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Abstract

Analysing unstructured data with minimal contextual information is a challenge faced in spatial applica-

tions such as movement data. Movement data are sequences of time-stamped locations of a moving entity

analogous to text data as sequences of words in a document. Text analytics is rich in methods to learn

word embeddings and latent semantic clusters from unstructured data. In this work, the successes from

probabilistic topic models which are used in natural language processing (NLP) were the inspiration for

applying these methods on movement data. The motivation is based on the fact that topic models exhibit

characteristics which are found both in clustering and dimensionality reduction techniques. Furthermore,

the inferred matrices can be used as interpretable topic distributions for movement behaviour and the

lower dimensional embeddings generated by the LDA model can be used to cluster movement behaviour.

In this work various existing techniques for trajectory clustering in the literature are explored and the

advantages and disadvantages of each method are considered. The challenges of trajectory modelling with

LDA are examined and solutions to these challenges are suggested. Lastly, the advantages of using LDA

compared to traditional clustering techniques are discussed.

The analysis in this work explores the use of LDA to two use cases. Firstly, the ability of LDA to infer

interpretable topics is explored by analysing the movement of jaguars in South America. Secondly, the

ability of the LDA to cluster movement trajectories is investigated by clustering driver behaviour based on

real world driving data. The results of the two experiments show that it is possible to derive interpretable

topics and to cluster movement behavior of trajectories using the LDA model.
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Chapter 1

Introduction

“We must be careful not to confuse data with the abstractions we use to analyze them.” - William James

Mobility can be seen as a significant element that contributes to the ongoing development of society. Data

on the movement of individuals, vehicles, animals and objects are being collected at an ever increasing

rate. The advances in GPS equipped devices such as smart phones, smart watches, vehicle tracking devices

and animal collars, as well as the wide scale availability of, and access to commercial satellites, means

that the collection of positioning data that is generated by the movement of objects has become easier

than ever. It is, however, challenging to analyse large trajectory data sets to extract meaningful insights.

The US-military made the use of accurate GPS technology available to the public in the year 2000, and

since then, development of wireless communication and wireless sensing have been flooding institutions

and researchers with data containing time-varying geographic positions [41]. Researchers and analysts

have shown that these datasets constitute a valuable resource in the form of human movement behaviour.

Analysing these datasets can lead to important insights and solutions in multiple domains like the aviation

industry, which uses movement data for navigation and collision avoidance. Other fields where the analysis

of movement data is useful include farming activities, commercial fishing, urban planning, surveillance,

sport scene analysis, behavioural ecology, and security [32]. Thanks to the recent developments in GPS

and sensor technologies, the large scale collection of the changing latitude-longitude points, which can be

seen as independent discrete objects, became technically and economically feasible [56].

Trajectory data analysis is useful in an increasing number of applications, which aims at universal com-

prehension and management of complicated scenarios which involve moving objects [56]. The explosion of

big trajectory data has led to very active research in the field of trajectory analysis [30]. From a machine

learning (ML) perspective, trajectory data lends itself to clustering and unsupervised learning, as it is

1



CHAPTER 1. INTRODUCTION 2

very seldom labelled due to its dynamic nature and sheer size. This places the emphasis of trajectory

analysis on discovery of patterns. As an example, vehicle driving is a complex behavioural task with many

interacting features, which makes it difficult to model or predict. Evans et. al (1985) [18] stated that

human behavioural patterns is a pervasive phenomenon in traffic systems, and that this can possibly have

a great influence on the effect of safety measures. In another example of behavioural analysis of trajectory

data, Long et al. (2016) [39] identified four kinds of extreme transit behaviors: early birds, night owls,

tireless itinerants, and recurring itinerants. What makes this transit behaviour study of interest to the

work in this paper is that it followed a semantic approach by setting working definitions for each behaviour

type and then identified extreme travelers from an in-vehicle smart card dataset. Also, Long et al. (2016)

[39], grouped movement of people into clusters based on similar movement behaviour, which is something

that will be explored in the application chapters of this work.

Semantic trajectory analysis uses contextual data to enrich trajectory data. This contextualisation can

include street names, points of interest (POI) and transport types if such data is available. This seman-

tic information is extracted jointly with the mobility data (trajectories) and the underlying geographic

and other domain-specific data [61]. This enrichment creates the opportunity to apply many more ML

techniques which can learn from contextual data. The word semantics immediately draws attention to

the field of natural language processing (NLP). Grounded on the distributional hypothesis, developed by

Harris (1945) [34], which states that words in similar contexts have similar meanings, the NLP commu-

nity explored numerous methods of deriving word representations [35]. One of the proposed methods is

to represent words as dense vectors. It has been shown that these representations, referred to as “word

embedding”, perform well across a diverse range of tasks such as question-answer pairing and conversa-

tional agents (chatbots) [59] [55] [1].

Word embeddings are lower dimensional representations of words in line with the manifold hypothesis,

which states that higher dimensional data lie within lower dimensional forms embedded inside higher-

dimensional spaces [19]. Word embeddings took the artificial intelligence (AI) world by storm, producing

state-of-the-art models trained on billions of word pairs. GPT-3 [11] is arguably the most powerful

language model up to date. GPT-3 (Generative Pre-Trained Transformer) is a third generation, autore-

gressive language model which utilises deep learning methods to produce human like text [21]. In the

context of movement data, one can think of a trajectory as a collection of semantic events in the same

way one may think of a document as a collection of words. Once this analogy has been established, we

have access to a wealth of NLP models which are specialised to model temporally related events.

We are confined to the availability of semantic information in the data. Telematics data, for example,

have inherent spatial and temporal properties, often derived from GPS receiver devices or wearables. The

resulting datasets are large tables of point locations in time, with fields for identifying the moving objects
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and carrying attributes such as speed, track and other semantic information.

From an application point of view, the ability to record continuous movement is a first foundational

step in managing movement data, but satisfying application requirements usually call one to go a step

further. In other words, many applications require a more organised way to record movement, that is,

movement needs to be recorded as a temporal sequence of points, each lat-lon point following the previous

time interval on the object’s lifespan. Time-wise, these points lie between the departure point and the

destination point [56].

In this work, an NLP technique, in particular, Latent Dirichlet Allocation (LDA), was applied to trajectory

data with semantic information.

The scope of this work was limited to the movement of discrete objects [5], of which the spatial positions

can be represented by points. This work does therefore not take into consideration the movement of large

units that can change in shape and size, such as ocean currents or clouds. The methods applied in this

work does not lend itself to the analysis of these types of moving objects.

1.1 Motivation

The motivation for this work is based on the fact that topic models exhibit characteristics which are found

bin oth clustering and dimensionality reduction techniques. The geo-spatial points along a trajectory can

also be regarded as similar to words in a document, especially if the data points contain additional semantic

information. This analogy opens up a wide range of NLP methods which can be applied to trajectory data.

The main benefits of using LDA to analyse trajectory data comes down to two points. Firstly, the inferred

matrices can be used as interpretable topic distributions for movement behaviour and secondly, the lower

dimensional embeddings generated by the LDA model can be used to cluster movement behaviour.

The goal of this work is therefore not to compare the clustering results of the LDA model to that of

other techniques in this field, but to show that latent Dirichlet allocation can be used in order to obtain

interpretable topics from unstructured movement data and that LDA can also be used in order to cluster

movement data. The ability of LDA to detect movement patterns will also be investigated as part of the

clustering application of this work.



Chapter 2

Literature study

In this chapter, existing research on the fields of trajectory analysis, and the application of NLP techniques

on trajectory data are explored and discussed.

2.1 Analysis of trajectory data

Movement data in the form of trajectories are particularly heterogeneous. Movement datasets can differ

in a variety of different aspects [26]. These include, but are not limited to, temporal resolution (fre-

quent/constant to sparse), spatial resolution (refined to rough), spatial dimensions (2D to 3D), movement

constraints (area and/or network-constraint or not), movement models (Lagrangian or Eulerian) [54],

tracking system (cooperative or uncooperative) [64], differences in size of the datasets, the availability

of semantic information in the data and privacy constraints when it comes to collection and analysis or

distribution of the data.

In geographical literature, the availability of movement data was traditionally often limited to information

about the movement between the origin and the destination (OD flows). On the other hand, modern

sources of data contain more detailed episodic or quasi-continuous information about the movement data

[25, 5]. This type of data is known as trajectory data. Demsar et al. (2015) [16] defined trajectory data

as a discrete time series of measured locations. This is important to note since this frequent and discrete

data is required for the use of LDA models.

With the rise in the amount of global positioning system (GPS) data, there was a boom in the collection

of GPS data, which was followed by the capturing and storing of movement data. The quantum geo-

graphical information system (QGIS), first released in 2002, is an open source system that offers standard

4
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GIS functionality, with a variety of mapping features and data editing. This QGIS system was developed

by Gary Sherman, and thoroughly researched by Anita grazer [25]. Over the last couple of decades these

GIS systems have proved to be agile and powerful tools in many academic, civic and political disciplines

[44]. With the rise of wearable GPS technology such as smart watches or smartphones, the next logical

step was to track the movement of the GPS points/geo-locations in the form of trajectories.

The large scale capture of the movement data of individuals and objects, was made possible by access to

low cost GPS devices. The knowledge of movement patterns of consumers became useful tools for compa-

nies to drive their business value. Google can for example, track the movement of all their customers using

the Google Maps application and use this data to provide better navigation for customers, especially in

busy cities. Zoologists can track the movement behaviour of animals over time to determine the impact

of different environmental factors on the movement behaviour of the animals [24, 27]. Other examples

include the use of hiker movement patterns obtained from GPS data to improve the management of parks

[42] and a systematic review of the contextual factors on rugby league match running, focusing on the

complexity of analysing this type of GPS data [14].

Ferrante et al. (2018) [20], devised an extensive framework for the analysis of cruise passenger movement

at different destinations. The researchers built the framework to improve the understanding of cruise

passenger behaviour at different stops. Studies also bring to mind the tracking and analysis of visitors

at large theme parks such as Disney world, in order to efficiently distribute traffic around the park to

decrease the amount of bottlenecks forming at different parts of the park and to enhance the experience

for both the tourists and the staff.

Tracking companies can provide fleet management as a service to trucking companies, so that these com-

panies can track whether their drivers are driving according to their standards, and even to suggest ways

in which these trucks can operate in a more fuel efficient manner. Needless to say, there are endless

applications in the analysis of traffic data.

2.2 Trajectory clustering techniques

Clustering is a popular branch of unsupervised learning that is used in many machine learning projects

to handle a large amount of data. Clustering is used for the grouping of similar entities into bundles, or

clusters, and usually employs distance functions as the measure of similarity. The aim of trajectory data

clustering is to use the movement characteristics of trajectories to group a trajectory dataset into a finite
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number of clusters. If the clustering technique performed well, the trajectories that are clustered together

will exhibit similar movement characteristics, and will be different than the movement characteristics in

other clusters [41]. In this section various clustering techniques that are used in trajectory analysis are

explored, and the advantages and disadvantages of the different techniques are discussed.

Since trajectories of moving objects can be seen as spatio-temporal constructs, usually of a complex

nature, and are characterised by diverse non-trivial properties [53], they contain many potentially relevant

characteristics. These characteristics include the geometry of the earth, the object’s spacial position, the

life span of the object/trajectory, and the dynamics of the object (the manner in which the object’s spatial

location, direction/heading, speed/acceleration, and other point related characteristics of the movement

which change over time). Since trajectories have so many rich characteristics that can be analysed,

trajectories are well suited to clustering.

Some of the most common trajectory clustering methods are extentions of classical clustering techniques,

with the important exception that the distance (or similarity) functions are properly defined to meet the

needs of trajectory data. The majority of these algorithms can be split into 3 main categories [41].

1. Hierarchical algorithms like BIRCH [65].

2. Partitioning algorithms like k-means [38, 40].

3. Density-based algorithms like DBSCAN [17].

Firstly, the hierarchical methods order the objects in a multi-level structure containing clusters and sub-

clusters. Based on loose similarity requirements, the procedure clusters trajectories at a higher level, while

by tightening similarity requirements, sub clusters are found. BIRCH (Balanced iterative reducing and

clustering using hierarchies) [65], mentioned above, is an example of one of these hierarchical algorithms.

Secondly, in the partitioning methods, all trajectories are arranged into a pre-defined number of clusters.

These techniques start by forming random partitions, which is then iteratively refined, where trajectories

move between clusters at each iteration. K-means [38, 40] is an example of a partitioning algorithm.

Lastly, density-based algorithms work by partitioning the trajectories based on their density, the cluster

starts at one trajectory, and keeps growing as long as new objects are present in the neighbourhood.

The cluster is deemed valid if the total amount of trajectories in the cluster surpass a certain threshold.

DBSCAN (Density-based spatial clustering of applications with noise) [17] is an example of a density

based clustering algorithm.

The clustering of trajectories can pose a number of challenges when applying traditional clustering tech-

niques mentioned above. Olive et al. (2020) [48] identified multiple factors that make clustering tra-

jectories particularly challenging and argues that traditional clustering techniques are not well-suited to

trajectory data, these factors are listed below.
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1. The functional nature of trajectories make it difficult to define an appropriate distance function

between trajectories.

2. Trajectory data is often available as data points in high-dimensional space, and traditional distance

metrics lose their precision when applied to high dimensional data (a.k.a. the curse of dimensionality)

[31].

