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ABSTRACT 
 

High quality road infrastructure is essential to support economic growth for any landlocked 
region, confirmed by the fact that 79% of South African goods use road transport. 
Protection of the road infrastructure is implemented by means of overload control 
monitoring at Traffic Control Centres (TCCs) on freight corridors linking ports with 
economic hubs. As these systems lack the available information to support intelligent 
decision-making, 75% to 85% of statically weighed vehicles are legally loaded, resulting in 
unnecessary wastage of time and fuel. This paper proposes an intelligent weigh-in-motion 
(IWIM) algorithm aiming to decrease unnecessary static weighing of vehicles through data 
sharing between TCCs combined with intelligent data interpretation. Several Artificial 
Intelligence (AI) models were evaluated for their ability to decrease static weighing of 
vehicles while not increasing the number of overloaded vehicles allowed to proceed on the 
corridor. We found that a Random Forest Tree model produced the best performance to 
differentiate between overloaded and legal vehicles, achieving an average improvement of 
65.83% in terms of vehicles to be statically weighed when compared to the current rule-
based system. Implementation of the IWIM concept can therefore have a significant 
positive impact for all stakeholders involved in the freight movement process. 
 
1. INTRODUCTION 
 
Landlocked regions are dependent on road and rail transport to facilitate supply chain 
operations (PWC, 2013), (Hoffman et al., 2013). Due to declining rail infrastructure over 
the past decades (Marcay, 2013; Van der Mescht, 2006; Jorgensen, 2013; Daniel, 2022; 
Dumisa, 2022; Williams, 2021) road transport is the predominant means of land transport 
for import and export goods for landlocked regions with 79% of delivery by road and 21% 
by rail (Jorgensen, 2013).  The quality of the national road network has a huge impact on 
the effectiveness of trade corridors that link areas of production and consumption with 
seaports. Road infrastructure (Hoffman et al., 2013), border post operation (Bhero & 
Hoffman, 2014), and regional law enforcement efficiency is of utmost importance to the 
region’s supply chains (Bosman & D'Angelo, 2011). It must thus be ensured that road 
infrastructure is protected using intelligent methods that can reconcile streamlined trade 
flows with effective law enforcement. 
 
1.1 Overload Legislation 
 
The protection of road infrastructure is achieved by government regulations that limit the 
maximum loading capacity of axles, Gross Vehicle Mass (GVM), and load limits of tyres of 
any vehicle traveling on public roads (National Department of Transport Republic of South 
Africa, 2004). These values are confirmed by SANRAL’s annual reports with maintenance 
cost stated as ZAR 6,276 billion for 2018/19 financial year and ZAR 6,984 billion for 
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2017/18 (SANRAL, 2019). This figure has grown to R 7,270 billion in 2021/22 (Sanral, 
2022). This only reflects the cost of road repairs and does not consider the negative 
impact of poor road conditions on the quality of life of the general population in terms of life 
safety and increased vehicle maintenance costs (BusinessTech, 12 February 2022). There 
are 17 classifications of vehicles for the purpose of overload control, that range from 
motorcycles to trucks with various axle configurations (Smith & Visser, 2001; Mikros, 
1998). Legislation allows for a specific maximum permissible mass per vehicle type 
applicable for South African roads. 
 
1.2 Impact of Overloaded Vehicles 
 
Overloading of vehicles occur to generate additional income on a trip. Studies have shown 
that 60% of road damage can be caused by only 15 - 20% of vehicles being overloaded 
(CSIR, 1997). Furthermore, vehicles overloaded by 20% can decrease a road surface 
lifetime by more than 50% (Salama et al., 2006). The operating cost of heavy vehicles 
tends to increase by 12.8% when vehicles operate on a deteriorated road infrastructure 
(Steyn & Haw, 2005). As overloaded vehicles operate outside design specifications of 
vehicle manufacturers, these vehicles have an increased chance to be involved in 
accidents (National Department of Transport Republic of South Africa, 2004). The annual 
cost due to road accidents has been estimated to be ZAR 142.95 billion that equates to 
3.4% of South Africa's GDP (Roux & Labuschagne, 2016). While only 4.8% of accidents 
involve heavy vehicles, these accidents, some of them caused by overloading, cause 
many fatalities when they do occur (Stoltz, 2016). 
 
