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Abstract: Woody plant encroachment in grassy ecosystems is a widely reported phenomenon as-
sociated with negative impacts on ecosystem functions. Most studies of this phenomenon have
been carried out in arid and semi-arid grasslands. Therefore, studies in tropical regions, particularly
savannas, which are composed of grassland and woodland mosaics, are needed. Our objective was
to evaluate the accuracy of woody encroachment classification in the Brazilian Cerrado, a tropical
savanna. We acquired dry and wet season unmanned aerial vehicle (UAV) images using RGB and
multispectral cameras that were processed by the support vector machine (SVM), decision tree (DT),
and random forest (RF) classifiers. We also compared two validation methods: the orthomosaic and
in situ methods. We targeted two native woody species: Baccharis retusa and Trembleya parviflora.
Identification of these two species was statistically (p < 0.05) most accurate in the wet season RGB
images classified by the RF algorithm, with an overall accuracy (OA) of 92.7%. Relating to validation
assessments, the in situ method was more susceptible to underfitting scenarios, especially using an
RF classifier. The OA was higher in grassland than in woodland formations. Our results show that
woody encroachment classification in a tropical savanna is possible using UAV images and field
surveys and is suggested to be conducted during the wet season. It is challenging to classify UAV
images in highly diverse ecosystems such as the Cerrado; therefore, whenever possible, researchers
should use multiple accuracy assessment methods. In the case of using in situ accuracy assessment,
we suggest a minimum of 40 training samples per class and to use multiple classifiers (e.g., RF and
DT). Our findings contribute to the generation of tools that optimize time and cost for the monitoring
and management of woody encroachment in tropical savannas.

Keywords: Cerrado; object-based image analysis; mesic biome; plant invasion; drone; multispectral;
machine learning; grasslands; woodlands; in situ ground truth

1. Introduction

Plant invasions are an increasing challenge for the management of native biodiversity
and ecosystem functioning worldwide. Invasive plants establish themselves in habitats and
proliferate, spread, and persist to the detriment of other species and overall environmental
conditions [1]. Biological invasions can be associated with both exotic species and local
species that increase significantly in abundance [2]. Invasive species can displace or
promote the extinction of resident species and alter biogeochemical cycles, energy flux, and
disturbance regimes [1,3,4].

The invasion of woody plants is also referred to as woody plant encroachment. Follow-
ing the concept proposed by Irini and Chui [5]; here we also consider woody encroachment
as the invasion of native woody plants. Woody plant encroachment has been widely
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reported, mainly in grasslands and open woodlands [6–8]. Van Aucken [9] associated
this phenomenon with increased population density, biomass, or the land cover of native
woody plants.

Savannas are composed of a continuous grass–subshrub layer with scattered woody
plants. Rainfall seasonality, fire occurrence, and low soil nutrient availability are factors that
allow the co-occurrence of tree–grass layers [10,11], mainly in tropical savannas. Accord-
ingly, factors behind woody encroachment include fire suppression, nutrient eutrophication,
changes in water dynamics, increased CO2 emission, land use conversion, and livestock
overgrazing [12–14].

Woody encroachment is associated with negative impacts on ecosystem processes and
functions [9,15]. For example, the increase in and homogenization of woody layers alter
spatial patterns of geochemical properties, such as the formation of “fertile islands” below
the canopies and scarcity zones in the intra-canopy spaces [16–18]. Additional reported
consequences include decreased biodiversity in the grass/herbaceous layer [9,19–23] and
impacts on the water cycle and climate [12,24,25]. Initial environmental changes trigger
woody encroachment, and a positive feedback loop can continue altering the environment
past the tipping point, thereby pushing ecosystems to a new equilibrium [26]. This in-
teraction represents a challenge for the conservation of areas under land use change and
protected areas [27,28].

In a scenario of rapid environmental change, efforts to conserve and manage natural
areas must be optimized. Nackley et al. [29] suggested that ecologists and natural resource
managers integrate empirical evidence that quantifies the impacts of woody encroachment
with their natural resource management strategies, especially in understudied regions.
Currently, our understanding of woody encroachment is based mainly on studies in arid
and semi-arid regions of the African continent [14,17,30–32], Oceania [33,34], Mediterranean
countries [35,36], and North America [9,15,18,28,37]. Tropical regions, especially in South
America, remain understudied.

Savannas occupy about 40% of the land surface in the tropics. The Brazilian Cerrado
constitutes the largest savanna in South America and is considered one of the world’s
biodiversity hotspots and a priority for conservation because of its outstanding biodiversity
and extensive loss of natural habitats for agricultural use [38,39]. However, the Cerrado
is less protected than the Amazon by law, with conservation units and indigenous lands
accounting for only 11% of its original area [40]. The vegetational mosaics, from forests
to grassland formations [41], create a structural heterogeneity that is one of the factors
sustaining its megadiversity. However, woody encroachment tends to homogenize these
formations, especially the grasslands. The management of conservation units can be
improved with better detection of woody plant encroachment, which can be accomplished
with low-cost technologies.

The challenges of early detection and prevention of new biological invasions [42]
could be overcome by implementing monitoring options that optimize time and cost
and provide decision makers with precise and accurate information in the most efficient
way possible. Thanks to its synoptic and temporal coverage, remote sensing data have
become increasingly important for ecological monitoring [43], understanding factors that
promote plant invasions and their processes [44], and assessing impacts on functional
attributes and ecosystem services [45,46]. Therefore, remote sensing technology has been
recommended to control woody encroachment by some studies, e.g., [36,47,48], particularly
within protected areas. Because of its favorable cost–benefit ratio, the use of unmanned
aerial vehicle (UAV)-based data has emerged as a useful approach to detect and monitor
the encroachment process.

Monitoring the environment from UAV-based platforms is now relatively common.
The costs of current technologies have allowed UAVs to be an essential data source for multi-
ple applications [49]. Despite the improved temporal and spatial resolution, satellite-based
remote sensing is still limited to monitoring and identifying individual plant species [49,50].
In contrast, UAVs generate data with sub-metric resolution, which enables the identifi-
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cation, classification, and monitoring of woody encroachments [36,47,48,51,52]. UAVs
can be equipped with RGB, multispectral, hyperspectral, and active sensors. Although
Olariu et al. [52] presented satisfactory results using only RGB cameras, multispectral
and hyperspectral sensors can also be used to map vegetation [51,53,54], especially in wet
grasslands [55]. However, there is a lack of studies combining RGB and multispectral
sensors for this purpose. RGB cameras generate 3D point clouds as an additional product,
allowing the extraction of vertical structure information, which can improve classification
procedures if combined with multispectral bands. Dealing with complex vegetation (highly
biodiverse), we tested different degrees of complexity of input layers. Although additional
spectral and structural information can improve the final classification, the combination of
sensors demands high data processing capability.

Machine learning algorithms are widely used tools in remote sensing classification.
They can model complex class signatures and accept different types of input data, including
data without normal distribution. There is sufficient evidence of the superior performance
of machine learning algorithms over traditional techniques, such as maximum likelihood
estimation [56–59]. Some authors have suggested using more than one classifier to minimize
possible classification biases [60]. For example, Maxwell et al. [59] recommended the
following machine learning algorithms: support vector machine (SVM), decision tree (DT),
and random forest (RF).

Although a well-established algorithm, the SVM has presented controversial results in
relation to assembly classifiers such as RF, sometimes with superior [61–63] and sometimes
with inferior accuracy [64,65]. The same need for future comparative studies occurs with
DT; despite RF being composed of an ensemble of DTs, the results provided by the DT are
much easier to interpret and can be built from direct inspection of the variable, while RF is
much more complex in terms of parameter predefining, sample training, and result voting,
as stated by [66]. Moreover, studies conducted, for example, by [67] and [68], showed
that DT overperformed artificial neural network (ANN) and SVM algorithms. Based on
these studies, and in line with Maxwell et al. [59], SVM, DT, and RF are worth including in
our study.