3. The processing of large amounts of open trajectory data, require tremendously efficient and highly

scalable trajectory clustering algorithms.

Focusing on the second point, conventional trajectory clustering techniques that rely on traditional sim-

ilarity (or distance) functions may be ineffective when defined directly on high dimensional data. This

is because, when applied to trajectories directly, the distance (or similarity) metrics used in these al-

gorithms are not as effective in capturing the richer dependencies which are potentially present in the

lower-dimensional latent space. Therefore classical clustering techniques (k-means [38], DBSCAN [17],

and BIRCH [65]) are ineffective when attempting to cluster trajectory data.

To avoid the issues with these traditional clustering techniques, Olive et. al (2020) [48], developed a deep

trajectory clustering technique with autoencoders in order to analyse air-travel trajectories landing at

Zurich airport. This algorithm embeds trajectories into the latent spaces to enable the clustering of the

trajectories.

In addition to the deep trajectory clustering by Olive et. al (2020) [48], more trajectory specific clustering

techniques have been proposed, mostly by modifying statistical and probabilistic models. For example,

Gaffney et al. (1999) [23], developed a clustering approach based on mixture models, which clusters tra-

jectories together based on the likelihood that they are generated by a common representative trajectory.

Alone et al. (2003) [3], developed an approach that models trajectories as chains of transitions between

locations and uses a hidden Markov model (HMM) that is most suited to the trajectories to model a

cluster.

In the most basic sense, trajectories are clustered by taking each trajectory in a set of trajectories and

allocating it to a cluster. There are, however, cases where the aim is not to cluster a set of trajectories, but

one trajectory [41]. In these cases, the goal is to cluster individual points on a single trajectory, in order

to characterise the positions along the trajectory. In the study by Palma et al. (2008) [50], the researchers

cluster points on a single input trajectory to discover the stopping points in it. Looking at trajectories

on an even lower level, different segments of trajectories can be clustered separately, if researchers are

interested in different geo-locations that the trajectories crossed, for example, if the similarity of trajecto-

ries is measured by visiting similar places, clustering can be applied on segments of trajectories [41]. The

TraClus clustering algorithm, developed by Lee et al. (2007) [33] followed this approach, by proposing a
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partition-and-group framework, which works by partitioning a trajectory into a collection of line segments,

and then grouping similar line segments.

2.2.1 The use of distance functions in clustering of trajectories

Rinzivillo et al. (2008) [53] advocated the use of a wide range of distance functions which address various

properties of trajectories and present the method of progressive clustering, allowing analysts to include

distance functions as part of analyses. Using this procedure, this analytical process is broken into a series

of steps [5]. Clustering is applied at every step using one distance function. This offers a few advantages.

Firstly, the analyst can refine clustering results, secondly, the analyst can consolidate multiple distance

functions containing different semantics and lastly, the analyst can use a step-wise approach to build a

thorough comprehension of different attributes of the trajectories. Various distance functions that are

suited for trajectory clustering are suggested by Andrienko et al. (2007) [4].

Distance functions can also be used to calculate the distances between lower-dimensional embeddings,

which are obtained by applying abstraction on high-dimensional trajectories. The distances between

these embeddings often yield better clustering results when compared to applying distance functions on

raw trajectory data [48]. This will be explored in one of the application sections of this work.

2.3 Semantic trajectory analysis

When comparing trajectories in any solution, the context in which the trajectories have been captured

should always be considered, and analysts should ensure that the contexts are the same for the trajectories

in question [5].

Most GPS trackers capture raw trajectory data i.e. data in the form <x,y,t>, where x and y is the latitude

and longitude of an object, and t is the time point. The t parameter can also be used for altitude (z),

in which case it would be <x,y,z>, but for most trajectory analysis studies, the time parameter provides

more useful information. In semantic trajectory analysis, the goal is to augment the raw trajectory data

by adding another data point to capture semantic information.

Semantic trajectory data refers to any additional data that accompanies the raw trajectory data, this can

include additional information regarding the activity, transport mode, etc [2]. Understanding how and

why vehicles, individuals and animals move, the locations that they visit, the frequency or patterns in

which they visit certain locations, and the resources used, are important in decision making. Applications

such as mobile health, the monitoring of road traffic, and animal data ecology, require semantic trajectory
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data to enable the rich and detailed portrayal of moving objects. For example, when analysing traffic

data, it would be useful to add data like street names, vehicle speed and/or heading data, such as turns

and stops.

A study by Albanna et al. (2015) [2], focused on the combination of semantic data and raw trajectory

data in the analysis of movement data. It is important to note that, GPS trackers capture only raw

information, and other semantic information often does not exist and can therefore not be used in the

analysis. When incorporating semantic information in the analysis, semantic data should be captured

from the outset, making clear that the data will be used for analysis. For example, if the aim is to analyse

the driving behaviour of a person or group of people, and heading data like stops, turns, and speeding are

used, these heading events should be captured along with the GPS trajectory data.

The addition of semantic information strengthens the analysis of data and eases the detection of semanti-

cally implicit patterns and behaviours. In a study by Chu et al (2014)[13], the geo-locations of a massive

taxi trajectory dataset were transformed to street names, which reflected contextual semantic information.

The trajectory data of each taxi was studied as a document that contained the street names that the taxi

traversed, which enabled the semantic analysis of a document corpora, with NLP techniques such as topic

modelling.

Yan et al. (2013) [61] developed a semantic method which progressively turns raw mobility data into

semantic trajectories that can immediately be used in analyses and applications. The model computes

trajectories at different levels, ranging from basic high-level location feeds, to low-level semantic be-

haviours. In this work, different ways to extract semantic information from raw trajectory data will be

experimented with. This semantic information will be used in a LDA model to cluster moving objects.

There are many more examples which showcase the potential benefits of analysing movement data. The

nature and sheer volume of this type of data brings to mind a few machine learning techniques.

Clustering similar trajectories is a common method used to discover similar driving patterns and be-

haviours. It furthermore results in a latent representation of each cluster, which - depending on the

clustering algorithm - can hold semantic information and interpretability. Important surveys focused on

trends and research in the field of trajectory data mining and clustering include [41], [63] and [8].

De Almeide et al. (2020) [52] also pointed out the need to investigate behavioural data as opposed to raw

trajectories only. Behavioural aspects in the data are contextual or semantic information such as points of

interest, transport type and street names. The enhancement of raw trajectories with semantic annotation
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is referred to as semantic trajectories [51].

2.4 Trajectory clustering techniques using LDA

The principal machine learning technique that was tested in this work, is Latent Dirichlet Allocation

(LDA), which is a NLP technique. There have been a couple of studies done on trajectory analysis with

LDA. One of these studies analyses the analysis of taxi movement by building a corpora of the street

names that the taxi’s traversed, and applying topic modelling on that dataset [13]. Chu et al. (2014) [13],

devised a new visual analytics system, by mapping GPS lat-lon coordinates to street names, and studying

each trajectory as a document containing the street names that taxi’s traversed. This technique can be

seen as semantic trajectory analysis since it can replace or supplement spatio-temporal GPS trajectories

with contextual information.

In [13], the street names in each trajectory represent the words in the LDA corpora, and they are used

to discover group movement patterns. This methodology did not consider trajectory direction, which was

addressed by Liu et al (2019) [37] by combining adjacent street names in the trajectory as bigrams.

Cao et al. (2019) [12] propose another NLP technique that can be modified to analyse trajectory embed-

dings. They define a person’s habit signature unit transition (Hu) as a feature representing the typical spe-

cific locations a person visits at a specific time slice. Hu can be defined in the format (ui, h
p1

1 , h
p1

2 ,...,hp1
m ),

where ui is a unique identifier of a person, and hpi

i are the different recorded locations for that person.

Cao et al. (2019) [12] defined the similarities in natural language and a person’s Hu in the following

points.

• Both can be regarded as time-dependent series.

• Both can be approximated by context

• There is a large scale of data available for both NLP and signature habit transition from which their

characteristics can be learned.

• The frequency distributions of natural language and habit unit are very similar.

From these similarities, a likeness can be drawn between learning representation for signature habit

trace and word embeddings. Hence, an algorithm was proposed to learn an individuals’ habits from the

trajectory, inspired by the methodology of word2vec, the technique was called habit2vec [12].

Meriono [43] investigated naturalistic driving by constructing a behavioural profile for drivers using LDA.
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Since LDA is usually applied in text-based studies, the driving data of drivers was converted into “docu-

ment” and “occurrences” by applying symbolic time-series abstraction methods to the driving data.

In the work of this thesis, natural driving behaviour will also be clustered using NLP techniques. The key

differences in the methods explored in this paper and existing methods are given below.

1. Features recorded in the driving data, for example speed, rpm, emissions, etc, were clustered in-

dividually using k-means clustering, and concatenated together to form different "words" at each

point in the trajectory.

2. Lower dimensional embedding were obtained from these words using Latent Dirichlet allocation

(LDA).

3. The similarity between the lower dimensional embeddings were calculated using statistical distance

metrics such as the Bhattacharyya and Jensen-Shannon distance metrics.

4. A simulation study involving millions of iterations was executed in order to test the method thor-

oughly.

2.5 Software

Some of the software that already exists include MovingPandas, which is a trajectory analysis package,

written by Anita Grazer 1. The moving pandas library is written on top of the GeoPandas package, which

is a spatial data analysis tool. As the name suggests, the MovingPandas and GeoPandas libraries are

based on the popular Pandas Python library. The development of MovingPandas started as a plugins

idea for QGIS data analysis in 2018. The resulting plugin (called Trajectools) was first published in 2019.

However, it became clear that the core trajectory handling classes should be extracted into a separate

library so that it can be used outside of the QGIS context. For data visualisation, MovingPandas uses

Matplotlib for the static plots and hvplot for the interactive plots.

MovingPandas makes it straightforward to compute movement characteristics, including the length, du-

ration, speed and direction of trajectories. It also has the capability of overlaying the trajectories on

a actual map, so that you can see the trajectory in terms of the real world terrain. By leveraging the

existing functionality within the Python data analysis ecosystem, such as the handling of time-series data

by Pandas, and spatial data analysis by GeoPandas and close integration with Holoviews 2 (a package

which makes data visualisation a lot easier) to enable interactive plots, MovingPandas can focus on it’s
1https://anitagraser.com/movingpandas/
2https://holoviews.org/
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core functionality, which is dealing with the challenges that are specific to movement data.



Chapter 3

Theory

In this chapter the theoretical concepts that were used to apply LDA to trajectory data to infer inter-

pretable topics and to cluster movement trajectories are discussed. A formal definition of a trajectory is

given as well as a discussion on the statistical concepts that will be used to model the trajectories.

There are a number of challenges when analysing GPS trajectory data which form the motivation for the

approaches developed in this chapter.

1. Trajectories as a set of ⟨xk, yk, tk⟩ points are continuous data. In order to consider NLP techniques

such as Latent Dirichlet Allocation (LDA), it makes sense to have discrete data which can be counted.

This problem is addressed by discretising the continuous data, k-means clustering can be used for

the discretisation of the features of the trajectories.

2. There can be a large variance in the dimensions of observations in a trajectory. The problem of

varying dimensions is typically addressed by a kernel, and in the case of count data, Fisher kernels

are often used [57]. This problem can also be solved by deriving a count-vector representation of

trajectories, such as a Bag-of-words (BOW) vectorisation which is commonly used as an input to

an LDA model.

3. Movement data often only contains spatio-temporal data in the form ⟨xk, yk, tk⟩ i.e. ⟨lat, lon, time⟩

points, with no additional semantic information on the data, such as speeds, distances covered and

geo-spatial landscape. This problem is addressed by applying abstraction to the data in order to

extract meaningful features like speed, acceleration and headings. Furthermore, a basic unit needs

to be defined, which is analogous to words in documents.

4. Trajectory data along with semantic information are often available in the form of data points in

high-dimensional space and traditional distance metrics lose their precision when applied to high

13
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dimensional data (a.k.a. the curse of dimensionality) [31]. This problem is addressed by deriving

lower dimensional embeddings for the trajectories and using these embeddings for clustering.

Before discussing the challenges that are outlined above, a proper definition of a trajectory is given.

3.1 Trajectory definition

There is no standardised terminology in the discipline of movement data analysis. Each application

domain and research group have their own terms for trajectory, point, node, path, travel and segment,

which are all used interchangeably to refer to the same or different concepts related to movement. The

definition of a trajectory varies between studies. For example, Demsar et al. (2015) [16] defined trajectory

data as a discrete time series of measured locations, while Alvares et al. (2007) [22] and Baglioni et al.

(2009) [6] defined a trajectory as a sequence of moves and stops. Spaccapietra et al. (2008) [56], on the

other hand, described a trajectory as movement data that is structured into countable semantic units.

In terms of the mathematical definition of a trajectory, in the most basic sense, a trajectory can be defined

as a line that a moving object follows through a geometric space. A trajectory is formally represented in

this research project as T = ⟨p1, ..., pk⟩, where pk is the time-ordered kth point in T . The basic trajectory

data only contains spatio-temporal information ⟨xk, yk, tk⟩. This representation can be extended to contain

an identifier variable in which case pk is defined as a quadruple ⟨idk, xk, yk, tk⟩ [41]. The identifier id is a

useful container to store additional information about individual positions in a trajectory such as speed,

acceleration, and other semantic information. The representation pk can also be extended further to store

many features at once. This trajectory definition forms the basis of the kernel representation which will

be discussed later on.