1.3 Traffic Control Centres 
 
The enforcement of overload control rules is implemented at TCCs (Traffic Control 
Centres) situated on major freight corridors in South Africa. South African National Roads 
Agency SOC Ltd (SANRAL) has 13 TCCs that are operated by toll concessionaires and  
16 satellite stations (SANRAL, 2017, 2018, 2019). Most TCC designs include a screener 
lane with a WIM (weigh-in-motion) scale that directs a vehicle to the static scale if a weight 
threshold is triggered. As WIM scale values deviate as much as 16% from the static scale 
value for the same vehicle, only static scale measurements can be legally used to 
prosecute an overloaded vehicle. The status quo classification rule that is applied at 
existing TCC systems is as follows:  
 
• The axle configuration of the vehicle is first determined based on the consecutive 

sets of wheels passing over the WIM scale.  
• For each type of axle configuration, a specific threshold (typically 5-10% below the 

legal limit) is applied; should this threshold be exceeded, the system will determine 
that the vehicle is potentially overloaded and should be weighed statically at a scale 
forming part of the same TCC.  

• If the result of the static weighing of the vehicle indicates that it is over the legally 
allowed weight limit for that axle configuration the owner of the vehicle may be 
prosecuted, and the vehicle may be impounded until its weight has been corrected. 

• It is therefore possible that a vehicle that is within the legal weight limits will trigger 
the WIM scale rule that will guide it to the static scale. As many transporters load 
vehicle to very close to the legal weigh limits, the situation currently exists where  
80-85% vehicles triggering the WIM scale rule are in fact not overweight and are 
therefore unnecessarily guided to the static scale, based on information extracted 
from SANRAL static scale reports.   



 
The above discussion indicates that the current overload control system contains a 
specific inefficiency: the different TCCs work in complete isolation from the TCCs up- or 
downstream on the same corridor (Hoffman & de Coning, 2014), (Hoffman et al., 2013).  
Avoidable delays often occur for legally loaded vehicles that are loaded close to the 
maximum loading capacity as such vehicles triggers the WIM threshold at several 
consecutive TCCs on its journey. This results in multiple static weighing of vehicles loaded 
close to the legal limit during the same trip, causing multiple delays. This represents a 
significant negative impact on the economy, taking into account that around 1.7 to 1.8 
million vehicles are statically weighed annually in South Africa (SANRAL 2017, 2018, 
2019) and that each stop results in direct fuel and tyre costs of more than R200, with even 
higher costs resulting from lost time (Hoffman & de Coning, 2014). Large numbers of 
legally loaded vehicles that are directed to the static scale often back up onto the highway 
before being weighed, providing overloaded vehicles with the opportunity to skip the queue 
at a TCC.  
 
1.4 Artificial intelligence Applications 
 
AI techniques are implemented to make a machine think and behave intelligently (Joshi, 
2017; Campesato, 2020). It is a mechanism to process large amounts of data, more than 
what a human can process, in order to extract some knowledge to improve real-world and 
real-time decision making (Joshi, 2017; Campesato, 2020). AI techniques have improved 
over the last few decades and have become a common occurrence without being obvious 
to the general public (de Raedt et al., 2016). Within the field of over overload control AI 
applications have been used to predict static scale weights from WIM weights (Benedict, 
2019). All these applications indicate that an AI application can have significant benefits 
when implemented on freight corridors as proposed in section 2. 
 
1.5 Paper Overview 
 
Section 2 will discuss the proposed system improvements. Section 3 describes the data 
set that was collected, while section 4 will develop the intelligent weigh-in-motion model 
that classifies whether a vehicle is overloaded or not by making use of data previously 
collected on the corridor. Section 5 provides an overview of the AI techniques that were 
evaluated for use in the IWIM concept. The results are discussed in section 6.  Section 7 
concludes and discusses planned future work. 
 
2. RESEARCH PROBLEM STATEMENT 
 
The objective of this research is to develop an intelligent weigh-in-motion algorithm with 
the ability to differentiate between legally and illegally loaded vehicles, in the presence of 
noisy data, to reduce repeated static weighing of vehicles that are legally loaded, while at 
the same time limiting the number of overloaded vehicles that are allowed to proceed on 
the corridor. This will be achieved with minimal additional capital outlay and no required 
TCC layout changes. The IWIM solution will de-isolate the various TCCs by allowing 
information from previous TCCs to be used in conjunction with information from the WIM 
scale of the next TCC on the corridor when a decision is made whether to direct a vehicle 
to the static scale or not.  
 
