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ABSTRACT

The large amounts of astrophysical data being provided by existing and future instrumentation require efficient and fast analysis tools.
Transfer learning is a new technique promising higher accuracy in the derived data products, with information from one domain being
transferred to improve the accuracy of a neural network model in another domain. In this work, we demonstrate the feasibility of
applying the deep transfer learning (DTL) approach to high-resolution spectra in the framework of photospheric stellar parameter
determination. To this end, we used 14 stars of the CARMENES survey sample with interferometric angular diameters to calculate
the effective temperature, as well as six M dwarfs that are common proper motion companions to FGK-type primaries with known
metallicity. After training a deep learning (DL) neural network model on synthetic PHOENIX-ACES spectra, we used the internal
feature representations together with those 14+6 stars with independent parameter measurements as a new input for the transfer process.
We compare the derived stellar parameters of a small sample of M dwarfs kept out of the training phase with results from other
methods in the literature. Assuming that temperatures from bolometric luminosities and interferometric radii and metallicities from
FGK+M binaries are sufficiently accurate, DTL provides a higher accuracy than our previous state-of-the-art DL method (mean
absolute differences improve by 20 K for temperature and 0.2 dex for metallicity from DL to DTL when compared with reference
values from interferometry and FGK+M binaries). Furthermore, the machine learning (internal) precision of DTL also improves as
uncertainties are five times smaller on average. These results indicate that DTL is a robust tool for obtaining M-dwarf stellar parameters
comparable to those obtained from independent estimations for well-known stars.
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1. Introduction

The determination of photospheric stellar parameters in
M dwarfs has always been challenging. M dwarfs are smaller,
cooler, and fainter than Sun-like stars. Because of their faint-
ness and their higher stellar activity, with sometimes stronger
magnetic fields, stronger line blends, and the lack of true contin-
uum, well-established photometric and spectroscopic methods
are brought to their limits. In the literature, there are several
methods to estimate M-dwarf photospheric parameters, such as
effective temperature (Teff), surface gravity (log g), and metallic-
ity ([M/H]); for example, spectroscopic indices (see Rojas-Ayala
et al. 2012; Gaidos & Mann 2014), photometric relations (see
Dittmann et al. 2016; Houdebine et al. 2019), interferometry
(see Boyajian et al. 2012; von Braun et al. 2014; Rabus et al.
2019), synthetic model fits (see Gaidos et al. 2014; Passegger
et al. 2018; Marfil et al. 2021), and machine learning (ML; see
Antoniadis-Karnavas et al. 2020; Passegger et al. 2020).

One method considered to be relatively precise is calibration
with M dwarfs that have a late F, G, or early K common proper
motion companion with known metallicity. Many of the rela-
tions mentioned below were calibrated using FGK+M multiple
systems (e.g., Newton et al. 2014). As a representative example,
Mann et al. (2013a) identified spectral features sensitive to metal-
licity in low-resolution optical and near-infrared (NIR) spectra
of 112 late-K to mid-M dwarfs in multiple systems with earlier
companions, from which they derived different metallicity cali-
brations. The same relations were used by Rodríguez Martínez
et al. (2019) to determine metallicity from mid-resolution
K-band spectra for 35 M dwarfs of the K2 mission. Other
photometric calibrations using FGK+M binary systems were
presented by Bonfils et al. (2005), Casagrande et al. (2008),
Johnson & Apps (2009), Schlaufman & Laughlin (2010), and
Neves et al. (2012), among others, while several spectroscopic
calibrations were explored by Rojas-Ayala et al. (2010), Dhital
et al. (2012), Terrien et al. (2012), Mann et al. (2014, 2015), and,
more recently, Montes et al. (2018).

Fundamental stellar parameters can also be derived from
interferometric measurements. However, only a limited number
of late-type dwarfs are accessible for such observations because
they must be bright and nearby. Boyajian et al. (2012) presented
interferometric angular diameters for 26 K and M dwarfs mea-
sured with the CHARA array and for 7 K and M dwarfs from the
literature. With parallaxes and bolometric fluxes, these authors
computed the absolute luminosity (L), radii (R), and Teff . They
also calculated empirical relations for K0 to M4 dwarfs to con-
nect Teff , R, and L to a broadband color index and iron abundance
[Fe/H]. On the other hand, Maldonado et al. (2015) estimated Teff
from pseudo-equivalent widths (pEWs) of temperature-sensitive
lines calibrated with interferometric Teff from Boyajian et al.
(2012) and metallicities from pEWs calibrated with the relations
of Neves et al. (2012). Maldonado et al. (2015) constructed a
mass–radius relation using interferometric radii (Boyajian et al.
2012; von Braun et al. 2014) and masses from eclipsing bina-
ries (Hartman et al. 2015). From this, they calculated log g.
Other studies that derived M-dwarf Teff from angular diameters
include, for example, those of Ségransan et al. (2003), Demory
et al. (2009), von Braun et al. (2014), and Newton et al. (2015).
Of these, Ségransan et al. (2003) also determined log g from their
measured masses and radii.

Different approaches have been taken to estimate photo-
spheric stellar parameters for M dwarfs in general, mainly within
the paradigm of comparing measured line fluxes with theoret-
ical ones calculated from different sets of synthetic spectra.

Although different algorithms using χ2-minimization or prin-
cipal component analysis have been employed, several artificial
intelligence techniques have also been proposed. For these, the
differences between observation and theory are not at the level
of individual lines, but are based on whole spectral regions
(Fabbro et al. 2018; Kielty et al. 2018; Bialek et al. 2020; Minglei
et al. 2020; Passegger et al. 2020). Indeed, some comparisons of
techniques regarding the estimation of stellar parameters have
already been carried out (Passegger et al. 2022). However, there
are still several open questions related to the uncertainty of
parameter estimation due to the signal-to-noise ratio (S/N) of
the flux signal, and due to the “synthetic gap” (Fabbro et al. 2018;
Tabernero et al. 2022), which is the difference in feature distribu-
tion between theoretical and observed spectra. The impact of the
synthetic gap can be appreciated in Figs. 1 and 2, where we dis-
play a specific flux window showing one Mg I line at 8809 Å and
one Fe I line at 8827 Å in the red optical for two sets of M dwarfs.
Even the very latest synthetic models show slight differences
with respect to high-S/N, high-resolution CARMENES1 spec-
tra, especially with faint lines for which parameters are not yet
well constrained. In Figs. 1 and 2, the sequence of spectra is
ordered according to Teff and metallicity from Schweitzer et al.
(2019), which are not identical to the parameters estimated from
interferometry or binary companions, as shown in the figures.
This mismatch is an effect caused by the synthetic gap. Another
effect can be seen by the flux differences of observed and syn-
thetic spectra in the bottom panels of Figs. 1 and 2 (zoomed-in
spectra).

O’Briain et al. (2020) presented an interesting demonstration
of the spectra transfer process, although their focus was rather
different than ours. These authors showed that transferred spec-
tra can reduce the synthetic gap from the pure physical models,
which is further evidence of the value of transfer technologies.

