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Abstract

Consumer purchasing behaviour is influenced by many factors. Depending on the circum-
stances, these factors may become relevant drivers of important supply chain decisions.
Expiration dates have an influence on the purchasing decision of consumers for perishable
goods. Another behavioural influence that stimulates demand is the volume of goods that
are available on display as part of the purchase transaction. Furthermore, the fact that
certain goods deteriorate over time must also be evaluated within the context of the study
of perishable goods. The market is increasingly seeking goods that have no inherent defects
or imperfections. This investigation seeks to determine the impact of imperfect quality,
deterioration, freshness and inventory level and also, how those issues can be improved
upon in workable situations. This paper proposes an inventory model that stipulates the
demand as a function of freshness and the inventory level. In addition, the inventory
depletes through both deterioration and demand, and the product quality is not always
perfect. The objective of the inventory model is to maximise the system’s profit, hence
the study has developed a theoretical mathematical model for imperfect and deteriorating
items with freshness and inventory level-dependent demand. A numerical example was
used to illustrate the practical application of the model in a real life environment. Sen-
sitivity studies were conducted to determine the impact of changes or variations to the
inputs that are used in the model. The findings were that the date of expiry, the elasticity
of demand and the selling price of the perfect products are the main constituents that
affect the profitability.
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Chapter 1

Introduction

1.1 Background

The increasingly complex modern world demands better management of an ever increasing
and diverse range of goods that needs to be supplied to the markets. This range of products
comprises various attributes including the availability of a specific range of products for a
specific purpose, but also importantly, those goods that are made available need to have
increasingly complex attributes. Attributes such as shelf-life and quality of the goods
thus become increasingly significant in the overall supply chain process. Most businesses
and organisations rely on inventory planning and control as one of the key elements to
enhance that supply chain. A significant portion of the capital of a company can expected
to be tied up in inventory. This makes inventory planning and control a very important
consideration for such decisions.

The earliest research studies of these issues sought to build a single, or relatively
few, models to portray this situation. As the complexities of modern life continue to
evolve, it is becoming increasingly apparent that supply chain models need to replicate
the complexity of the real world and hence they need to evolve in tandem with these
changing developments. Being able to keep up-to-date with emerging trends in supply
chain management makes it a critical input in any planning and production situation and
it is important to be able to remain efficient in our increasingly competitive and complex
modern world.

Appropriate planning is a complex issue. It has to take into account the increasing
number of permutations that the market desires. There are many types of products
and many of those products can also be sold in different forms, with different levels of
processing having been applied thereto. This is particularly applicable in a situation where
freshness of the product would be an important driver of the demand for products. The
increasing trend of specific consumer tastes also means that quality control is becoming
more specific and rigid to address the requirements of the modern consumer market.
Product deterioration also needs to be carefully managed to minimise adverse outcomes
of inferior products being provided to the market.

In summary, product freshness, product quality and product deterioration would be
attributes within the range of characteristics that need to be investigated within the
supply chain. This study focuses specifically on these matters within the supply chain
management discipline.
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1.2 Research methodology

Various methodologies have been proposed to conduct quantitative research in operations
and research management. Bertrand and Fransoo (2002) have been instrumental in this
investigation. The methodology outlined here was adapted from Bertrand and Fransoo
(2002) and utilised in the research presented herewith. It proposes a theoretical of the
problem that has been based on real-life situations. Thereafter, a mathematical or scientific
model of the problem is formulated based on those specific issues. As such the model
seeks to emulate real life situations but never-the-less, it is necessary to make certain
assumptions that bridge the real situation with the mathematical formulation thereof. The
outcome should be a set of solutions that are arrived at from resolving that mathematical
model. Those solutions are thereafter applied to numerical examples to test their use
in resolving the original issue. Thereby, it can be assumed that unique solutions to the
mathematical models that represent the inventory systems are available. This is finalised
with sensitivity analysis to evaluate the most important inputs. All of this culminates in
a recommendation about a real-life inventory scenario situation.

1.3 Dissertation outline

The research project is categorised into four separate sections. It commences with an
introductory chapter and is followed by an additional three chapters that comprise the
investigatory output. Chapter 2 consists of an investigation into already published mod-
els and available research. Chapter 2 is a literature overview of the development of the
main models and research that is applicable to inventory theory. Following the review of
these models, the salient features thereof are used as a basis for further investigation to
incorporate imperfect, deteriorating and freshness inventory level-dependent demand sce-
narios. Such a review encompasses a discussion of the mathematical logic that underpins
each model. Chapter 2 is the review of relevant inventory models in the literature for this
study. This provides the mathematical basis upon which the detailed study in Chapter 3
is based. The primary objective of this dissertation is realised in Chapter 3 through the
development of an economic order quantity model for imperfect and deteriorating items
with demand that depends of the freshness and inventory level of the product. Chapter 3
culminates in a generalised inventory equation which seeks to maximise profit. Thereafter,
it is subjected to sensitivity testing by applying numerical analysis. The study concludes
in Chapter 4 with a discussion of the findings from this submission and suggests possible
areas for further study and research.
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Chapter 2

Literature review

2.1 Introduction

Manufacturing, planning and control (MPC) creates an environment within which the sup-
ply chain operates. It is necessary to adjust or modify the MPC methods as appropriate,
to ensure that the desired outputs are attained. MPC encompasses a variety of manu-
facturing aspects, which range from materials management, the scheduling of people and
machines and also being able to optimise various aspects of the supply chain. Because of
the inconsistent requirements and inherent variability of the markets, there is an ongoing
effort to improve on the ideas and concepts within the MPC sector to reflect that reality.
The supply chain environment is competitive, which means that there is a constant need
to improve and optimise on aspects thereof to ensure that it functions optimally. Jacobs
et al. (2018) is of the opinion that supply chains need to adapt their strategies, as the envi-
ronment is always dynamic. The primary task of the MPC system is to efficiently manage
the use of materials and make better use of resources and also to be able to respond to
any changes in customer requirements. This would include influencing the adaptability of
those suppliers to respond to market-driven situations.

