rapidly immediately postmortem (47), indicating that calcium channel activity could generally 307 

influence postmortem tenderization.   308 

Important pathways including Neuroactive ligand-receptor interaction and TGF-beta 309 

signaling were identified from the genes in the regions of the genome where SNP were 310 

associated with WBSF0. In the Neuroactive ligand-receptor interaction pathway, several genes 311 

related to G protein-coupling were identified (Table S1).  Studies have shown that activation of 312 

G protein–coupled receptors is involved in the maintenance of skeletal muscle and also could be 313 

involved in the mediation of myofiber maturation and growth, operating through many signaling 314 

pathways to selectively stimulate protein synthesis or inhibit cytokine-dependent protein 315 

turnover (19). 316 

The TGF-beta pathway is involved in many cellular processes including apoptosis. 317 

Factor-beta (TGF-β) superfamily genes have been identified as important regulators of muscle 318 

development (33).  Genes from our gene list include NOG (Noggin) which is crucial for cartilage 319 

morphogenesis and joint formation and also inhibits bone morphogenetic protein (BMP) 320 

signaling, which is essential for growth and neural tube and somite patterning, and BMP7 (bone 321 

morphogenetic protein 7) which induces cartilage and bone formation are in this pathway (28).  322 

The PTPRT gene was identified as a QTL candidate (Table 2) for WBSF7 and may be 323 

involved in both signal transduction and cellular adhesion in the central nervous system; both 324 
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pathways were also found as playing an important role in variation in WBSF0. Cytokine-325 

cytokine receptor interaction and chemokine signaling pathways were enriched for genes tagged 326 

by SNPs influencing WBSF7 suggesting that alternative and unobvious mechanisms may be 327 

acting on meat tenderness besides proteolysis. Some studies have proposed that heat shock 328 

proteins may play a role in meat tenderness (22, 37) and another study has suggested that genes 329 

involved in immune response may also be involved (54).  330 

The O-Glycan biosynthesis pathway was also enriched among the genes associated with 331 

WBSF7 and is involved in modifications of serine or threonine residues of proteins (53). The 332 

non-enzymatic glycosylation of tissue protein helps the formation of crosslinks, as O-linked 333 

oligosaccharide, that can lead to the structural and functional deterioration of collagen (34). The 334 

formation and accumulation of these crosslinks can contribute to the toughness of meat from 335 

aged animals. O-Glycan biosynthesis is involved in glycosylation which may affect collagen and 336 

other protein synthesis and could be the most common and complex form of post translational 337 

modification (56). From the analysis of genes within common regions associated with all WBSF 338 

measures, we infer that biological processes of regulation of transcription, glycosylation and 339 

metal-binding are important to meat tenderness in Nelore cattle. Finally, for WBSF14 gene 340 

clusters involved in cell adhesion were found. Cell adhesion proteins appear to play an important 341 

role in the meat tenderness of this population.  342 

The neuroactive ligand-receptor interaction pathway was enriched among the genes 343 

associated with BFT indicating genes related to this pathway play a role in fat deposition in 344 

Nelore. The adherens junction sphingolipid metabolism, O-Glycan biosynthesis and 345 

glycosphingolipid biosynthesis pathways appear to have roles in muscle growth since they were 346 

also enriched in the REA analysis. 347 

 A possible pleiotropic QTL window on BTA23 had the largest effect on L*muscle and 348 

L*fat meat color parameters, WBSF0, REA and CL. Further studies mining this region could 349 

help identify whether this is an effect of one or more variants that would be useful for 350 

simultaneously improving four meat quality traits in Nelore. 351 

 Postmortem chilling and pH, atmospheres used for packaging, antimicrobial 352 

interventions, and cooking can all influence meat color parameters. QTL were identified for all 353 

of these traits suggesting that there are loci of large effect underlying these traits (30). The major 354 

QTL region found for a*fat (Table 2) harbors few genes, however ruling out the implication of 355 
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these genes on this trait is difficult since there is little knowledge available on the biological 356 

mechanisms that regulate this fat color trait.  Pathways influencing meat and fat color parameters 357 

include the cell adhesion molecules pathway which was detected for more than one color trait. 358 

Cell interactions are mediated by different families of receptors, including targeting cell adhesion 359 

to extracellular matrix proteins and to ligands on adjacent cells; and could influence many 360 

processes such as cellular growth, differentiation, junction formation, and polarity (1).   361 

 WHC of fresh meat is important because it affects both the yield and the quality of 362 

commercialized beef. It appears that proteolysis affects WHC and also plays a fundamental role 363 

in meat tenderness. The functional clusters: organic acid catabolic process and proteolysis were 364 

enriched among genes in regions associated with WHC (Table S5), and proteases including 365 

calpains: CAPN2, CAPN12, CAPN13 and CAPN14 were identified as candidate genes. The 366 

calcium signaling pathway was the most enriched pathway which indicates that WHC may be 367 

affected by proteases such as the calpains which are dependent on calcium. Changes in 368 

connective tissue during the cooking process may have a tenderizing effect. It has already been 369 

proposed that heat shock proteins may play a role in meat tenderization (22, 37). In our analysis, 370 

heat shock proteins were implicated in variation in CL, which is important for the juiciness of 371 

cooked beef. 372 

The largest effect QTL identified for pH suggests that there is a major gene in this 373 

genomic region which influences the maintenance of a physiologically balanced internal 374 

environment.  375 

 Genetic variants have been largely explored in explaining variation in meat quality traits, 376 

but the underlying mechanisms affecting these traits remain poorly understood. Since the meat 377 

quality traits evaluated in this study in Nelore cattle appear to be controlled mainly by many 378 