3.2 Addressing the challenges of trajectory clustering

3.2.1 Discretisation of continuous trajectory data.

As explained above, movement data in the form of points and semantic features along a trajectory are

continuous. In order to use the LDA model, these features need to be discretised. The continuous data

points can be discretised based on k-means clustering, or in certain cases, domain expertise and simple

data exploration can be used to divide the features into meaningful clusters or “bin”.
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3.2.2 Count-vector representation

As mentioned above, there can be great variance in the dimensions of observations of a trajectory. For

example, a vehicle journey can vary from visiting the local supermarket to travelling long cross country

distances. In both the time and distance covered, these two journeys will result in two completely different

trajectories based on the amount of data points in the respective trajectory. Because of this diversity

between trajectories, a kernel has to be defined to meaningfully compare two different trajectories. This

chapter explores the use of count-vector representations, discussed in Section 3.3, to address the problem

of variation in the dimensions of trajectories.

3.2.3 Applying abstraction to extract semantic information

While movement data contains important information on the optimisation of positional and trajectory

related infrastructures and services, in isolation it does not contain the required semantic embedding that

would make fully automated machine learning (ML) analysis possible [4]. Semantic trajectory analysis

is focused on the analysis of trajectories in context. At the moment, most of the methods developed

for trajectory analysis focus on the spatio-temporal properties of movement trajectories without giving

much attention to semantics. Therefore the high level semantic properties of trajectory data is not a

very well investigated field. These techniques provide sub-optimal clustering results because they do not

take into account other features that characterise movement/trajectory data. As part of doctoral work,

Yan et al. (2009) [62] addressed this area, with the aim of combining semantic concepts and statistical

computational methods, for the purpose of trajectory/movement data analysis. Chu et al. (2014) [13]

provide a semantic trajectory model which considers spatio-temporal features (geo-location) and semantic

trajectory units (for example turns and stops). The core focus of the trajectory analysis will therefore

shift from movement data only, to semantically rich trajectories [51]. If movement data does not contain

semantic information, a solution could be to apply abstraction to the data in order to extract meaningful

features which can be used for clustering. In Chapter 4, abstraction was applied to raw spatio-temporal

data in order to extract semantic information including distance, speed and acceleration and this semantic

information was used to create interpretable clusters for the trajectories of jaguars.

3.2.4 Lower dimensional embeddings

Trajectory data is often only available in a high dimensional space. Many traditional trajectory cluster-

ing algorithms which are defined on the high-dimensional trajectory data (spatio-temporal information

and semantic information) tend to miss information present in the lower dimensional latent space, and
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will therefore struggle to cluster trajectories effectively. These clustering techniques often use traditional

distance functions as a measure of similarity between clusters which can not detect differences between

trajectories present in the lower dimensional latent space. In Chapter 5, lower dimensional embeddings

that were obtained from an LDA model were used to create clusters. In that case, differences in driver

behaviour were detected in a lower dimensional latent space. Since the embeddings are the topic distri-

butions for each of the trips, these clustering results were achieved by defining distance functions, that

calculate the differences between distributions, between the embeddings of the trips of drivers. The dis-

tances served as a measure of similarity between trips. The drawback of using the lower dimensional

embeddings to cluster trajectories is the difficulty of interpreting the clusters obtained without expert

knowledge in the application domain.

The clustering techniques which are discussed in this chapter enrich the definition of a trajectory as

the trace of a moving entity not only containing geometric spatio-temporal features (the changing of a

geometric landscape), but also semantic features (the context and meaning of the movement). By using

this definition of a trajectory, geographic information and application domain knowledge can be combined

to interpret clustering results[62].

Figure 3.1 illustrates the different levels at which GPS movement data can be analysed. Starting with the

raw lat-lon points which do not contain much information, moving to a spatio-temporal trajectory that

contains some information on the trajectory, such as heading, and start/stop points. Below that, the image

shows a semantically enriched trajectory, containing information such as speed, acceleration, distance, type

of vehicle used, street names, and where the trajectory stopped. All of this semantic information can be

used to improve trajectory clustering results. In Chapter 4, spatio-temporal trajectories were changed

into semantic trajectories by applying abstraction to the data. Lastly, at the bottom, a lower dimensional

embedding is displayed, this is the lower dimensional embedding obtained for the first trip in Chapter

5. In Chapter 5 lower dimensional embeddings were derived from semantic trajectories using the LDA

model, and these embeddings were used to cluster the data.



CHAPTER 3. THEORY 17

Figure 3.1: Schematic of the different levels that trajectories can be analysed at.

3.3 Count-vector representation of trajectories

Mathematically, vectors are geometric objects which have magnitude and direction. In NLP, vectors can

be seen as a means by which words are projected onto a mathematical space, while preserving the semantic

information contained in these words.

When considering a large collection of trajectories, each trajectory contains a varying number of geo-

temporal events. Using machine learning terminology, each trajectory represents an object, or observation

which can be clustered. Furthermore, it is assumed that such an object can be represented as a fixed-size

feature vector in the form xi ∈ RD [45]. Therefore, the first challenge is to convert the unstructured

and often noisy trajectories in a mathematically computable form. If the structure of the trajectories is

ignored and only the occurrences of events are counted, the result is a vector representation xi, where

xij is the number of times that event j occurs in trajectory i. In the field of NLP this is known as the

Bag-of-Words (BOW) vectorisation and an analogy between trajectories and documents becomes clear:
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A trajectory is a grouping of events, just as a document is a grouping of words. The GPS signals (lat-lon

points) can be compared with the words in the document. Similar analogies were drawn in [43, 13, 36].

In gensim, algorithms such as LDA use vectors as an input, this is mainly because the back end of these

algorithms contain mathematical operations involving matrices. Therefore, what was formerly represented

as a string, needs to be represented as a vector. In the case of trajectory clustering, points on a trajectory

are continuous data points, which need to be discretised in order for the occurrences of certain events to

be counted.

3.4 Trajectory modelling with LDA

The study on trajectory modelling indicates a focus on the clustering of trajectories. The soft clustering

algorithm of LDA is investigated in this work. The techniques used in Chapter 4 follow a similar approach

to Meriono et al. (2018) [43], which was discussed in Section 2.4 and focus on the explainability and

interpretability of the obtained clusters. While in Chapter 5, a new strategy is applied, in which the lower

dimensional embeddings obtained from the LDA model are used to detect differences in driver behaviour,

and interpretability if the clusters is not considered.

The count-vector representation described in Section 3.3 opens a whole field of NLP algorithms that can

be applied to trajectory modelling. The successes of probabilistic topic models serves as an encouragement

for the use of these models on GPS location data. The motivation is based on the fact that topic models

exhibit characteristics which are found both in clustering and dimensionality reduction techniques. Fur-

thermore, their sparse representation make them efficient methods for data compression. Topic modelling

is an unsupervised learning algorithm, such as clustering and dimensionality reduction techniques. Topic

modelling discovers latent topics in large collections of documents, which is called a corpus. Therefore a

corpus can be analysed without having any prior knowledge regarding their context. Topic models do not

take document structure into account, but only count the occurrences of unique words in each document.

Thus, the input to a topic model algorithm is a document × word vectorisation of the corpus. When

applied to trajectory modelling, each trajectory will be represented as a document, and each lat-lon point

on the trajectory will be represented as a word.

Latent Dirichlet Allocation is arguably the most widely used topic modelling algorithm and has been

successful in the field of text analytics [10]. Based on the analogy between documents and trajectories,

the LDA generative process for trajectory modelling is described as follows:

1. For all topics, randomly choose ϕk ∼ Dirichlet(β).

2. For each trajectory, randomly choose a topic distribution, θm ∼ Dirichlet(α).
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3. For each event, emn, in trajectory m:

a) Randomly choose a topic assignment,

zmn ∼Multinomial(θm).

b) Randomly choose an event,

emn ∼Multinomial(ϕzmn
).

The output of the LDA algorithm can best be described by its graphical model in Figure 3.2, where nodes

represent variables and plates represent repeated structures. The variable z is the topic assignment for

each word. The placement of z within the N plate illustrates the admixture effect of LDA, allowing each

trajectory to contain multiple different topics in different proportions. One can also interpret the β and θ

variables in terms of matrix factorisation as shown in Figure 3.3. LDA decomposes the original trajectory

× event matrix into two lower dimensional matrices: The event × topic matrix (β) is a dimensionality

reduction of the full representation of all the trajectories. The topic × trajectory matrix (θ) is a soft

clustering assignment of trajectories to topics. The β matrix allows for the inference of interpretable

topics from the data, this is explained in more detail in Section 3.5 and is explored in Chapter 4, while

the θ matrix allows for the soft clustering of trajectories, which is explained in more detail in Section3.6

and is explored in Chapter 5.

Figure 3.2: LDA graphical model. The grey node w represents the only observable variable in the model. In this

case, it is the events in the trajectories. The β parameter represents the event × topic matrix and the θ parameter

represents the topic × trajectory matrix.

Figure 3.2, shows the LDA graphical model for the normal LDA model, i.e. the LDA model used for text

analytics. Figure 3.3 shows what the β and θ matrices looks like in the context of trajectory modelling.
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Figure 3.3: Matrix factorisation interpretation of LDA for trajectory modelling.

A problem that arises with the inference of the LDA model is the computation of the posterior distribution

of the hidden variables given a trajectory [10]. This posterior distribution is intractable and need to be

approximated using optimisation or sampling methods. The gensim package in Python uses a variational

Kalman filtering approach [9] to compute the posterior variance. The core approximation code for the

posterior is based on the online variational Bayes (VB) algorithm, developed by Hoffman et al. (2010)

[28].

The input data for an LDA model should be in a count-vector representation format. In the context of

text data, a document is a collection of words. Only the occurrences are counted and the structure of

the document is ignored, hence a Bag-of-Words (BOW) vectorisation is created. In a similar manner,

a BOW vectorisation is created for trajectories in the analysis and based on these vectorisations, the

topic × trajectory matrix is obtained from the LDA model. The lower dimensional embeddings of each

individual trajectory correspond to the rows in the topic × trajectory matrix. These embeddings are the

topic distributions for each trip.

In Chapter 5, distance functions which calculate the distances between distributions, were defined and

used to calculate the distances between the embeddings for each of the trips. These distances were then

used as a measure to determine the similarity of the trajectories. Based on this similarity, clusters for

the trajectories were obtained. The distance metrics that were used are defined later in this chapter in

Section 3.6.2.

In the first part of this chapter, a theoretical overview of LDA as applied to trajectory modelling was

given.

Next, an overview will be given on how LDA models were used, as well as how these models were evaluated.

The application of the matrices, defined in Figure 3.3, and how they can be applied to obtain different

results, will also be discussed.
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3.5 Interpretability of topics

As explained earlier, the event × topic matrix (β) will be used to interpret the clusters. The probability

distributions of the word in each topic will be evaluated in order to interpret the topics that the model

created.

3.5.1 Top-topics per trajectory

As part of an analysis using topic modelling, it is possible to determine which topics relate more to which

document, or in the case of trajectories, which topics relate more to which trajectory. Topic modelling

obtained from the LDA model creates soft clusters for the trajectories, which indicate the probabilities

with which each of the topics are contained in each of the trajectories. In other words, the probability for

each of the trajectories to belong to the different topics can be calculated.

3.6 Clustering of trajectories

As explained earlier, the topic × trajectory matrix (θ) will be used to create soft clusters for the trajec-

tories. Each row in this (θ) matrix is the LDA word embedding for each of the trajectories, which can be

used to cluster the trajectories.

3.6.1 LDA word embeddings

Word embeddings derived from massive, unstructured corpora, are powerful tools for the detection of

semantic regularities in natural language [15]. In the trajectory context of LDA, the lower dimensional

embeddings are the rows of the topic × trajectory matrix, denoted as θ in Figure 3.3, these word em-

beddings are also known as topic distributions. An advantage of using lower-dimensional embeddings to

cluster trajectories is that the embeddings allow the distance functions to capture information in the lower

dimensional latent space. This is a major advantage when compared to traditional clustering algorithms,

which do not take into account differences between trajectories present in the lower dimensional latent

space, causing them to lose precision or to give poor clustering results.

3.6.2 Distance between the word embeddings

There are many distance measures that can be used to compare the similarity of two (or more) probability

distributions. In this work two different distance measures will be used to measure the similarity between
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topic distributions.

3.6.2.1 The Bhattacharyya distance

The Bhattacharyya distance measure is a popular distance measure that is used to compare the similarity

of two probability distributions. Advantageous to the application in Chapter 5, it can also be used to

calculate the separation of classes in classification problems. In an application to classify urban trees,

Ouma et al. (2006) used the Bhattacharyya distance to measure the similarity between multi-scale wavelet

sub-bands [49].

The Bhattacharyya bound is a upper bound of the Bayes error and can be defined as:

U = ▽θ logP (X|θ) (3.1)

where θ is a set (vector) of parameters.

For discrete probability distributions p and q over a domain X, the Bhattacharyya distance metric is

defined as:

DB(p, q) = − log(BC(p, q)) (3.2)

where 0 ≤ DB ≤ ∞, and:

BC(p, q) =
∑
x∈X

√
p(x)q(x) (3.3)

is the Bhattacharyya coefficient [7], with 0 ≤ BC ≤ 0.