The spatial dimension of features (i.e., the number of flux
points within the wavelength window) depends on the size of
the flux range, but it is usually very high (e.g., 3500 dimensions
in the case of Figs. 1 and 2). Therefore, some specific techniques
are needed to project a spectrum from such high-dimensional
space into a lower one, while preserving inter-distances that
help to better understand the topology. To this end, Passegger
et al. (2020) introduced a technique to visualize the relative posi-
tions of a set of spectra in the 2D Euclidean space, the uniform
manifold approximation and projection (UMAP; McInnes et al.
2018). The main purpose of these projections is to illustrate the
difference in feature distribution between synthetic and observed
spectra, that is, the so-called synthetic gap. In the left panel
of Fig. 3, different theoretical PHOENIX spectra are projected
along with high-S/N, high-resolution, telluric-subtracted spec-
tra observed with CARMENES. To make the synthetic spectra
comparable to the observed ones, before plotting we included
continuum normalization and instrumental and rotational broad-
ening. However, no noise was added, as it was shown in Fig. 4
of Passegger et al. (2020) that adding only noise has a negligible
effect on the projection. In this representation, no stellar parame-
ters are involved and the UMAP only depends on the flux values
of every spectrum. The theoretical feature map only partially
covers the CARMENES range (green circles), with a significant
part of the spectra projected far away from them. Some patterns
emerge when additional information, such as a color code for
Teff , is incorporated into the UMAP, as illustrated in both panels

1 Calar Alto high-Resolution search for M dwarfs with Exo-earths with
Near-infrared and optical Échelle Spectrographs, https://carmenes.
caha.es
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Fig. 1. Observed vs. synthetic fluxes (8800–8835 Å) for stars with
interferometric Teff . Solid rainbow: CARMENES normalized template
spectra. Dashed green: PHOENIX normalized synthetic spectra. Stars
are sorted by decreasing Teff from Schweitzer et al. (2019), with interfer-
ometrically derived Teff indicated above them. Bottom panel: zoom-in
detail of one representative spectrum.

of Fig. 3, independent of the source of Teff : theoretical (left) or
interferometric (right).

In this work, to reduce the uncertainties associated with the
synthetic gap and therefore enable a more reliable estimation of
stellar parameters, we propose a way to bridge the synthetic gap
and transfer the knowledge from measured flux signals estimated
by interferometry and FGK+M systems to the features derived
from the theoretical models used with deep learning (DL). Such
an approach is known as deep transfer learning (DTL; Tan et al.
2018a; Awang Iskandar et al. 2020; Wei et al. 2020). For Teff , we
transfer knowledge gained from interferometrically determined
Teff for a few stars to the rest of the CARMENES spectra, while
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Fig. 2. Same as Fig. 1 but for M-dwarf common proper motion com-
panions to FGK stars with well-determined metallicity, and sorted by
decreasing metallicity from Schweitzer et al. (2019).

for metallicity we transfer knowledge gained from spectral
synthesis of FGK stars. However, this DTL technique requires
a significant amount of data, which is problematic because of
the limited number of high-resolution spectra for stars fulfilling
those conditions. This is even worse when data-based modeling
techniques are used, as they require a methodology to assess
the quality of the created model when applied to stars not
used during the training phase. Despite these limitations, we
show that the proposed technique is valid and its accuracy
will increase as more stars with independent estimates of their
parameters are incorporated.

In this paper, we use DTL to determine new Teff and [M/H]
for 286 M dwarfs from the CARMENES survey (Reiners et al.
2018; Quirrenbach et al. 2020), and compare our results with the
literature. As our technique is based on our previous work on
DL, we refer to Passegger et al. (2020) for further information.
The basic workflow of the DTL can be summarized as follows:
(1) train DL models on a large set of synthetic model spectra, (2)
extract the internal feature representations (3) train DTL mod-
els based on the external knowledge about stellar parameters
that was transferred to the neural network, (4) calculate stellar
parameter estimations for the stars. In Sect. 2 we explain the DTL
procedure and our artificial neural network (ANN) architecture.
Section 3 describes the values obtained from the literature (inter-
ferometry and FGK+M systems) for each parameter that we used
for training the ANN, the stellar sample, and the application of
our ANN. The derived stellar parameters are presented in Sect. 4,
together with a literature comparison and discussion. Finally, in
Sect. 5 we provide a short summary.

A105, page 3 of 15
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Fig. 3. Representative two-dimensional UMAP projections of observed and synthetic spectra from the 8800–8835 Å window, with Teff color coded.
Left panel: PHOENIX-ACES set used for DL training and the 282 CARMENES spectra (green). Right panel: subsample of 14 CARMENES M
dwarfs with interferometric Teff values shown in Table 1 (green triangles and labeled). Colored circles represent their closest interpolated best-fit
PHOENIX model, using Schweitzer et al. (2019) parameter estimations as a reference.

2. Methods

The aim of ML is to automatically discover rules that must be fol-
lowed in order to efficiently map input data to a desired output. In
this process, it is essential to create appropriate representations
of the data. These representations are task-dependent and may
vary according to the final task that the selected ML algorithm
is going to perform. DL is a subfield of ML where a hierarchical
representation of the data is created, and has received increas-
ing attention in recent years in light of its successful application
to numerous real-world problems (e.g., virtual assistants, visual
recognition, fraud detection, machine translation, medical image
analysis, photo descriptions; see Karpathy & Fei-Fei 2015 and
many others). The higher levels of the hierarchy are formed by
the composition of representations of the lower level (Passegger
et al. 2020). More importantly, this hierarchy of representations
is automatically learned from the data by completely automat-
ing the most crucial step in ML, namely feature engineering.
Automatically learning features at multiple levels of abstraction
allows a system to learn complex representations mapping the
input to the output directly from the data, without completely
depending on human-crafted features. The word “deep” refers
to the multiple hidden layers used to obtain those representa-
tions. In this sense, DL can also be called hierarchical feature
engineering (Sarkar et al. 2018).

Data dependence is one of the most serious issues in DL,
which is extremely dependent on massive training data sets when
compared to traditional ML methods. Although the amount of
data needed depends on the type of model, the required accu-
racy, and the complexity of the model, all these factors can lead
to the requirement for large datasets. Therefore, an intrinsic and
unavoidable problem has always been insufficient training data.
Data collection is complex and expensive, making the generation
of large-scale, high-quality annotated data sets extremely diffi-
cult. Therefore, techniques to work with data sets of limited size
are of great value, as is the case for the DTL technique.