The IWIM concept will implement a risk management model before it decides whether to 
guide a vehicle that is detected at a WIM scale to the associated static scale. Instead of 



basing the WIM scale risk model only on the measurement of the current WIM scale, the 
proposed new system will incorporate the following information before a decision is made: 
 
• If the identified vehicle has not been weighed statically on the same corridor within a 

time period equal to the expected travel time on the corridor up to the position where 
the WIM scale is installed, the status quo rule as explained above will apply. 

• If the identified vehicle has been weighed statically before on the same corridor, it will 
be determined if the vehicle arrived at the current WIM scale within normally 
expected travel time since the previous instance when the vehicle passed over either 
a WIM or static scale on the same corridor.  If the vehicle significantly exceeded the 
normal travel time the status quo rule will apply as above. 

• If the identified vehicle has been weighed statically before on the same corridor and it 
arrives within normal travel time, the vehicle class, static weighing record that has 
already been captured for that vehicle as well as the normalized travel time will be 
used to determine whether it should be guided to the associated static scale. 

 
3. COLLECTION OF DATA 
 
The data fields collected at each TCC will be described from the viewpoint of the second 
station, called current station or Station 2, making use of data from the previous station, or 
Station 1, as input to classify whether a vehicle should be statically weighed at Station 2 or 
allowed to proceed on the corridor. The list below describes the data to be used as inputs 
into the IWIM algorithm that will be developed: 
 
• Axle count and vehicle class. 
• Station 1 WIM axle weights. WIM GVM, static scale axle weights, static scale GVM 

and Overload status. 
• Station 2 WIM axle weights and GVM. 
• Normalized travel time between stations (actual travel time divided by average 

historical travel time). 
 
An experimental system was installed at the two TCCs that formed part of the investigation 
(Mantsole & Heidelberg), located on the corridor that links the port of Durban to 
Johannesburg and onwards to the Beitbridge border post, which is South Africa’s busiest 
road border post for northbound freight traffic.  Data provided for WIM and static scales at 
these sites ranged from 2021-03-01 to 2021-08-31. Only vehicles that visited both TCCs 
and that did not experience significant delays between the TCCs were used for the study.  
As Heidelberg is located on the Durban side of Johannesburg, while the Mantsole is 
located on the Beitbridge side of Johannesburg, many vehicles coming from Durban would 
first visit depots in Johannesburg before possibly proceeding to Beitbridge; as a result, 
only a small fraction of vehicles travelled uninterrupted between the two TCCs.     
 
The data statistics are indicated in Table 1. The NB (northbound) data shows an overlap 
from 2021-04-01 to 2021-08-31 at both sites. Data provided from the WIM data set 
contained just under 482 000 vehicle weigh entries and just under 152 000 distinct 
vehicles in the calendar period. The static scale data showed just over 80 000 vehicles 
statically weighed and just under 35 000 distinct vehicles. The WIM ANPR linking was not 
always successful, with a NaN (or empty vehicle registration details) entry on just over  
56 000 entries additional to the distinct vehicles. At Heidelberg, 15,13% of the NB traffic 
was directed to the static scale, and 18,04% of the traffic was statically weighed at 
Mantsole. 
 



 
Figure 1: North-South Corridor from Durban to Beitbridge 

 
Table 1: Data set statistics 

WIM Heidelberg NB Mantsole NB Mantsole SB Heidelberg SB 

Minimum date 01/04/2021  00:01 01/04/2021 00:00 01/03/2021  00:07 01/03/2021  00:02 

Maximum date 31/08/2021  23:59 31/08/2021  23:56 31/08/2021  23:54 31/08/2021  23:52 

Entry count 233 392 248 537 279 114 272 572 

Distinct vehicle count 76 469 99 815 82 296 71 187 

NaN values 45 000 11 032 18 238 51 455 

Static Heidelberg Mantsole Mantsole Heidelberg 

Minimum date 01/04/2021  00:25 01/04/2021  00:15 01/03/2021  00:20 01/03/2021  02:19 

Maximum date 31/08/2021  23:36 31/08/2021  23:49 31/08/2021  23:54 31/08/2021  23:53 

Entry count 35 322 44 845 37 336 34 585 

Distinct vehicle count 14 456 20 410 17 057 17 449 

 
The SB (southbound) data has an overlap in data from 2021-03-01 to 2021-08-31 at both 
sites. The WIM data set contained just over 551 000 vehicle weigh entries and just over 
153 000 distinct vehicles in the calendar period. The static scale data showed just under 
72 000 vehicles statically weighed and just over 34 000 distinct vehicles. SB traffic had 
13,38% directed to the static scale at Mantsole and 12,69% at Heidelberg. 
 