A significant portion of the assets of various companies are tied up in their respec-
tive inventories. This makes inventory planning and control an important component of
the supply chain mechanism. In 1913 inventory planning and control was first conceptu-
alised and studied by Harris (1913). The early models created the foundation upon which
inventory planning and control has subsequently evolved. Solving problems relating to
inventory planning and control to determine the optimal amount to order, based on vari-
ous parameters, such as a specific item at the optimal time can be determined. However,
to align that which is evident with those concepts developed by Harris (1913) becomes
much more challenging as many interconnected factors have to be considered. Malakooti
(2014) has proposed that the primary driver for inventory planning would be to be able
to forecast the demand. Two errors may occur when the demand has not been properly
determined. Underestimating demand results in not having enough inventory to satisfy
your customers (and loss of profit may occur), while overestimating the demand may re-
sult in the capital of the company being tied up in unused or underutilised inventory. Bad
planning may result in detrimental outcomes along the entire supply chain process. To
avoid the errors of understating and overstating demand there is a move towards research
that creates models that are more reflective of real-world and real-time situations.

This means that decisions have to be made about the quality of stock on order and the
method of replenishing stock that has been sold or discarded. Mathematical models do
assist in evaluating order quantities and frequencies of the order process. This is referred to
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as the Economic Order Quantity (EOQ) model concept that had originally been proposed
by Harris (1913).

Published and available case studies were investigated in the literature to provide
background information.

2.2 The primary EOQ model

The initial EOQ model was conceptualised by Harris (1913). It sought to determine
the quantity by optimising the set-up costs, the purchase costs and the inventory hold-
ing costs. This became the foundation of what has now become accepted as the EOQ
model. However, it had been based on certain impractical assumptions. For example,
those assumptions were restrictive in respect of real-life inventory scenarios from a prac-
tical perspective.

This concept had its foundation in 1913 with the publication of an initial determina-
tion of economic order quantities. It has since then become the point of departure for
further research, initiatives and attempts to extend this work. The outcome has led to
the publication of more research initiatives that have refined and taken the development
of these prior concepts further.

Prominent amongst these is the need to determine an optimal order size which keeps
inventory related costs at the lowest possible values. Inventory costs vary depending on
the size and the frequency with which the ordering had taken place. The primary EOQ
model records the costs required to place an order and cost associated to keep it in storage.

Earlier work from Harris (1913) needs to be made more realistic with introduction of
new variables and the application of a less rigid structure.

Wilson (1934) elaborated on what Harris (1913) had done prior to that.

2.2.1 The classic EOQ model: The first version of the EOQ model

The model by Harris (1913) is the most basic inventory control model. It computes a non-
varying order quantity that minimises the holding costs and also those associated costs of
the order.

The acquisition cost is generally (but not always) omitted because it has no impact
on the order size unless discounts become applicable. This means that a balance needs
to be established between the holding and the ordering costs, because as order quantities
get larger, the cost of holding stock increases and the cost of ordering stock declines. The
Figure 2.1 provides a graphical depiction of such a scenario.
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Optimal order 

quantity

Minimum 

total cost

Total cost curve

Holding cost curve

Ordering cost curve

Cost

Order quantity

Figure 2.1: The quantity ordered expressed as a function of the ordering cost the holding
cost and the total cost scenario.

However, the reverse is also true, since the quantity ordered decreases, the cost of
holding similarly declines and the cost of ordering increase.

This concept can also be illustrated graphically with level/s of inventory during the
cycle period. This is shown in Figure 2.2.

Inventory level

Time
Τ𝑇 = 𝑄 𝐷

𝑄

Τ𝑇 = 𝑄 𝐷

(a) Fewer large orders result in greater inventory
holding costs and lower set-up costs.

Inventory level

TimeΤ𝑇 = 𝑄 𝐷

𝑄

Τ𝑇 = 𝑄 𝐷 Τ𝑇 = 𝑄 𝐷 Τ𝑇 = 𝑄 𝐷

(b) Numerous small orders result in lower
inventory holding costs and higher set-up costs.

Figure 2.2: An idealised inventory scenario for the initial Harris (1913) EOQ model.

Essentially, this graphic evaluates a single item that is not constrained by any lead-
time. Q items would be ordered and is received at the commencement of each cycle for
that inventory. When the order for items (defined as Q) is initially received at the start
of each planning cycle for that inventory. When the request for the Q items has been
placed, an ordering cost of K would be charged. The rate of consumption of these items
is assumed to have been constant (defined as D) until they have been depleted after a
time-frame T . A replacement order is then received for the Q items. There is an annual
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holding cost of h for those items that are held as inventory. The total cost per unit of
time TCU is given by Equation (2.1).

TCU = h

(
Q

2

)
+K

(
D

Q

)
(2.1)

In this situation no discounts for larger quantities are considered and shortages are not
incorporated. The value of Q (detonated by Q∗) that minimises T is found by equating
the first derivative of Equation (2.1) to zero (and noting that the second derivative will
be positive) to solve for Q∗ shown in Equation (2.2).