3.6.2.2 Jensen-Shannon

The Jensen-Shannon (JS) divergence is a symmetrised and smoothed version of the Kullback-Leibler (KL)

divergence D(P ||Q). In terms of the KL divergence, the JS divergence can be defined as:

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (3.4)

where M = 1
2 (P +Q).
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Without taking the KL divergence into account, the Jensen Shannon divergence can be calculated as

follows.

JS(p; q) =
1

2

∫ (
p(x)log

2p(x)

p(x) + q(x)
+ q(x)log

2q(x)

p(x) + q(x)

)
dµ(x) (3.5)

where p(x) and q(x) are the two respective distributions [47].

The Bhattacharyya and Jensen-Shannon distance metrics were used because the word embeddings are

topic distributions. Other distance metrics including euclidean and cosine distance are not as effective in

calculating the distances between distributions and were therefore excluded from the study.

The Kullback-Leibner (KL) divergence was also considered as a similarity measure since it can calculate

the similarity between distributions, however the asymmetric nature of the KL divergence made it unfit

for this application. The KL measure is asymmetric in the sense that the KL distance from f(x) to g(x)

is generally not the same as the KL distance from g(x) to f(x).

3.7 Topic model evaluation

Topic modelling is an unsupervised approach with the main purpose to discover topics without labelled

observations. As a result, the evaluation of the model is challenging as no ground truth exists. One

evaluation metric for topic models is the predictive likelihood of held-out trajectories, when given a

trained model - the aim is to obtain a high likelihood [60]. The marginal distribution of a trajectory is

[10]:

p(w|α, β) =
∫
p(θ|α)

( N∏
j=1

∑
zj

p(zj |θ)p(wj |zj , β)
)
dθi. (3.6)

The probability of a held-out trajectory can be calculated using Eq. 3.6. By taking the product of the

marginal probabilities, the probability of a corpus is obtained as:

p(C|α, β) =
M∏
i=1

∫
p(θi|α)

( Ni∏
j=1

∑
zij

p(zijθi)p(wij |zij , β)
)
dθi. (3.7)

where C denotes the corpus.

Equations 3.6 and above relate to Figure 3.2, where the β parameter represents the event × topic matrix

and the θ parameter represents the topic × trajectory matrix. The variable z is the topic assignment

for each word. As Figure 3.2, makes clear, this LDA representation is made up of three levels. The α
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and β parameters are corpus-level parameters which are assumed to be sampled once in the procedure of

generating a corpus. The variables θi are document-level variables, sampled once per document. Finally,

the variables zij and wij are word level variables and are sampled once for each word in each document

[10].

3.7.1 Perplexity

Perplexity is perhaps the most popular metric in language modelling [46]. Normalised by the number

of words in a document, the perplexity score is calculated based on the probability of a validation set

to evaluate the performance of a LDA model, in layman’s terms, the perplexity score is an indication of

how well a model can predict the next word in a text, based on the context of the previous words. The

perplexity can be defined as

PP (W) = P (W1,W2, .....,Wm)(
−1
m )

where PP refers to perplexity, and W refers to word. P is the probability estimate assigned to document

words. A model is considered optimal if the model, with a given number of topics, minimises the perplexity

score [46].

A theoretical foundation of trajectory analysis using LDA techniques is now established. In the following

chapters practical examples of applying the techniques to real world datasets are explored.



Chapter 4

Trajectory topic inference with LDA

applied to jaguar movement data

4.1 Background

Animal movement data is usually collected with collars and sensors which provide information about

animal movement behaviour such as migration, foraging and resting [24]. Meta-data is often available and

can include features such as location, gender, age and weight of animals, which further provide insight

into individual, as well as relational patterns. In more general terms, trajectory data allows for the study

of moving objects, such as vehicles, humans or animals, which spatial location changes over time [52].

In this chapter, the method of analysing GPS data by using LDA is explored. The movement of ani-

mals is analysed (in this case jaguars) by applying abstraction on the data in order to extract semantic

information.

The aim of this chapter is to showcase how the event × topic matrix β, in Figure 3.3 can be used to

generate interpretable topics from movement data.

25
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4.2 Research approach and research question

4.2.1 Research approach

Abstraction was applied to the data in order to gain semantic information by calculating the speeds of the

jaguars. The continuous speed variable was discretised. This was done by using different speed bins to

assign letters to each of the data points in the dataset. After this, a Bag-of-Words (BOW) vectorisation

was obtained, and LDA was applied on the BOW to obtain the clusters. This is done by discretising

continuous data into bins which can then be counted.

4.2.2 Research question

Is it possible to extract semantic information from raw jaguar movement data, and can this semantic

information be used to infer interpretable topics from the jaguar movement trajectories using LDA?

4.3 Data

4.3.1 Description of the the dataset

The data, collected by Thompson et al. (2021) [58], consists of GPS telemetry data of 117 jaguars (54

males and 64 females), amounting to 134690 lat-lon locations. The jaguars were monitored in 5 countries

in South America. Trajectories represent a set of GPS signals and 117 of these trajectories can be obtained

by grouping the GPS locations of each jaguar.

Thomson et al (2021) [58] utilised this data in order to examine the topographic and environmental

factors that are associated with jaguar home range size, and movement patterns. Garcia et al. (2021) [24]

analysed this same data and grouped the jaguars into three groups based on movement behavior. The

three groups are resting, transit and foraging. The contribution of this chapter extends the work of Garcia

et al. (2021) [24] into the domain of computational analysis methods, in particular the NLP method of

Latent Dirichlet Allocation (LDA).

Figure 4.1 depicts the telemetry data locations of the different jaguars, as it was captured across South

America. Figure A.1 in Appendix A, which was generated in Python, shows a more detailed scatter plot

of 6 individuals along a riverbed. The dataset is freely available at the following link 1.
1Full link given above https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.2379

https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.2379
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Figure 4.1: Telemetry data locations of the jaguars. This image was obtained from [58].

4.3.2 Pre-processing

As mentioned in Section 1, animal GPS collars do not always exhibit semantic enrichment, which is the

case of the jaguar movement data under investigation. Garcia et al. (2021) [24] classified the states of

jaguar trajectories as follows:

1. Resting was defined as behaviour with a long time span but a short distance covered.

2. Transit was defined as behaviour with a short time span and a short distance covered.

3. Foraging was defined as behaviour with a long time span and a large distance covered.

Therefore Garcia et al. (2021) clustered the distances manually based on distance and time. Since

speed = distance
time , in this work the two features of distance and time were combined by using the speed

that jaguars travelled.

The speed, which will serve as semantic information, was calculated from distances between geo-locations.

To calculate the distances between geo-locations, the Haversine distance formula was used, which calculates

the distance between any 2 points on a sphere. The formula is given by
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2r × arcsin

(√
sin2(

ψ1 − ψ2

2
) + cos(ψ1)cos(ψ2)sin2(

λ2 − λ1
2

)

)
,

where ψ1 and λ1 are the 2 latitude coordinates, ψ2 and λ2 are the 2 longitude coordinates and r is the

radius of the earth, which was added as 6 371 km. The dataset was truncated to include only values

larger than 1 km\h since the goal is to analyse movement behaviour. Speeds greater than 80 km\h were

considered as outliers and were removed. The speed values calculated sequentially between each lat-lon

for each individual jaguar are shown in Figure 4.2.

Figure 4.2: All the calculated speeds for each of the 117 jaguars.

From Figure 4.2 it can be seen that most of the values are concentrated below 10 km\h, but there are

several trajectories where the individuals moved at much greater speeds. The goal is to see if these

trajectories can be clustered together and interpreted using the LDA model.
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4.3.3 Feature extraction

LDA is a count model, which requires discrete data. In order to discretise the speeds, as a starting

point the data was binned by using k-means clustering, and iteratively adjusted by hand until the class

imbalance was not too big. More specifically, it was adjusted so that the biggest classes (classes A and

B), do not contain more than 30% of the total lat-lon observations, this was done in order to prevent

obtaining results that are skewed in the direction of the bigger classes. This resulted in seven bins which

are illustrated in Table 4.1 with the corresponding speed ranges and frequencies. These bins resemble

words in NLP, and are the most basic unit in the dataset.

Table 4.1: Descriptions of the speed bins used.

Description Speed range N

A 1 – 1.27 km\h 2396

B 1.27 – 1.8 km\h 2439

C 1.8 – 2.79 km\h 1603

D 2.79 – 5.56 km\h 931

E 5.56 – 7.82 km\h 164

F 7.82 – 28 km\h 327

G 28 – 79.7 km\h 302

The discretisation of the continuous speed values leads to the use of the BOW vectorisation which requires

the counts of each bin in each trajectory. Due to inconsistent time intervals between GPS signals, all speed

bins of each jaguar were combined as a trajectory. In other words, a trajectory contained all the movement

data for an individual jaguar. This results in the matrix (β) left of the equation in Figure 3.3. For the

jaguar movement dataset, the dimensions of the BOW matrix is 117 × 7. The ‘vocabulary’ size is thus

seven, since there are only seven speed bins.

The next step in the process is to apply LDA to the BOW matrix. The dimension size of the dataset

is seven, which is relatively low when compared to typical text datasets which can reach dimensions of

hundreds of thousands. Although a grid search would typically be performed at this stage to select the

optimal number of topics, given the small vocabulary size, a total of three topics were chosen. The use of

three topics, also ensured that the results could be compared to that of Garcia et al. (2021) [24], which

was mentioned earlier. The goal was to compare the clustering results to see if a similar result to Garcia

could be obtained from LDA. The gensim package in Python was used to calculate the vectorisation and

to apply the LDA algorithm.
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4.4 Results

4.4.1 Experimental results

This section presents the results of the LDA experiment on the data described in the previous section.

LDA produces two matrices as shown in Figure 3.3. The topic × event matrix gives a description of the

latent topic space inferred from the data. The trajectory × topic matrix provides a soft clustering matrix,

which will be utilised for clustering in Chapter 5. In Chapter 4, when referring to clusters, we refer to the

dominant topic of each trajectory based on the soft clustering results, which can be seen as the cluster it

was assigned to.

From the topic × event matrix, the composition of each topic can be analysed. A topic is a probability

distribution over events, and if the events are sorted according to probabilities, the events with the highest

probabilities provide a good description of the topic. This is possible because LDA produces sparse latent

vectors as opposed to the dense vectors produced by word embedding algorithms. It is left to the user of

the model to further interpret and describe the topics, which is demonstrated in the following paragraphs.

The three probability distributions are displayed in Figures 4.3 - 4.5. These figures, as well as Figure 4.6,

show the differences between the inferred topics. LDA is a soft clustering technique and its use may result

in a variation in topic × trajectory distributions for different initialisations. Furthermore the probability

contribution of the dominant topic and the second highest topic may have similar values as can be seen

in Table 4.2.

Figure 4.3: Resting. Figure 4.4: Foraging. Figure 4.5: Transit.

4.4.1.1 Topic 1 - Resting

Topic 1 can be characterised as the resting topic, as the three events with the greatest probability, shown

in Figure 4.3, are the three lowest speed bins, namely A, B and C and higher speeds have a much lower low

probability. This is also the topic that can be seen most clearly from the figures. When looking at Figure
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4.6, topic 1 is represented by the light cream colored dots and it is clear that most of the trajectories

that remained at low speeds throughout their life span, have the resting topic as the dominant topic. The

other trajectories in Figure 4.6 also have values at lower speeds, but almost all of these trajectories also

contain higher speed values. The assumption is that the trajectories that remained at low speeds, and are

not cream colored, were clustered incorrectly by the LDA model. Similarly, topic 1 trajectories (cream

colored) that extended to high speeds, are assumed to be clustered incorrectly based on the dominant

topics.

4.4.1.2 Topic 2 - Foraging

Topic 2 is characterised as the Foraging topic. Foraging includes activities where the jaguar is searching

for food, including hunting, which typically occurs at high speeds. It can be seen from Figure 4.5, that

trajectories in this topic has the highest probability for speed bin F, which is between 7.82 km\h and

28\h. The speed bins directly following F are A and B, meaning that the topic has high probabilities for

lower speeds as well. Speed bin B is again closely followed by speed bin G, the highest speed bin. This

behavior can be seen from the trajectories represented by the black dots on Figure 4.6, where there are

high concentrations of black dots at lower speeds, and then suddenly shooting up toward 80 km\h. This

is a possible indication of hunting behaviour.

4.4.1.3 Topic 3 - Transit

Figure 4.5 is characterised as the transit topic, since the speed bins seem more erratic. The bins with

the highest probability are B and C, similar to the resting bin, but speed bins D and A also have high

probabilities. Meaning the jaguars in this topic therefore had a high probability of moving at speeds

between 1 km\h and 5.56 km\h. This movement behaviour can serve as an indication that the jaguar

is between the states of resting and foraging and therefore, in the transit state. The difference between

topic 2 and topic 3 is not clear on Figure 4.6.

At face value, one might be tempted not to attach much value to the inferred topics and interpretation.

What makes this an interesting result, is that the topics obtained, and the interpretation thereof, is similar

to the results that Garcia et al. (2021) [24] obtained by grouping jaguars into the 3 categories of resting,

transit and foraging by association rule mining based on location points and times (date/time). The

results were similar with regards to the sizes of each of the three clusters. Therefore, by following a com-

pletely unsupervised approach, LDA inferred similar movement behaviour by using semantic information

abstracted from the raw data containing only GPS locations and their respective timestamps.
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Figure 4.6: Jaguar speeds with 117 jaguar trajectories assigned to their respective dominant topic.