  



The next step in the process was to reliably link the data captured by the two TCCs. The 
process of linking vehicle records for WIM and static scales was as follows: 
 
1. Determine vehicle registration to be used as identifier. 
2. Search following site records for the same identifier. 
3. Determine the time difference between entries. 
4. Store values of vehicles that travelled between the sites in the past 24 hours. 
 
In this way we were able to link a total of 3,167 observations between the different TCCs 
which could be used for model training purposes. The linked data set had a total of  
17 vehicles or 0,54% that were not overloaded at site 1 and overloaded at site 2, while  
20 vehicles or 0,64% were overloaded at site 1 and not overloaded at site 2. 
 
4. DEVELOPMENT OF THE IWIM CLASSIFIERS 
 
The purpose of the proposed IWIM concept is to decide if the vehicle must be statically 
weighed or not at Station 2. The simplest method to implement this would be to use a fixed 
set of rules to apply the logic of overload control regulations as described above. The state 
flow of a rule based IWIM system required the determination of optimal threshold values 
for the decisions to be taken to distinguish between vehicles that should be guided to the 
static scale and vehicles that should be allowed to proceed on the corridor. If the input 
values are random in nature rather than assuming fixed values, a single noisy input value 
may cause the rule-based technique to branch off in a wrong direction, as a rule-based 
technique considers the various inputs one at a time.   
 
The first element of uncertainty for the IWIM is the time that a vehicle, that was still legally 
loaded at the previous TCC, should be allowed to travel from the previous static weigh 
point to the current TCC to still be regarded as low risk, given that vehicles do not always 
travel at the same speed.  A 2nd element of uncertainty is how close each axle weight, as 
measured by the last static scale, may be to the overload limit before the vehicle will be 
regarded as high risk, given that the load may have shifted during the trip, resulting in 
changes to the axle loads.  A 3rd element of uncertainty is the current WIM scale reading, 
that is known to be inaccurate.  It is therefore not obvious when the current WIM reading 
should be used to override a previous static scale reading for the same vehicle. 
 
More advanced classification techniques, that process all input data in parallel, have been 
shown to have superior classification abilities when fed with noisy data compared to simple 
rule-based classifiers.  This is because the presence of noise in one input variable can to 
some extent by compensated for by the other inputs that influence the outcome (Joshi, 
2017). By training such techniques on a specific data set and then testing them on another 
unseen data set, it will be possible to determine with a high degree of certainty which of 
the techniques will produce the most reliable classifications in a real-world scenario. 
 
The process to train AI based classifiers for the IWIM application is described below: 
 
• Each observation in the data set consists of the set of inputs as explained in the 

previous section, as well as an output variable, which is the true overloaded status as 
determined by the static scale of Station 2. During training of the models this output is 
used as target variable that the classifier should produce when fed with the 
corresponding input data. 

• The total available data set is then split into a training and test dataset, using an 
80/20 split.  This will allow the classifiers to be tested for their ability to generalize. 



• To prevent overfitting of the trained model, a portion of the training data is used as 
validation set.  The training process is terminated once the error on the validation set 
has reached its minimum value.  This model is then tested on the testing dataset to 
determine how accurate it truly is on unseen data. 

• A confusion matrix is generated, containing four possible outcomes: 
 True Positive (TP) results when the output was set as overloaded, and the model 

predicted the same. 
 True Negative (TN) results when it was not overloaded, and the model predicted 

the same. 
 False Positive (FP) results when the model prediction is overloaded but it was not 

overloaded. 
 False Negative (FN) results when the model incorrectly predicted the vehicle is not 

overloaded while it was overloaded. 
 
This is depicted in Figure 2 below. 
 

 
Figure 2: Sample confusion matrix layout for a binary classification model 

 
• Accuracy is defined as the sum of true positives and true negatives divided by the 

total number of observations.  It is important to determine how many vehicles were 
incorrectly sent to the static scale (which will waste time), or to the corridor without 
prosecution (which will cause road damage) as this reflects the negative impact of 
the inefficiencies of the overload control system. 

• In this case we had 3,105 linked observations of legally loaded vehicles and only 37 
cases of overloaded vehicles.  In case of such an unbalanced training set the model 
will tend to train in such a manner that all observations are classified into the more 
populous class, which will result in a high classification accuracy but with all 
overloaded cases in the wrong class. It was therefore necessary to artificially 
increase the size of the overloaded class by repeating its observations in the training 
set. In our case we increased the number of overloaded observations to 272 samples 
through duplication.   