Q∗ =

√
2KD

h
(2.2)

2.2.2 Subsequent developments that follow from the original classic EOQ
model

The original work of Harris (1913) prompted further research and study of that original
model. From the Andriolo et al. (2014) study, a timeline of further developments in respect
of the EOQ concept can be constructed. Table 2.1 shows a timeline of the evolution of EOQ
inventory management models. However, this process is open-ended in that as the supply
chain evolves, the scope for EOQ models will also evolve in tandem with that process. This
further development of the EOQ models is the primary focus of this study. The classic
EOQ model has been around for more than a century. Through the development of this
model, various assumptions have been modified to enable the model to be more realistic
for a particular operating environment. Table 2.1 shows the evolution of the basic EOQ
model and in more recent years, it has included environmental and social sustainability
issues, which have become a more topical feature of the society today.
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Table 2.1: A timeline illustrating the evolution of inventory theory.

Date Name Researcher Focus

1913 EOQ Harris Balancing the costs of ordering
and holding inventory.

1918 EPQ Taft Finite production rate.

1958 DEL Wagner and
Whitten

Time-varying demand.

1963 Quantity
Discounts

Hadley and Whitten Vendor offers discounts for larger
orders.

1963 Shortages Hadley and Whitten Back orders are permitted.

1963 Deterioration Ghare and Schrader Stocked items deteriorate during
replenishment cycle.

1975 Inflation Buzacott Time-varying costs.

1985 Trade credit
financing

Goyal Vendor grants buyer grace period
to settle payment.

2000 Imperfect
quality

Salameh and Jaber Certain items in each order would
be of inferior quality.

2011 Environmental
sustainability

Hau, Cheng and
Wang

An additional cost is levied for
carbon emissions.

2014 Growing items Rezaei Stocked items grow during
replenishment cycle.

For example, the first extension to the EOQ model is described as the Economic
Production Quantity (EPQ) extension thereof. Two major events happen in the EPQ
model simultaneously. These events are ongoing use and occasional production. For this
extension, the rate of production is estimated to exceed the rate at which those goods are
consumed. This EPQ extension is the result of work done by Taft (1918).

Earlier work had the limitation that it always assumed a static rate of demand. There-
after, work by Wagner and Whitin (1958) permitted the model to incorporate varying
demand over a number of periods. This is known as the Dynamic Economic Lot (DEL)
model.

With the development of better road and transportation infrastructure it made sense
to increase the volumes of deliveries through larger delivery loads. Hadley and Whitin
(1963) sought to address this matter. They developed a model that enabled discounts
to be applied for larger quantities of goods that had been ordered. Their work resulted
in two types of discount being applicable. The first, allowed for a single discount to be
applied per delivery. The other variation permitted ever increasing discounts depending
on the size of that delivery. In summary, this catered for price breaks which resulted from
step-changes in the prices of the goods ordered.

In another analysis Hadley and Whitin (1963) studied supply chain issues where short-
ages were permissible. In inventory theory where shortages are permitted they are either
partially or fully back-ordered. With comprehensive back-ordering of shortages consumers
can wait until the forthcoming delivery arrives. With partially fulfilled orders some cus-
tomers are willing to wait to complete those orders but others may not be willing to do
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so and this can result in lost sales.
The work that Harris (1913) initially did assumed that stored goods will not change

or become damaged if stored for an indefinite period. However, in real situations items
can deteriorate over time. Examples of such items would be the deterioration of dairy
and poultry products or fruits and vegetables. These are known as perishable goods or
deteriorating items. Palanivel and Uthayakumar (2016) categorised deterioration as being
a broad term that encompasses all kinds of damage, theft, evaporation, or loss of use of
an item. This can occur while goods are kept as stock items. Ghare and Schrader (1963)
modelled deterioration rates with a decaying exponential function. Their work pioneered
the development of exponentially decaying items. So, inventory can get used up, not only
through demand, but also by decay. This can also happen through the combined effect of
decay and demand.

A feature of the mid 1970’s was the emergence of inflation. In this context, the prior
inventory models had assumed that costs remain constant over time. In reality, the value
of money became eroded through inflation and this was adversely affecting costs. Buzacott
(1975) was investigating the impact that inflation would have had on costs. The work of
Buzacott (1975) sought to consider the impact of inflation on the various cost inputs.
Using a discounted cash flow analysis, Gurnani (1983) studied some inventory models to
quantify the impact of declining monatary value on total cost and EOQ.

The issue where delays in payment between the parties was investigated by Goyal
(1985). The driver for this model was the fact that in many situations the items that
had been ordered were not paid for at the instant that they are actually delivered to the
consumer or customer. They delay in payment could have resulted because the buyer
needed to inspect that order to be able to ascertain weather it was of an acceptable
condition or weather it could have resulted from suppliers permitting buyers some leeway
with which to settle their debts.

Salameh and Jaber (2000) removed the assumption that all goods are of adequate
quality in the basic EOQ model. Their inventory system had assumed that a some of the
items were inferior. The imperfect quality items were sold in conjunction with the perfect
quality items but the former, had been sold at a discount.

Emerging environmental concerns in certain jurisdictions required a reduction in car-
bon emissions. Hua et al. (2011) incorporated the concept of carbon emissions into the
original EOQ model and to do this they suggested that a supplier would have incurred an
associated cost with the emissions.

