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A B S T R A C T   

High-quality Brazilian Canephora coffees are rising to the level of specialty coffees in the face of a new industry 
perception. In this framework, spectra from 527 coffees were analyzed in the near-infrared (NIR) region. Prin-
cipal component analysis distinguished Brazilian Canephora producing states, botanical varieties, low and high- 
quality Canephora, Canephora and Arabica, and Canephora with geographical indication (GI) from those without 
GI. Also, Canephora coffee cultivars from Western Brazilian Amazon were distinguished. Three multi-class PLS- 
DA (traditional, hard, and soft versions) were compared to discriminate 5 classes: Robusta Amazônico from 
traditional (1) and indigenous (2) producers of Rondônia, Conilon from Espírito Santo (3), Conilon from Bahia 
(4), and specialty Arabica (5). Binary PLS-DA discriminated GI Canephora and non-GI Canephora with 100% 
sensitivity and specificity. Carbohydrates, chlorogenic acids, lipids, caffeine, and proteins were dominant ab-
sorption bands in coffee classifications. The proposed method is objective, simple, fast, and could be used in the 
routine analysis of coffee to verify claims of identity, variety, and origin.   

1. Introduction 

The rise in quality standards of Brazilian Canephora coffees to the 
level of specialty ones has been contributing to change the current 
industry’s perception on Canephora quality. Many efforts have been 
made to understand more about it and an example is the application of 
analytical methods that are more objective, simpler, and faster to eval-
uate coffee identity claims. However, coffee matrix is challenging 
because the beans contain many different chemical compounds that 
influence the analysis, requiring a coupling of these methods with che-
mometrics to produce models with the chemical information that has 
been obtained. 

Among coffee (Coffea spp.) species, Coffea canephora is the second 
most important, representing 40% of the global crop (ICO, 2021). 
Despite this, it has historically been described as a low-quality coffee 
compared to Coffea arabica and has led many coffee studies to differ-
entiate Arabica from Canephora. Brazil is the second largest world 
producer of Canephora (ICO, 2021). Espírito Santo (Southeast region), 

Rondônia (North region), and Bahia (Northeast region) are the main 
producing states (Brazil, 2021a), see Fig. 1. They grow Robusta and 
Conilon (Souza et al., 2021, 2018). While Espírito Santo produces 
Conilon mainly in its north and Bahia mainly in its extreme south, region 
known as Atlântico Baiano, Rondônia produces Robusta. Despite their 
diversity, they has not yet been subjected to a comprehensive analysis 
together, in view that origin and variety have been important factors in 
coffee discrimination (Robert et al., 2022). 

Brazilian Conilon and Robusta have shown an evolution in quality 
standards over the last five years, with several factors, including culti-
vation, processing, and post-harvest, contributing to improve their 
sensory quality. They have been called high quality Canephora, Fine 
Robusta or specialty Canephora, and differ greatly from a low-quality 
Canephora considered as commodity. They have also been qualified 
with equal and even higher sensorial quality when compared to spe-
cialty Arabica (Alves et al., 2020; Dalazen et al., 2020; Fioresi et al., 
2021; Lemos et al., 2020; Machado et al., 2021; Oliveira et al., 2020a, 
2020b; Pereira et al., 2019). 
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Canephora quality has been a hot topic for research and has received 
more attention in the last five years, especially after two geographical 
indication (GI) registrations. This register is a sign used in Brazil to 
identify and protect specialty foods. It is divided into Denomination of 
Origin (DO), which is linked to a specific geographical area, and Indi-
cation of Origin (IO), which is linked to the notoriety of where it is 
produced (Brazil, 2021b). In 2021, Robusta from Rondônia and Conilon 
from Espírito Santo were nationally recognized and protected with GI 
seals of DO and IO, respectively (Brazil, 2021c, 2021d). However, 
Conilon from Bahia is not currently registered with GI. 

Robusta Amazônico is the name given to the Robusta coffee exclu-
sively produced in Rondônia, in the DO Matas de Rondônia, which is 
located in the Western Brazilian Amazon region, resulting in a unique 
terroir (Brazil, 2021d). Such coffees may exhibit chocolate, woody, 
fruity, spicy, rooty, and/or herbaceous characteristics (Brazil, 2021e). 
Matas de Rondônia region covers fifteen cities, highlighted in green in 
Fig. 1. Robusta Amazônico has a sustainable and agroforestry produc-
tion model and became the first Canephora to be registered with a GI 
worldwide. Its producers are also distinctive, since there are indigenous 
and non-indigenous people (Brazil, 2021f, 2019). The indigenous people 
comprise 127 families of different ethnicities living in two protected 
Indigenous Lands called "Sete de Setembro" and "Rio Branco", in purple 
and yellow, respectively in Fig. 1, which are in the Matas de Rondônia 
boundaries (Brazil, 2019). Since its coffee has a positive impact on the 
promotion of these populations and social inclusion, which is a public 
policy issue, a differentiation between Robusta Amazônico producers is 
required to increase its value and appeal. 

Conilon from Espírito Santo is another outstanding coffee and is also 
known as Conilon Capixaba (Brazil, 2021c). The state is the largest 
national Conilon producer and cultivates it mainly in its northern re-
gion. (Brazil, 2021a). However, there are also producers based in the 
southern or central region, as shown in Fig. 1. Its sensory profile may 
present chocolate, almond, floral, or fruity characteristics (Brazil, 
2021e). 