These powerful classifiers produce high overall accuracies (OAs), especially for com-
plex data with many predictor variables. Although deep learning algorithms can outper-
form machine learning [69,70], they require in-depth knowledge of programming and high
processing capability, resulting in higher costs. Here, we chose to use machine learning
because of its robustness. Furthermore, machine learning is user-friendly and widely avail-
able on public domain platforms, which is important to help natural resource managers
deal with woody encroachment in environmental protection units.

Our overall objective was to evaluate the classification accuracy of woody encroach-
ment in a tropical savanna by comparing data obtained by RGB and multispectral cameras
onboard a UAV platform. We obtained data during the wet and dry seasons in two
grassland formations and two savanna woodland formations. Using three widely used
classifiers (SVM, DT, and RF), we hypothesized that we would be able to obtain accurate
classifications, especially in grasslands, because our two focal species (Trembleya parviflora
and Baccharis retusa) are shrubs, which are more easily detected in grasslands. We also
hypothesized that the best input layer (combination of spectral bands, spectral indexes,
and metrics) would be the one that combines the RGB and multispectral cameras, which
can provide broader spectral coverage, better differentiating the spectral signatures of
each class.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Botanic Garden of Brasília (JBB), located 33 km
from the center of Brasília, Federal District, Brazil (Figure 1). The JBB is part of the
Gama-Cabeça-de-Veado Environmentally Protected Area, which is one of the three largest
conservation units in the Federal District. The climate is classified as Aw in the Köppen
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climate classification system; that is, tropical with dry winter and rainy summer. The
average annual rainfall is approximately 1500 mm. The study area (15◦52′47.49′′ south
latitude; 47◦51′12.87′′ west longitude) covers an area of approximately 20 ha, encompassing
five Cerrado phytophysiognomies: campo úmido (wet grasslands), campo sujo (grasslands
with scattered woody plants), cerrado ralo (open savannas), cerrado típico (typical Brazilian
savanna), and cerrado rupestre (rocky savanna) [41]. Our study was carried out in two
grasslands (campo úmido and campo sujo) and two savanna woodlands (cerrado ralo and
cerrado típico). The soils in the study areas were mainly sandy clay loam, sandy loam, and
loamy sand. This reserve was chosen because B. retusa and T. parviflora have colonized the
savanna woodlands and grasslands, and there is a need to manage these species.

Remote Sens. 2023, 15, x FOR PEER REVIEW  4 of 28 
 

 

2. Materials and Methods 
2.1. Study Area 

The study was carried out in the Botanic Garden of Brasília (JBB), located 33 km from 
the center of Brasília, Federal District, Brazil (Figure 1). The JBB is part of the Gama-
Cabeça-de-Veado Environmentally Protected Area, which is one of the three largest con-
servation units in the Federal District. The climate is classified as Aw in the Köppen cli-
mate classification system; that is, tropical with dry winter and rainy summer. The aver-
age annual rainfall is approximately 1500 mm. The study area (15°52’47.49” south latitude; 
47°51’12.87” west longitude) covers an area of approximately 20 ha, encompassing five 
Cerrado phytophysiognomies: campo úmido (wet grasslands), campo sujo (grasslands 
with scattered woody plants), cerrado ralo (open savannas), cerrado típico (typical Brazil-
ian savanna), and cerrado rupestre (rocky savanna) [41]. Our study was carried out in two 
grasslands (campo úmido and campo sujo) and two savanna woodlands (cerrado ralo and 
cerrado típico). The soils in the study areas were mainly sandy clay loam, sandy loam, 
and loamy sand. This reserve was chosen because B. retusa and T. parviflora have colonized 
the savanna woodlands and grasslands, and there is a need to manage these species. 

 
Figure 1. The study area location. In the upper right map, the Cerrado area is represented by orange 
shading, and the yellow square indicates the borders of the Federal District (DF), Brazil. In the upper 
left map, red lines indicate the edges of the three largest conservation units in the DF, and the pink 
polygon indicates the drone flight area. In the lower map, blurred colored quadrants indicate the 
quadrants randomized for the in situ validation of the classification maps. 

2.2. Studied Species 
The Baccharis L. genus is diverse, with 440 species [71], of which 120 occur in Brazil. 

The species B. halimifolia is studied on the North American, European, and Oceania conti-
nents, where it is considered invasive and a priority for control and management because 
of its environmental and economic impacts [72]. B. pilularis and B. spicata are monitored 
mainly in Europe because of their invasive potential [73,74], and B. dracunculifolia is a po-
tential invader in 33 countries from five continents. The best way to counter the invasions 
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2.2. Studied Species

The Baccharis L. genus is diverse, with 440 species [71], of which 120 occur in Brazil. The
species B. halimifolia is studied on the North American, European, and Oceania continents,
where it is considered invasive and a priority for control and management because of its
environmental and economic impacts [72]. B. pilularis and B. spicata are monitored mainly
in Europe because of their invasive potential [73,74], and B. dracunculifolia is a potential
invader in 33 countries from five continents. The best way to counter the invasions is
prevention, followed by monitoring and management [75]. B. retusa, as with the congeners
mentioned above, is classified as a generalist and is adapted to pioneer stages of succession.
This species is native to the Cerrado, occurring mainly in woodlands.

Trembleya parviflora is an erect shrub, endemic to Brazil and native to the Atlantic Forest
and Cerrado biomes. T. parviflora occurs in campo sujo, campo limpo, cerrado rupestre,
veredas, and the edges of the riparian and gallery forests. Its fruits contain many tiny seeds
that are dispersed by the wind in August and September. In the Federal District, rapid
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landscape transformation is occurring because of dense T. parviflora colonization, resulting
in the loss of the native herbaceous community in wetlands [23].

2.3. Field Data Gathering and Digital Image Processing

The UAV imageries were acquired between 12:00 and 13:00 local time on 17 July 2021
(dry season) and between 13:00 and 14:00 on 4 April 2022 (wet season) with a DJI Phantom
4 standard drone carrying out a Sony 1/2.3” CMOS RGB camera with a 94◦ field of view,
and 20 mm lens. A total of 700 images were collected at a flying height of 50 m, generating
a 2.80 cm average ground sampling distance (GSD). We used two different UAVs to also
acquire multispectral imagery. During the dry season, we used a Parrot Bluegrass drone
equipped with a Sequoia 4.0 sensor (green, red, red edge, and near-infrared (NIR) bands),
generating 2532 images with a 7.07 cm GSD. During the wet season, we used a DJI Matrice
200 v2 drone with an Altum sensor (green, red, blue, red edge, NIR, and longwave infrared
(LWIR/Thermal) bands), resulting in 9474 images with a 2.99 cm GSD. Only the four
bands also available for images’ dry period were used for comparisons between the two
seasons. All flights had support from geodetic global navigation satellite system (GNSS)
ground points to increase planimetric and altimetric accuracies. As a result, we generated
14 geometrically corrected orthomosaics using the Pix4Dmapper software (v. 4.7), seven for
each season, in addition to two 3D point clouds, the digital surface models (DSMs), and
digital terrain models (DTMs).

2.4. Generation of Layers, Masks, and Metrics

All RGB and multispectral bands were resampled to a spatial resolution of 10 cm to
standardize all GSDs and minimize data processing time. Because the work focused on two
shrub species, we applied a mask limiting only vegetation above 50 cm from the ground.
This mask was obtained from the canopy height model (CHM) (Equation (1)).

Canopy height model (CHM) = DSM−DTM (1)

We generated two spectral indices based on RGB data to improve classification, as
suggested by Olariu et al. [52]: green–red difference and green leaf index referred to as
IDXRGB (Equations (2) and (3), respectively). Two other indexes were generated based on a
multispectral camera, applying NIR and red edge bands: normalized difference vegetation
index (NDVI) and normalized difference red edge (NDRE) index (Equations (4) and (5),
respectively), referred to as IDXMult hereafter (Table 1).