4.4.2 Dominant topic per jaguar

In Subsection 4.4.1, the interpretation power of the topic × event matrix was illustrated. In this subsection,

the focal point was the trajectory × topic matrix. One of the practical applications of this matrix is to

determine the dominant topic of a given document (or in this case, dominant trajectory). The probabilities

of the topics indicate to which extent a topic is represented in each trajectory. Table 4.2 provides an

extraction of dominant topics associated with trajectories. Table 4.2 shows the topic contributions for

each topics for jaguars 1,2,4, 12 and 15, these jaguars were chosen to show a wide range of results obtained

for the trajectories. From Table 4.2 it is clear that there are certain instances where the dominant topic

is clearly visible, trajectories 2 and 4 are examples of this, with topic contributions close to 1 for their

dominant topics, and topic contributions close to 0 for the other topics, these trajectories were clearly

clustered into certain topics. On the other hand, in certain cases like trajectories 1, 12 and 15, the top

topics were not as clearly defined, where the topic contributions of some of the topics are very close in

value. It is in these cases, where trajectories may be clustered into the wrong group, like some of the

trajectories in Figure 4.6.
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Table 4.2: Dominant topics for 5 random trajectories (trajectories 1,2,5,26 and 59).

Trajectory Dominant topic Topic 1 contribu-

tion

Topic 2 contribu-

tion

Topic 3 contribu-

tion

1 2 0.000665 0.799085 0.200249

2 1 0.998891 0.000555 0.000555

5 1 0.684882 0.314964 0.000154

26 3 0.001107 0.001107 0.997785

59 2 0.000624 0.998752 0.000624

As a summary, Table 4.3 displays the number of trajectories that are clustered into each topic.

Table 4.3: Counts of dominant topics across all trajectories.

Topic Number of trajectories

Resting 69

Foraging 27

Transit 17

4.4.3 Model evaluation

The performance of the LDA model was tested by running the model 1000 times and calculating the

average perplexity score as well as a 95% confidence interval for the perplexity score of the model. The

average perplexity score was obtained as -1.54444 and the 95% confidence interval of the perplexity score

was obtained as (-1.54575, -1.54315). This low perplexity score indicates a better performance of the

model, which is encouraging. The small confidence interval also indicates a very small variance in the

results of the model, which is a good sign.

In Figure 4.7, a visualisation is shown for the three topics. Topic 1 is highlighted, showing the estimated

term frequency within topic 1 in red, as well as the overall term frequency in blue. From the figure it

can be seen that there is a big separation between the topics when plotted on the PC1 and PC2 axes.

This is an indication that the model was able to distinguish well between the three topics. The size of the

circles represent the relative statistical weight of the topics, i.e. the circle size indicates is the prevalence

of the particular topic in the corpus of trajectories. Therefore, from Figure 4.7 it can also be seen that

the resting topic (topic 1) was the most prevalent topic.
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Figure 4.7: PyLDAvis for the three topics. The bubbles on the left are a representation of the size of the topics

and their distances to each other are shown as obtained by multi-dimensional scaling. The bars on the right of

the figure show the word term space, giving a visual representation of the term frequencies for each bin. The bins

are ranked by their importance [43].

4.5 Conclusions

In this chapter, the trajectories of jaguars were analysed and the use of the β matrix, defined in Section

2.4 to infer interpretable topics from the data was demonstrated. Semantic information (in the form of

jaguar speed) was extracted from the trajectories, and these speeds were discretised before being used as

an input to the LDA model.

The model was able to obtain clusters, similar to those found by associative rule mining by Garcia et al.

(2021) [24]. Therefore LDA, which is an unsupervised machine learning technique, was able to generate

clusters which yield similar results to those obtained by Garcia et al. (2021) [24].

Although all jaguars showcase movement behaviours associated with each respective topic, the frequency

of each behaviour may differ. This provides the opportunity to label individual jaguars in terms of their

behaviour profile, and to gain insight on the relation between jaguars. The sparse matrix representation

(or embedding) makes the topics interpretable and thus transparent. LDA is a generative model, which

facilitates the inference of topic distributions for new observations. The rich analysis and interpretation

of movement data, made possible by applying the LDA model, is encouraging.

Please find the full code for this chapter on my github as Jaguar movement topic interpretation.ipynb.

Please note that in order to protect the IP of this project, the repository is set to private, please contact

https://github.com/Armand-38/Armand-Graaff-Masters-Code/blob/85e22b4deeddf4c2cb7d95a41c139b5a54b9152c/Jaguar%20movement%20topic%20interpretation.ipynb
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me at armandgraaff@gmail.com, if you would like access to the repo.



Chapter 5

Trajectory clustering with LDA applied

to GPS driving data

5.1 Background

In this application, embeddings (topic distributions) inferred from LDA models were used to cluster drivers

based on features that characterise driver behaviour. The data involves 30 trips along a predetermined

urban route in Pretoria, South Africa. The data was captured by the Centre for Transport Development

at the Department of Industrial and Systems Engineering at the University of Pretoria in an effort to

calculate the Real Driving Emissions (RDE) of a specific vehicle [29]. The data contains the pollutant

concentrations of CO, CO2 and NOx, the ambient conditions, and vehicle diagnostics collected from

different sensors mounted to the car during the trips.

The goal of this application was to see if embeddings inferred from the topic × trajectory matrix θ,

shown in Figure 3.3 could be used to cluster individual driver behaviour. The Bhattacharyya and Jensen-

Shannon distance metrics were used to calculate the distances between the obtained topic distributions

for each of the trips. The driver identity for each trip is labeled, thereby enabling hypothesis testing to

determine if the trip embeddings between drivers differ significantly or not.

5.2 Research approach

In the dataset, each lat-lon point is an observation and a total of 20 features are captured at each

observation. See Table 5.1 for a comprehensive list of the features in the dataset. Similar to the jaguar

36
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dataset described in Chapter 4, the features are continuous, multi-dimensional variables.

As discussed in Chapter 3, in order to make use of LDA the occurrences of the features must be counted.

Recall that the input format for LDA is a Bag-of-Words (BOW), which is a count matrix, where each

cell represents the frequency of a word in each document. In this implementation, each trajectory/trip

is regarded as a document. In the raw dataset, the continuous feature variables must be discretised. We

used k-means clustering in order to cluster each feature variable, these clusters are the bins needed for

the next step of constructing the words, see Table 5.2, which shows the clusters created for the features

speed, rpm, and CO2.

Once discretised, these features were combined to create “words” at each observation, where each word

can be counted, as it would in the typical BOW matrix. This combination of features, henceforth referred

to as feature combinations (FC’s) creates rich semantic information at each lat-lon observation (see Tables

5.3 and 5.4 to see the FC’s used in the analysis). A BOW vectorisation was created for each trip, and the

LDA model could be applied directly. Furthermore, different combinations of features were experimented

with and the results are displayed.

The inferred topic × trip distribution is a lower dimensional embedding of the count-vector, described

in Section 3.3. Throughout this chapter, the terms “embedding” and “topic distribution” are used inter-

changeably. Recall from Section 3.2.4, an embedding for a single trip ti, is the vector θi from the θ matrix.

In contrast to the application in Chapter 4, where the focus was on interpretability of the topic assign-

ments to the trips, the embeddings in this implementation are used to investigate the ability to cluster

driver behaviour using LDA. The distances between the embeddings of each of the trips was used as a

measure of how similar the trips are. These distances were measured by calculating the Jensen-Shannon

and Bhattacharyya distances between the topic distributions for the different trips.

Hypothesis tests were set up for each of the drivers individually. In each one of these hypotheses, the

probability to randomly obtain a distance equal to or smaller than the average distance between the 10

trip embeddings of the driver himself is calculated. The urn model sampling method, described in more

detail in Appendix B was applied to these distances in order to compare them for the individual drivers

in an effort to determine if the model was able to differentiate between the drivers based on the features

in the dataset.

The research question is, is it possible to distinguish between driver behaviour of individual drivers using

lower dimensional embeddings contained in the topic × trajectory matrix, which was derived from vehicle

driving data?

See Section 5.3 for a full description of the data.
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5.3 Data

Three drivers each did 10 trips with a Ford Figo (a small hatchback vehicle). The trips were done in an

effort to capture Real Driving Emissions (RDE) to certify that the emissions of a vehicle are within the

acceptable standards while driving under real world conditions [29]. Each of the drivers followed the exact

same 62 km route to limit variance of external factors that can affect driver behaviour (change in altitude,

highway driving vs street driving, etc) as much as possible. Each of the driving features mentioned in

Table 5.1 was captured at every second of the trip. So for example, trip 1 has 6279 observations, relating

to 6279 seconds of the trip, or 1 hour, 44 minutes, and 39 seconds to complete the trip. Depending on

traffic conditions, the other trips were completed within a similar time span.

Figure 5.1 shows the trajectory of the route taken by the drivers.

Figure 5.1: Trajectory outline of the vehicle trip used to gather the data.

Table 5.1 provides detail on all of the vehicle data metrics that were collected as part of the research done

by Joubert et al. (2021) at the University of Pretoria [29].
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Table 5.1: Field descriptions.

Metric Description Unit of measure

date Date and time in GMT + 2 (South African Standard Time). Date time

trip Trip identifier, sequentially starting at one (30 Trips total). One

trip is a single field test completing a single route.

Integer value.

driver Driver number, sequentially starting at one (3 Drivers total).

load Additional load (balast) added to the vehicle. kg

gps_lat Latitude in WGS84. decimal degrees

gps_lon Longitude in WGS84. decimal degrees

gps_alt Altitude above sea level. metre

gps_speed Vehicle speed derived from the GPS unit. km/h

humidity Ambient humidity. %RH (relative

humidity)

pressure Ambient air pressure. mbar

temp Ambient temperature. °C

speed_vehicle Vehicle speed as recorded from OBDII port. km/h

throttle Absolute throttle position. %

rpm Vehicle rpm as recorded from OBDII port. rpm

air_fuel_ratio Air/fuel ratio of the gas sample.*

CO2_mass Instantaneous mass CO2.* g/s

CO_mass Instantaneous mass CO2.* g/s

NOx_mass Instantaneous mass NOx.* g/s

dist Distance between current data point and previous data point

(one second earlier). *

m

dist_from_start Total distance covered by the current trip.* m

accel Acceleration

CO2 The CO2 emitted per metre (m). CO2_mass/m

CO The CO emitted per metre (m). CO_mass/m

NOx The NOx emitted per metre (m). NOx_mass/m

* Calculated fields. Table adapted from Joubert et al (2022) [29].
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Figure 5.2: Visualisation of raw data for the speed and rpm of the different drivers.

From Figure 5.2, it is clear that in the high-dimensional trajectory data (raw data), the speed and rpm

values of the drivers are not very different. Some differences can be seen, for example, for Driver 1 (green)

the rev ranges close to idle (1000 rpm) were observed more often despite spending less time at rest,

suggesting that the driver coasted more often. Some other small differences can also be seen from this

plot, yet this data would be impossible to cluster when applying unsupervised clustering techniques to the

data directly. This is why the use of lower dimensional embeddings is a crucial part of this research, since

the LDA model is able to identify differences between the driver behavior based in the lower dimensional

latent space, and cluster the trajectories in this way.

5.3.1 Pre-processing and feature extraction

Now that an overview of the raw data is given, the pre-processing that needed to be done in order to apply

the LDA model can be explained. K-means clustering was used to discretise the data in order to create

the feature combinations (FC’s) that contain specific semantic information. For a detailed explanation on

this procedure, see Appendix C. In other words, different segments/bins were created of the value range

for each feature in the spatio-temporal time series data, in which each of the segments were represented

by an alphabetical letter. Each word that was created is therefore a concatenation of the feature segment

values, observed at that particular lat-lon point. Each feature combination (FC) can be thought of as the

vocabulary of the unique occurrences of these words. See the Table 5.2 for examples of the discretisations

obtained for some of the features.

A cluster of size 6 was chosen for the k-means discretisation, this number proved to be sufficient and

provided enough clusters in order to create meaningful words. A different number of clusters could have
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Table 5.2: Bin description of speed, rpm, and CO2.

Discretisation of speed, rpm, and CO2

Speed rpm CO2

Description Range (km \h) Description Range Description Range (emission mass per metre)

A 0 – 11.4 A 0 – 1110 A -1.36 – -0.253

B 11.4 – 29.4 B 1110 – 1590 B -0.253 – 0.311

C 29.4 – 44.7 C 1590 – 1980 C 0.311 – 0.849

D 44.7 – 58.8 D 1980 – 2320 D 0.849 – 1.47

E 58.8 – 76 E 2320 – 2730 E 1.47 – 2.82

F 76 – 132 F 2730 – 4830 F 2.82 – 7.37

been chosen, but in the interest simplicity, 6 clusters were used. Using a higher number of clusters should

give even more information on the clusters present in the data, however, in the interest of parsimony, a

lower number of clusters were used. An empirical study on the number of cluster can be considered for

future work.

Table 5.3 shows which features were included in each FC.

Table 5.3: Feature combinations that were included in the sampling procedure.