Brazilian Canephora requires a protection tool to defend its identity, 
origin, and quality due to its increasing popularity among consumers 
and producers. In this sense, near-infrared (NIR) spectroscopy is a 
relevant technique for food geographical verification and traceability. It 
performs a non-targeted spectrochemical analysis, providing a spectral 
fingerprint that can be used to confirm the identity of a sample (Ríos--
Reina et al., 2021). Also, it is easy-to-use, instantly scans the sample with 
just one click, allows direct solid sample analysis, is relatively 

inexpensive and industrially applicable, allowing large-scale finger-
printing (Baqueta et al., 2021). Despite its functionality, it suffers in 
identifying specific chemical compounds in a sample, because they are 
evaluated through the combined absorptions (Ríos-Reina et al., 2021). 

Chemometric tools are required to analyze the chemical information 
contained in NIR spectra. There are several discriminant analysis 
available, but the Partial Least Squares with Discriminant Analysis (PLS- 
DA) is the most popular (Pomerantsev and Rodionova, 2018). It is 
widely used in food analytical chemistry (Foschi et al., 2021; Oliveri and 
Downey, 2013; Rodionova and Pomerantsev, 2020). PLS-DA can be 
applied to model two classes in binary discriminations or three or more 
classes in multi-class situations. It is typically applied based on PLS 
scores, but recently, new versions have been proposed. One of them 
called soft is based on Quadratic Discriminant Analysis (QDA), while a 
hard version is based on Linear Discriminant Analysis (LDA). Soft and 
hard PLS-DA do not require a large computational effort for imple-
mentation and work differently by not using PLS scores and loadings in 
the modeling (Pomerantsev and Rodionova, 2018; Zontov et al., 2020). 
They are relatively new chemometric tools, therefore, further research 
must explore their performance, especially in coffee classification 
context. 

Therefore, important coffee parameters, including geographical 
origin, variety, species, and authenticity were investigated with direct 
solid sample analysis by NIR technology combined with spectral data 
analysis by chemometrics. A representative set composed of 527 sam-
ples was analyzed, including Robusta Amazônico from indigenous and 
non-indigenous producers, Conilon from Espírito Santo and Bahia, 
specialty Arabica, and low-quality Canephora. No reference has been 
found on the discrimination and classification of Canephora coffees of 
different qualities, as well as GI Canephora from those without GI in 
coffee analytical chemistry. In addition, this study highlights important 
responses to the use of NIR spectroscopy in large-scale agronomic 
research to directly differentiate Canephora cultivars from Western 
Brazilian Amazon (Teixeira et al., 2020) using a non-targeted analysis 
simpler than those (Faria et al., 2022) used in genetic breeding programs 
for the identification of coffee genotypes. 

2. Materials and methods 

2.1. Coffee samples 

A total of five hundred and twenty-seven genuine roasted and ground 

Fig. 1. Graphical representation showing main Brazilian geographical regions responsible for Canephora production (in gray) and the places of origin of the samples 
(colored highlights) and respective GI seals: Espírito Santo (Conilon) highlighted in orange, Matas de Rondônia (Robusta) highlighted in green, where the "Sete de 
Setembro" Indigenous Land is highlighted in purple, and "Rio Branco" Indigenous Land is highlighted in yellow, and Bahia (Conilon) highlighted in blue. 
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coffees were collected, including Canephora and Arabica samples. All 
samples were harvested in 2020 and roasted to a medium degree for 
standardization. More information about the samples is shown in  
Table 1. 

2.1.1. GI Canephora samples 
Among the 232 samples collected from Rondônia, 99 were from 

indigenous producers, comprising 78 from "Sete de Setembro" and 21 
from "Rio Branco",133 were from non-indigenous producers. It is worth 
mentioning that the indigenous samples were exclusively processed 
through induced fermentation, as they are usually produced. Rondônia 
sample accessions from non-indigenous producers were not known, but 
some varietal characteristics were known a priori and may be of interest 
for study and discrimination: 22 were Robusta, 17 were Conilon, and 56 
were Conilon and Robusta hybrids. In addition, 38 were Robusta 
Apoatã, which is of agronomic interest for its high yield and resistance. 

From Espírito Santo, 126 Conilon samples were collected, of which 
61 were from the northern cities. Other samples were from the south or 
central region of the state (65 samples). Specific sample origins were 

unknown to those in the north because they were provided by a local 
cooperative; however, the others were sourced directly from the pro-
ducers, as follows: Conceição de Castelo - Central region (8 samples), 
Nova Venécia - Northwestern region (33 samples), Alegre - Southern 
region (2 samples), Atílio Vivácqua - Southern region (1 sample), 
Jerônimo Monteiro - Southern region (2 samples), Mimoso do Sul - 
Southern region (5 samples), Muqui - Southern region (11 samples), and 
São Domingos do Norte - Northwestern region (3 samples). 

Robusta Amazônico from Rondônia and Conilon from Espírito Santo 
were high-quality Canephora coffees and had GI specifications. There-
fore, GI Canephora mention throughout the text refers to them. These 
samples were provided by the EMBRAPA Rondônia, which guaranteed 
their authenticity. 

2.1.2. Non-GI Canephora samples 
Conilon coffees from Bahia of high or intermediate quality were 

collected directly from different producers or companies. Among the 75 
samples, 27 were pure origin and 33 blended. In addition, two producers 
had a history of specialty Conilon production, where one from Teixeira 
de Freitas provided 6 samples and another from Eunápolis provided 9 
samples. 