Green–red difference =
(green band− red band)
(green band + red band)

(2)

Green leaf index =
(2 × green band− red band− blue band)
(2 × green band + red band + blue band)

(3)

NDVI =
(NIR band− red band)
(NIR band + red band)

(4)

NDRE =
(NIR band− red edge band)
(NIR band + red edge band)

(5)

We derived textural information from the RGB orthomosaics, calculating gray-level
co-occurrence matrix (GLCM) metrics. The texture metrics were calculated using the aver-
age values of the RGB bands and included the following eight textural features: energy,
entropy, correlation, inverse difference moment, inertia, cluster shade, cluster prominence,
and Haralick correlation. We extracted the textural metrics with the Orfeo ToolBox (OTB)
plugin available in the QGIS software (version 2.22) using the “HaralickTextureExtrac-
tion” function. Orfeo ToolBox (OTB). Developed by the French Center National d’Etudes
Spatiales, OTB can be operated either autonomously or through a second open-source
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software (QGIS). OTB uses the C++ library, based on the Insight toolkit (ITK). Bindings are
developed for Python.

Table 1. Summary of UAV-based predictor types, their abbreviations, and respective number of
bands. NDVI refers to the normalized difference vegetation index, and NDRE refers to the normalized
difference red edge index.

Predictors Abbreviation No. Bands

Canopy height model CHM 1
Red, green, and blue bands RGB 3

Texture Text 8
Structure Stru 10

Green, red, red edge, and NIR bands Mult 4
Green leaf index and green–red difference IDXRGB 2

NDVI and NDRE IDXMult 2
Six principal components of all bands PCA 6

Additionally, we calculated structural metrics by applying the CANUPO multiscale
component analysis [51,76] using the dense point cloud. The calculation of the structural
metrics is based on principal component analysis (PCA) of the 3D neighborhood of the
respective spatial scale, where each metric corresponds to the difference between the first
and second normalized eigenvectors [76]. Ten spatial scales ranging from 10 cm to 3 m were
chosen based on the structural parameters of the canopies of the two focal species. This
allowed detection of each species’ canopy characteristics, from branch arrangement to leaf
phyllotaxis. The combination of the CANUPO analysis in the CloudCompare software and
the cloth simulation filter (CSF) plugin was used to discriminate soil from vegetation [70]
and thus provided two distinct classes for use as input in the training and classification of
CANUPO. As suggested by Kattenborn et al. [51], only the uppermost canopy points were
used to calculate the output raster to avoid interference with non-canopy characteristics.

We derived the last layer from all 30 available bands (Table 1). We performed the
data dimensionality reduction using the “DimensionalityReduction” function in the OTB
plugin, also available in QGIS. Applying PCA as the dimensionality reduction method, we
also chose six components as output to have the same number of bands as the smallest
possible combination of bands (e.g., RGB + IDXRGB + CHM = 6 bands). PCA is the most
common approach to dimensionality reduction. Since we targeted a larger number of end
users, we chose a technique that is widely used and is available in largely open-source
software packages.

To stack the predictors and make the desired combinations, we aligned raster files
using the QGIS plugin Freehand Raster Georeferencer plugin. To align the predictors, we
used the two-point alignment technique, with two of the points (ground targets) used
to calibrate geodesic GNSS. In the end, we produced seven combinations from eight
predictors (Table 1). Three combinations used mainly RGB bands: RGB + IDXRGB + CHM;
RGB + IDXRGB + CHM + Text; and RGB + IDXRGB + CHM + Stru. In the same way, we
generated three combinations using mainly multispectral bands: Mult + IDXMult + CHM +
Text; Mult + IDXMult + CHM + Stru; and Mult + Text + Stru. Finally, we considered the
PCA layer separately as it represents the derivation of all bands.

2.5. Image Segmentation and Zonal Statistics

To minimize the “salt and pepper” effect common in higher-resolution images from
UAVs, we performed object-based image analysis, as suggested by Olariu et al. [52], which
required segmentation and subsequent calculation of zonal statistics. We used the segmen-
tation function available in the OTB plugin associated with QGIS software with the mean
shift algorithm for all layers. Although Olariu et al. [52] showed that classification was
improved with large-object segmentation (e.g., minimum region size = 100), we generally
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chose a minimum region size of 30 to include young individual shrubs in the classification.
The exception was the Mult + IDXMult + CHM + Text layer, which used a minimum region
size of 200 because the objective here was to obtain a better representation of the shrub’s
canopy as a unit. For the other parameters, we kept the default values for all layers (spatial
segmentation ratio = 5 and range radius = 15). We applied the calculation of zonal statistics
over the segmentation vectors. For this, we used the model designer function in QGIS for
all layers, being necessary only for the adaptation of the model for the number of bands of
each layer. We chose the following nine parameters to calculate zonal statistics: mean, me-
dian, standard deviation, minimum, maximum, range, minority, variability, and variance.
Aiming for a more normal data distribution of the zonal statistics, three of the 12 metrics
were removed, they were: count, sum, and variety. Before performing the analysis, we
carried out pilot tests to assess the influence of these metrics on the accuracy of the models,
and it was finally decided to remove them for all models. The reason was that they had a
very discrepant scale compared with the other metrics.

2.6. Object-Based Supervised Classification

The following three classifiers that are widely used in vegetation mapping [77–89]
were used in this study, with some differences in approach: SVM, DT, and RF. SVM [80]
is a non-parametric method, so it does not rely on data normality and aims to find the
optimal limit that maximizes the separation between classes. The SVM classifier works by
identifying a unique boundary between two classes. In multiple class cases, SVM repeatedly
applies the classifier to each possible combination of classes. One of its main limitations is
processing time, which rises exponentially as the number of classes increases [59,80].

DT [56] is a recursive division of the input layers, where the data can be divided
depending on whether the value is above or below a threshold. The tree analogy describes
repeated division patterns (e.g., branch vertices). DTs can use both categorical and continu-
ous data. One of its advantages is that, once the model has been developed, classification is
rapid, because no further complex calculations are required. However, there is a possibility
of generating non-optimal solutions and overfittings [56,59].

RF [81] is an ensemble classifier because it uses multiple DTs to overcome the limita-
tions of a single DT. The majority result of all DTs is used to define the final class, requiring
the need to obtain the global optimum. An advantage of RF is that individual trees do not
need to be pruned because of the multiple DTs. A disadvantage is that the ability to view
individual trees is lost [59,81].

We used the OTB plugin in QGIS to generate all classification models through the
TrainVectorClassifier function. We used the polynomial Kernel, a C support vector clas-
sification as SVM mode, and a degree parameter equals three in the SVM. The final RF
classification used 1000 decision trees with a tree depth of 50. The same maximum tree
depth was used for the DT classifier.

We selected five land cover classes: T. parviflora (T.P), B. retusa wood (B.Rw), B. retusa
green (B.Rg), shadow (Sh), and others (Ot). We separated B. retusa into two classes because
the species is semi-deciduous and there was a considerable amount of standing dead
materials; therefore, the canopy included a significant portion of leafless wood (B.Rw).
Although most of the shadows were excluded with the CHM mask, we noted that a
considerable portion of the shadow was classified as a plant. Finally, for highly diverse
phytophysiognomies (i.e., woodlands), which included individuals taller than 50 cm, we
added the category of “others” to represent any other species.

Additionally, we used the McNemar test to verify the statistical significance among
the different classifiers. Since the test requires paired samples and only allows two-by-
two comparison, we chose only the best results among the RGB, multispectral, and PCA
predictors, as well as for the season whose classifiers presented the best performances. We
ran the McNemar without Yates’ correction test due to sample size.

We analyzed the learning curves to compare the different algorithm performances,
specifically for the orthomosaic data validation, and evaluated the number of sampling data
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used for training in situ validation. In both purposes of learning curves, we used the zonal
statistics of each input layer, with the difference being that for the in situ validation method,
we used a group of only 40 selected zonal statistics (10 per class). The learning curves were
made in the Jupyter Notebook interface using the Numpy and Sklearn (Python) libraries.