2.1. Deep transfer learning

It has become increasingly common in various domains, such
as image recognition and natural language processing, to pre-
train the entire model in a data-rich task (Kraus & Feuerriegel
2017; Gao & Mosalam 2018; Raffel et al. 2020; Han et al. 2021).
Ideally, this pre-training process causes the model to develop
general-purpose abilities and knowledge that can then be trans-
ferred to downstream tasks. Goodfellow et al. (2016) referred
to transferred learning (TL) in the context of generalization.
These latter authors defined TL as the situation where what
has been learned in one setting is exploited to improve gener-
alization in another setting. Therefore, TL provides a robust and
practical solution to leverage information from one domain to
improve the accuracy of a model built for a different domain
(Vilalta 2018).

Pan & Yang (2010) proposed a more precise definition of
TL, starting by defining a domain and a task, respectively.
A domain can be represented by D = χ, P(X), which contains
two parts: the feature space χ and the marginal probability
distribution P(X), where X = {x1, ..., xn} ∈ χ. The task can be
represented by T = {y, f (x)}, and consists of two parts: a label
space y and a target-prediction function f (x). This function
f (x) can also be regarded as a conditional probability function
P(y|x). Then, given a learning task Tt based on Dt (where the
subscript t refers to “transferred”), TL is designed to improve
the performance of a predictive function fT (·) in learning the
task Tt by discovering and transferring latent knowledge from
another domain Ds and learning task Ts (where the subscript
s refers to “source”, which in our case is the PHOENIX-ACES
synthetic models), where Ds , Dt and/or Ts , Tt. Usually, the
size of the source domain Ds is much larger than the size of the
transferred domain Dt (i.e., Ns ≫ Nt). Based on the previous
definitions, a DTL task is defined by < Ds,Ts,Dt,Tt, fT (·) >,
where fT (·) is a nonlinear function involving a deep ANN. TL
relaxes the hypothesis that the training data must be independent
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Fig. 4. Representation of the domains and tasks that the DTL process
can be applied to.

of and identically distributed with the test data, which motivates
the use of TL for the problem of insufficient training data.

The popularity of DL has led to many different DTL
methods, and several authors have proposed a classification of
them (Tan et al. 2018b; Zhao et al. 2021). Common categories
involve instance-, mapping-, network-, and adversarial-based TL.
Each of these categories has its particular applicability, consider-
ing the specific context and characteristics of domains and tasks
< Ds,Ts,Dt,Tt, fT(·) >. In our case, due to the characteristics of
the problem, we selected the network category to implement our
DTL. The relationship between domains and tasks is illustrated
by Fig. 4.

2.2. Artificial neural network architectures

Network-based DTL refers to reusing the part of the pre-trained
network in the source domain, including its network structure
and connection parameters, and transferring it to be a part of
the deep neural network that is used in the target domain. The
main assumption is connected with the idea that the features
identified in the source domain will be valid in the transfer
domain, whereas fT (·) requires adaptation. As a result, we
kept the original distribution of fully connected layers that we
applied for the DL analysis by Passegger et al. (2020). Moreover,
Passegger et al. (2020) constructed several neural network mod-
els for different spectral regions, finding that the results for all
regions are comparable, but that the region 8800–8835 Å gives
the smallest validation error. Therefore, we also adopted this
strategy and only use that region. In this sense, we rely on the
DL models already trained in Passegger et al. (2020) and extract
the internal feature representations for each star in order to use
it here as a new input for the DTL process. The DL models were
trained on a grid of 449 806 synthetic PHOENIX-ACES spectra,
after removing unphysical stellar parameter combinations not
corresponding to main sequence stars using the PARSEC v1.2S
evolutionary models (Bressan et al. 2012; Chen et al. 2014, 2015;
Tang et al. 2014). The feature representation was taken from the
flattened layer of the DL model, as represented in Fig. 5.

2.3. DTL training and testing

To build the transfer domain Dt for Teff , we started with 14 stars
of the CARMENES survey with interferometric angular diam-
eters θLD measured by Boyajian et al. (2012), von Braun et al.
(2014), and references therein. We did not use the derived Teff
from these publications. Instead, we used updated bolometric

fluxes S at Earth based on the most recent photometry (in par-
ticular, Gaia photometry for the optical passbands) collected by
Cifuentes et al. (2020) to calculate our reference Teff with the
distance-independent form of the Stefan-Boltzmann law:

Teff = θ
−1/2
LD

(
4 S
σ

)1/4

. (1)

As Cifuentes et al. (2020) did not actually tabulate the bolomet-
ric flux at Earth S , we used the tabulated bolometric luminosities
L and the distances d, which were used in measuring L, and cal-
culated S via S = L/(4πd2). All used and derived values (L, d,
S , θLD, and Teff) are listed in Table 1.

As for Gl 15A our derived Teff from Eq. (1) was in severe
disagreement with Teff listed in Boyajian et al. (2012), we real-
ized that for this bright star, as well as for the bright star Gl 411,
the luminosities in Cifuentes et al. (2020) were missing reliable
J band photometry. Therefore, we revise the luminosity deter-
minations of Cifuentes et al. (2020) by adding classical Johnson
J band photometry as well as the Gaia Early Data Release 3
(EDR3) data. Gl 205 was not included in Cifuentes et al. (2020),
but its L is derived in the same fashion. These three stars are
marked in Table 1 with ‘This work’.

As the 14 stars of the interferometric sample include only
two M dwarfs with Teff < 3440 K, we supplemented them with
five mid-to-late M dwarfs listed in Table 2, for which a good
Teff estimation is available in the literature, as recommended
by Passegger et al. (2022). This was done in order to obtain
training and validation sets with regularly spaced parameters. To
achieve such regular distribution, we binned the to-be-transferred
data set of 19 M dwarfs into a variable number of bins. The goal
was to have as many as 75% nonempty bins. For each of those
bins, we selected a representative element. If two or more stars
were included in one bin, we picked the closest to the midpoint
of the bin.

For the metallicity, [M/H], the adopted strategy followed
the same structure as for Teff . We reverted to metallicities mea-
sured for FGK stars with a proper motion M-dwarf companion.
Due to their formation from the same cloud, it is assumed that
both components share the same metallicity (Desidera et al.
2006; Andrews et al. 2018). Table 3 presents five M dwarfs
with CARMENES spectra with an FGK primary with known
metallicity obtained from Montes et al. (2018), and one from
Tabernero et al. (2022), namely J14251+518 (θ Boo B). Due to
the low number of multiple systems, our transfer strategy is to
use the list of 18 stars from Passegger et al. (2022) in Table 4
combined with those listed in Table 3 as Dt. Although the val-
ues from Passegger et al. (2022) are not as accurate as those from
binaries, they do not depend strongly on a specific model because
they were calculated as medians from several literature values.