For further investigation and comparison, 7 Conilon from São Paulo 
state, located in the southeast of Brazil, were collected in Adamantina 
city, and had unknown quality grade. Also, 6 low quality Robusta and 6 
low quality Conilon, called low-quality Canephora throughout the text, 
were collected as a control to compare them with specialty Canephora. 

2.1.3. Specialty Arabica samples 
A total of 75 specialty Arabica coffees from different Brazilian ori-

gins, qualities and sensory characteristics were purchased in local 
markets or provided by companies/producers for species discrimination 
between Arabica and Canephora. They were pure origin (42 samples) or 
blended (33 samples) and had chocolate, nuts, floral, or fruity 
characteristics. 

2.2. NIR spectroscopic analysis 

Roasted coffee beans were milled and then sieved through a 20-mesh 
sieve for particle size standardization. NIR spectroscopic fingerprints 
were obtained from the solid coffees, in ground form, in reflectance 
mode, using a Perkin Elmer Fourier Transform NIR spectrophotometer, 
Spectrum 100 N, equipped with a glass cuvette. Each spectrum was 
digitized with 32 scans from 1000 to 2500 nm with a resolution of 4 nm. 
Roasted and ground coffee samples were analyzed without any laborious 
sample pre-treatment in a random sequence at room temperature 
(22 ◦C) by placing them directly on the instrument. Three different 
sample aliquots were used, and the spectrum of each aliquot was 
recorded, resulting in 1581 (527 × 3) spectral profiles acquired. Before 
analysis, the blank was evaluated using a NIR reflectance standard. 

2.3. Data processing and exploratory analysis 

Each sample’s average NIR spectrum was calculated and imported in 
Matlab R2019a (The Mathworks, Natick, MA) with the PLS_Toolbox 8.6 
computational package. The 527 original spectroscopic profiles with 
6001 variables per spectrum were transformed into pseudo-absorbance 
(log 1/R). Different pre-processing methods were studied before che-
mometric data analysis individually or in combination. However, the 
combination of Savitzky–Golay smoothing and first derivative (5 points 
window) (Savitzky and Golay, 1964), and multiplicative scatter 
correction (MSC) (Geladi et al., 1985) was the most effective pre-process 
to correct baseline variations and the different light scattering of gran-
ulated samples. A spectrum segment was removed from the whole 
wavelength range, and the most informative region between 1100 and 
2500 nm with 5093 variables was used for analysis. Moreover, mean 
centering was performed on the spectra. First of all, several Principal 

Table 1 
Coffee samples considered in the study.  

States of 
Canephora 
production  

n◦ of 
samples 

Variety Origin 

Rondônia   78 Robusta Sete de Setembro 
indigenous land   

21 Robusta Rio Branco indigenous 
land 

Total  99     
38 Robusta 

Apoatã 
Matas de Rondônia   

8 Robusta Matas de Rondônia   
7 Hybrid Matas de Rondônia   

25 Hybrid Matas de Rondônia   
14 Robusta Matas de Rondônia   
22 Hybrid Matas de Rondônia   
2 Hybrid Matas de Rondônia   

17 Conilon Matas de Rondônia 
Total  133   

Espírito Santo   61 Conilon Cities in the North of 
Espírito Santo   

8 Conilon Conceição de Castelo - 
Central Region   

33 Conilon Nova Venécia - 
Northwestern Region   

2 Conilon Alegre - Southern 
Region   

1 Conilon Atílio Vivácqua - 
Southern Region   

2 Conilon Jerônimo Monteiro - 
Southern Region   

5 Conilon Mimoso do Sul - 
Southern Region   

11 Conilon Muqui - Southern 
Region   

3 Conilon São Domingos do Norte 
- Northwestern Region 

Total  126   
Bahia   6 Conilon Teixeira de Freitas    

9 Conilon Eunápolis    
27 Conilon Extreme South of Bahia    
33 Conilon Blended coffees  

Total  75   
São Paulo Total  7 Conilon Adamantina 
Arabica   42 Unknown 

variety 
Pure origin    

33 Unknown 
variety 

Blended coffees  

Total  75   
Low-quality 

Canephora   
6 Robusta Unknown origin    

6 Conilon Unknown origin  
Total  12    
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Component Analysis (PCA) models were built selecting the principal 
components (PCs) that could extract relevant chemical information 
about the samples. 

2.4. Discrimination and classification methods 

For PLS-DA, the samples belonging to each dataset were selected by 
the Kennard-Stone algorithm (Kennard and Stone, 1969). Calibration 
datasets (training sets) comprised 75% of the samples selected from each 
class. Prediction datasets (test sets) were composed of 25% of the 
remaining samples to evaluate the predictive ability of the models, and 
they were only used in the final model evaluation. PLS-DA models were 
built using the same pre-processing used in PCA. 

The first objective was a comparison among the three multi-class 
PLS-DA versions to predict five coffee classes: Robusta Amazônico 
from indigenous producers (class 1 – 99 samples), Robusta Amazônico 
from non-indigenous (class 2 – 133 samples), Conilon from Espírito 
Santo (class 3 – 126 samples), Conilon from Bahia (class 4 – 75 samples) 
and specialty Arabica (class 5 – 75 samples). As the samples from "Rio 
Branco" Indigenous Land (21 samples) were inevitably limited by their 
production and availability and their post-harvest processing were 
similar, they were grouped with "Sete de Setembro" (78 samples) into a 
single class, totalizing 99 samples. Conilon from São Paulo (7 samples) 
and low-quality Canephora (12 samples) were not considered in the PLS- 
DA models because they were not enough to build models. 