2.7. Accuracy Assessment and In Situ Validation

To use the same canopies for the training and validation of all classifiers and input
layers, thus reducing external variability, 100 points were stipulated for each class. We
used the function “Select From Location” available in QGIS so that most of the points
would select essentially the same canopies to allow 70% of the data for training and 30% for
validation. Minor adjustments were necessary because the segmentation differed between
input layers. Each segment has the structure of polygons grouped by the similarity of
pixels during the segmentation process using the mean shift algorithm. In the end, we
used the training and validation selected segments as input on the “TrainVectorClassifier”
function, resulting in the model and confusion matrix files. We used the model file to
generate classification maps with the “VectorClassifier” OTB function.

Additionally, we performed in situ validation of the classification maps to assess
whether accuracy differed according to phytophysiognomy. A set of 12 transects of
100 m × 30 m was arranged perpendicular to the drainage network, and six transects
were randomly selected for a focal species. Additionally, for every 10 m in a randomized
quadrant of 10 m × 10 m, we identified the vegetation phytophysiognomy (Figure 1). Be-
cause only four of the quadrants were classified as cerrado típico, four quadrants were
randomly chosen for each of the other three phytophysiognomies. To optimize fieldwork,
we chose the three input layers for which the highest average OA and Kappa coefficient
were obtained in both seasons. We preferred having one input layer from the RGB sensor
and one from the multispectral sensor: RGB + RGB + CHM; Mult + Text + Stru and PCA.

For in situ validation, we randomized approximately 10 canopies of each class (Vector
→ Research → Random Selection) within each phytophysiognomy, for approximately
440 canopies in all. These reference canopies were highlighted and extracted from the
classification maps. We generated 54 georeferenced PDF files used in the field to validate
each of the canopies via mobile device with the help of the Avenza Maps® (v.4.1) application.
The in situ validation protocol included locating the center of the permanent quadrants,
setting up the 10 m x 10 m quadrant, and filling the confusion matrix with the help of the
georeferenced PDFs. Additionally, we stipulated a 2 m radius buffer zone around each
classified canopy to improve mobile GPS accuracy. In the end, it was possible to generate
two accuracy assessments, one broad and another by phytophysiognomy. The workflow is
summarized in Figure 2.
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3. Results
3.1. Classifiers, Input Layers, and Climatic Seasons’ Accuracy Assessment

The overall accuracy (OA) of the 42 combinations of input layers and classifiers,
performed in the dry and wet seasons, ranged from 57.1% to 92.7%, and the Kappa measure
of agreement ranged from 0.46 to 0.91 (Table 2 and Table S1). The RF classifier obtained
the most accurate result with the RGB + IDX + CHM layer for the wet season and was
statistically (p < 0.01) superior to the performance of SVM. The RF classifier also performed
statistically (p < 0.01) better than the other classifiers (DT and SVM) when using Mult +
IDXMult + CHM + Text as a predictor (Table 2 and Table S1). Using PCA as a predictor,
no significant difference was found among the results according to the McNemar test.
In general, the input layers generated from orthomosaics during the wet season were
more accurate.

Table 2. Overall accuracies (AOs) and Kappa coefficients are displayed for two seasons (dry and wet),
seven input layers, and three machine learning classifiers. For abbreviation identification of input
layers, see Table 1. Lowercase letters indicate statistically significant difference (p < 0.01) according to
the McNemar test among classifiers.

Layers Dry Season Wet Season

RGB + IDXRGB + CHM 65.5
(0.57)

76.4
(0.70)

83.8
(0.80)

83.3 a

(0.79)
86.7 ab

(0.83)
92.7 b

(0.91)

RGB + IDXRGB + CHM + text 66.9
(0.59)

73.0
(0.66)

81.1
(0.76)

75.0
(0.69)

81.8
(0.77)

92.6
(0.91)

RGB + IDXRGB + CHM + stru 66.9
(0.60)

71.0
(0.64)

81.1
(0.76)

73.8
(0.67)

87.3
(0.84)

90.6
(0.88)

Mult + IDXMult + CHM + Text 65.1
(0.56)

69.8
(0.62)

81.9
(0.77)

67.1 a

(0.59)
73.8 a

(0.67)
87.3 b

(0.84)

Mult + IDXMult + CHM + Stru 61.9
(0.52)

57.1
(0.46)

68.0
(0.60)

62.4
(0.53)

67.1
(0.60)

75.8
(0.70)

Mult + Text + Stru 75.2
(0.69)

75.2
(0.69)

78.5
(0.73)

71.8
(0.65)

74.5
(0.68) 85.9 (0.82)

PCA 71.1
(0.64)

76.5
(0.70)

83.9
(0.80)

77.3
(0.72)

80.7
(0.76)

84.0
(0.80)

Classifiers SVM DT RF SVM DT RF

Among the evaluated models, the average OA and agreement were the highest for
the RF classifier, and among the input layers, the average OA was highest for RGB + IDX
+ CHM, followed by PCA and RGB + IDX + CHM + Stru. Among the classes of interest
(i.e., T. parviflora and B. retusa), the lowest commission and omission errors were found for
T. parviflora, followed by B. retusa (wood), using the RF classifier (Tables 3, 4 and S1). As
expected, the additional classes, Sh and Ot, were associated with the highest and lowest
user and producer accuracies, respectively, for all classifiers. A comparison of the two B.
retusa classes showed that the classification accuracy of leafless wood (B.Rw) was better
than that of the green canopy (B.Rg) (Tables 3, 4 and S1).
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Table 3. User’s (UA) and producer’s accuracy (PA) for each class of land cover: Trembleya parviflora (T.P.); Baccharis retusa—wood (B.Rw); Baccharis retusa—green
canopy (B.Rg), Shadow (Sh), and Others (Ot) in two seasons (wet and dry) using three machine learning classifiers. For abbreviation identification of input layers,
see Table 1.

Classifier Support Vector Machine Decision Tree Random Forest

Class T.P B.Rw B.Rg Sh Ot T.P B.Rw B.Rg Sh Ot T.P B.Rw B.Rg Sh Ot

Wet
Season/Layer UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

RGB + IDXRGB +
CHM 88 78 81 93 69 73 98 95 79 76 96 82 87 79 81 87 97 97 71 87 100 80 97 88 81 98 99 97 86 99

RGB + IDXRGB +
CHM + text 91 85 78 82 63 66 78 90 63 55 91 91 75 82 87 68 83 91 74 83 99 91 99 86 93 93 87 98 78 99

RGB + IDXRGB +
CHM + stru 83 89 52 88 54 48 97 94 76 58 90 90 79 79 79 73 99 98 85 90 99 91 86 89 83 77 100 97 82 96

Mult + IDXMult +
CHM + Text 83 88 57 77 56 70 80 80 60 36 74 81 77 79 62 78 92 96 68 46 89 94 99 81 79 93 92 96 76 73

Mult + IDXMult +
CHM + Stru 72 85 60 72 59 57 54 65 67 46 69 69 73 59 59 71 70 68 73 71 97 80 73 73 69 71 67 74 67 80

Mult + Text + Stru 79 65 79 93 56 68 86 80 56 54 76 60 91 98 67 69 79 98 56 54 94 78 99 94 85 77 89 96 56 88
PCA 89 89 61 77 72 58 90 87 71 73 94 94 71 74 72 64 93 90 68 75 97 92 82 77 80 69 93 97 65 83

Dry
Season/Layer

RGB + IDXRGB +
CHM 56 64 74 77 51 66 87 84 60 42 60 63 90 85 70 81 93 93 64 55 72 75 94 85 78 85 97 94 76 76

RGB + IDXRGB +
CHM + text 61 82 74 80 54 63 84 78 68 44 64 89 82 76 71 63 80 77 72 67 81 83 93 76 83 73 80 95 68 90

RGB + IDXRGB +
CHM + stru 81 81 48 79 57 52 81 76 67 53 94 69 71 71 61 68 78 80 48 65 87 84 81 86 89 60 87 96 59 94