• We furthermore normalised the continuous input variables (axle weights. GVM and 
travel time), while for categorical inputs (vehicle class) we used One Hot Encoding. 

 
5. AI TECHNIQUES 
 
The AI models tested in this study to improve the performance of a simple rule-based 
model are logistic regression, Random Forest Trees (RFTs), and multi-layer perceptron 
(MLP) Artificial Neural Networks (ANNs).  Logistic regression is commonly used to model 



input-output relationships where the outputs are categorical, as in this case. We tested 3 
different solvers, using a maximum number of iterations of 1500:  
 
• Limited-memory Broy-den–Fletcher–Goldfarb–Shanno. 
• A Newton method using an exact Hessian matrix.  
• Large Linear Classification.   
 
The RFT constructs a tree to determine the output value from the inputs. Several hyper 
parameters that served as input into selection of the models were investigated: the  
n estimators, maximum depth, and minimum sample splits. The maximum depth the 
branches would generate was set to either 10 or 15. The n estimator, which is the 
maximum number of trees generated in the forest, was set to 50. The RFT models tested 
were therefore as follows: 
 
1. Random forest tree 1: default. 
2. Random forest tree 2: maximum depth = 15, n estimators = 50. 
3. Random forest tree 3: maximum depth = 10, n estimators = 50. 
 
MLPs are the most common type of ANN used for classification purposes.  The input layer 
was defined based on the 79 input variables. Two hidden layers were added, as it was 
established that increased hidden layers did not influence the accuracy of the models. The 
hidden layer units were selected as double the number of input units; this is often used as 
a standard industry implementation. The dropout was varied between the data sets, with 
training batch size chosen at 25.  We found that many epochs did not change the results 
so 10 epochs were chosen to limit processing times. Three ANN models were trained on 
the data sets:  
 
1. ANN 1: 20% dropout applied.  
2. ANN 2: 40% dropout applied.  
3. ANN 3: No dropout applied.  
 
6. RESULTS 
 
To create a performance benchmark against which we can compare improved IWIM 
algorithms based on the above techniques, we first calculated the percentage of linked 
vehicles that were classified as overloaded and not overloaded by the current system 
employed at TCCs. The results in Table 2 indicate that within the available training set 
almost 98% of legally loaded vehicles are sent to the static scale. 
 

Table 2: Status quo rule-based performance 

 Actual Predicted 

Observations 3,122 3,122 

Overloaded 17 3,076 

Not overloaded 3,105 46 

% Overloaded 0.54 98.53 

% Not overloaded 99.46 1.47 

% Not overloaded sent to static scale  97.98 

 
The confusion matrix for the status quo rule-based classifier, using a WIM threshold of 
90% of the legal limit, is displayed in Table 3 below. Accuracy is a mere 2.01% for a WIM 



threshold of 0.9. The large number of vehicles incorrectly sent to the static scale (false 
positives) using this status quo rule-based technique can be reduced by increasing the 
WIM threshold from 90% of the legal limit to a higher value.  This however results in some 
of the overloaded vehicles being sent to the corridor due to WIM errors, as displayed in 
Table 4 where the WIM threshold was increased to 105.4% of the legal limit. While 
accuracy is increased to 71.0%, this is achieved at the cost of allowing a significant 
number of overloaded vehicles onto the corridor. It is clear that a more suitable approach 
is required. 
 

Table 3: Confusion matrix for status quo rule-based  
classification with WIM threshold of 0.9 

True Positive False Negative 

17 0 

False Positive True Negative 

3059 46 

 
Table 4: Confusion matrix for status quo rule-based  

classification with WIM threshold of 1.054 

True Positive False Negative 

5 12 

False Positive True Negative 

893 2212 

 
Due to the random nature of the AI models the training process was repeated several 
times for each model type, and the average and standard deviation of model errors were 
calculated in each case.  Results are displayed in Table 5 below. The RFT models had the 
best false negative performance average at 0,08% and an accuracy of 99.6%. ANN model 
3 had the next best false negative performance at 0,60% with an average accuracy of 
98.6%. The logistic regression models had an accuracy of 94.3% and an average false 
negative of 5,53%.  
 