To build the 5-class discrimination models, multi-class PLS-DA based 
on PLS scores, named as traditional PLS-DA, was implemented using 
PLS_Toolbox in the Matlab, according to previous studies (Baqueta et al., 
2021). Internal model validation was performed using venetian blinds 

cross-validation with five samples. In addition, samples with high 
leverage and high Q residuals simultaneously were removed since they 
could be outliers. Hard and soft multi-class PLS-DA models were built 
using a graphical interface available at https://github.com/yzontov/p 
ls-da. Algorithm descriptions and instructions for implementing them 
can be found in the literature (Pomerantsev and Rodionova, 2018; 
Zontov et al., 2020). Monte Carlo cross-validation, error type I and 
outlier level of 0.01 were applied for both models. 

The second objective was to develop binary PLS-DA models to 
discriminate GI Canephora and non-GI Canephora and test the models, 
evaluating the ability of NIR spectroscopy and chemometrics. These 
models were built with the multi-class PLS-DA that performed best. 

Sensitivity and specificity for calibration (CAL), cross-validation 
(CV), and prediction (PRED) determined the quality and reliability of 
the PLS-DA models. They were also used to select the model complexity, 
determining the number of latent variables (LVs). Finally, a chemical 
interpretation of the most discriminant variables was performed by 
analyzing VIP (variable importance in projection) scores. NIR-VIP-bands 
associated with coffee compounds listed in the literature were investi-
gated (Baqueta et al., 2021; Barbin et al., 2014; Pires et al., 2021; Ribeiro 
et al., 2011). 

3. Results and discussion 

3.1. Spectrum visualization 

Fig. 2A shows the original spectra, Fig. 2B the pre-treated spectra, 
and Fig. 2C the average spectra of the coffee classes. When analyzing the 
average spectra (Fig. 2C), NIR fingerprints were very similar over most 

Fig. 2. Original (A), pre-treated (B), and average (C) NIR fingerprints, as well as PCA with data of all coffees showing scores on PC1 (D) and PC2 (E) and respective 
loadings on PC1 and PC2 (F). 
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of the range, except in some regions where the differences were visible. 
While the average spectra of the Robusta Amazônico and Conilon from 
Espírito Santo overlap (all classes with GI specifications), Conilon from 
São Paulo and Bahia (both without GI specifications) showed some 
differences. The botanical difference between the Robusta and Conilon 
varieties was not evident at first glance, because their spectra over-
lapped, indicating that they had similar spectrochemical characteristics. 

GI Canephora coffees spectra had a slightly different behavior from 
the others. They exhibited chemical characteristics in common possibly 
associated with their special production mode (Fig. 2C). Low-quality 
Canephora coffees showed different spectral behavior compared to the 
other Canephora, indicating how proper bean-processing can improves 
the quality of Robusta and Conilon commodities. 

Another clear difference was between Canephora and Arabica that 
had their spectrum affected by their compositions (Fig. 2C). This was 
probably due to a quantitative difference of the metabolites in each 
species that has been reported in the literature (Fioresi et al., 2021; 
Lemos et al., 2020). However, comparing the overall spectrum shape in 
Fig. 2B with those of pure Arabica available in the literature (Ribeiro 
et al., 2011), they were quite similar. 

3.2. Exploratory analysis 

3.2.1. PCA for all coffees 
A global PCA model evaluated all samples and revealed distinctions 

according to their origin, quality, species, and variety (Fig. 2D-F). The 
first two PCs explaining, respectively, 58.30% and 33.64% of variance 
were extracted in this model. PC1 scores (Fig. 2D) distinguished the 
samples according to their qualities and origins. Robusta Amazônico, 
Conilon from Espírito Santo, and Conilon from São Paulo were placed on 
the most positive side of PC1, while Conilon from Bahia, Arabica, and 
low-quality Canephora were placed on the most negative side of PC1. 
This means that Robusta Amazônico and Conilon from Espírito Santo 
showed similar characteristics, agreeing with their GI specifications, and 
a distinct behavior when compared to other coffees (Conilon from Bahia, 
Arabica, and low-quality Canephora). Conilon from São Paulo showed a 
distribution near Conilon from Espírito Santo, suggesting that they may 
have similar characteristics. 

PC2 scores (Fig. 2E), even explaining a lower percentage of variance 
(33.64%), contained helpful chemical information. It differentiated the 
samples by species, botanical variety, quality, and origin. With respect 
to species discrimination, Canephora (Conilon and Robusta samples) 
and Arabica were clearly distinguished. Arabica samples were placed on 
the positive side in a distant group. Regarding the botanical variety 
discrimination, most of the Conilon samples from Espírito Santo, São 
Paulo and Bahia presented negative scores, while Robusta coffees pre-
sented positive or negative scores. In addition, Robusta Amazônico 
samples from Rondônia were distributed among Arabica and other 
coffees, suggesting a differentiation by quality. However, this may not 
be exclusively in function of coffee quality only, but also of its variety 
and origin. 

3.2.2. PCA for coffees from Rondônia 
Fig. 3A-I shows PCA models for samples belonging to Rondônia. 

Firstly, a PCA was carried out with all samples, however, its first two PCs 
- PC1 (58.81%) and PC2 (24.25%) - showed no effective sample sepa-
ration and were therefore not presented. PC3 (7.63%) brought desired 
results in Fig. 3A-B and discriminated indigenous and non-indigenous 
Robusta Amazônico. Indigenous coffees were placed on the most nega-
tive side of PC3, while the others were placed on the most positive side. 
This distinction may have occurred due to bean processing reasons. 
Indigenous people produce their coffees by induced fermentation, while 
the other producers often produce natural coffee. 