Mult + IDXMult +
CHM + Text 64 67 59 76 53 63 81 68 68 53 79 61 66 78 56 58 84 82 64 73 96 75 78 83 50 84 97 100 92 70

Mult + IDXMult +
CHM + Stru 60 78 76 67 52 59 61 61 67 50 71 74 67 50 52 53 39 46 59 59 77 84 71 65 61 59 64 66 67 64

Mult + Text + Stru 78 78 64 81 69 61 93 93 77 67 74 74 77 71 41 50 96 100 89 79 85 82 67 76 66 59 100 97 81 81
PCA 71 73 65 79 59 80 88 65 72 66 74 70 74 85 82 74 81 81 69 77 87 79 83 79 85 76 84 93 79 96
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Table 4. Confusion matrices involving RGB + IDXRGB + CHM, PCA, Mult + Text + Stru, RGB +
IDXRGB + CHM input layers, random forest (RF), decision tree (DT), and support vector machine
(SVM) classifiers for wet and dry seasons. T.P—Trembleya parviflora; B.Rw—Baccharis retusa (wood);
B.Rg—Baccharis retusa (green Canopy), Shadow (Sh), and Ot—Others. For abbreviation identification
of input layers, see Table 1.

Wet Season Dry Season

RGB + IDXRGB + CHM (RF) PCA (RF)

T.P B.Rw B.Rg Sh Ot T.P B.Rw B.Rg Sh Ot
T.P 24 0 0 0 0 T.P 27 0 2 2 0

B.Rw 0 30 0 1 0 B.Rw 0 19 4 0 0
B.Rg 3 3 26 0 0 B.Rg 2 2 29 0 1
Sh 0 0 0 35 0 Sh 2 0 3 27 0
Ot 3 1 0 0 24 Ot 3 3 0 0 23

Mult + Text + Stru (DT) Mult + Text + Stru (DT)

T.P B.Rw B.Rg Sh Ot T.P B.Rw B.Rg Sh Ot
T.P 25 0 3 0 5 T.P 20 0 5 0 2

B.Rw 0 31 2 0 1 B.Rw 0 30 7 0 2
B.Rg 3 0 18 0 6 B.Rg 4 11 12 0 2
Sh 5 0 0 22 1 Sh 1 0 0 27 0
Ot 9 0 3 0 15 Ot 2 1 0 0 23

PCA (SVM) RGB + IDXRGB + CHM (SVM)

T.P B.Rw B.Rg Sh Ot T.P B.Rw B.Rg Sh Ot
T.P 32 0 1 2 1 T.P 14 0 2 2 7

B.Rw 1 17 6 0 4 B.Rw 0 23 5 1 2
B.Rg 0 3 18 1 3 B.Rg 3 3 19 1 11
Sh 1 0 2 27 0 Sh 1 2 0 26 1
Ot 2 2 4 1 22 Ot 4 2 3 1 15

Figure 3 presents a sample of the SVM, DT, and RF classifications. We chose transect
2 because it shows a clear transition of B. retusa encroachment on dry grassland (campo
sujo) to a T. parviflora encroachment on wet grassland (campo úmido). Figure 3 also shows
all land cover classes other than Sh. On the left, we can see a mixture of the two B. retusa
classes but with a predominance of the B.Rg class. Near the center of the images, (a) and (b),
B.Rw becomes predominant, whereas, in the southwest portion of the dry season image,
an extensive canopy of a third species representing the others (Ot) class can be clearly
observed. The six classification images were chosen to broadly represent the 42 resultant
classification maps.
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woody plants), respectively. The 10 cm pixel size, RGB reflectance orthomosaics acquired during 
the wet and dry seasons are shown in (a,b), respectively; (c) The resulting classification of RGB + 
IDXRGB + CHM input layer and random forest (RF) classifier for the wet season; (d) the resulting 
classification of PCA input layer and RF classifier for the dry season; (e,f) the resulting classification 
of Mult + Text + Stru input layer and decision tree (DT) classifier for the wet and dry seasons, re-
spectively; (g) the resulting classification of PCA input layer and support vector machine (SVM) 
classifier for the wet season; (h) the resulting classification of RGB + IDXRGB + CHM input layer 
and SVM classifier for the dry season. T.P = Trembleya parviflora; B.Rw = Baccharis retusa (wood); B.Rg 
= Baccharis retusa (green canopy); and Ot = Others. For abbreviation identification of input layers, 
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In order to assess the validity of the classification models, Figure 4 presents nine 
learning curves generated from the models selected to extract the subset data for in situ 
validation. All models (classifier + input layer) were considered valid since the training 
and cross-validation score curves decrease their distances according to the increase in 
training size. The tipping point is approximately 150 samples for all DT and RF models, 
while for the SVM models, this point corresponds to approximately 350 samples. 

Figure 3. Six among 42 woody plant encroachment classification maps from the transect 2. Green and
red quadrants are campo úmido (wet grasslands) and campo sujo (grasslands with scattered woody
plants), respectively. The 10 cm pixel size, RGB reflectance orthomosaics acquired during the wet
and dry seasons are shown in (a,b), respectively; (c) The resulting classification of RGB + IDXRGB +
CHM input layer and random forest (RF) classifier for the wet season; (d) the resulting classification
of PCA input layer and RF classifier for the dry season; (e,f) the resulting classification of Mult +
Text + Stru input layer and decision tree (DT) classifier for the wet and dry seasons, respectively;
(g) the resulting classification of PCA input layer and support vector machine (SVM) classifier for the
wet season; (h) the resulting classification of RGB + IDXRGB + CHM input layer and SVM classifier
for the dry season. T.P = Trembleya parviflora; B.Rw = Baccharis retusa (wood); B.Rg = Baccharis retusa
(green canopy); and Ot = Others. For abbreviation identification of input layers, see Table 1.

In order to assess the validity of the classification models, Figure 4 presents nine
learning curves generated from the models selected to extract the subset data for in situ
validation. All models (classifier + input layer) were considered valid since the training and
cross-validation score curves decrease their distances according to the increase in training
size. The tipping point is approximately 150 samples for all DT and RF models, while for
the SVM models, this point corresponds to approximately 350 samples.
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Figure 4. Learning curves relating to classification models: support vector machine (SVM), decision
tree (DT), and random forest (RF), and input layers from wet season orthomosaic. The blue and
orange lines with their standard deviation (SD) are the training and cross-validation mean scores,
respectively. For abbreviation identification of input layers, see Table 1.

In addition to the validity of the selected models, Table 5 presents three performance
indicators (Precision, Recall, and F-score) of the models for each of the four classes. Among
the classes of interest, the T.P presented, on average, the highest values of the indicators,
followed by the B.Rw and B.Rg. With regards to the classifiers, the pattern was repeated,
and RF led followed by DT and SVM. Finally, the input layer with the highest average
indicators was RGB + IDXRGB + CHM followed by PCA.

3.2. In Situ Validation and Cerrado Phytophysiognomy Accuracy Assessment

A comparison of the two forms of validation, in situ and 30% of the data, showed that
average OA and Kappa coefficients for in situ validation were lower for classifiers and
input layers (Table 6). Despite the model with the highest OA (85%) being DT with the
PCA input layer, the RF showed the smallest variation among all predictors. Yet, there was
no statistical difference among the classifiers’ performances according to the McNemar test.
Unlike validation using 30% of the data, the input layer with the highest average OA and
Kappa coefficient was PCA (Table 6). The level of agreement was relatively high for all
layers and classifiers, with a Kappa coefficient ranging from 0.62 to 0.81.
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Table 5. Precision (P), Recall (R), and F-score (F) are displayed for three selected input layers, and
three machine learning classifiers. T.P—Trembleya parviflora; B.Rw—Baccharis retusa (wood); B.Rg—
Baccharis retusa (green canopy), Sh—Shadow and Ot—Others. For abbreviation identification of input
layers, see Table 1.