To avoid the potential lack of generalization linked to accept-
ing models based solely on their performance over the validation
set, we propose using a more robust methodology, which is
designed to create two different and separate groups of sam-
ples: one set for training and validation, and the rest of the stars
as a test group to measure the quality of the models. Indeed,
because of the relatively significant influence that a single sam-
ple can have on the model performance, which is due to the
low number of samples in the training or validation subsets, we
used the cross-validation training approach. Cross-validation is
a data-resampling method to assess the generalization ability of
predictive models and to prevent overfitting (Refaeilzadeh et al.
2009). Briefly, the data are usually divided into two segments:
one used for training a neural network model and one used for
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The Deep ANN component will 

be redesigned and retrained 

on the new transfer domain

DEEP LEARNING 
MODEL

(Passegger et al. 2020)

DEEP TRANSFER LEARNING MODEL

Fig. 5. Representation of the adopted strategy for the network-based approach, where the ANN component has been redesigned with respect to the
DL model derived from PHOENIX-ACES spectra (to be compared with Fig. 1 of Passegger et al. 2020).

Table 1. Interferometrically derived Teff values transferred.

# Karmn Gliese Name L Ref. L d Ref. d S (a) θLD Ref. θLD Teff

[10−4L⊙] [pc] [10−11W m−2] [mas] [K]

1 J00183+440 15A GX And 239.1± 9.2 This work 3.56244± 0.00026 EDR3 6.03± 0.23 1.005± 0.005 Boy12 3658± 36
2 J04429+189 176 HD 285968 358.1± 8.9 Cif20 9.4730± 0.0063 DR2 1.28± 0.03 0.448± 0.021 vBr14 3717± 90
3 J05314–036 205 HD 36395 657.0± 3.9 This work 5.70408± 0.00066 EDR3 6.46± 0.04 0.943± 0.004 Boy12 3843± 10
4 J09143+526 338A HD 79210 811± 30 Cif20 6.3339± 0.0015 DR2 6.47± 0.24 0.834± 0.014 Boy12 4087± 51
5 J09144+526 338B HD 79211 759± 15 Cif20 6.3337± 0.0017 DR2 6.05± 0.12 0.856± 0.016 Boy12 3968± 42
6 J11033+359 411 Lalande 21185 225.2± 8.9 This work 2.54613± 0.00021 EDR3 11.11± 0.44 1.432± 0.013 Boy12 3571± 39
7 J11054+435 412A BD+44 2051A 193.4± 4.3 Cif20 4.848± 0.024 HIP2 2.63± 0.06 0.764± 0.017 Boy12 3411± 43
8 J11421+267 436 Ross 905 243.1± 3.4 Cif20 9.7560± 0.0089 DR2 0.82± 0.01 0.417± 0.013 vBr12 3446± 55
9 J13457+148 526 HD 119850 377± 13 Cif20 5.4353± 0.0015 DR2 4.09± 0.14 0.835± 0.014 Boy12 3642± 43
10 J15194–077 581 HO Lib 123.5± 2.6 Cif20 6.2992± 0.0021 DR2 1.00± 0.02 0.446± 0.014 vBr11 3501± 58
11 J16581+257 649 BD+25 3173 447± 20 Cif20 10.3827± 0.0034 DR2 1.33± 0.06 0.484± 0.012 vBr14 3610± 61
12 J17578+046 699 Barnard’s star 35.23± 0.91 Cif20 1.82665± 0.00097 DR2 3.38± 0.09 0.952± 0.005 Boy12 3252± 23
13 J22532–142 876 IL Aqr 127.1± 2.5 Cif20 4.6758± 0.0017 DR2 1.86± 0.04 0.746± 0.009 vBr14 3165± 25
14 J22565+165 880 HD 216899 516.8± 8.9 Cif20 6.8676± 0.0018 DR2 3.51± 0.06 0.744± 0.004 Boy12 3713± 19

Notes. (a) S is the flux at Earth calculated from the tabulated values L and d. Teff is calculated using Eq. (1).
References. HIP2: van Leeuwen (2007); vBr11: von Braun et al. (2011); Boy12: Boyajian et al. (2012); vBr12: von Braun et al. (2012); vBr14:
von Braun et al. (2014); DR2: Gaia Collaboration (2018); Cif20: Cifuentes et al. (2020); EDR3: Gaia Collaboration (2021).
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Table 2. Supplementing literature Teff values transferred from Passegger
et al. (2022).

Karmn Gliese Name Teff [K]

J00067–075 1002 G 158-27 2844± 149
J07558+883 1101 G 253-6 3217 ± 68
J10508+068 402 Wolf 358 3169 ± 93
J13005+056 493.1 Wolf 461 3090± 107
J23419+441 905 HH And 3058± 88

validating the trained model. The basic form of cross-validation
is a k-fold cross-validation, where the data are divided into k
folds (in our case, we set k = 4) before k iterations of training
and validation are conducted, where in each iteration a different
fold is kept aside for validation, while the remaining k − 1 folds
are used for training.

DTL model creation requires a quality criterion to assess
the learning progress of the ANN. The quality criterion that is
often adopted is a threshold in the loss error during the valida-
tion process (the loss function is widely used in mathematical
optimization and decision theory). Looking to obtain a sufficient
variety of models due to randomness in the selection of sam-
ples and the optimization starting point, several repetitions of the
model-creation process were accomplished. As a four-fold cross-
validation strategy was adopted, four potentially valid models
were created per repetition of the model-creation process, and
another four validation loss errors were measured at the end of
the training processes. The trained models were deemed of suf-
ficient quality when the validation error was lower than 0.01. In
order to have a significant set of models in the case of metallic-
ity, 80 repetitions of the model-creation process were adopted,
which means 80 × 4 = 320 potential models. Only 121 of these
reached convergence under the adopted criterion, and they were
later used for predictions. In the case of Teff , 20 repetitions of
the model-creation process were adopted and all the 20 × 4 = 80
potential models reached convergence. This behavior indirectly
shows that, as expected, the Teff parameter has more power than
metallicity in terms of impact on the spectra.

It is straightforward to build a model that is perfectly adapted
to the data set at hand but then unable to generalize to new and
unseen data. Therefore, the value of measuring model quality
over an independent data set becomes evident. In this way, the
model performance can be externally assessed using the estima-
tion provided by the information gathered during the validation
step (Vabalas et al. 2019).

3. Analysis

3.1. Observational sample

To test our DTL method, we used the same template spectra as
in Passegger et al. (2019) and applied it to all 282 M dwarfs
listed in their Table B.1 plus four more stars coming from the
independent interferometric sample used for the learning pro-
cess. We focus here on a small sample of the galactic stellar
population, namely M dwarfs of spectral type M0 to M6. To
verify whether or not our method is able to generalize beyond
this parameter range, it is necessary to apply it to a much larger
stellar sample, such as APOGEE or Gaia, which shall be part of
a subsequent study. The stars were observed with CARMENES
on the Zeiss 3.5 m telescope at the Observatorio de Calar Alto,

Spain. CARMENES combines two highly stable fiber-fed spec-
trographs covering a spectral range from 520 to 960 nm in the
optical (VIS) and from 960 to 1710 nm in the NIR, with spectral
resolutions of R ≈ 94 600 and 80 400, respectively (Quirrenbach
et al. 2018; Reiners et al. 2018). The primary goal of this instru-
ment is to search for Earth-sized planets in the habitable zones
of M dwarfs (e.g., Zechmeister et al. 2019).