Feature combination list

Feature

combination

(FC)

Features included in the FC vocabulary

size

FC 01 speed 6

FC 02 rpm 6

FC 03 acceleration 6

FC 04 speed, rpm 36

FC 05 speed, throttle 36

FC 06 speed, acceleration 36

FC 07 speed, rpm, acceleration, throttle 931

FC 08 CO2, CO, NOx 115

FC 09 acceleration, CO2 35

FC 10 speed, CO2, CO, NOx 432

FC 11 acceleration, CO2, CO, NOx 415

FC 12 speed, rpm, acceleration, throttle, CO2, CO, NOx 6711



CHAPTER 5. TRAJECTORY CLUSTERING WITH LDA APPLIED TO GPS DRIVING DATA 42

Table 5.4: The concatenated words for observation 5000 for each FC.

Feature combination examples

Feature

combination

(FC)

Example word vocabulary

size

FC 01 speed-D 6

FC 02 rpm-D 6

FC 03 accel-B 6

FC 04 speed-D_rpm-D 36

FC 05 speed-D_throttle-B 36

FC 06 speed-D_accel-B 36

FC 07 speed-D_rpm-D_accel-B_throttle-B 931

FC 08 co2-B_co-A_nox-A 115

FC 09 accel-B_co2-B 35

FC 10 speed-D_co2-B_co-A_nox-A 432

FC 11 accel-B_co2-B_co-A_nox-A 415

FC 12 speed-D_accel-B_rpm-D_throttle-B_co-A_co2-B_nox-A 6711

Table 5.4 shows the words created at the 5000th observation of the second trip by driver 1. The vehicle

speed was 57.2 km\h, thus it makes sense that a lot of the features fall into clusters C and D.

In total, the experiment stored 167 561 observations, i.e. the experiment stored 167 561 seconds of driving

time, equalling about 46.54 hours of driving data. Each of the trips varied slightly in time, for example,

driver1trip1 = 6279 seconds ≈ 1.74 hours, and driver2trip5 = 5853 seconds ≈ 1.6275 hours.

5.4 Experimental design

In this experiment, the goal was to look at what combination of features gives the “word” embeddings

with the biggest separation between the drivers. The experimental design follows the following steps.

5.4.1 Building the LDA model and constructing the distance matrix

Step 1: Pre-processing.

Step 1 is the pre-processing step, outlined in Subsection 5.3.1. In this step each of the features in the raw
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dataset are clustered into 6 clusters using k-means. These discretised features are then used to build the

Bag-of-Words vectorisations for each of the FC’s. See Appendix C for a full explanation on how these

words were constructed using R-studio, as well as a link to the code on Github.

Step 2: Train the LDA model for each FC.

In this step the Bag-of-Words (BOW) vectorisations that were created in the previous step are used to

calculate the LDA model. This was done by following these steps: 1

1. Order the words by trip.

2. Use this data to create an event dictionary of the words.

3. Use the event dictionary to calculate the trajectory vectorisations.

4. Use the trajectory vectorisations and the event dictionaries to build the LDA model.

The LDA model was created by using the gensim package in Python.

Step 3: Calculate the trajectory embeddings

In this step the trained LDA model generated in the previous step was used to infer the trajectory

embeddings for each of the 30 trips. We therefore obtain a 30×n matrix, where n is the number of topics

used, containing the topic by trip distributions of each trip. The size of the matrix therefore depends on

the number of topics used. If 5 topics are used, the matrix would contain 30 rows and 5 columns, if 100

topics were used, the matrix would contain 30 rows and 100 columns.

Step 4: Construct the distance matrix and define populations.

After topic distribution for each trip was obtained, the distance between the topic distributions (embed-

dings) for each of the trips were calculated. The result of this calculation is a symmetric 30× 30 matrix,

containing the distances between each of the topic distributions for the different trips. The trips for each

driver were ordered, therefore trips 1-10 were the trips for Driver 1, trips 11-20 were the trips for Driver 2,

and trips 21-30 were the trips for Driver 3. In the distance matrix below, d1,2 is the distance (difference)

between the embeddings for trip 1 and trip 2, these distances, explained in Section 3.6.2, were used as

a measure of similarity between the trips. The 30 × 30 distance matrix, henceforth referred to as the

Population is defined as follows:
1For the sake of simplicity, the process is explained in singular form, but keep in mind each of these steps are repeated

for all the FCs.
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Population =



d1,1 d1,2 d1,3 ..... d1,30

d2,1 d2,2 d2,3 ..... d2,30

. . . .

. . . .

d11,1 d11,2 d11,3 ..... d11,30

. . . .

. . . .

d21,1 d21,2 d21,3 ..... d21,30

. . . .

. . . .

d30,1 d30,2 d30,3 ..... d30,30


where the first 10 rows, trips 1-10, henceforth referred to as Population 1 are the distances from the

trips of Driver 1 to all of the other trips, including Driver 1 himself. Population 1 is defined as follows:

Population 1 =



d1,1 d1,2 d1,3 ..... d1,30

d2,1 d2,2 d2,3 ..... d2,30

. . . .

. . . .

d10,1 d10,2 d10,3 ..... d10,30


Population 2 and Population 3, are defined in a similar manner, with rows 11-20, and 21-30 of the

Population distance matrix being the trips for Driver 2 and Driver 3, respectively.

We therefore have that:

Population = Population1//Population2//Population3

where // indicates row concatenation of the populations.

This matrix is defined as the Population since it contains all of the distance metrics that are of interest

and it will be the basis of the urn model sampling, which is done in the next step. This Population matrix

will be a symmetric matrix since the distance between trip 1 and trip 2, will be the same as the distance

between trip 2 and trip 1, i.e. d1,2 = d2,1.

Furthermore, definitions are established for smaller subsections of the Population matrix, containing the

distances between only the 10 trips for Driver 1, 2 and 3 respectively, these subsections are referred to as

Population 1:1, Population 2:2, and Population 3:3. In other words, Population 1:1 contains the

distances between the trips for Driver 1 and himself, again, Population 2:2 and Population 3:3 are defined

in the same way, for Driver 2 and Driver 3 respectively. Thus, if Population 1, is the first 10 rows in the



CHAPTER 5. TRAJECTORY CLUSTERING WITH LDA APPLIED TO GPS DRIVING DATA 45

population matrix defined above, Population 1:1, would be the first 10 rows, and the first 10 columns of

the population matrix, i.e. the first 10 columns of Population 1.

See Figure 5.3, which shows the structure of the Population and sub populations, contained in the distance

matrix.

Figure 5.3: Visualisation of the structure of populations in the data.

Now that these distances are known, the aim is to establish if the difference between the trips of one

driver and his own trips is lower than the difference between the trips of same driver and the trips of the

other drivers.

The obvious way to test this is by means of a hypothesis test. Since the assumption of a normal distribution

can’t be made, the method of sampling was used for hypothesis testing, which is described in the next

few steps.
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5.4.2 Sampling

Step 5: Sampling and hypotheses testing.

With regards to Figure 5.3, the blue block, which is Population 1 (the population for Driver 1), is the

portion that was sampled for the hypothesis test of Driver 1, using the urn model, the urn model re-

sampling method is explained in detail in Appendix B. In short, values were sampled from Population 1,

after which it was tested if the average of the 10 000 sampled values from Population 1 is smaller than the

average of the values in Population 1:1. After 10 000 iterations, the resulting p-value is the proportion of

times that this was the case. Naturally, a small p-value is expected if the average distances in Population

1:1 is smaller than the average distances contained in Population 1.

The same procedure was repeated for Driver 2 and Driver 3, using the red and green blocks respectively.

Since the distance matrix in Figure 5.3 is symmetric, the blue, red and green blocks could have been

defined on the Population matrix vertically as well, and the values in the populations would have been

the same. In the implementation, this distance matrix can be seen as a heat map in Figure 5.5, the

symmetry of the distance matrix can clearly be seen on the heat map as well.

The hypothesis tests for each of the drivers in this work are defined as follows:

H0 : µi:i ≥ µi

HA : µi:i < µi

For i = 1,2,3 for Driver 1, Driver 2 and Driver 3 respectively and where µi is the sample average of

Population i and µi:i is the average of Population i:i. Therefore, the null hypothesis for Driver 1 is that

the average of Population 1:1 is greater than or equal to the sample average of Population 1 and this

hypothesis will be rejected if the average of population 1:1 (µ1:1) is significantly smaller than the average

of the sampled values (µ1). The same logic follows for Driver 2 and Driver 3.

Therefore, the hypothesis tests if the embeddings (or topic distributions) of the trips of one driver and

the embeddings of the trips of another driver will be significantly different compared to the difference of

the trips of a driver with himself. The results will be tested at a significance level of 1%. Therefore, the

null hypothesis that the means are the same will be rejected if the p-value is less than 0.01.

The sampling procedure was repeated 100 times, and the averaged results are given. Furthermore, these

hypothesis tests were conducted for all of the FC’s, for all the drivers.
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5.5 Results

For each FC at each number of topics, the final averaged results of 100 models are added in tables for the

implementations which used the Bhattacharyya and Jensen-Shannon distance metrics, respectively.

As explained before, a lower p-value means that the topic distribution for the driver was separated

more from the other drivers, so a lower p-value means that the model picked up a greater separa-

tion/difference/distance between the driving behaviour present in the trips.

In Tables 5.5 - 5.14, p1, p2 and p3, are the p-values for the hypothesis tests of Driver 1, Driver 2 and

Driver 3, respectively. With the 1% level of significance, the results were regarded as significant if the

p-value was less than 0.01, the p-values that were regarded as significant are marked in bold in Tables

5.5 - 5.14.

5.5.1 Bhattacharyya

The results for the Bhattacharyya implementation is given in Tables 5.5 - 5.9:

Table 5.5: Results for Bhatacharyya implementation with 5 topics.

Bhattacharyya (5 topics)

Feature Combination p1 p2 p3

FC 01 0.139004 0.145068 0.134583

FC 02 0.026185 0.039556 0.021644

FC 03 0.200006 0.266165 0.283411

FC 04 0.000059 0.001034 0.000476

FC 05 0.000026 0.001002 0.000281

FC 06 0.034951 0.051496 0.033035

FC 07 0.000008 0.000206 0.000114

FC 08 0.090204 0.158781 0.044302

FC 09 0.158800 0.165194 0.050315

FC 10 0.020988 0.058462 0.014944

FC 11 0.062472 0.137225 0.023006

FC 12 0.003765 0.049775 0.011280

P-value Averages 0.06137 0.08950 0.05145
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Table 5.6: Results for Bhatacharyya implementation with 10 topics.

Bhattacharyya (10 topics)

Feature Combination p1 p2 p3

FC 01 0.088371 0.062519 0.088537

FC 02 0.010922 0.015026 0.005727

FC 03 0.131532 0.176245 0.260220

FC 04 0.000033 0.000134 0.000074

FC 05 0.000020 0.000204 0.000105

FC 06 0.011911 0.024987 0.010960

FC 07 0.000010 0.000040 0.000031

FC 08 0.046443 0.128471 0.019199

FC 09 0.097014 0.131685 0.025566

FC 10 0.013382 0.023481 0.003985

FC 11 0.045335 0.117677 0.015969

FC 12 0.015900 0.051138 0.024916

P-value Averages 0.03841 0.06097 0.03794

Table 5.7: Results for Bhatacharyya implementation with 20 topics.

Bhattacharyya (20 topics)

Feature Combination p1 p2 p3

FC 01 0.049068 0.033309 0.045046

FC 02 0.007218 0.006372 0.003722

FC 03 0.093748 0.147962 0.201044

FC 04 0.000018 0.000061 0.000035

FC 05 0.000011 0.000106 0.000080

FC 06 0.002709 0.013403 0.004083

FC 07 0.000005 0.000028 0.000042

FC 08 0.048310 0.118708 0.021487

FC 09 0.055886 0.117338 0.008880

FC 10 0.007262 0.027910 0.002680

FC 11 0.037053 0.105076 0.016918

FC 12 0.009191 0.038883 0.013821

P-value Averages 0.02587 0.05076 0.02649
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Table 5.8: Results for Bhatacharyya implementation with 50 topics.

Bhattacharyya (50 topics)

Feature Combination p1 p2 p3

FC 01 0.025190 0.014400 0.028270

FC 02 0.006169 0.004665 0.002390

FC 03 0.055966 0.130974 0.124931

FC 04 0.000017 0.000033 0.000018

FC 05 0.000008 0.000052 0.000053

FC 06 0.001380 0.007144 0.002489

FC 07 0.000006 0.000015 0.000014

FC 08 0.027836 0.095927 0.004204

FC 09 0.038058 0.099071 0.006928

FC 10 0.008116 0.023029 0.001782

FC 11 0.029204 0.113683 0.005912

FC 12 0.007147 0.028228 0.013060

P-value Averages 0.01659 0.04310 0.01584

Table 5.9: Results for Bhatacharyya implementation with 100 topics.

Bhattacharyya (100 topics)

Feature Combination p1 p2 p3

FC 01 0.025442 0.010125 0.017742

FC 02 0.005334 0.003575 0.002099

FC 03 0.042088 0.101235 0.111890

FC 04 0.000025 0.000025 0.000021

FC 05 0.000007 0.000065 0.000066

FC 06 0.000916 0.005991 0.002046

FC 07 0.000004 0.000048 0.000058

FC 08 0.026212 0.096515 0.004864

FC 09 0.031852 0.089839 0.004543

FC 10 0.007587 0.020673 0.002412

FC 11 0.019836 0.100617 0.004579

FC 12 0.012084 0.029140 0.008505

P-value Averages 0.01428 0.03815 0.01324
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5.5.2 Jensen-Shannon

The results for the Jensen-Shannon implementation is given in Tables 5.10 - 5.14:

Table 5.10: Results for Jensen-Shannon implementation with 5 topics.