Classifier Support Vector Machine

Class T.P B.Rw B.Rg Sh Ot

Indicators P R F P R F P R F P R F P R F

RGB + IDXRGB + CHM 0.78 0.87 0.82 0.92 0.80 0.86 0.73 0.68 0.71 0.94 1.00 0.97 0.76 0.78 0.77
Mult + Text + Stru 0.65 0.79 0.72 0.93 0.79 0.86 0.68 0.56 0.61 0.80 0.86 0.83 0.53 0.56 0.54

PCA 0.89 0.89 0.89 0.77 0.61 0.68 0.58 0.72 0.64 0.87 0.90 0.88 0.73 0.71 0.72

Classifier Decision Tree

Class T.P B.Rw B.Rg Sh Ot

Indicators P R F P R F P R F P R F P R F

RGB + IDXRGB + CHM 0.82 0.96 0.88 0.79 0.87 0.83 0.87 0.81 0.84 0.97 0.97 0.97 0.87 0.71 0.78
Mult + Text + Stru 0.59 0.76 0.67 1.00 0.92 0.95 0.69 0.67 0.68 1.00 0.78 0.88 0.53 0.56 0.55

PCA 0.94 0.94 0.94 0.74 0.71 0.72 0.64 0.72 0.68 0.90 0.93 0.92 0.75 0.68 0.72

Classifier Random Forest

Class T.P B.Rw B.Rg Sh Ot

Indicators P R F P R F P R F P R F P R F

RGB + IDXRGB + CHM 0.80 1.00 0.89 0.88 0.97 0.92 1.00 0.81 0.90 0.97 1.00 0.98 1.00 0.86 0.92
Mult + Text + Stru 0.77 0.93 0.85 0.94 1.00 0.97 0.77 0.85 0.81 0.96 0.90 0.92 0.88 0.56 0.69

PCA 0.92 0.97 0.94 0.76 0.82 0.79 0.69 0.80 0.74 0.96 0.93 0.95 0.83 0.64 0.72

Table 6. Overall accuracies (AOs) and Kappa coefficients for three input layers and three machine
learning classifiers from in situ reference data. For abbreviation identification of input layers, see
Table 1.

Layers/Classifier SVM DT RF

RGB + IDXRGB + CHM 78.4 (0.71) 78.3 (0.71) 75.6 (0.67)
Mult + Text + Stru 72.1 (0.63) 71.4 (0.62) 72.3 (0.64)

PCA 76.7 (0.69) 85.4 (0.81) 81.8 (0.76)

Figure 5 shows the learning curves generated from the subset of selected data for in
situ validation. This subset represents about 10% of all data, and apparently, it is necessary
to increase the total training size since the training and cross-validation score curves are
not close enough. Only models that combine the PCA input layer with the DT and SVM
classifiers show an acceptable pattern. The other learning curves show patterns similar to
those of underfitting models.

In terms of accuracy, commission and omission errors were generally smallest for
B.Rw, followed by B.Rg, and were largest for T. parviflora (Tables 7, 8 and S2). Evaluation
of all classifiers and input layers showed that the producer’s accuracy (PA) was generally
higher than the user’s accuracy (UA); that is, there were fewer errors of omission than of
commission. Regarding input layers, accuracies were generally highest for PCA followed
by RGB + IDXRGB + CHM. However, UA was generally higher for the Mult + Text + Stru
input layer than the RGB input layer. Finally, commission and omission errors were lowest
for the DT classifier, and the average PA for the RF classifier was nearly the same as that of
DT. The SVM was the only classifier for which commission errors were lower than omission
errors (Tables 7, 8 and S2).
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Figure 5. Learning curves relating to classification models: support vector machine (SVM), decision
tree (DT), and random forest (RF), and input layers from subset for in situ validation of wet season
orthomosaic. The blue and orange lines with their standard deviation (SD) are the training and
cross-validation mean scores, respectively. For abbreviation identification of input layers, see Table 1.

Regarding accuracy assessments for the Cerrado phytophysiognomies, in general,
the average OA was highest for campos úmidos (wet grasslands) at 78.9%, followed by
cerrados ralos (open savannas), campos sujos (grasslands with scattered woody plants),
and cerrados típicos (typical savannas) at 71.5% (Table 9). Notably, the accuracy of the
classifiers depended on the phytophysiognomy. For example, the average OA of the RF
classifier was highest on wet grasslands (80.2%), whereas SVM was the most accurate
classifier for cerrado típico, and DT was the most accurate classifier for campo sujo (80.0%).
Regarding the input layers, the average OA was highest for PCA, specifically for the
grasslands: campo sujo (83.9%) and campo úmido, (83.3%). The second best-performing
input layer was RGB + IDX + CHM with an average of 75.19% OA, followed by Mult +
Text + Stru (72.61% of OA).
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Table 7. User’s (UA) and producer’s accuracy (PA) of each class of land cover: Trembleya parviflora (T.P.), Baccharis retusa—wood (B.Rw), Baccharis retusa—green
canopy (B.Rg), and Others (Ot). For abbreviation identification of input layers, see Table 1.

Classifier Support Vector Machine Decision Tree Random Forest

Class T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot

Accuracy UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

RGB + IDXRGB +
CHM 40.0 100.0 81.8 100.0 100.0 100.0 100.0 52.9 46.2 100.0 83.3 90.9 100.0 100.0 88.9 47.1 46.2 100.0 83.3 90.9 100.0 100.0 88.9 47.1

Mult + Text + Stru 38.5 83.3 100.0 100.0 80.0 88.9 77.8 41.2 28.6 80.0 87.5 100.0 100.0 100.0 90.0 45.0 28.6 80.0 87.5 100.0 100.0 100.0 90.0 45.0

PCA 70.0 100.0 72.7 100.0 70.0 100.0 100.0 47.4 76.9 100.0 88.9 100.0 90.0 90.0 88.9 61.5 76.9 100.0 88.9 100.0 90.0 90.0 88.9 61.5
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Table 8. Confusion matrices involving RGB + IDXRGB + CHM, Mult + Text + Stru, and PCA input
layer, support vector machine (SVM), decision tree (DT), and random forest (RF) classifiers from in
situ reference data. T.P—Trembleya parviflora; B.Rw—Baccharis retusa (wood); B.Rg—Baccharis retusa
(green canopy), and Ot—Others. For abbreviation identification of input layers, see Table 1.

Support Vector Machine Decision Tree Random Forest

RGB + IDXRGB + CHM RGB + IDXRGB + CHM RGB + IDXRGB + CHM

T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot
T.P 4 0 0 6 T.P 6 0 0 7 T.P 6 0 0 7

B.Rw 1 10 0 1 B.Rw 0 12 0 0 B.Rw 0 7 0 3
B.Rg 0 0 13 2 B.Rg 0 0 10 2 B.Rg 0 0 7 0
Ot 4 0 0 12 Ot 0 0 1 8 Ot 0 0 0 11

Mult + Text + Stru Mult + Text + Stru Mult + Text + Stru

T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot
T.P 5 0 0 8 T.P 4 0 0 10 T.P 8 0 0 8

B.Rw 0 11 0 2 B.Rw 0 10 0 0 B.Rw 0 9 0 1
B.Rg 0 0 10 0 B.Rg 0 0 7 1 B.Rg 0 0 9 3
Ot 4 1 0 8 Ot 1 0 0 9 Ot 0 0 1 8

PCA PCA PCA

T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot
T.P 7 0 0 3 T.P 10 0 0 3 T.P 8 0 0 4

B.Rw 0 8 0 1 B.Rw 0 9 0 1 B.Rw 0 11 0 2
B.Rg 0 0 10 3 B.Rg 0 0 8 1 B.Rg 0 0 9 1
Ot 4 0 0 8 Ot 0 1 0 8 Ot 1 0 0 8

Table 9. Overall accuracies (AOs) and the Kappa coefficients or three input layers and three machine
learning classifiers generated from in situ reference data from four Cerrado’s phytophysiognomies.
For abbreviation identification of input layers, see Table 1.