For a detailed description of our data-reduction procedure,
we refer to Zechmeister et al. (2014), Caballero et al. (2016), and
Passegger et al. (2019). As in the latter, we used the high-S/N
template (co-added) spectrum for each star. These templates are
a byproduct of the CARMENES radial-velocity pipeline serval
(SpEctrum Radial Velocity AnaLyser; Zechmeister et al. 2018).
In the standard data flow, the code constructs a template for every
target star from at least five individual spectra to derive the radial
velocities of a single spectrum by least-square fitting to the tem-
plate. For our sample, the average S/N of the order, in which
our investigated wavelength window of 8800–8835 Å lies in the
beginning of the order, amounts to 258 ± 158.

Before creating the templates, the NIR spectra were cor-
rected for telluric lines. We did not use the telluric correction
for the VIS spectra because the telluric features are negligible in
the investigated range. The telluric correction was explained in
detail by Nagel et al. (2020).

For normalization of our spectra, we used the same method
and routine as in Passegger et al. (2020), the Gaussian Inflec-
tion Spline Interpolation Continuum (GISIC2, developed by
D. D. Whitten and designed for spectra with strong molecular
features). After the spectrum was smoothed with a Gaussian,
and continuum points were selected, the pseudo-continuum was
normalized with a cubic spline interpolation. We applied the
same procedure to both observed and synthetic spectra within
the spectral window 8800–8835 Å by adding 5 Å on each side to
avoid possible edge effects. The observed spectra have been cor-
rected for radial velocity to match the rest frame of the synthetic
spectra using the cross-correlation (crosscorrRV from PyAstron-
omy, Czesla et al. 2019) between a PHOENIX model spectrum
and the observed spectrum. To obtain a universal wavelength
grid, which is necessary for applying the DL method, the wave-
length grid of the observed spectra was linearly interpolated with
the grid of the synthetic spectra.

3.2. Transferred knowledge

In our particular case, where the distance between domains is
significant (see Fig. 3) and the sample density in Dt is limited
(see Tables 1 and 3), the network-based approach was selected
as the adequate DTL method. In Fig. 6, the stars with interfer-
ometric Teff are regularly distributed in Teff along the whole
CARMENES data set. This is needed and must be checked
before transferring any knowledge from another study, as DL and
DTL techniques are not very good at extrapolating information
because of the limited stellar parameter range of our transferred
and training sets.

In terms of the terminology introduced in Sect. 2.1, our
Ds domain was built over the PHOENIX-ACES spectra library
(Husser et al. 2013) with a flux window of 35 Å between 8800
and 8835 Å in the VIS channel for consistency with previ-
ous work (Passegger et al. 2020, 2022). Furthermore, Ts is the
DL model that minimizes the error on a test set of unused
PHOENIX-ACES spectra. In other words, the DL model selected
for transferring the feature space is the best one of those trained

2 https://pypi.org/project/GISIC/
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Table 3. Transferred spectroscopically determined [M/H] values from FGK+M systems.

Karmn Gliese Name [M/H] FGK primary Reference
[dex] Name Sp. type

J02362+068 105B BX Cet −0.20± 0.02 HD 16160 A K0 V+ Montes et al. (2018)
J04153–076 166C o02 Eri C −0.37± 0.02 o02 Eri A K0.5 V Montes et al. (2018)
J05415+534 212 HD 233153 +0.04± 0.02 V538 Aur K1 V Montes et al. (2018)
J07361–031 282C BD–02 2198 −0.11± 0.03 V869 Mon K2 V Montes et al. (2018)
J08526+283 324B ρ01 Cnc B +0.29± 0.04 ρ01 Cnc A G8 V Montes et al. (2018)
J14251+518 549B θ Boo B −0.09± 0.01 θ Boo A F7 V Tabernero et al. (2022)

Fig. 6. UMAP of CARMENES color-coded according to Teff (left) and 3 sin i (right), built with the flux values from the 8800–8835 Å window. The
M dwarfs with interferometric values are labeled. Teff values in the left panel are taken from Schweitzer et al. (2019) and Table 1, while rotational
velocities in the right panel are taken from Passegger et al. (2019).

Table 4. Supplementary literature [M/H] values transferred
from Passegger et al. (2022).

Karmn Gliese Name [M/H]

J00067–075 1002 G 158-27 −0.19± 0.16
J00183+440 15A GX And −0.26± 0.09
J04429+189 176 HD 285968 +0.08± 0.10
J05314–036 205 HD 36395 +0.39± 0.11
J07558+833 1101 G 253-6 +0.00± 0.10
J09143+526 338A HD 79210 −0.13± 0.12
J09144+526 338B HD 79211 −0.11± 0.14
J10508+068 402 EE Leo +0.16± 0.11
J11033+359 411 Lalande 21185 −0.31± 0.11
J11054+435 412A BD+44 2051A −0.38± 0.12
J11421+267 436 Ross 905 +0.00± 0.11
J13005+056 493.1 FN Vir +0.09± 0.10
J13457+148 526 HD 119850 −0.22± 0.11
J15194–077 581 HO Lib −0.13± 0.11
J16581+257 649 BD+25 3173 −0.04± 0.12
J17578+046 699 Barnard’s star −0.39± 0.12
J22565+165 880 HD 216899 +0.18± 0.09
J23419+441 905 HH And +0.25± 0.11

on synthetic PHOENIX-ACES spectra. The definition of Dt for
the two stellar parameters is introduced in Sect. 2.1.

From this, up to 80 different transference models were cre-
ated. If their training process reaches convergence, they were
selected as contributing to the prediction of the stellar parameters
of the stars in the test set. Proposals from different transferred
models are collected and integrated using the kernel density esti-
mate (KDE) technique. This technique allows us to establish the
most frequent value for the stellar parameter, but also its uncer-
tainty, which depends on the star and the flux window. This KDE
estimation can be seen as the predictive function fT(·).

3.3. Implementation

As already explained in Sect. 2.1, transfer learning is an approach
in DL (and ML) where knowledge is transferred from one model
to another. This means that a properly trained DL model is the
first step, as presented in Fig. 5. For the DTL network-oriented
approach, we kept the features selected by the DL model, which
means freezing the convolutional transformers and providing
a new deep ANN configuration. This enabled us to train the
weights of the connections for stellar parameters according to the
interferometric measurements, binary companion estimations, or
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Table 5. Convolutional architecture used in the DL model.

Operation Input size Kernel size Number of variables

Input 3501 1 ...
Conv 1D 3501 32 128
MaxPool 1750 ... ...
Conv 1D 1750 16 1552
MaxPool 875 ... ...
Conv 1D 875 8 392
MaxPool 437 ... ...
Conv 1D 437 4 100
MaxPool 218 ... ...
Flatten 872 ... ...

Table 6. Neural network architecture used in the DTL model.