By 2014, Rezaei (2014) had considered the feeding habits and growth rate of chickens
to develop an additional category of inventory items which they called growing items for
the EOQ model. These items increase in mass as part of the replenishment cycle. All of
this requires that models reflect reality. Certain related features are combined or added
with certain specific attributes.

From the developments in the various inventory models, this project will focus on
imperfect quality, deterioration, freshness and inventory level-dependent demand. It is
necessary therefore, to have a more in depth appreciation of these aspects as the study
progresses. These are practical issues which should be expected to arise in food supply
chain mechanism.
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2.3 Imperfect Items

2.3.1 The original EOQ approach to imperfect quality items

Salameh and Jaber (2000) investigated the notion that items that were delivered may not
necessarily have been of perfect quality for the recipient. They proposed a model or a
scenario to cater for such situations. The basis for this was that imperfect quality items,
may not necessarily be defective. In other words, they could partially be reused. This study
also includes the classic EOQ model, but it takes away an unrealistic assumption, namely
that all goods are of perfect quality. Their proposal suggested an inventory situation where
a fraction of those ordered goods would realistically be of inferior quality. A screening
process would be applied prior to the sale of the goods to separate those of poor quality
from the good saleable products. Both the good products and the the poor products
are separately sold. The good quality products are sold on an ongoing basis within the
replenishment cycle of the inventory but the still saleable poor quality items are salvaged
and sold as a single entity at the end of the screening exercise. The optimal solution of
the model was established to have been in closed form.

In the paper the authors propose the idea that after the inspection procedure, the
items that are not of the required standard are put on sale at a discount. A statistical
model was created to illustrate such a scenario.

Figure 2.3 diagrammatically illustrates this scenario. This scenario incorporates a
number of assumptions to explain Figure 2.3 and those assumptions have been itemised
herewith.

Inventory level

Time

𝑻

𝑸

𝒓

𝑸𝒙

Figure 2.3: The behaviour of imperfect quality items in an inventory system.

� Q is the total number of items ordered for each lot size.
� K, is a fixed ordering cost is charged with every order that the company places.
� Items are ordered per lot size at the cost of pv per item.
� The ordered items that have been received are of varying quality. Some of those
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items x are of inferior quality. That fraction of inferior quality items x, is assumed
to be random.

� The recipient company keeps all these items in stock. It costs h per item per unit
of time to keep it stored.

� Prior to the sale of the items, a thorough screening process occurs. This separates
the items into good and poor quality products. The sale of the good quality products
takes place only after proper inspection thereof. That sale transaction occurs at a
rate of z items per unit for the time period r.

� Good quality items, Q(1− x), are sold for a price pr per unit during the cycle.
� D is the demand rate per unit of time.
� Inferior quality items, Qx, are sold in single batches at a price of pq per unit. This
is less than the price of the good quality items following the screening process.

� v is the cost incurred to differentiate the poor and acceptable quality items into
different categories.

This implies that there are two streams of revenue for the company, one being from
the sale of quality goods and another from selling the product of inferior quality. The
total profit expected, E[TPU ], for the company per unit of time would be given by Equa-
tion (2.3).

E[TPU ] = prD+
pqDE[x]

(1− E[x])
− pvD

(1− E[x])
− KD

Q(1− E[x])

− vD

(1− E[x])
− h

[
Q(1− E[x])

2
+

QDE[x]

z(1− E[x])

] (2.3)

To optimise the value of Q the Equation (2.3) would have to be maximised. This would
correspond to the optimal order quantity Q∗ and given as Equation (2.4).

Q∗ =

√√√√ 2KD

h(1− E[x])2 +
2E[x]D

z

(2.4)

2.3.2 The EOQ model with extensions to cater for items of imperfect
quality

Goyal and Cárdenas-Barrón (2002) used other investigation by Salameh and Jaber (2000),
but made use of an easier methodology to ascertain the EPQ in conjunction with the
inferior quality of an item. The anticipated profit value per unit of time was achieved
by amending the formula of Salameh and Jaber (2000). Salameh and Jaber (2000) first
formulated an expression of the total profit prior to consideration of the projected quantum
that was required. Goyal and Cárdenas-Barrón (2002) did this differently by projecting
revenue values and total costs as separate entities. The result was that the work of
Goyal and Cárdenas-Barrón (2002) had less mathematical computation than the method
deployed by Salameh and Jaber (2000). Like Salameh and Jaber (2000), the solution came
from addressing the problem within a closed or restricted form. The difference between
these respective models was minimal and not statistically significant. In essence, Goyal
and Cárdenas-Barrón (2002) found a model that was less complicated to compute and
furthermore, it yielded similar results without significant further literature review about
imperfect quality items for inventory models. In summary, it was apparent that in the
results that the initial and the more basic approach, versus the approach presented by
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Salameh and Jaber (2000), had been that the two approaches actually yielded similar
results for a near optimal batch size.

Huang (2002) broadened the study of Salameh and Jaber (2000) by investigating the
cooperative relationship that may exist between supplier and customer in a supply chain.
This involved an optimisation of costs for both the supplier and the buyer. The model
assumes that items are screened by the buyer prior to making them saleable. Only the
good quality items are made available to third parties for onward sale by the buyer. A
cost is allocated for that fraction of inferior quality items that have been provided to the
buyer. The vendor incurs this associated cost.

Chan et al. (2003) furthermore investigated an inventory model with reduced pricing
scope, other rework and reject some of that product. The Chan et al. (2003) investigation
elaborated on the work of Salameh and Jaber (2000) to incorporate a screening procedure
which separated the items into three different groups, whereas the screening process of the
Salameh and Jaber (2000) model separated the products into two groups. The Chan et al.
(2003) models three groups comprising the acceptable quality items, the inferior quality
items and the defective items.