Another model (Fig. 3C-D) was developed to try to discriminate only 
Robusta Amazônico produced by indigenous people. The first three PCs 
of this model (PC1 – 60.96%, PC2 – 26.19%, and PC3 – 4.70%) were not 

informative and only PC4 (2.31%) allowed a minimal information 
extraction (Fig. 3C). Rio Branco samples showed a more "condensed" 
cluster but were distributed among those from Sete de Setembro, 
showing positive and negative scores. Even selecting 4 PCs did not allow 
a clear distinction, indicating that they were chemically similar. 
Although their origins were different, they were similarly processed via 
fermentation, which probably influenced their chemical composition 
and consequently their spectra. 

A PCA was performed to explore Rondônia coffees without indige-
nous samples (Fig. 3E-F). The first PC (60.51%) was not presented 
because only PC2 (25.56%) discriminated Robusta, Conilon, and hy-
brids. Robusta coffees were placed on the most positive side of PC2, 
while hybrid and Conilon samples were placed on the most negative one. 
Robusta Apoatã seemed not to follow a trend and was distributed among 
the other coffees. 

Conilon samples were the most distinguishable in the above model. 
Therefore, they were removed, and a new PCA was performed with the 
remaining samples (Fig. 3G-I). PC1 (62.00%), PC2 (22.34%), PC3 
(5.45%), PC4 (3.51%), and PC5 (2.77%) were considered, but only PCs 2 
and 5 presented relevant information. On PC2, a discrimination between 
hybrid and Robusta was observed. On the other hand, PC5 showed a 
better Robusta Apoatã discrimination. Previous studies (Souza et al., 
2021, 2018) have shown that genetic differences between Robusta, 
Conilon, and hybrids in Rondônia have a greater influence on the 
beverage nuances. Robusta and hybrids have a higher incidence of 
fruity, exotic, fine, and soft characteristics. Also, recent studies have 
shown other geographical discrimination studies for Canephora from 
Rondônia, but the variety effect has not been discussed (Robert et al., 
2022). 

3.2.3. PCA for Conilon from Espírito Santo 
PCA was carried out to explore Conilon from Espírito Santo (Fig. 3J- 

L). Only PC4 (2.00%) and PC5 (1.15%) showed a tendency to differen-
tiate the samples according to their producing regions, therefore, PC1 
(78.09%), PC2 (10.95%), and PC3 (4.62%) were not displayed. On PC4, 
Conilon from southern cities called Conceição de Castelo, Atílio Viv-
ácqua, Jerônimo Monteiro, Mimoso do Sul, and Muqui were mostly on 
the negative side, while Conilon from Nova Venécia and São Domingos 
do Norte, in the northern region, were mostly on the positive side. Other 
samples from northern Espírito Santo were distributed along of this PC, 
but their specific origins were unknown. Two samples from Alegre city, 
which is in the south of the state, were placed near those from the north. 
Similarly, a sample belonging to Muqui (south) was placed near those 
from the north. On PC5, samples from Conceição de Castelo, Mimoso do 
Sul, and Muqui – south of the state – showed a more ‘condensed’ cluster 
on the negative side, and samples from Alegre city, also in the south, 
were now placed nearby. Recent studies (Correia et al., 2020) have 
shown Canephora discrimination from different agroforestry systems in 
southern Espírito Santo. An electrospray mass spectrometry identifica-
tion of coffee metabolites followed by portable microNIR spectroscopy, 
sensory analysis, and PCA allowed the authors to differentiate coffee 
characteristics within each system, even though the city was similar. 

3.2.4. PCA for Conilon from Bahia 
A PCA was carried out to explore Conilon from Bahia (Fig. 3M-P). 

They were pure or blended samples, and some of them of known origin. 
Among PC1 (77.02%), PC2 (9.99%), and PC3 (5.17%), only PC4 
(2.79%) allowed a differentiation, distinguishing pure and blended 
Conilon (Fig. 3M). A new PCA model removing these samples was 
developed to differentiate only between Teixeira de Freitas and 
Eunápolis samples, that were from special producers (Fig. 3N). They 
were placed separately in PC1 (67.92%) versus PC3 (9.68%), indicating 
a difference in their compositions and probably qualities. 

3.2.5. PCA for specialty Arabica coffees 
Although the main aim was to explore Canephora coffees, a PCA 
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Fig. 3. PCA of Canephora coffees from Rondônia (A-I), Espírito Santo (J-L), Bahia (M-P), and Arabica (Q-S). A and B refer to scores and loadings of PC3, C and D refer 
to scores and loadings of PC4, E and F refer to scores and loadings of PC2, and G, H, and I refer to scores and loadings of PC2 and PC5. 
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model was also applied to evaluate Arabica samples (Fig. 3Q-S). With 
PC2 (9.29%) being more informative than PC1 (77.88%), it showed 
multiple sample clusters, suggesting that some groups may have similar 
composition and sensory characteristics. On the other hand, PC3 
(4.26%) revealed that blended Arabica coffees were distributed among 
pure ones. 