Layers
Grasslands Woodlands

Campo Úmido Campo Sujo Cerrado Ralo Cerrado Típico

RGB + IDXRGB + CHM 66.7
(0.53)

80.0
(0.74)

77.8
(0.70)

75.0
(0.67)

83.3
(0.76)

77.8
(0.71)

75.0
(0.65)

83.3
(0.76)

75.0
(0.62)

83.3
(0.77)

58.3
(0.48)

66.7
(0.55)

Mult + Text + Stru 87.5
(0.83)

75.0
(0.65)

72.7
(0.58)

72.7
(0.63)

66.7
(0.56)

75.0
(0.64)

66.7
(0.56)

80.0
(0.71)

83.3
(0.78)

66.7
(0.56)

66.7
(0.53)

58.3
(0.46)

PCA 70.0
(0.59)

90.0
(0.83)

90.0
(0.84)

88.9
(0.81)

90.0
(0.86)

72.7
(0.64)

83.3
(0.76)

75.0
(0.65)

83.3
(0.77)

72.7
(0.61)

88.9
(0.84)

81.8
(0.76)

Classifiers SVM DT RF SVM DT RF SVM DT RF SVM DT RF

In all classes, except Ot, the user’s accuracy was lower than the producer’s; that is,
there was more commission than omission error; as for the Ot class, the pattern was the
opposite (Table 10 and Table S2). The class with the highest user and producer accuracies
was B.Rw followed by B.Rg, T.P, and finally, Ot. The campo úmido had the lowest mean
commission and omission errors.
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Table 10. User’s (UA) and producer’s accuracy (PA) of each class of land cover: Trembleya parviflora (T.P.), Baccharis retusa—wood (B.Rw), Baccharis retusa—
green canopy (B.Rg), and others (Ot) for three input layers and three machine learning classifiers generated from in situ reference data for the four Cerrado
phytophysiognomies. For abbreviation identification of input layers, see Table 1.

Classifier Support Vector Machine Decision Tree Random Forest

Class T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot T.P B.Rw B.Rg Ot

Campo Úmido UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

RGB + IDXRGB +
CHM 66.7 50.0 100.0 100.0 50.0 100.0 50.0 50.0 100.0 100.0 33.3 100.0 100.0 100.0 100.0 50.0 100.0 66.7 100.0 100.0 50.0 100.0 66.7 66.7

Mult + Text + Stru 100.0 66.7 100.0 100.0 100.0 100.0 50.0 100.0 50.0 50.0 100.0 100.0 100.0 100.0 66.7 100.0 71.4 100.0 50.0 100.0 100.0 100.0 100.0 25.0
PCA 75.0 100.0 50.0 100.0 50.0 100.0 100.0 40.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0 100.0 100.0 83.3 100.0 100.0 100.0 100.0 50.0 100.0

Campo Sujo

RGB + IDXRGB +
CHM 33.3 100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0 100.0 100.0 83.3 100.0 100.0 66.7 66.7 33.3 100.0 100.0 100.0 100.0 100.0 100.0 33.3

Mult + Text + Stru 33.3 100.0 100.0 100.0 50.0 100.0 100.0 40.0 20.0 100.0 100.0 100.0 100.0 100.0 100.0 33.3 50.0 100.0 80.0 80.0 100.0 100.0 66.7 50.0
PCA 100.0 100.0 83.3 100.0 100.0 100.0 100.0 50.0 50.0 100.0 100.0 100.0 100.0 100.0 100.0 66.7 50.0 100.0 75.0 100.0 66.7 100.0 100.0 40.0

Cerrado Ralo

RGB + IDXRGB +
CHM 100.0 80.0 100.0 100.0 100.0 100.0 50.0 100.0 50.0 100.0 100.0 100.0 83.3 100.0 100.0 50.0 33.3 100.0 100.0 100.0 66.7 100.0 100.0 62.5

Mult + Text + Stru 100.0 100.0 100.0 100.0 80.0 50.0 25.0 100.0 50.0 100.0 50.0 100.0 100.0 100.0 100.0 33.3 33.3 100.0 100.0 100.0 100.0 100.0 100.0 60.0
PCA 100.0 50.0 100.0 100.0 100.0 100.0 66.7 100.0 50.0 100.0 66.7 100.0 66.7 100.0 100.0 57.1 50.0 100.0 100.0 100.0 75.0 100.0 100.0 60.0

Cerrado Típico

RGB + IDXRGB +
CHM 100.0 100.0 100.0 80.0 100.0 100.0 60.0 100.0 16.7 100.0 100.0 100.0 100.0 100.0 100.0 28.6 40.0 100.0 100.0 100.0 66.7 100.0 100.0 42.9

Mult + Text + Stru 100.0 100.0 100.0 66.7 100.0 100.0 42.9 100.0 20.0 100.0 100.0 100.0 100.0 100.0 100.0 50.0 25.0 100.0 50.0 100.0 75.0 100.0 100.0 28.6
PCA 100.0 100.0 100.0 50.0 100.0 100.0 40.0 100.0 66.7 100.0 100.0 100.0 100.0 100.0 100.0 50.0 33.3 100.0 100.0 100.0 100.0 100.0 100.0 50.0
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4. Discussion
4.1. Overall Accuracy Assessment and Model Validity

Our analysis of all combinations of input layers, classifiers, and seasons showed that
the highest level of agreement was near perfect (Kappa coefficient = 0.91), and the lowest
was moderate (Kappa coefficient = 0.46). These results demonstrate that classifications
were acceptable even using the worst models tested and confirmed the feasibility of using
UAV images to classify woody encroachment in tropical savannas. Validating the classifiers
using 30% of the samples resulted in the best map generated by the wet season orthomosaic
using the RGB sensor and RF classifier. Our results agree with those of Olariu et al. [52],
who reported satisfactory woody encroachment classification using only the RGB sensor
in a semi-arid region. However, this result only partially corroborates our hypothesis.
We noted that the segmentation vectors directly influenced map accuracy. Segments that
were closer to the entire canopy (i.e., not oversegmented) resulted in more accurate maps.
Multispectral sensors captured more canopy details, resulting in smaller segments, which
decreased the accuracy of the multispectral maps and increased processing time.

The most accurate classifications were obtained during the wet season, regardless
of the input layer and classifier. The accuracy of classifying B. retusa (wood) was less
influenced by season but this was still high, which was expected because the leafless wood
canopy tends to maintain its spectral signature regardless of water availability. This is
a positive result for managing and monitoring woody encroachment, especially in wet
grasslands, because the wet season is the most suitable period for floristic surveys [23,82]
and monitoring of water dynamics [83–85].

The accuracy of the RF classifier was the highest among the chosen algorithms. It
is worth noting that by standardizing the same segments for training and validating
the classifiers, it was possible to fairly compare the performance of each one. This is
because classification accuracy is strongly influenced by the quality of the training and
validation data. The nature of these data can have an even greater impact than the algorithm
itself [86]. However, there are differences in the behavior of each of our classifiers, especially
concerning the areas (e.g., pixel values) chosen to represent each class. In general, we
selected areas to represent the typical range of values for each class. However, the SVM
algorithm works by using a subset of the input layers to define the boundary or margin
conditions of each class. Thus, the strategy to collect data for SVM should focus on the
boundary values that differentiate the classes rather than the typical ranges of values [59].
This may explain our finding that SVM was the model with the lowest accuracy, although
the proper data collection strategy for SVM is not clear [59].

Learning curves describe the performance of a process on a task as a function of some
resource for solving that task. Here the task is an image classification and the resource is
the training size. When analyzing learning curves for machine learning, there is a trade-off
between bias and variance. It means the model must be good enough to represent input
data specifics but at the same time simplify complex patterns. When we worked with all
our data, it was possible to verify the validity of all our models from the shape of learning
curves, an addition to highlighting the tipping point where the models tend to saturate.
When we used the DT and RF, this tipping point occurred earlier than for the SVM models,
with 150 and 350 training sizes, respectively (Figure 4).