Another approach by Chang (2004), investigated the theory of fuzzy sets for the basic
EOQ model. This Chang (2004) study also incorporated defective items. The intention
had been to ascertain the best order amount that results in the greatest total profit. It
does this by acknowledging that certain inputs for the model demonstrated fuzzy model
behavioural attributes. Chang (2004) considered two scenarios in applying the fuzzy
model. Firstly, fuzzy variable model attributes had assumed that certain items were of
imperfect quality. Secondly, fuzzy variable model attributes were also assumed for the
rate of demand together with the fraction of the imperfect quality items.

Subsequent work by Yu et al. (2005) elaborated on the Salameh and Jaber (2000)
approach by incorporating item deterioration together with the inclusion of some back-
ordering. Their assumption was that the inventory deteriorates while in stock and also
that shortages would be partially back-ordered. This applies to consumers who would
be able to wait for stock. A charge for lost sales was allocated for consumers who were
unwilling to wait for back-ordered stock.

The initial model by Salameh and Jaber (2000), does not include shortages. Eroglu
and Ozdemir (2007) created an EOQ model that for each order, that will have some
defective items and shortages in the back order. The model accepts that the distribution
of faulty items is uniformly spread. The defective items are disposed of at a reduced price
or classified as scrap. The salient findings of the paper were that the when scrap (or
unusable) rates increase, a decline in the optimal total profit per unit is recorded.

The imperfect quality concept was extended by Jaber et al. (2008). In this respect, the
EOQmodel was extrapolated by taking into account learning effects, in that the efficiencies
thereof increase over time, as the benefits of that learning effect become apparent during
the process. The only variation between the Jaber et al. (2008) model and that of Salameh
and Jaber (2000) model was that the Jaber et al. (2008) model assumed that the amount
of inferior quality items would decrease in accordance with a learning curve to identify the
defects. It assumes that for repetitive operations the cost of producing an item reduces as
the quantity of those items that are produced doubles. It was assumed that the learning
capabilities cold be modelled in accordance with the mathematically derived S-shaped
logistics learning curve.

An extension was made to the imperfect quality items EOQ model by incorporat-
ing two factors namely, imperfect quality items, together with capacity constraint of two
warehouses in the basic EOQ model. In many everyday circumstances, there are many
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considerations like price discounts, or enticing retailers to purchase goods on consign-
ment that exceeds the capacity of their own warehouse facility. Retailers may rent other
premises under such circumstances. Many investigations studied inventory models with
dual warehouses. Studies that incorporated imperfect product quality under this scenario,
were modelled by Chung et al. (2009). The mathematical model by Chung et al. (2009)
aimed to maximise the total profit. The model makes the assumption that the one ware-
house with limited capacity is owned, while the other warehouse, with an assumption of
unlimited capacity would be rented. By keeping one of the items in stock in the second
warehouse, more costs are incurred. Therefore, items from the supplementary warehouse
are sold first. Prior to putting the goods up for sale the items in both the warehouses
undergo screening to remove the poor quality items.

The impact of EOQ models that have learning capabilities was studied by Khan et al.
(2010). This investigation noted that a cost for a loss in sales would be allocated as the
result of back-ordered shortages and from the effects of the learning process. For three
different learning scenarios, an EOQ model was derived. The scenarios that were studied
incorporated full, partial and zero learning transfer. This corresponds to scenarios where
inspection would be complete, partial or absent by the inspector during the screening
experience.

A model refinement for goods of imperfect quality with storage was derived by Chang
and Ho (2010). This model was a subsequent model to evaluate shortages. The significant
differences from this and earlier versions for inferior quality items with shortages, was that
Chang and Ho (2010) had not applied differential calculus methodology. They resolved
their model algebraically instead.

A system that includes imperfect quality items within vendor-buyer framework was
researched by Chen and Kang (2010). Their model allows the purchaser trade credit
finance by letting the purchaser receive stock but only pay for it sometime thereafter.
This facility incurs interest costs which the seller would be obliged to pay. The model
sought to keep costs at a minimum for both the parties as part of the transaction.

A model for inventory and an influential buyer for items with imperfect quality was
developed by Lin (2010). This model assumed that the buyer had negotiation supremacy
over the supplier. It meant that discounts could have been made to the buyer. These
discounts were available only to selected an influential customers. The amount of the
discount was structured and based on the quality of the goods that have been ordered.

Random supply to the EOQ model was introduced by Maddah et al. (2010a) for items
of inferior quality. They assumed a production process of the provider that followed a two-
state Markov process. The Markov process is a stochastic model which would describe the
sequence of a possible set of events in which the probability of that event relies entirely
on the state that had been previously attained. Furthermore, the Maddah et al. (2010a)
model examined duel scenarios of relevance to the transport and shipping of items that
are of imperfect quality. The first scenario, separates the inferior items from stock without
any further costs. Thereafter, those items get aggregated into a single consignment which
is sold at a discounted price, later on.