Operation Input size Variables

Input 872 0
Dense 16 13 698
Dense 8 136
Dense 4 36
Dense 1 5

both. The architectures used for convolutional layers and the
deep neural network are presented in Tables 5 and 6, respectively.

Once the configuration has been defined, the training process
takes place. Due to the fact that convolutional layers are frozen,
the evolution of models is due to the update of variable weights,
which requires a larger number of iterations than for training
the whole convolutional neural network (CNN) at once. Indeed,
specific attention must be paid to the cross-validation strategy
used to avoid over-fitting, which means that the same number of
models as folders is required. Different numbers of folders were
tested in the cross-validation process (from three to five), as well
as different bases for features derived from different DL models,
which required a significant number of repetitions for the train-
ing procedure before being able to propose a set of DTL models.
In the present case, and because of the limited number of avail-
able samples, the best method for measuring the global quality
of the whole data set was using four cross-validation folders,
which were then adopted for the implementation. Therefore, the
number of computing operations in the training step is expected
to be large, and advanced computing capabilities are targeted
to keep the effort bounded. As the operations are tensor-based
computations, the use of existing frameworks an save a lot of
time.

The adoption of the TensorFlow framework (Abadi et al.
2016) for the creation of DL models enables the use of accel-
erated hardware based on Nvidia general-purpose graphics
processing unit (GPU) cards, which outperform the central pro-
cessing unit (CPU) in terms of computation time by around a
factor of 20 (Mittal & Vaishay 2019). As the base DL models
were selected from those performed in Passegger et al. (2020)
and were able to identify the best features, the same framework
was retained for the current implementation of DTL. Current
features were extracted from the aforementioned models, and a
complete new deep ANN was configured and trained over the
new set of spectra with better stellar parameter estimation. In this

Table 7. Teff comparison for the stars not used in the training phase.

Karmn Teff,interf Teff,DL Teff,DTL Teff,Schw19

[K] [K] [K] [K]

J09144+526 3968 ± 42 4033 ± 60 3877 ± 16 4005 ± 51
J15194–077 3501 ± 58 3391 ± 47 3259 ± 24 3441 ± 51
J16581+257 3610 ± 61 3745 ± 43 3732 ± 11 3734 ± 51
J17578+046 3252 ± 23 3352 ± 55 3212 ± 48 3273 ± 51
J22532–142 3165 ± 25 3313 ± 55 3125 ± 37 3377 ± 51

Notes. Observed (‘interf’), DL-estimated (‘DL’), DTL-predicted
(‘DTL’), and Schw19 values.

particular case, because training involved only adjustment of the
deep ANN weights, several thousand epochs were required to
produce and estimate the adapted function.

In this application, we used GPU cards with 11 GB of RAM
and 4352 computing cores. The training time for a model expe-
riencing proper convergence depended on the training data size,
but also on the architecture and number of epochs, and varied
between 45 minutes and two hours. For a more detailed descrip-
tion of the general design of a DL neural network, we refer to
Passegger et al. (2020).

The same methodology used by Passegger et al. (2020) for
uncertainty estimation was considered here, where parameter
estimations from each DTL model were collected and the prob-
ability density function was determined using KDE (Scott 2015;
Terrell & Scott 1992; Wang & Li 2017). Based on such a proba-
bility density function, the maximum was retained as a confident
estimation of the parameter. This was done for each star and
stellar parameter separately. To provide the uncertainty for each
star and parameter, the ±1σ thresholds of the predictions were
calculated.

4. Results and discussion

We introduced an algorithm-independent assessment of preci-
sion in the prediction of Teff and [M/H]. This was carried out
thanks to the testing data set, where stars not seen before by
the model during its knowledge transference were used as the
gold standard for its assessment for estimating stellar parameters.
First, we applied the DL method presented by Passegger et al.
(2020) by selecting the best DL model that predicts Teff from
PHOENIX-ACES. In doing so, the hypothesis that the derived
models use the most relevant feature set after the convolution
step remains acceptable. This first step also provided a set of
comparisons of stellar parameters derived from DL.

According to the steps indicated in Sect. 3.2, starting from
the best DL model, the network-based transfer procedure was
carried out within the samples from Tables 1 and 2. In this pro-
cedure, 14 stars were used during the four-fold cross-validation
approach, keeping aside the remaining five stars in Table 7.
After creating the most suitable model, its quality was assessed
by measuring the residual errors with the available information
from interferometry. The results for the five stars kept out of the
training validation process of DTL were then used for indepen-
dent quality assessment. In the left panel of Fig. 7, we compare
the interferometric values for these five stars to results from
DTL, DL, and Schweitzer et al. (2019, Schw19), as all these
studies used PHOENIX-ACES models. For more than half of
the stars, the accuracy of the DTL approach exceeds that of the
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Fig. 7. Comparison of Teff (left) and [M/H] (right) from different techniques for stars not used in the DTL training process. Values are presented in
Tables 7 and 8.

DL and Schw19 approaches, while for only two stars (J15194–
077 and J09144+526) the literature gives closer results to the
interferometric values than DTL.

By using the same strategy as for Teff , [M/H] data from
Tables 3 and 4 enabled us to use 18 stars for a four-fold cross-
validation approach, keeping another 6 stars aside this time (see
Table 8). The right panel of Fig. 7 shows that the accuracy
of the best deep transferred model for those six stars is sig-
nificantly better than other existing estimations. For only one
star (J22565+165), DL gives a closer parameter estimation to
the transferred value than DTL. For the rest of the stars, DTL
produces more accurate results than the other methods.

Finally, we quantitatively assessed the accuracy improve-
ments of our method with respect to previous implementations.
For metallicity, the median absolute differences (MADs) with
respect to the transferred values are 0.07 dex for DTL, 0.27 dex
for DL, and 0.13 dex for Schw19. On the other hand, for Teff ,
Schw19 provides the smallest MAD with 60 K. However, DTL
outperforms DL with differences of 91 K and 110 K, respectively.

4.1. Uncertainties

Until this point, this paper proposes a technique to transfer the
features identified as relevant according to the stellar parame-
ter of interest and the selected flux window. This technique uses
precise estimations of stellar properties from interferometry and
binary observations to adapt the knowledge domain based on the
previous DL feature identification. Our technique provides good
estimations for the stars used for quality control as it outperforms
the reference estimations for the sample of selected stars in the
majority of cases.

When the same set of features is transferred through a dif-
ferent model to adapt the knowledge domain, a different subset
of features (components of the feature vector) can be selected.
This leads to different parameter estimations after a converged
training process, which reflects the effects of the different com-
ponents of the feature vector. Therefore, we defined uncertainties

Table 8. [M/H] comparison for the stars not used in the training phase.