4.2. In Situ Validation

In general, in situ validation produced less accurate classification maps than validation
using 30% of the data. Although validation using 30% of the data resulted in classifications
with moderate to a near-perfect agreement, the in situ validation method produced Kappa
coefficients that fluctuated considerably. Creating land cover maps with remote sensing
images is not difficult; however, the accuracy of the resulting map will depend on data
quality and classifier performance [87]. Analyzing the learning curves made from a subset
of the data, it was possible to verify that the models lost performance, and it was necessary
for an increase in the training size to overcome the underfitting problem.
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Thus, it is advisable to create multiple maps using more than one input data source and
multiple classification models for comparison [60] to achieve the map that best represents
reality depending on the rigor applied in assessing map accuracy [88]. In a review of
accuracy assessment for land cover mapping, Stehman and Foody [89] summarized the
key issues as sampling design, response design, and analysis. Our result is important,
especially to define the minimum sample number for accuracy assessment that is heavily
resource-dependent (e.g., fieldwork), such as the in situ validation.

Sampling design influences data quality and can be defined as the rules chosen to
select subsets of assessment units for which the reference classification is obtained and
then compared with the map classification. Response design defines how the agreement
between the predicted map class label and the reference class label is decided. Reference
data for the response design can include fieldwork specifically undertaken for the accuracy
assessment, aerial photographs, airborne video, and even fine spatial resolution satellite
images. Finally, the analysis summarizes information to quantify accuracy and enable
comparison of the resulting maps [89,90]. In this study, we compared two approaches
to response design: using reference data from the orthomosaics for validation (30%) and
using data from fieldwork carried out specifically to acquire in situ reference values. Both
methods involved random sampling and making an error matrix.

The DT and RF performances were, on average, very close: 85.4% and 81.8%, respec-
tively. However, when comparing the different input layers, DT accuracy varied by about
7%, whereas RF accuracy varied by only 3%; thus, the accuracy of the RF classifier was
more stable. This similar performance of the two classifiers can be explained by the nature
of the algorithms [59]. The DT and RF classifiers are both based on decision trees; the
difference is that RF is formed by several decision trees, which may account for its greater
stability regardless of the input layer used [58]. However, this unusual result must be
explained by an underfitting scenario since the performance of the RF is affected by small
data size. Figure 5 shows cross-validation score curves far from saturation, which means
that we did not reach the best training size.

In both presented validation methods, it was possible to observe that a considerable
part of the commission errors of T. parviflora come from the category Others. During the in
situ validation, it was possible to observe that these commission errors were mostly linked
to species that were spectrally similar to T. parviflora, for example, palm trees (Syagrus sp.)
with bright green leaves and trees of the genus Vochysia that have leaves with a shade of
green very similar to that of T. parviflora.

4.3. Evaluating In Situ Accuracy in Different Phytophysiognomies

This is the first study to classify woody encroachment in different Brazilian savanna
phytophysiognomies. Based on our ground truth sampling design, it was possible to
compare the quality of woody species classification in four of the main woodland and
grassland phytophysiognomies: cerrado típico, cerrado ralo, campo sujo, and campo
úmido. The cerrado sensu stricto is the Cerrado’s most extensive formation, occupying
approximately 65% of the Brazilian savanna [91]. The cerrado sensu stricto is subdivided
into cerrado denso, cerrado típico, cerrado ralo, and cerrado rupestre [41]. We were able
to evaluate the classification of woody encroachment in two of the most important and
representative phytophysiognomies of the Brazilian savanna. In addition, we evaluated the
classification of woody encroachment in two grassland vegetations, one of them (campo
úmido) being extremely relevant for conserving the functioning and provisioning of one of
the most essential ecosystem services of the Cerrado, the water supply [77].

Beyond the importance of each vegetation formation, these four phytophysiognomies
can be considered a continuum of woody density, from the cerrado típico, which is charac-
terized by a woody cover of 20% to 50% and an average height of 3 to 6 m, to the campo
úmido, which is a predominantly grassland formation with occasional shrubs and the
complete absence of trees [41].
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In our study, tree cover appeared to be a determining factor in the quality of the
classification maps, with the highest OA for the campo úmido, and the lowest OA for the
cerrado típico. Further study of this relationship between tree cover and accuracy may be
needed because the two intermediate formations, campo sujo and cerrado ralo, showed
the opposite pattern. Nevertheless, the classification accuracy of grassland formations
was greater than that of woodland formations. Finally, we suggest that future studies
also investigate the relationship between classifiers and phytophysiognomies because each
classifier showed its best performance in different vegetation formations. For the input
layers, the average accuracy of PCA was the highest, followed by RGB + IDXRGB + CHM.
This result was, at some point, unexpected because more complex input layers tend to
produce more accurate maps. However, the RGB products showed the results were as
satisfactory as the multispectral ones, reinforcing the need, whenever possible, to combine
different sensors in the identification and management of woody plant encroachment.

5. Conclusions

Our results demonstrate that low-cost drone images can be used to produce an ac-
ceptable classification of woody encroachment in tropical savannas. For this purpose, we
recommend acquiring drone images during the wet season and using a combination of
different sensors, when possible. Based on our in situ validation, the input layer with the
best accuracy combined the products of the RGB and multispectral cameras. However, if it
is not possible to combine two sensors, we suggest using the RGB sensor. The metrics and
indices derived from the RGB sensor provided woody encroachment maps with high accu-
racy. We strongly recommend using more than one form of validation, with a preference
for collecting in situ reference data, especially for studies of woody encroachment. Finally,
we suggest, based on the analysis of the learning curves, that in the case of using in situ
accuracy assessment, there are a minimum of 40 samples per class.

Regarding the choice of classifiers, we recommend using different combinations of
input layers and at least three classifiers. Special care is needed regarding the sampling
design to acquire training data for each classifier and its operating features (e.g., SVM).
Finally, we welcome the advance in the use of deep learning for tree–shrub identification.
However, machine learning is still a viable option and has produced satisfactory results.

As this is the first study to classify woody encroachment in Brazilian savanna phy-
tophysiognomies, there is more research to be conducted. For example, there is a need
for a more in-depth investigation of the relationship between the extent of tree cover and
the accuracy of woody encroachment classification. Although a comparison of grassland
classification and woodland classification showed greater accuracy within formations with
less tree cover, this pattern was not observed for intermediate formations, such as grass-
lands with scattered woody plants and shrublands. Another question is the best choice of
classifier for specific phytophysiognomies. Our results indicated the superiority of models
based on decision trees (single DT and RF); however, the SVM classifier produced superior
results in denser formations such as cerrado típico.

Finally, we suggest the need for future studies to investigate the use of UAV data as
an alternative to field sampling, especially in tropical savannas and woodland formations.
These types of data will be paramount for upscaling approaches (e.g., for satellite scale),
enabling cost-effective monitoring of woody encroachment in time series.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15092342/s1, S1. Confusion matrix and results of each class
of land cover: Trembleya parviflora, Baccharis retusa—wood, Baccharis retusa—green canopy, shadow,
and others for two seasons (wet and dry) from three machine learning classifiers. RGB refers to red,
green, and blue bands; IDXRGB refers to the green leaf index and green–red difference index; CHM
refers to the canopy height model; Mult refers to multispectral bands; Text refers to texture metric;
Stru refers to structural metric; IDXMult refers to normalized difference vegetation index (NDVI) and
normalized difference red edge (NDRE) index; and PCA refers to the six principal components of
all bands; S2. Confusion matrix and results of each class of land cover: Trembleya parviflora (Tremb.),

https://www.mdpi.com/article/10.3390/rs15092342/s1
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Baccharis retusa—wood (Bac.S), Baccharis retusa—green canopy (Bac.V), and others (Outros.). RGB
refers to red, green, and blue bands; IDXRGB refers to the green leaf index and green–red difference
index; CHM refers to the canopy height model; Mult refers to multispectral bands; Text refers to
texture metric; Stru refers to structural metric; and PCA refers to the six principal components of
all bands.
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