An alternative approach was used by Maddah et al. (2010b) to ensure that shortages
were considered. A screening procedure was developed to determine the imperfect items
when an order is received. These imperfect items would be salvaged as part of that
assessment process. To remove the possibility of shortages, orders are placed where there
is just sufficient to satisfy the demand while the sorting process occurs. With sorting,
the demand for the order would be combined with the inventory for the previous order.
This improves the overall level of customer service delivery. However, it is costly to the
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supplier, even if it does address the customer demand aspect.
The model for inventory that have imperfect quality in the EOQ study was extended

by Hu et al. (2010). More specifically it introduced the concept of fuzzy variables to items
with imperfect quality. Fuzzy variables are measurements that emanate from two types
of uncertainties. Shortages and fully back-ordered inventory were permitted in the model.
According to the model, the rate of demand and the fraction of quality items had been
fuzzy. Levels of customer service were also addressed by the model. The levels of service
were measured by customer demand having been satisfied with the back order items.

The EOQ model assumed that all of the items are of perfect quality in the order
lot. This would only be attainable under idealistic situations but in practice it may not
be applicable. For such situations inspection of the lots becomes vital for the process.
Furthermore, this becomes more of an issue when products deteriorate. In the Jaggi and
Mittal (2011) study, the aim has been to resolve an inventory model for imperfect items
that deteriorate.

Wahab et al. (2011) elaborated on the investigation of Salameh and Jaber (2000) with
a vendor-buyer supply chain model. This differed from other models in that it studied
three practical scenarios. Firstly, it assumed both participants originated from the same
country which was a new dimension in inventory management study. Secondly, the vendor
and the buyer were assumed to have been from different countries. The rate of exchange
of the currency between the counties was assumed to have been stochastic. Finally, the
model was studied under a scenario for different countries assuming emission costs are
charged for logistics activities and production of the goods when orders are executed.

The assumption by Salameh and Jaber (2000) that the screening process would be
perfect is not practical in the real world. Further work by Khan et al. (2011) did away with
the assumption of perfect screening by developing a stock model that noted inconsistencies
in the process of screening. The likelihood that a screening inspector would commit an
error was assumed to have been known.

In the Salameh and Jaber (2000) model the assumption was always made that the
screening process happens at the customer, even though it is the supplier that provides the
imperfect product. Rezaei and Salimi (2012) derived a model for inventory model where
the management of the screening process switches from the customer to the supplier. This
is a departure from the prior accepted norm.

A version of the EPQ model was investigated by Yassine et al. (2012). It evaluated
two scenarios from the delivery of inferior quality products namely, through aggregation
and disaggregation. For aggregation, inferior quality products are collected during various
production runs and then they are shipped on a per consignment basis. For disaggregation,
inferior quality items are deemed to have been sold throughout each production cycle.

The demand rate is impacted through pricing and marketing considerations according
to Lee and Kim (1993). However, these factors are seldom considered when such inventory
models are developed. This resulted in an EPQ model by Sadjadi et al. (2012) for goods
of inferior quality that takes into consideration the effect of the marketing plans for a
company. The model considered variables such as the marketing budget allocation, the
costs of maintenance, the costs of production, warehousing availability and the machine
hours available. These were deemed to be constraints or limiting factors in the overall
process.

Yadav et al. (2012) produced a fuzzy demand model for items of imperfect quality and
fully back-ordered shortages. Demand was projected to depend on the funds that had
been spent on advertising together with a learning curve that would become increasingly
efficient with the screening process.
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Certain suppliers permit the return of goods if there is not complete satisfaction there-
with. The reality is that there would be a greater probability of customers returning goods
in an environment with more imperfect quality items. Hsu and Hsu (2013) suggested an
inventory model that incorporated sales returns for items of imperfect quality. That model
also assumed errors in the screening process with an increased probability of items being
returned if more items were found to be defective. Returning an imperfect product in-
curred additional charges for the retailer. Such charges include the costs of the item, the
refund cost and the associated logistical costs.

Lin and Hou (2015) investigated an inventory model with overlapping and an advanced
receiving attributes, wherein the supplier would provide a discount factor to that procure-
ment cost. This discount factor would compensate that buyer for any further holding costs
and maintain a collaborative business relationship.

An extension to this two-warehousing scenario was examined by Jaggi et al. (2015).
To assume that the items that are produced are of perfect quality is unrealistic because
virtually all inventory comprises a small number of items that are of sub-standard or
inferior quality due to defective production or the mistreatment of those goods. It may
also be incorrect to assume that goods maintain their physical characteristics while being
held. To mitigate against financial losses due to this, the consumer may be forced to
rent other warehouses with more appropriate storage facilities which may not be readily
available. This model develops an inventory scenario with two-warehouses, one being for
goods that have some imperfect quality and the other for goods that will deteriorate.

Khan et al. (2016) considered a more recent trend in supply chain management for
a vendor-buyer system of inventory. The model ensures that the buyer is provided with
items which are not all of perfect quality. An agreement with the vendor keeps the stocks
at the warehouse of the buyer who would be responsible for managing that stock. There
is an increasing number of manufacturers who elect to have retailers oversee that sort of
inventory.

A model has been developed by De et al. (2018) for imperfect quality items where
certain of those items can be reprocessed and the remainder are disposed of at a lower
price. Added to that environmental regulations were applied to the study through a carbon
tax that is charged subject to the production processes of the manufacturer producing a
prior specified quantity of carbon emissions.

There is an emerging trend to use these EOQ models to ensure sustainability and
economic benefit. Tiwari et al. (2018) considered carbon emission items, in the framework
of a vendor-buyer integrated one supplier, one customer inventory model, for deteriorating
items or items of imperfect quality. The aim of the study had been to enable policy makers
with the appropriate knowledge, to collectively determine the order frequency and quantity
of the product required with minimal pollution and inventory costs. The costs of carbon
emissions, from the production process, the logistics and warehousing functions were also
considered as part of the overall cost. The findings of the investigation by Tiwari et al.
(2018) suggested that the combined model would be an improvement, in terms of inventory
cost and carbon emission reductions, with a cost minimisation objective of the total costs
to be incurred by both parties.