Jensen-Shannon (5 topics)

Feature Combination p1 p2 p3

FC 01 0.123822 0.104895 0.124121

FC 02 0.027313 0.028808 0.016190

FC 03 0.174145 0.201469 0.242810

FC 04 0.000067 0.000891 0.000252

FC 05 0.000043 0.000760 0.000263

FC 06 0.029483 0.051427 0.041066

FC 07 0.000031 0.000247 0.000110

FC 08 0.072759 0.135959 0.038358

FC 09 0.102357 0.142991 0.036887

FC 10 0.013743 0.033540 0.010471

FC 11 0.083446 0.146366 0.038786

FC 12 0.010509 0.072658 0.016365

P-value Averages 0.05314 0.07667 0.04713
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Table 5.11: Results for Jensen-Shannon implementation with 10 topics.

Jensen-Shannon (10 topics)

Feature Combination p1 p2 p3

FC 01 0.062240 0.041092 0.050106

FC 02 0.008486 0.010507 0.004215

FC 03 0.099279 0.161899 0.195033

FC 04 0.000029 0.000149 0.000100

FC 05 0.000013 0.000191 0.000116

FC 06 0.004599 0.018349 0.008778

FC 07 0.000012 0.000025 0.000034

FC 08 0.052536 0.113937 0.025362

FC 09 0.061624 0.111563 0.015709

FC 10 0.005586 0.017316 0.002543

FC 11 0.029827 0.087417 0.010229

FC 12 0.004108 0.054275 0.017213

P-value Averages 0.02736 0.05139 0.02745

Table 5.12: Results for Jensen-Shannon implementation with 20 topics.

Jensen-Shannon (20 topics)

Feature Combination p1 p2 p3

FC 01 0.033317 0.021049 0.027088

FC 02 0.006356 0.005770 0.002428

FC 03 0.060136 0.105669 0.144043

FC 04 0.000021 0.000069 0.000057

FC 05 0.000011 0.000102 0.000066

FC 06 0.002096 0.009933 0.002750

FC 07 0.000008 0.000029 0.000018

FC 08 0.040263 0.089403 0.017142

FC 09 0.029737 0.081662 0.007187

FC 10 0.003104 0.015647 0.002687

FC 11 0.021191 0.084134 0.009651

FC 12 0.006012 0.044829 0.018279

P-value Averages 0.01685 0.03819 0.01928
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Table 5.13: Results for Jensen-Shannon implementation with 50 topics.

Jensen-Shannon (50 topics)

Feature Combination p1 p2 p3

FC 01 0.022054 0.011141 0.019596

FC 02 0.005959 0.003800 0.002067

FC 03 0.029769 0.084062 0.090304

FC 04 0.000016 0.000047 0.000028

FC 05 0.000011 0.000083 0.000056

FC 06 0.001059 0.006686 0.002283

FC 07 0.000009 0.000016 0.000028

FC 08 0.023588 0.070768 0.006356

FC 09 0.023596 0.071067 0.005697

FC 10 0.003757 0.013698 0.001810

FC 11 0.019365 0.063843 0.007062

FC 12 0.006006 0.025563 0.016385

P-value Averages 0.01127 0.02923 0.01263

Table 5.14: Results for Jensen-Shannon implementation with 100 topics.

Jensen-Shannon (100 topics)

Feature Combination p1 p2 p3

FC 01 0.018708 0.009271 0.01409

FC 02 0.005097 0.003215 0.001974

FC 03 0.020159 0.059759 0.079711

FC 04 0.000037 0.000041 0.000028

FC 05 0.000007 0.000074 0.000068

FC 06 0.000916 0.004678 0.001902

FC 07 0.000004 0.000028 0.000043

FC 08 0.023716 0.064049 0.005536

FC 09 0.018200 0.065571 0.005119

FC 10 0.003013 0.013513 0.002070

FC 11 0.017312 0.056644 0.006125

FC 12 0.019383 0.024351 0.018490

P-value Averages 0.01055 0.02510 0.01126
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Figure 5.4: Side by side comparison of Bhattacharyya and Jensen-Shannon results, showing how the average p-

values decrease as the number of topics increase.

In Figure 5.4, the average p-values for all of the 12 FC models at each of the number of topics is displayed,

for each driver. It is clear that, as the number of topics increase, the p-values decrease, this means that

when a higher number of topics are used the clustering results improve. Upon close inspection, it is clear

that, for both the Bhattacharyya and Jensen-Shannon implementations, these graphs make an elbow

curve. This is because increasing from 5 topics to 10 topics, and from 10 topics to 20 topics, there is a

sharp decrease in the p-values, indicating substantially better clustering performance of the LDA model.

After that, increasing the number of topics only provides marginally lower p-values. Therefore, when

aiming to create the most parsimonious model, a model with 50 topics should be chosen, since the added

complexity of using more topics, does not justify the slightly better clustering results. For example, for

FC 07, to create a model with 5 topics takes about 1.97 seconds, a model with 50 topics takes about 14.33

seconds, and to create a model with 100 topics, takes about 27.46 seconds. So it takes noticeably longer

to create the models with more topics because of the added complexity.

5.5.3 Visualisation of the best obtained model

The heat map shown in Figure 5.5 represents the distance matrix that was defined in Section 5.4 i.e. it

is the population of distances that were sampled from. Population 1, Population 2 and Population 3,

explained in Section 5.4 are surrounded in red bounding boxes, and Population 1:1, Population 2:2 and

Population 3:3 are surrounded in green bounding boxes. These red and green colours represent the values

that were sampled, and correspond to the colours of the density plots of Figures 5.6 - 5.8.
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Figure 5.5: Heat map of the calculated distances for the best performing model. The row indexing starts at 0 and

ends at 29 because python indexing starts at 0 (0 is the first trip).

The distances in populations 1:1, 2:2 and 3:3 , are notably darker compared to the rest of the distances,

and darker blocks contain lower values. This is as expected, since if the distances between the embeddings

for the 10 trips of each driver is smaller compared to the distances between embedding of the trips of

different drivers, it follows logically that there are higher similarities between the embeddings of the trips

of each driver’s own sub population (Population 1:1, Population 2:2 and Population 3:3), and hence, there

is a higher similarity in driver behavior.

With Figure 5.5 at hand, the calculation of the p-values can be explained again. For Driver 1, by sampling,

10 values were drawn randomly from the upper red bounding box (Population 1), and the average was

calculated. This was repeated 10 000 times, and all of the values are added in a list. The proportion of

these values that were smaller than the average of the upper left green bounding box (Population 1:1),

was calculated. This calculated value is the probability to randomly get a value from Population 1 that

will be smaller than the average of Population 1:1. This calculated value is the p-value for Driver 1 (p1),

as seen in Tables 5.5 to 5.14. The process was repeated for Driver 2 and Driver 3.

Each FC, at each number of topics, for each distance metric, hence each row in Tables 5.5 to 5.14, had its
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own unique distance matrix like the one in Figure 5.5, from which there was sampled in order to calculate

the p-values.

The heat map in Figure 5.5 is the heat map of one of the best models, more specifically, it is the model

for FC 07, using the Jensen-Shannon distance metric, at 100 topics, shown in row 7 of Table 5.14, FC 07

contained the features speed, rpm, acceleration and throttle, and these combined features provided the

best clustering results across all the different models tested. It should be noted that the combination of

only speed and rpm, or only speed and throttle, which was FC 04 and FC 05 respectively, provided very

good results as well.

The results in Figures 5.6 to 5.8 indicate the respective densities of the distances between the topic dis-

tributions for each of the drivers, corresponding to the model shown in the heat map in Figure 5.5. In

Figure 5.6, the green density plot, is the density of 10 000 sampled averages from the green bounding box

for Driver 1 (Populations 1:1), shown in the heat map in Figure 5.5. Recall in the sampling procedure,

only values from Population 1 are sampled, and compared to the average of Population 1:1, thus the

green density plot containing 10 000 sampled averages from Population 1:1 was only created to aid in the

visualisation of the density plots. The red density plots are the densities of 10 000 sampled averages from

the corresponding red bounding boxes for driver 1 (Population 1) and it is the values from this red density

plot that were used to calculate the p-values. A similar approach was followed to create the density plots

for Driver 2 and Driver 3, shown in Figure 5.7 and 5.8, respectively.

5.5.4 Analysis of the density plots.

In Figure 5.6, a clear difference can be noticed between the distribution of the distances for Population

1:1 (green), and Population 1 (red). The p-value (p1) is the percentage of red values, that is to the left

of the green dotted line. The green dotted line is the average of Population 1:1 and the red dotted line is

the average of Population 1. Similarly, in Figure 5.7, the green dotted line is the average of Population

2:2, and the red dotted line is the average of Population 2. The same logic follows for Driver 3 in Figure

5.8.

In all three the density plots for the three drivers of the best model (Figures 5.6 to 5.8), corresponding to

the heat map in Figure 5.5, it can be seen that there is a large difference between the distributions of the

sample values for the sub populations 1:1, 2:2 and 3:3, and their sampling populations i.e. populations

1, 2 and 3 respectively. On all three of the plots it can be seen that the distances between a drivers’ own

trips are much smaller than the distances between the trips of different drivers, and that almost no values

in the red density plots lie left to the green dotted lines. This is why the p-values for this model are so

small. The model was therefore able to provide an excellent clustering result for the driver behavior of
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the three drivers in the dataset. Subsection 5.5.5 explores the results of some of the other models that

were tested as part of the simulation.

Figure 5.6: Density plots of the best model for Driver 1.
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Figure 5.7: Density plots of the best model for Driver 2.

Figure 5.8: Density plots of the best model for Driver 3.
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5.5.5 Discussion of other models

5.5.5.1 Model containing only speed data

(a) Driver 1 density plot. (b) Driver 2 density plot.

(c) Driver 3 density plot. (d) Heat map of the speed only model.

Figure 5.9: Plots for the model based only speed, (FC1) in Table 5.4.

Figure 5.9, shows how the model performed for FC 01, i.e. the model that only used the speed feature to

cluster drivers. Since, as explained above, the most parsimonious model would be to use 50 topics. Figure

5.9, shows the result for 50 topics, for the Jensen-Shannon distance metric. The average p-values for this

specific model, was after 100 iterations 0.022054, 0.011141 and 0.019596 for p1, p2 and p3 respectively.

This is not a very good result, none of the p-values are significant at the defined 1% level of significance.

It can be seen from the density plots for this model that the red and green densities overlap quite a bit

more, compared to the best result shown above. Although one can see the population blocks for the

different drivers from the heat map in Figure 5.9 (d), these blocks are not very defined, which also shows

that the model was not able to pick up enough separation between the drivers.
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5.5.5.2 Model containing only rpm data

(a) Driver 1 density plot. (b) Driver 2 density plot.

(c) Driver 3 density plot. (d) Heat map of the rpm only model.

Figure 5.10: Plots for the model based only on rpm, (FC2) in Table 5.4.

Figure 5.10, shows how the model performed for FC 02, i.e. the model that only used the rpm feature to

cluster drivers. Similar to the speed only model above, Figure 5.10 shows the result of the model, using

50 topics, for the Jensen-Shannon distance metric. From the density plots it can be seen that the rpm

only model performed better than the speed only model, since, although marginally, the density plots for

the rpm only model were more separated compared to the speed only model. Visually, a big difference

can be seen on the heat map, with much clearer blocks for the populations of each driver, indicating

better separation between the drivers. Also, the average p-values for each driver for this model after 100

iterations is 0.005959, 0.003800 and 0.002067 for p1, p2 and p3 respectively. All 3 these p-values are

significant at the defined 1% level of significance.
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5.5.5.3 Model containing only emissions data

(a) Driver 1 density plot. (b) Driver 2 density plot.

(c) Driver 3 density plot. (d) Heat map of the emissions only model.

Figure 5.11: Plots for the model based only on emissions, (FC8) in Table 5.4.

Figure 5.11, shows how the model performed for FC 08, i.e. the model that only used the emissions

features to cluster drivers. Once again, Figure 5.11 shows the result of the model using 50 topics, for the

Jensen-Shannon distance metric. In this model, the features CO2, CO and NOx were combined in an

experiment to see if the emissions values could provide good clustering results between the trajectories of

the different drivers. The results, however show that this was not the case, from the density plots it is

clear that there is a large overlap between the densities for the drivers. On the heat map, it is also clear

that the model was not always able to differentiate between drivers. The distances for Driver 2 seemed

to form two separate clusters, one for trips 10-15, and another one for trips 16-19, which is not a great

result. This is also why there is such a large overlap of the density plots for Driver 2. The p-values for

this model are 0.023588, 0.070768 and 0.006356 for p1, p2 and p3, respectively. The poor clustering result

for driver 2 can also be seen from the higher value for p2. The emissions only model was able to cluster
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Driver 3 well, the can be seen from the value of 0.006356 for p3, which is significant at the 1% level, as

well as from the density plots for Driver 3 and the clearly defined block in the lower right corner of the

heat map in Figure 5.11.

See the emissions only model in Figure D.1 of Appendix D, where only 5 topics were used. It can be

seen that the model performed worse when only using 5 topics, showing the difference it makes in the

clustering results when more topics are used.