3.2.6. Considerations for exploratory analysis 
The spectral data exploration by several PCA models showed that 

sample characteristics affected the NIR fingerprints. Origin, quality, 
species, and variety of coffee have proved to be crucial in distinguishing 
samples. Spectral differences were observed among the studied coffees, 
and even after roasting, they carried chemical information associated 
with their initial green coffee compositions. This information can be 
helpful for spectroscopic characterization in investigative studies and is 
of interest for coffee agronomic research, even when obtained through 
an exploratory analysis of unsupervised pattern recognition. In partic-
ular, NIR-based discrimination of Western Brazilian Amazon Canephora 
coffee cultivars provided an alternative preliminary analysis to be used 
on a large scale with direct solid analysis of coffee without any laborious 
procedure. A NIR instrument could be simpler than modern techniques 
used in genetic breeding programs for coffee genotype identification 
(Faria et al., 2022) and consequently decreases the sample volume to be 
analyzed by these expensive and labor-intensive techniques. In addition, 
the technique provided valuable chemical information not often evalu-
ated in local agronomic studies in Rondônia (Teixeira et al., 2020). 

Furthermore, it is worth noting that the PCs with the highest 
explained variance did not show favorable results for interpretation in 
most PCA. This achievement is not unusual, because sometimes the 
valuable chemical information in a data set is not contained in the PC 
that describes the highest explained variance, but in other PCs besides 
PC1. Studies have been addressing this situation (de Almeida et al., 
2018; dos Santos et al., 2021; Moreira and Scarminio, 2013). 

3.3. PLS-DA classification models 

3.3.1. Comparison among multi-class PLS-DA versions 
The number of selected LVs and sensitivity and specificity values (%) 

obtained in the traditional, hard, and soft PLS-DA models for multi-class 

classification are shown in Table 2a. A total of 18 LVs were selected in all 
models to make the results more comparable. In the 5-class discrimi-
nation, at least 17 LVs at are required, which is close to what was ob-
tained. Although 18 seems too high, there is a consensus that this cannot 
be considered as overfit in PLS-DA, because each class takes around 
2–3 LVs for the internal modeling and another 1–2 LVs to describe the 
external links between classes (Pomerantsev and Rodionova, 2018). Five 
coffee classes were discriminated and classified, being class 1 composed 
of Robusta Amazônico from indigenous producers, class 2 Robusta 
Amazônico from non-indigenous, class 3 Conilon from Espírito Santo, 
class 4 Conilon from Bahia, and class 5 Arabica. 

High classification performances were obtained for all multi-class 
PLS-DA versions considering that this was a real-world application 
with a larger number of samples and high variability. Traditional PLS- 
DA based on PLS scores had the ideal results, with most samples being 
correctly assigned to their classes having sensitivity and specificity 
above 90% in prediction. Sensitivity and specificity varied insignifi-
cantly in traditional and hard PLS-DA. They perfectly discriminated 
Conilon from Bahia (class 4) and specialty Arabica (class 5) with values 
equal to 100% in the prediction but had some difficulties in the 
discrimination of 100% of the samples on classes 1, 2, and 3. The models 
discriminated and classified with sensitivity above 91.0% and specificity 
above 90.2%, which is highly satisfactory for real samples. These three 
classes (1, 2, and 3) were GI Canephora, and the misclassified samples 
might indicate that their characteristics and quality agree with GI reg-
ulations, not meaning a poor result. In addition, classes 1 and 2 were 
similarly composed of Robusta Amazônico, but under an attempt to 
differentiate between their origin from indigenous or non-indigenous 
producers. A detailed analysis showed that no sample from Bahia or 
specialty Arabica was belonged to the Robusta Amazônico (classes 1 and 
2) and Conilon from Espírito Santo (class 3). 

The results show that tracing the identity, quality, variety, and origin 
of Canephora through its NIR fingerprints is possible, because bean 
chemical composition affected the spectra. With a more definitive result 
by using supervised discriminant analysis, indigenous Robusta 
Amazônico had chemical difference and was spectroscopically distin-
guishable from the non-indigenous. In addition, Robusta Amazônico, 
regardless of the producer, as well as Conilon from Espirito Santo, 
Conilon from Bahia, and specialty Arabica coffees showed chemical 

Table 2 
Sensitivity, specificity (%), and LVs obtained in the (a) traditional, hard, and soft multi-class PLS-DA models corresponding to five coffees investigated; (b) Binary PLS- 
DA classification models to differentiate Robusta Amazônico versus Canephora without GI, Conilon from Espírito Santo versus Canephora without GI, and Robusta 
Amazônico and Conilon from Espírito Santo.   

PLS-score-based traditional version LDA-based hard version QDA-based soft version 

(a) Multi-class 
PLS-DA 

Class 
1 

Class 2 Class 
3 

Class 4 Class 5 Class 
1 

Class 
2 

Class 3 Class 
4 

Class 
5 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Nº LVs 18 18 18 
Sensitivity CAL 100.0 94.0 98.9 100.0 100.0 96.0 93.0 99.0 100.0 100.0 96.0 96.0 95.0 95.0 91.0 
Specificity CAL 98.4 95.7 97.2 99.7 100.0 100.0 99.0 98.0 100.0 100.0 98.0 90.0 95.0 100.0 100.0 
Sensitivity CV 97.3 89.0 92.6 100.0 100.0 89.0 86.0 95.0 100.0 100.0 91.0 92.0 88.0 91.0 89.0 
Specificity CV 96.7 93.6 94.8 99.7 100.0 99.0 96.0 95.0 100.0 100.0 77.0 47.0 63.0 97.0 100.0 
Sensitivity PRED 100.0 93.9 96.8 100.0 100.0 96.0 91.0 94.0 100.0 100.0 92.0 97.0 94.0 78.0 89.0 
Specificity PRED 97.0 90.2 98.9 100.0 100.0 97.0 97.0 100.0 100.0 100.0 95.0 84.0 95.0 100.0 100.0 
(b) GI 