There is ongoing study to improve on existing models by making them more applicable
to real-world situations. The study by Nobil et al. (2020) initiated a significant trend
towards the optimal economic lot-size model for sets of imperfect items. Research is now
able to calculate the best re-order points for the Salameh and Jaber (2000) inventory
model and this constitutes a key threshold for managers to determine the continuity that
would be relevant for order scheduling.
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According to Sebatjane and Adetunji (2020a) quality control would also be a factor in
food production systems. This would encompass farming, processing and would end up
with use. This investigation examines a control model for inventory within a supply chain
that encompasses agricultural farming, agricultural processing, agricultural screening and
agricultural-related retail operations. It becomes a four-echelon supply chain system. The
processor exchanges the processed inferior quality products at a lower price and as a
uniform component to the secondary market.

Hauck et al. (2021) assumed that the speed at which the screening is done would be a
decision making variable together with the order quantity. Furthermore, other screening
cost and defect detection concepts are introduced.

2.4 Deterioration

2.4.1 The original deterioration model

Prior inventory models such as Harris (1913) had assumed that products could be stored
indefinitely without deterioration. This is not realistic as many perishable items such
as fruit, vegetables, medication and certain liquids can deteriorate or degrade over time.
This means that inventory can get used up or depleted by both decay of the item, or
changes in the demand. Deteriorating items can be categorised into items with a fixed-
span lifetime (for example, medication with an expiry date) or items that deteriorate over
time (for example, perishable goods) or alternatively, items where the deterioration is age
dependent (for example, changing fashion styles).

The reality of modelling this in the supply chain management assumes that certain
items do deteriorate. In most practical real-life situations, this would be reflected in
situations whereby for example, volatile liquids would evaporate, batteries could fail with
age and perishable items would degenerate. The manner in which this deterioration takes
place, is not the same in each instance for each category of items.

The initial approach by Harris (1913) had been to examine the problem assuming a
constant demand profile and a constant rate of deterioration. Practical observations re-
ferred to here, has established that these rates of deterioration do however, not adequately
reflect reality. It means that a lot of scope exists to investigate and incorporate the impact
of items that deteriorate over time. Much more work and study can still be undertaken
to improve upon research that is available so far.

The concept of having items in an inventory that deteriorate was first examined by
Whitin (1957). He investigated the notion of deterioration of those items in storage. Sub-
sequently, Ghare and Schrader (1963) incorporated the probability that inventory may
deteriorate through a modelling process. The basic EOQ model which had considered
deterioration was first done by Ghare and Schrader (1963) in the context of an exponen-
tially decaying inventory. Raafat (1991) was able to illustrate that Ghare and Schrader
(1963) did consider the impact of decay in inventory by noting the potential for cost saving
measures and improvements in the inventory reordering cycle. The Ghare and Schrader
(1963) model formulated the change in inventory level I(t) in the Equation (2.5).

dI

dt
+ θI(t) = −D(t) (2.5)

The concept of decaying inventory was graphically depicted by Ghare and Schrader
(1963) and is shown in Figure 2.4.
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Figure 2.4: Inventory profile for items that deteriorate.

By examining the graph the following can be illustrated.

� D(t) is the demand per unit of time.
� T is the time of the inventory cycle.
� Q is the order quantity.
� θ is the constant rate of decay.
� C is the cost per unit of the inventory item.
� K is the ordering cost per batch.
� h is the inventory holding cost expressed as a fraction of the maximum permissible
inventory.

� I(0) is the initial inventory, which the total sales during the inventory cycle plus the
loss due to decay.

� D(t)T is the total sales during the inventory cycle.

�

D(t)θT 2

2
is the loss due to decay for the cycle.

� t is a representative of time.
� I(t) is the inventory level at time t.
� dt is a small change in time.

Using the parameters of Ghare and Schrader (1963) it has been established that the
total cost per cycle CT will be the aggregate of the purchase costs, the costs of ordering
together with the holding costs. This is illustrated in the Equation (2.6) from Ghare and
Schrader (1963).

CT = C

[
D(t)T +

D(t)θT 2

2

]
+K + hC

[
D(t)T +

D(t)θT 2

2

]
(2.6)

Ghare and Schrader (1963) were able to derive an equation for the optimum order
quantity Q∗ in Equation (2.7).

Q∗ = D(t)T +
D(t)θT 2

2
(2.7)

This is only an approximation on the part of Ghare and Schrader (1963), but it is
sufficiently accurate since T would most likely be rounded off in any event.
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2.4.2 Subsequent deterioration models

Additional work was done to the basic model to incorporate varying rates of deterioration.
Extensions to the first model of Ghare and Schrader (1963) assume that the deterioration
rates need not necessarily be constant.

It became apparent that deterioration needed further investigation. There is substan-
tial additional work in this regard that has already been completed. The work of Raafat
(1991) collated various of the prior studies and this output has resulted in a comprehensive
synopsis of deterioration, before the publication of the Raafat (1991) study. Some of the
salient literature that is available in this respect, is referred to here.

Covert and Philip (1973) used a two parameter Weibull distribution for an EOQ model
that has a fluctuating deterioration rate. It assumed that the rate of decay was constant
which would have implied that the inherent deterioration was an exponential distribu-
tion with instantaneous delivery and no shortages. This is a specific case of a Weibull
distribution analysis.