QTL of small effect, identifying the relevant genes will be difficult, because each causal gene 379 

has a small contribution to overall variation. Thus, genomic selection, which explores the 380 

variability at many genes simultaneously, will be a better strategy for improving these traits than 381 

marker assisted selection.  382 

 This study provides the first step towards applying genomic selection for meat quality 383 

traits in Nelore cattle. Important metabolic pathways related to meat quality traits were identified 384 

which have not been reported in Bos taurus cattle. These results may be biased since the 385 

magnitude of the estimated QTL effects is influenced by sample size. Studies with other 386 
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populations from the Nelore breed will be required to validate the results of this study and will 387 

also be helpful for the development of models for the prediction of genetic merit to implement 388 

genomic selection for meat quality in Nelore cattle. 389 

 390 
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Figure Captions 589 

Figure 1. Genome-wide Manhattan plots of additive genetic variance explained by each marker  590 

for A: WBSF0; B: WBSF7 and C: WBSF14. 591 

Figure2: Genome-wide Manhattan plot of additive genetic variance explained by each marker for 592 

A: BFT and B: REA. 593 

Figure3: Genome-wide plot of additive genetic variance explained by each marker for A: a*fat ; 594 

B: b*fat; C: L*fat; D: a*muscle, E: b*muscle and F: L*muscle. 595 

Figure4: Genome-wide plot of additive genetic variance explained by each marker for A: WHC; 596 

B: CL and C: pH. 597 

Supplementary Tables: 598 

Supplementary Table S1. Summary of SNPs effects; count of SNPs per genes, enriched clusters 599 

and pathways from DAVID for identified genes for WBSF0, WBSF7 and WBSF14, 600 

respectively. 601 

Supplementary Table S2. Summary of SNPs effects; count of SNPs per genes, enriched clusters 602 

and pathways from DAVID for identified genes for BFT and REA, respectively. 603 

Supplementary Table S3: Summary of QTL effects for WBSF0, WBSF7, WBSF14, BFT, REA, 604 

L*muscle, a*fat, b*fat, L*fat, WHC, CL and pH, respectively. 605 

Supplementary Table S4. Summary of SNPs effects; count of SNPs per genes, enriched clusters 606 

and pathways from DAVID for identified genes for L*muscle; a*fat; b*fat and L*fat 607 

respectively. 608 

Supplementary Table S5. Summary of SNPs effects; count of SNPs per genes, enriched clusters 609 

and pathways from DAVID for identified genes for WHC, CL and pH, respectively. 610 
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 612 

Table1. Raw means, standard deviation, heritability and estimated π of each trait. 613 
     

Trait N Mean ± SD σ2a σ2e h2 π 

WBSF0 (kg) 442 8.70±2.20 0.37228 1.84566 0.1678 0.992995

WBSF7 (kg) 425 5.93±2.16 0.523924 2.21659 0.1911 0.957823

WBSF14 (kg) 437 4.56±1.89 0.290425 1.56359 0.1566 0.996825

BFT (mm) 536 6.42±2.33 0.779323 2.87337 0.2133 0.990398

REA (cm2) 534 59.98±7.55 10.848 29.2516 0.2705 0.891685

L*muscle 453 38.55±2.55 0.694113 2.91523 0.1923 0.994683

a*muscle 453 16.88±3.96 0.533459 2.06924 0.2049 0.999995

b*muscle 453 13.51±2.00 0.823522 0.322681 0.2815 0.999946

L*fat 451 75.69±4.71 1.10219 20.1762 0.0517 0.952439

a*fat 452 8.22±4.04 0.830185 2.30143 0.1686 0.999899

b*fat 452 17.24±2.82 0.984939 2.7525 0.2635 0.954324

WHC (%) 452 80.44±3.19 1.0267 7.77859 0.1166 0.954324

CL (%) 453 27.56±5.51 1.1079 15.6947 0.0419 0.97999 

pH 452 5.59±0.20 0.011649 0.032997 0.2480 0.99979 
   

Trait abbreviations: Warner-Bratzler shear force (WBSF) measured following different times of 614 

meat aging (24 hours after slaughter (WBSF0); seven days after slaughter (WBSF7) and fourteen 615 

days after slaughter (WBSF14)), backfat thickness (BFT), ribeye muscle area (REA), L*, a*, b* 616 

color parameters (L* = Lightness; a* = redness; and b* = yellowness) for meat and fat, water-617 

holding capacity (WHC), cooking loss (CL) and pH. 618 
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Table 2. QTL with the largest effect on variation in each trait 620 

Trait Chra Position (bp)b 
Position 
(Mb)c 

Number 
of SNPs 

Variance 
explained (%) 

WBSF0 23 24,002,374…24,999,318 24 453 0.11 
WBSF7 13 71,001,773…71,998,254 71 364 0.10 
WBSF14 2 73,002,970…73,996,212 73 271 0.19 

BFT 11 82,000,961…82,998,027 82 298 0.36 
REA 23 24,002,374…24,999,318 24 453 0.08 

L*muscle 23 24,002,374…24,999,318 24 453 0.14 
L*fat 23 24,002,374…24,999,318 24 453 0.10 
a*fat 12 36,010,895…36,994,095 23 333 1.21 
b*fat 26 43,006,538…43,997,236 43 323 0.11 
WHC 17 58,001,206…58,998,805 58 326 0.10 

CL 23 24,002,374…24,999,318 24 453 0.10 
pH 8 87,002,083... 87,998,405 87 304 4.01 

   
aChr. = Chromosome; bPosition (bp) = Position where the QTL starts and finishes in the 621 

chromosome in base pairs; cPosition (Mb) = Position of the QTL on the chromosome in mega 622 

bases. 623 
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