classification 
Model 1a  Model 2b  Model 3         

R. A. Without 
GI  

C. from 
ES 

Without 
GI  

R. A. C. from 
ES        

Nº LVs 5  4  13    
Sensitivity CAL 100.0 100.0  100.0 100.0  97.7 98.9    
Specificity CAL 100.0 100.0  100.0 100.0  98.9 97.7        
Sensitivity CV 100.0 98.2  98.9 100.0  94.8 90.5        
Specificity CV 98.2 100.0  100.0 98.9  90.5 94.8        
Sensitivity PRED 100.0 100.0  100.0 100.0  100.0 93.5        
Specificity PRED 100.0 100.0  100.0 100.0  93.5 100.0        

Robusta Amazônico from indigenous producers (class 1), Robusta Amazônico from non-indigenous Rondônia producers (class 2), Conilon from Espírito Santo (class 3), 
Conilon from Bahia (class 4) and specialty Arabica coffees (class 5). a R. A.is the acronym for Robusta Amazônico coffees from indigenous and traditional Rondônia 
producers; b C. from ES is the acronym for Conilon from Espírito Santo; Without GI is the acronym for Canephora coffees without GI. 
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differences, and multi-class PLS-DA proved their robustness to distin-
guish them. 

Soft PLS-DA was worse than the traditional and hard versions. It 
showed satisfactory sensitivity and specificity for the classification of 
Robusta Amazônico samples (classes 1 and 2) and Conilon from Espírito 
Santo (class 3) in the prediction, but inferior results for Conilon from 
Bahia (class 4) and Arabica (class 5). The nature of this PLS-DA is similar 
to one-class classifiers (Pomerantsev and Rodionova, 2018). It was 
observed that many Robusta Amazônico samples (classes 1 and 2) and 
Conilon from Espírito Santo (class 3) were simultaneously assigned to 
their classes. In contrast, Conilon from Bahia and Arabica were detected 
as not members of their classes – an ability of soft PLS-DA. Therefore, the 
characteristics of Conilon from Bahia and Arabica samples may have 
negatively affected their classifications. 

As a result of this study, traditional PLS-DA showed the best results 

and was comparable to the hard version that was easier to implement. 
Both were ways to obtain suitable classification results. There is no 
criticism for using PLS scores in traditional PLS-DA for classification 
since appropriate validation is carried out with a relevant test set 
(Pomerantsev and Rodionova, 2018), as was conducted in this study. 
Furthermore, the classification results obtained here were comparable 
and even superior to those of previous studies with coffee analysis 
(Baqueta et al., 2021; Dias et al., 2018; Robert et al., 2022). 

3.3.2. Classifications of Canephora with and without GI 
The purpose was to differentiate GI and non-GI Canephora using 

binary PLS-DA models based on PLS scores, the version chosen based on 
the previous results. Firstly, Robusta Amazônico was differentiated from 
the Canephora without GI (model 1). Secondly, Conilon from Espírito 
Santo was distinguished from the Canephora without GI (model 2). 

Fig. 4. Chemical interpretation of the PLS-DA models with attribution of NIR-VIP-bands. Traditional multi-class PLS-DA (A – class 1), (B – class 2), (C – class 3), (D – 
class 4), (E – class 5); Binary PLS-DA models to differentiate Robusta Amazônico versus Canephora without GI (E), Conilon from Espírito Santo versus Canephora 
without GI (F) and Robusta Amazônico and Conilon from Espírito Santo (H). 
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Finally, it was tried to differentiate Robusta Amazônico and Conilon 
from Espírito Santo (both GI Canephora) in a third model (model 3). 
Robusta Amazônico samples from indigenous and non-indigenous 
Rondônia producers were grouped into a single class in these models 
since they had the same GI. Their classification results are shown in 
Table 2b. Sensitivity and specificity obtained to differentiate Robusta 
Amazônico (model 1) and Conilon from Espírito Santo (model 2) of non- 
GI Canephora were perfect in the prediction = 100%. This result pointed 
out that protection under a GI and its unique production mode influ-
enced the spectra, creating a traceable NIR fingerprint. The third model 
to differentiate Robusta Amazônico and Conilon from Espírito Santo 
showed high sensitivity and specificity in the prediction, with percent-
ages ranging from 93.50% to 100%. The misclassified samples indicated 
that some of them were quite similar and that the model was not able to 
fully differentiate them. 

These models proved that GI Canephora had unique and distinctive 
characteristics conferred by the green coffee quality and their produc-
tion systems, making them distinguishable from non-GI Canephora 
coffees. This result creates opportunities for Canephora producers to 
exploit the typicity and origin of their coffees as value attributes. The 
method brought a direct and easy-to-use method for verifying GI coffees. 
A NIR system instantly evaluates the sample and provides satisfactory 
classification results that could be applied to the quality control of coffee 
cooperatives, certification agencies, and associations involved in pro-
tecting certified coffees. 