5.6 Summary of results

Although the data was originally captured to study the emissions of vehicles, many other features related

to driver behaviour were also captured, features like speed, rpm and throttle are all indications of driver

behaviour and made this an ideal dataset to use for the application in this chapter.

From the p-values in Tables 5.5 to 5.14, the heat map of the distance matrix in Figure 5.5, and the density

plots in Figures 5.6 to 5.8, it is clear that the model was able to pick up differences in the driver behaviour

of the 3 drivers using lower dimensional embeddings obtained from the LDA model. Referring formally

to clustering, the model was able to cluster trips 1-10, trips 11-20 an trips 20-30 into their own groups,

from the pre-processing, we know that these were the trips of Driver 1, Driver 2 and Driver 3 respectively,

since the trips were ordered per driver, starting with Driver 1. Therefore the model was able to cluster

the trips according to their drivers correctly.

5.6.1 The use of the speed and rpm features in the models

One might be tempted to think the rpm and speed should give the same results since they should be

highly correlated. This is not always the case, since on the road there is a small delay between the rpm

rising and speed catching up to the rpm levels. Another major consideration to keep in mind is that the

car has 5 gears, and the speed-rpm ratio for each gear is different. The correlation between gps_speed

(the speed metric used in the models) and rpm across all the drivers are 0.708, which is high, but not as

high as one might expect.

As explained in Subsection 5.5.5, the rpm only model provided better results, in terms of the p-values

obtained. This shows that rpm provided richer spatio-temporal information and is a better indication of

driver behaviour in this dataset, compared to the speed metric.
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5.6.2 Combination of speed and rpm in one model

It was when these 2 features were combined, that we obtained the model with one of the best results.

When the speed and rpm features were combined in FC 04, the model was able to provide excellent

clustering results for the different drivers.

5.6.3 Combination of speed and throttle in one model

It is worthy to note that the combination of speed and throttle also provided great results, comparable

to that of the speed and rpm model. Once again, the logical assumption would be that there is a high

correlation between throttle and rpm, but the correlation between throttle and rpm across all drivers is

0.513, which is a lot lower than one might expect. Again, this may be due to the fact that, once more

pressure is applied to the throttle, there is a delay before the car’s rpm can get to the desired level, causing

a lower correlation. Also, since the car has 5 gears, and the throttle-rpm ratio for each gear is different,

so a high correlation should not be expected. Nevertheless, the throttle feature contributed significantly

towards a model that provided meaningful clustering results.

5.6.4 Acceleration only model

The model that used only the acceleration feature (FC 03), provided one of the worst models in the

analysis, even at 100 topics, the p-values for the model were not significant. Hence, in contrast to what

was expected, when using the LDA model on this dataset, the acceleration feature did not provide as

much information on driver behaviour, when compared to other features like speed, rpm and throttle.

The model was able to somewhat cluster the trajectories of the drivers, but not as well as some of the

other models tested.

5.6.5 Emissions only model

Similar to the Acceleration only model, the emissions model, containing a combination of the features CO,

CO2 and NOx, which is FC 08, did not provide good clustering results. Interestingly, the model performed

far better in separating Driver 3 from the other drivers, when compared to the results for Driver 2 and

Driver 1. At the 100 topic model FC 08 had p-values of 0.023716, 0.064049, and 0.005536 for p1, p2 and

p3 respectively. Therefore, the p-value for Driver 3 was significant, where the p-values for Drivers 1 and

2 was not even close to the significance level of 1%.
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5.6.6 Comparing the two distance metrics

When looking at Figure 5.4, the results of the Bhattacharyya and Jensen-Shannon models can be compared

quite easily. In comparison with the Bhattacharyya implementation, the results of the Jensen-Shannon

implementation performed marginally better. This can be seen from the fact that the average p-values

of the drivers for the Jensen-Shannon model were a bit lower at each topic level. Also, the elbow turn

on the Bhattacharyya graph is not as sharp, when compared to the Jensen-Shannon graph, indicating

that increasing the number of topics did not have such a strong effect in decreasing the p-values when

compared to the Jensen-Shannon model.

5.6.7 Number of topics

As can be seen from Figure 5.4, the number of topics used in the model proved to be a significant factor

in it’s performance. The graph makes a clear elbow turn, indicating that, initially, increasing the number

of topics had a significant effect on decreasing the average p-values for all the drivers by a substantial

margin. In contrast, between 50 and 100 topics, increasing the number of topics only related to a marginal

improvement in the results. For the best models, FC 04, FC 05 and FC 07, which were the speed-rpm,

speed-throttle and speed-rpm-throttle-acceleration models respectively, the models performed well at all

levels, from 5 topics to 100 topics. With more topics providing negligible improvements. In contrast, for

the models that struggled at 5 topics, adding more topics to the mix allowed those models to perform

exceptionally better, for FC 01 (the speed only model) for example, the p-values more than halved when

10 topics were used instead of 5, and halving again when 20 topics were used instead of 10. For that model,

when 5 topics were used, the p-values were 0.12382, 0.10490 and 0.12312, for p1, p2 and p3 respectively,

compared to 0.01871, 0.00927 and 0.01409 for p1, p2 and p3 respectively, when using 100 topics. This

shows how much better the results get when more topics are used. The other FC’s that struggled at 5

topics, also followed a similar pattern, with almost all the models providing good results at 100 topics.

5.6.8 Results for the individual drivers

Referring to Figure 5.4 once again, it is clear that the model performed similarly for Drivers 1 and 3, both

having average p-values close to 0.01 at 50 and 100 topics. Driver 2, denoted by the red line, was clearly

more difficult to cluster than the other two drivers for the majority of the models. For the best models

(FC 04, FC 05 and FC 07), at 50 topics for the Jensen-Shannon model, the clustering results for Driver

2 was clearly significant, with p-values of 0.000074 and 0.000083 for p2 of FC 04 and FC 05 respectively,

as can be seen on Table 5.13. Therefore when using the right model, Driver 2 was clustered correctly, but

even in these models, the p-values for Driver 2 were higher, compared to the p-values for Drivers 1 and 3.
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In Figure 5.4, the red line showing the p-values for Driver 2 is clearly well above the blue and green lines

of Drivers 1 and 3, even when looking at the 100 topic level.

5.6.9 General notes

It is important to note that when capturing the data, the goal was not to look at driver behaviour

and hence, the drivers did not set out to drive differently, meaning that the dataset is a very realistic

representation of real word driving behaviour. Because of this, differences in driving behaviour picked up

by the LDA embeddings can be considered as a significant result.

The experiment, as outlined above, was repeated 100 times for each of the 12 FC’s, for 5, 10, 20, 50,

100 topics, which accounts to 6000 LDA models created for each distance metric, hence 12 000 LDA

models were created in total. For each LDA model, and each driver, 10 samples were drawn, 10 000 times,

meaning that 100 000 samples were drawn for each driver at each iteration, resulting in 300 000 samples

drawn at each iteration. Therefore, in total 3.6 billion samples were drawn to test the models, at the

Bhattacharyya distance metric, the simulation ran for 30078 seconds ≈ 8.355 hours to create the 6000

LDA models and for the Jensen-Shannon distance metric, the simulation ran for 31607 seconds ≈ 8.780

hours.

5.7 Conclusion

In this application the question of whether it is possible to cluster driver behaviour with LDA was an-

swered. A simulation study was done, applying the LDA models in many different combinations, and

the results show that when proper pre-processing is done on the semantic information available with the

trajectory data, it is in fact possible to distinguish between driver behaviour using the lower dimensional

embeddings obtained from the LDA model. When using the right combination of features and enough

topics, the model was able to successfully cluster all of the trips for each of the drivers at a 1% level

of significance. Therefore the topic × trajectories matrix θ, which was introduced in Chapter 3, pro-

vided embeddings that could be used to distinguish driver behaviour, based on the Bhattacharyya and

Jensen-Shannon distance metrics.

Using the lower dimensional embeddings present in the LDA model, the model is able to detect differences

present in the lower dimensional latent space, hence avoiding the problems that other traditional clustering

techniques face. These problems were outlined by [48] and discussed in Section 2.2.

Please find the full code for this chapter on my github as Analysis of the emissions dataset final.ipynb.

Please note that in order to protect the IP of this project, the repository is set to private, please contact

https://github.com/Armand-38/Armand-Graaff-Masters-Code/blob/fb1c54d958fcbf8ed456a466f360baa5b38d29e1/Analysis%20of%20the%20emissions%20dataset%20final.ipynb
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me at the email address armandgraaff@gmail.com, if you would like access to the repo.



Chapter 6

Conclusions

In this work, based on the similarities between text and movement data, the application of LDA to

movement data was studied. Once this similarity was established, LDA provided a remarkable collection

of methods and tools for the analysis of movement data. Trajectory clustering techniques with LDA utilise

unsupervised techniques developed in the area of text analytics.

The results of the experiments in this work have shown that by using LDA, interpretable topics for

trajectories can be obtained. Furthermore, trajectories can be clustered based on the lower dimensional

embeddings of movement behavior that is semantically present in the trajectories. As far as we know,

this is the first time that movement data have been clustered by using these statistical distance formulas

to calculate the distance between the lower dimensional embeddings obtained from LDA.

Two use cases for LDA based on trajectory modelling were presented. Firstly, the technique was applied

to the movement of jaguars in order to extract meaningful topics, and secondly, by clustering the driving

behaviour of three individuals.

The limitations of this method include the fact that semantic information about the trajectory data is

needed in order to perform clustering using LDA. If sufficient semantic information is not present in

the data, semantic information can be derived by applying abstraction on the data, but these semantic

features are often not as rich in information about movement behaviour, compared to semantic information

captured with the lat-lon points.

Future work in this field can focus on extending the methodology established in this work to more domains

by allowing for cross disciplinary collaboration between NLP specialists and domain experts in movement

data fields. The analysis of trajectory clustering can be extended to trajectory classification, various text

classification techniques can be explored, including Tf-Idf, Word2Vec and BERT. Future work can also
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focus on the explainability of the LDA model, so that the technique developed in this work can be used

and interpreted by domain experts. Efficient trajectory visualisation with packages such as moving pandas

can also be explored as part of enhancing the explainability of these models.
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Appendix A

Plot of the jaguar movement on a map

Figure A.1: Trajectories of 6 jaguars.



Appendix B

The Urn model

The urn model is a way to model real life issues as if they were problems that involve drawing balls out

of an urn. The urn model used in this work can be described as follows:

In the application of this work, the “urns” in the urn model are represented by Population 1, Population 2

and Population 3, defined in Subsection 5.4. For the hypothesis test of Driver 1, Population 1 was used as

the urn from which values were drawn. It is useful to note here that the sub populations i.e. Population

1:1, Population 2:2 and Population 3:3, were included in the urns, for example, Population 1:1 is included

as part of Population 1. This is necessary since the urn model should sample from the entire population

of values for each driver.

Steps

The steps of the urn model re-sampling procedure are explained in terms of Driver 1, but the same

procedure was repeated for Driver 2 and Driver 3 as well.

Step 1:

Since each driver has 10 trips, a sample of 10 distances was randomly drawn from the urn. The mean of

this sample was then calculated and added to a list. This process was repeated 10 000 times and in the

end we have a list of 10 000 means. The mean of this list was then calculated, effectively calculating the

“mean of means”.

Step 2:

The mean of the distances between the 10 trips of Driver 1 was then calculated, note that no sampling
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was done here.

Step 3:

The results for Driver 1, and all of the distances, can then be compared. The null hypothesis states

that the mean of Population 1:1 will be greater than or equal to the mean of the sample averages from

Population 1. The p-values were calculated as the proportion of values that were sampled from Population

1 that were smaller compared to the average of Population 1:1.

Step 4:

The means of population 1 and population 1:1 were plotted, along with the density plot for the distances

between the trips for Driver 1 only (Population 1:1), and the density plot of the list containing the 10 000

sampled means from Population 1.



Appendix C

Discretisation of features in order to

construct feature combinations

The feature combinations (FC’s) were created from the raw data in the following manner using Rstudio.

Recall that data was captured at every second of each trip, so there is a new observation at a new lat/lon

point every second.

1. The raw data was loaded into Rstudio

2. The acceleration was calculated at each observation (lat-lon point).

3. The CO, CO2 and NOx emission metrics was calculated per distance, i.e. the emission metrics were

divided by the distance travelled for that observation. So the result is emissions emitted per metre,

calculated at each observation.

4. From the arules library in Rstudio, the discretise method was used to cluster each feature into 6

clusters by use of k-means clustering.

5. Each feature was given a “syllable”, for example, the feature “speed”, was given the syllable “speed-”,

“acceleration” was given the syllable “accel-”, the rest of the features was given similar syllables.

6. For each FC, create “words” by concatenating the syllables of each feature included in the FC, with

the bins that each feature are in at each observation.

7. Write the data to a csv file so that it can be imported into the python script.

Please find the full code on my github as Creating Feature Combinations.R. Please note that in order
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to protect the IP of this project, the repository is set to private, please contact me at the email address

armandgraaff@gmail.com, if you would like access to the repo.



Appendix D

Emissions only model with 5 topics

(a) Driver 1 density plot. (b) Driver 2 density plot.

(c) Driver 3 density plot. (d) Heat map of the emissions only model.

Figure D.1: Plots for the model based only on emissions, where only five topics were used, (FC8) in Table 5.4.
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