Table 5: Accuracy of AI techniques trained using Padded Linked data set 

  Max Min Ave Stdev 

ANN 1 98,69% 94,18% 96,14% 1,88% 

ANN 2 98,75% 93,10% 95,10% 2,50% 

ANN 3 98,92% 98,24% 98,59% 0,33% 

Log reg 1 99,14% 92,02% 94,28% 3,27% 

Log reg 2 99,14% 92,02% 94,28% 3,27% 

Log reg 3 99,17% 92,02% 94,27% 3,29% 

RFT 1 100,00% 98,69% 99,63% 0,63% 

RFT 2 100,00% 98,75% 99,65% 0,60% 

RFT 3 100,00% 98,81% 99,66% 0,57% 

 



As RFT and ANN outperformed logistic regression, we analysed the results of the best 
models for those techniques in more detail.  In Table 6 below we display the RFT results 
achieved for both the cases with and without expanding the training set with additional 
observations for the overloaded classes. It is clear that the expansion of the data set as 
explained in the previous section is essential to prevent the technique from predicting 
many false positives. The results for the expanded training and test sets indicate similar 
performance for both sets, providing evidence that the technique generalized well. Table 7 
displays the confusion matrix for the expanded combined training and test set. Only one 
classification mistake was made, and no overloaded vehicles were classified as legal. 
 

Table 6: Results for the random forest tree trained 
 on the Padded Linked data set 

  True 
Pos 

True 
Neg 

False 
Pos 

False 
Neg Total 

Unexp 7 3074 31 10 3122 

Expanded 272 3419 1 0 3692 

Train 208 2745 0 0 2953 

Test 64 674 1 0 739 

 
Table 7: Random forest tree model confusion matrix 

True positive False Negative 

272 0 

False Positive True Negative 

1 3419 

 
Table 8 and Table 9 display similar results for the ANN technique.  While the performance 
is satisfactory, the number of incorrect classifications was significantly higher compared to 
the RFT technique, and 32 cases of overloaded vehicles were classified as legally loaded. 
 

Table 8: Results for the artificial neural network trained 
 on the Padded Linked data set 

  True 
Pos 

True 
Neg 

False 
Pos 

False 
Neg Total 

Unexp 12 3073 32 5 3122 

Expanded 240 3392 28 32 3692 

Train 179 2722 23 29 2953 

Test 61 670 5 3 739 

 
Table 9: Artificial neural network model confusion matrix 

True positive False Negative 

240 32 

False Positive True Negative 

28 3392 

 



All 3 AI techniques drastically improved on the primary weakness of the status quo 
technique, namely false positive (classifying legally loaded vehicles incorrectly as 
overloaded). The primary selection criterion between these models was therefore false 
negatives (sending overloaded vehicles incorrectly to the corridor). RFT was the clear 
winner in that respect, as it made no such classification mistakes. 
 
To consider practical system deployment issues the time required to train each of the 
models was measured. The ANN model training and testing was completed in 29 minutes 
for all the simulation data sets. The RFT model training and testing was completed in  
37 minutes. The processing power for training a RFT only requires a central processing 
unit (CPU) while the ANN requires an additional graphics processing unit (GPU) for 
training. This would increase hardware complexity and deployment costs. Based on all 
considerations the RFT technique therefore appears to be the most suitable classification 
model for this problem. 
 
7. CONCLUSIONS AND FUTURE WORK 
 
There are significant inefficiencies in existing overload control operations resulting from the 
fact that the system does not share information between TCCs, causing most legally 
loaded vehicles to be subjected to repeated static weighing. In this paper we proposed a 
novel overload control method that shares data between stations to allow more intelligent 
decisions to be made about the necessity of a vehicle to be statically weighed. As the 
available input data is noisy, it is not trivial to make correct decisions, as indicated by the 
results achieved with the status quo rule-based method. This justified the use of AI 
techniques to improve the quality of decision-making. The proposed concept implements 
intelligent decision-making at the WIM scale, to decide which vehicles to direct towards the 
static scale. The available model inputs include the weight measurements at the previous 
static scale and the current WIM scale, as well as travel time from the previous scale.  
 
Our results indicate that ANN and RFT based classification models can significantly 
improve on the performance of the status quo rule-based method. The RFT model has the 
highest accuracy and makes the least incorrect decisions to direct legal vehicles to the 
static scale and overloaded vehicles to the corridor.   
 
Future work should include the operational deployment of the IWIM method to determine if 
the results as reported in this paper can also be achieved in practice. 
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