3.4. Chemical interpretation of the models by NIR-VIP-bands 

NIR spectra are difficult to interpret because they do not have ab-
sorption bands with clear chemical assignments. VIP scores analysis was 
performed for the traditional multi-class PLS-DA model and the three 
binary models to identify the most discriminant variables (Fig. 4). The 
highly influential variables are those with VIP scores higher than 1, 
where this cut-off value is assumed to define which of them are signif-
icant. The most informative region exhibiting spectral variables with 
VIP scores higher than 1 was from 1400 nm onwards for all models. In 
the multi-class model, several NIR-VIP bands associated with the main 
coffee compounds were assigned and displayed in Fig. 4A-E. Robusta 
Amazônico from indigenous (Fig. 4A) and non-indigenous Rondônia 
producers (Fig. 4B) presented a very similar VIP scores pattern without 
considerable differences in absorption bands, indicating their chemical 
composition was quite similar. On the other hand, Conilon from Espírito 
Santo (Fig. 4C), Bahia (Fig. 4D), and Arabica coffees (Fig. 4E) were more 
distinguishable. 

Several compounds and some unique molecules in coffee show vi-
bration in the NIR region, but the combined absorption of carbohy-
drates, chlorogenic acids, lipids, caffeine, and proteins is the most 
important. All these compounds present higher absorption bands from 
1400 to 2500 nm. Absorptions around 1400 nm are associated with 
carbohydrates, chlorogenic acids, and lipids in coffee. The region be-
tween 1600 and 1800 nm showed that the variables in this region pro-
vided important information to distinguish the samples. This region is 
mainly associated with caffeine absorption, but carbohydrates can also 
show absorption bands in this region. In particular, the variables in the 
range 2000–2500 nm were highlighted as relevant predictors and 
associated with the combination bands of NH, OH, and C––O bonds. 
Carbohydrates, lipids, proteins, chlorogenic acids, caffeine, R–OH, and 
R–NH vibrations were related to higher absorbance in this range pre-
viously (Baqueta et al., 2021; Barbin et al., 2014; Pires et al., 2021; 
Ribeiro et al., 2011). 

The discriminant variables seemed the same in the binary models 
when distinguishing Robusta Amazônico (Fig. 4F) and Conilon from 
Espírito Santo (Fig. 4G) of non-GI Canephora. NIR-VIP-bands between 
1800 and 2100 nm and 2200 and 2400 nm were key to differentiate GI 
Canephora versus non-GI Canephora with carbohydrates, chlorogenic 
acids, lipids, caffeine, and proteins exhibiting intense absorption bands 

at these wavelengths (Barbin et al., 2014; Ribeiro et al., 2011). Fig. 4H 
shows the VIP scores that differentiate Robusta Amazônico versus 
Conilon from Espírito Santo, and several absorption bands related to 
main coffee compounds were assigned. However, Canephora coffee has 
been gaining consideration, especially after its beverage offers more 
sweetness and diversity of nuances (Lemos et al., 2020; Souza et al., 
2021, 2018). Therefore, the absorption bands associated with sugars are 
of particular interest. 

4. Conclusions 

In this work, integrated NIR spectroscopy with chemometrics has 
been relevant for rapid Brazilian Canephora discrimination in roasted 
and ground form. NIR fingerprints obtained directly from solid coffees 
carried information about their origin, quality, species, and variety. An 
unsupervised pattern recognition chemometric strategy by applying 
PCA was powerful in providing a global understanding about the sam-
ples, pointing out their spectrochemical differences. It was crucial in 
extracting information from the coffees even after roasting, indicating 
that they carried chemical information associated with their initial 
green coffee compositions and had a unique fingerprint for spectro-
scopic characterization and traceability. 

By applying the multi-class PLS-DA models in the first part of the 
study, they showed promising results for classifying coffee according to 
origin, quality, species, and variety. Hard PLS-DA offered fast classifi-
cation without a large computational effort for implementation; how-
ever, it was not possible to interpret the discriminant variables that may 
be of interest in many cases, as when using traditional PLS-DA coupled 
with VIP scores. Regarding binary PLS-DA models, they allowed 100% 
classification of GI Canephora versus non-GI Canephora. Sensitivity and 
specificity obtained in all models indicated that they were robust, 
considering that this was a real-world application with a considerable 
volume of samples. Carbohydrates, chlorogenic acids, lipids, caffeine, 
and proteins were dominant absorption bands in coffee classifications. 
These metabolites are of particular interest because they are involved in 
the regulation of coffee quality and flavor. 

A NIR system would be an advantageous alternative for obtaining a 
large-scale fingerprint of Canephora coffees in an origin certification 
procedure or specialized GI inspection. It allows users to continuously 
analyze multiple samples directly on the instrument, improving pro-
ductivity with fast and reproducible sampling. It could be applied in 
quality control for coffee cooperatives, certification agencies, and as-
sociations that protect certified coffees from disposing of a routine, 
direct, relatively low-cost, sensitive, and easy-to-use method. 
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doi.org/10.36524/ric.v6i3.875. 

Baqueta, M.R., Coqueiro, A., Março, P.H., Valderrama, P., 2021. Multivariate 
classification for the direct determination of cup profile in coffee blends via 
handheld near-infrared spectroscopy. Talanta 222, 121526. https://doi.org/ 
10.1016/j.talanta.2020.121526. 

Barbin, D.F., Felicio, A.L., de, S.M., Sun, D.-W., Nixdorf, S.L., Hirooka, E.Y., 2014. 
Application of infrared spectral techniques on quality and compositional attributes 
of coffee: an overview. Food Res. Int. 61, 23–32. https://doi.org/10.1016/J. 
FOODRES.2014.01.005. 

Brazil, 2021a. CONAB. Companhia Nacional de Abastecimento. Acompanhamento da 
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