Karmn [M/H] Bin,lit [M/H] DL [M/H] DTL [M/H] Schw19

[dex] [dex] [dex] [dex]

J04153–076 −0.37 ± 0.02 +0.25 ± 0.19 −0.23 ± 0.05 ...
J07361–031 −0.11 ± 0.03 +0.16 ± 0.10 −0.16 ± 0.04 +0.05 ± 0.16
J11421+267 +0.00 ± 0.11 +0.18 ± 0.09 −0.01 ± 0.03 −0.04 ± 0.16
J13005+056 +0.09 ± 0.10 +0.35 ± 0.14 +0.16 ± 0.10 −0.04 ± 0.16
J17578+046 −0.39 ± 0.12 +0.08 ± 0.14 −0.29 ± 0.06 −0.15 ± 0.16
J22565+165 +0.18 ± 0.09 +0.23 ± 0.09 +0.11 ± 0.03 +0.12 ± 0.16

Notes. Observed (Bin,lit, i.e., [M/H] from primaries of FGK+M systems
in the literature), DL-estimated (DL), and DTL-predicted (DTL) values.
Uncertainties are their standard deviations.

in the DTL process for estimating stellar parameters as ±1σ
around the most frequently predicted value for each parameter.
In this way, each star has its own uncertainty interval, which does
not have to be symmetric.

The DTL process can be repeated several times, making it
possible to get different transferred models, each of them weight-
ing the different extracted features differently. The proposal was
to retain the models that are over a specific quality threshold and
then to aggregate the estimates from them using an integrated
KDE technique, as mentioned in Sect. 3.2. An example for Teff
and for [M/H] is shown in Fig. 8. Indeed, the observed shapes
allow us to discuss the number of DTL models considered to
produce good-quality estimations. We selected 80 DTL models
to be considered as estimate makers, which is a matter of design.
However, for some stars, more evidence was needed in order to
reduce the uncertainty level, as illustrated in the right half of
the left panel in Fig. 8, where the tail increases the uncertainty
value for the 84% quantile. The estimated uncertainties for the
selected quality stars are presented in Table 7 for Teff and Table 8
for [M/H] parameters.

After testing the quality of the DTL models for estimating
Teff and [M/H], they were applied to the entire CARMENES
data set. The outcome can be found in Table A.1. Stars with
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Fig. 8. Different DTL estimations of Teff (left) and [M/H] (right) for a single star (J17578+046, Barnard’s Star, M3.5 V). Quantiles ±1σ are indicated
with dashed magenta lines. Results from DL (cyan) and Schw19 (green) are also included for comparison.

high rotational velocities and therefore with significantly higher
uncertainties, were included even when the training data set did
not contain this type of object. In Table A.1, there are several
parameters with significantly small uncertainties, even smaller
than those of the training sample (e.g., ∆Teff = 10 K). The uncer-
tainties that we provide for the estimated stellar parameters refer
to the internal error of the method, and therefore they do not take
into account uncertainties from the interferometric and binary
training samples or from the synthetic gap.

4.2. Comparison with the literature

We compare our DTL results for the full CARMENES sample
for Teff and [M/H] with other estimations from the literature. For
improved readability, we divide the comparisons into three plots.
We also present the Pearson correlation coefficient rP, which we
use to assess the goodness of the correlation. A summary can be
found in Table 9.

Figure 9 presents the comparison with literature values for
Teff . The top panel shows results from DL, Marfil et al. (2021,
Mar21), and Schw19. All three studies used CARMENES data
and show a similar pattern, with hotter temperature for stars
below 3500 K and above 3800 K compared to DTL. For DL, the
dispersion is larger than for the other two methods, also show-
ing a slightly smaller rP of 0.87 compared to 0.88 for Mar21 and
0.90 for Schw19. The main factor leading to this effect in DTL is
the limited number of samples with temperatures above 4000 K
in the training and validation sets. Another possible explanation
could be a change in opacity at around 3300 K, but a detailed
analysis of the synthetic model structures would be necessary to
come to any robust conclusions.

In the middle panel, all literature references determined
Teff by fitting BT-Settl synthetic models (Allard et al. 2011)
to VIS spectra. Gaidos & Mann (2014, GM14) additionally
used spectral curvature indices in the K band if there were no
VIS spectra available. Perhaps this difference explains a general
trend towards hotter temperatures compared to DTL (on average

Table 9. Summary of mean difference (∆), standard deviation (std.
dev.), and Pearson correlation coefficient (rP) for the comparison
between literature values and DTL results.

Reference ∆ std. dev. rP
Teff /[M/H] Teff /[M/H] Teff /[M/H]
[K]/[dex] [K]/[dex] [K]/[dex]

DL +83/+0.23 133/0.16 0.87/0.45
Mar21 +97/–0.10 119/0.17 0.88/ 0.47
Schw19 +85/–0.01 110/0.15 0.90/0.54
GM14 +121/+0.01 96/0.08 0.92/0.89
Mann15 +33/+0.02 92/0.11 0.94/0.87
Gaid14 +54/+0.04 137/0.14 0.86/0.72
Lep13 –23/... 138/... 0.81/...
Houd19 +40/... 113/... 0.89/...
Kha20 –59/–0.08 261/0.12 0.73/0.81
Nev14 –132/–0.04 119/0.15 0.89/0.71
New15 +48/–0.06 74/0.17 0.95/0.69
RA12 +67/+0.01 160/0.10 0.83/0.86
Ditt16 .../–0.05 .../0.20 .../0.50
Ter15 .../–0.03 .../0.17 .../0.69

+121 K, with rP = 0.92). Gaidos et al. (2014, Gaid14) and Mann
et al. (2015, Mann15) achieve similar results to with DTL, rP =
0.86 and 0.94, respectively. The correlation of Lépine et al.
(2013, Lep13) is weaker with rP = 0.81, providing some cooler
values at the hot end of the Teff scale.

For the comparison in the bottom panel, literature val-
ues were determined from the H2O–K2 index as defined by
Rojas-Ayala et al. (2012), empirical relations with EWs, and,
in the case of Houdebine et al. (2019, Houd19), photometric
relations. Results from Houd19 and Newton et al. (2015,
New15) show a good correlation with DTL (rP = 0.89 and 0.95,
respectively), while Rojas-Ayala et al. (2012, RA12) is slightly
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Fig. 9. Comparisons with estimations of Teff from different techniques.
The black line corresponds to the 1:1 relation.

on the hotter side of the 1:1 relation with rP = 0.83. Khata et al.
(2020, Kha20) exhibits a large spread (rP = 0.73), and values
from Neves et al. (2014, Nev14) are on average 130 K cooler than
DTL, but still well correlated with rP = 0.89. Nev14 measured

pEWs of most lines and features in the optical and then used
reference photometric scales of Teff and [Fe/H] from Casagrande
et al. (2008) and Neves et al. (2012), respectively. Both scales
are based on [Fe/H] determinations from FGK+M binaries. The
offset that we see between the findings of these latter authors and
our Teff values also exists compared to other literature works,
which indicates an intrinsic underestimation of temperatures
by Nev14. Kha20 determined EWs of Mg (1.57 µm, 1.71 µm),
Al (1.67 µm), and the H2O index in the H band, and performed
linear regression on 12 M-dwarf calibrator stars with interfero-
metrically measured Teff to derive a temperature relation. The
standard deviation of the residuals of the calibrators amounted
to 102 K. However, the spread with respect to our results and
other literature studies is much larger, with a standard deviation
of 261 K. An indication of a higher deviation in the comparison
with the literature can already be seen in Fig. 5 of Kha20, where
these authors compare their results with Teff from Mann15
and RA12, and measure standard deviations of 164 and 158 K,
respectively. At this point, we cannot give a clear explanation
for this behavior. Overall, the correlation between DTL and the
literature is quite good, except for Mar21, Schw19, and Kha20,
where we are not sure about the source of the differences seen.

Figure 10 presents the same comparisons for metallicity. As
explained by Passegger et al. (2020), our derived [M/H] val-
ues directly translate into identical [Fe/H] values. Therefore,
we can compare [M/H] values with [Fe/H] from the literature.
Furthermore, [Fe/H] is often used as a proxy for [M/H] in the
literature.

The top panel again shows the results from DL, Mar21,
and Schw19. There is an offset towards more metal-rich val-
ues for DL (on average 0.23 dex, rP = 0.45), and towards more
metal-poor values for Mar21 (on average −0.11 dex, rP = 0.46).
A possible explanation for these offsets might be that Mar21
reported [Fe/H] corrected for α-enhancement. A trend of more
metal-rich values for DL was already shown by Passegger et al.
(2020, 2022). The results from Schw19 are consistent overall
with DTL, with rP = 0.54, although they exhibit a certain spread.

The middle panel of Fig. 10 compares similar determination
methods from the literature. RA12 and Kha20 derived [Fe/H]
using the H2O–K2 index and equivalent widths (EWs) of Na I
and Ca I in the NIR. Nev14 also incorporated a relation with
EWs, but only Dittmann et al. (2016, Ditt16) determined [Fe/H]
from a color–magnitude–metallicity relation. This might explain
the large spread of the latter values, resulting in rP = 0.50. Results
from Nev14 are overall more metal-poor than those provided by
DTL and show a large spread as well, but a better correlation than
Ditt16, with rP = 0.71. However, values from RA12 and Kha20
correspond even better with DTL, showing rP = 0.86 and 0.81,
respectively.

The literature values shown in the bottom panel of Fig. 10
were determined using empirical relations between atomic line
strength, Na I and Ca I EWs, the H2O–K2 index, and metallicity
calibrated with FGK+M binaries based on Mann et al. (2013a,b,
2014) relationships. The values provided by GM14, Mann15,
and Gaid14 are highly correlated, with those of Gaid14 show-
ing the least spread (rP = 0.89, 0.87, and 0.72, respectively).
Values from New15 are generally slightly more metal-poor,
with a smaller correlation coefficient of rP = 0.69. For higher
metallicities, Terrien et al. (2015, Ter15) derived a larger spread
and some outliers at both ends. The correlation coefficient is the
same as for New15. Similar to Teff , DTL values for metallicity
correspond well with most of the literature, and an improvement
with respect to DL can be appreciated, which is very promising.
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Fig. 10. Comparisons with estimations of [M/H] from different tech-
niques. The black line corresponds to the 1:1 relation.

5. Summary and conclusions

We present a DTL neural network technique that improves the
estimation of the stellar parameters Teff and [M/H] for M dwarfs
from high-S/N, high-resolution optical spectroscopy obtained
with CARMENES. The initial DL model was trained with

PHOENIX-ACES synthetic spectra, which confer the advantage
that they allow a sufficient number of spectra to be generated
with known stellar parameters. Based on the DL convolutional
features, different DTL models were trained and tested. To use a
more robust procedure, a cross-validation scheme was adopted.
Using the proposed technique could help to bridge the synthetic
gap affecting stellar parameter estimation based on synthetic
libraries. However, a larger stellar sample covering a wider
spectral range is needed to verify this.

Before applying the created models to a large data set, we
defined an independent quality assessment procedure based on
specific stars for which high-quality stellar parameter estimations
are available. This assessment shows that the DTL technique
has good prediction capabilities. In addition, we incorporated
an uncertainty estimation procedure based on considering the
diversity of estimates from different transferred models, as well
as an aggregation procedure. Such an estimation is flux-window
dependent, but also star dependent, because the trained DTL
models below the convergence threshold depend on them.

Another relevant aspect to be considered for parameter esti-
mation concerns the selected flux windows, as they have their
own influence on the vector of features, and, in the end, on
the estimated parameters. A possible continuation of the line of
research in this field is applying reinforced learning techniques
based on the behavior of the selected flux windows.

Finally, and importantly, a limitation of the proposed method
is the parameter range of the observed transferred knowledge.
This means that the parameters of stars with large 3 sin i val-
ues cannot be estimated rigorously with this technique, as no
interferometric or FGK-star companion values are available with
such large values of rotational velocity. In the same way, the
transferred knowledge works only for Teff higher than 3100 K,
as no cooler stars were part of the training set yet. Therefore, our
current analysis is limited to spectral types between M0 V and
M6 V.

In summary, we propose an innovative technique that can
increase the value of its predictions as new high-quality stellar
parameters – namely Teff from interferometry and [M/H] from
FGK+M systems – become available in the near future. The cur-
rent data sample used is close to the operational limits of the
technique, while in some cases the data set was complemented
with stellar parameters estimated from the literature. Therefore,
improvements are expected to be possible when more stars with
highly reliable stellar parameters and high-resolution spectra
become available. In the meantime, the lack of a sufficiently
large number of samples is a limitation for the technique.
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Appendix A: DTL estimations for CARMENES
survey stars

Table A.1: Teff and [M/H] values for CARMENES stars esti-
mated by the DTL method(a).

Karmn Teff [K] [M/H] [dex]

JJ00051+457 3721+8
−8 −0.02+0.04

−0.02
J00067–0751,2 3140+249

−38 −0.19+0.28
−0.03

J00162+198E 3149+46
−31 −0.02+0.06

−0.03
J00183+4401,2 3563+1

−9 −0.26+...−...
J00184+440 3219+71

−41 −0.07+0.06
−0.10

J00286–066 3246+40
−22 −0.06+0.02

−0.04
J00389+306 3503+10

−13 −0.09+0.02
−0.03

J00570+450 3341+30
−19 −0.09+0.01

−0.04
J01013+613 3489+20

−16 −0.18+0.03
−0.02

J01025+716 3449+33
−18 −0.03+0.03

−0.05
J01026+623 3743+9

−8 +0.10+0.06
−0.01

...

Notes. (a)Stars marked with “1” and “2” were used for training the
DTL Teff and [M/H] models, respectively. The number “3” refers to stars
with rotational velocity 3 sin i > 10 km s−1. Some 1σ uncertainties and
quantiles for stars marked 1 and 2 are missing because the different
predictions were too close. In these few cases, the quantiles could be
substituted by the standard deviation.
The full table is available at the CDS.
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