The investigation of Covert and Philip (1973) was further developed by Philip (1974)
to a Weibull distribution involving three parameters. It took into consideration the im-
pact that deteriorated items would have in an inventory system together with items that
commence with deterioration in the future.

Extension of the Philip (1974) model, without any back-ordering and with a gamma
distribution assumption for the inventory deterioration was investigated by Tadikamalla
(1978). This findings noted that where two such distributions have similar shapes their
deterioration rates are different at any specific point in time. It means that it is relevant
to have a thorough knowledge of the deterioration and its attributes to fully understand
the cost implications.

Shah and Jaiswal (1977a) produced an inventory model that is deterministic for items
that have deterioration with back-ordering and instantaneous replenishment permitted.

Work has also been done to assess finite rate production models that have deterioration.
A model with both a changing deterioration rate and also a constant rate of deterioration
for a production lot size had been developed by Misra (1975). Under a scenario of differing
rates of deterioration, the expression of the production lot size without back-ordering
was computed. It appears not to be possible to obtain a basic general expression as an
alternative for a production lot size. This means that as an alternative, a numerical method
would have been appropriate. In constant rates of deterioration scenarios an estimated
expression was determined for the size of that production lot.

Furthermore, Shah and Jaiswal (1976) have found results that are close to those of
Misra (1975) and extended the model to include back-ordering for a constant deterioration
rate. They assume the average inventory on-hand would be about half of its maximum
size and derived a production lot size as a function of the given inventory time of the cycle.

Further probabilistic models with deterioration assumed immediate delivery and con-
stant deterioration rate. Shah and Jaiswal (1977a) provided an inventory order level model
with immediate delivery and deterioration at a constant rate. It was then extended to
include a stochastic demand profile. Their work also considered the average carrying in-
ventory to be a linear function estimate and derived a order level function subject to the
cost of the product.

Aggarwal (1978) excluded the linearity presumption in favour of precise statements for
the inventory attributes of this model.

Shah and Jaiswal (1977b) proposed a probabilistic review model for an inventory sys-
tem with deteriorating items. The model had been derived for all general rates of deteri-
oration. Here, both the uniform and varying deterioration rate had been considered.
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In the Rengarajan and Vartak (1983) investigation a generalisation of the model was set
out to find a general solution for deteriorating items. Results were found for the optimal lot
size and order level, incorporating a constant deterministic demand throughout scheduling
of the product. The optimal environment for the best opening stock-level does not rely
on the nature of the demand, for a fluctuating demand schedule that is known.

Deterioration is also a factor that has been studied in pricing and financial inventory
models. As an example, Cohen (1977) evaluated the issue of concurrently permitting
the selling price and the order quantity under demand that is known for a product that
decays exponentially. Such products have been found to experience a proportional loss in
usefulness to all the stock on hand. This depends on the price at which the unit is sold.

Models can be considered in terms of the best control theory to derive the optimum
replenishment scenario, assuming algebraic cost functions that are quadratic for inventory
models and changing rates of deterioration. These issues were considered by the work of
Bensoussan et al. (1975).

Deteriorating inventory models also feature in studies with varying rates of demand.
Goel and Aggarwal (1981) considered an inventory model with an exponential demand as
well as a constant rate of deterioration. Their work incorporated demand studies with or
without any shortages.

Where the demand rate scenario would be a function of the inventory level was ex-
amined by Padmanabhan and Vrat (1990). They categorised this as the stock dependent
consumption rate. For the model an inventory scenario is suggested, that is based on
the opening stock dependent consumption rate and the exponential rate of item decay. It
looks at the cost of material that has been lost to deterioration, together with the ordering
costs, the carrying costs and the cost of the materiel. Ongoing replacement is permitted
without any back-ordering. This produces an optimal ordering quantity.

Further trends became apparent in respect of being able to model items or inventory
that deteriorates. In broad terms, this emphasis focuses more on the shelf-life character-
istics of those deteriorating items. Goyal and Giri (2001) extrapolated the earlier work
of Raafat (1991) to cover subsequent developments in their analysis of deterioration. The
salient features of the subsequent study of deterioration are elaborated on in the following
literature.

The Raafat et al. (1991) study examined an inventory model that deteriorates in a
uniform rate of demand and with a specific replacement rate. The precise cost expression
of the average total cost for the production lot-size of the model comprising sustained
deterioration is arrived at.

For many items the presumption of a constant rate of demand may not always be
relevant and so the concept of time varying demand with deterioration becomes significant.

A model of inventory policy for items that deteriorate is presented by Xu and Wang
(1990). This happens by assuming that the demand rate is deterministic, linear and
modifies over time with a constant deterioration rate. The planning horizon would be
known and finite. It was assumed that the replenishment cycles were unequal. The result
is applicable to cases where the demand would be increasing or decreasing.

Inventory scenarios with sales rates that were stock level-dependent had been investi-
gated by Padmanabhan and Vrat (1995). The rate of the sale was assumed to be dependent
on the inventory level in a situation of constant stock deterioration. With no lead time and
immediate refilling the model included situations such as complete, partial and even zero
back-ordering scenarios. For each of the situations the system is configured to maximise
the return as reflected in the total profit.

The concept with respect to deteriorating stock with pre-agreed or permissible delay
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in payment has also been investigated. Usually suppliers offer credit or some form of ben-
eficial incentive to retailers so that they can also contribute to stimulating demand for the
product. Interest would generally not be levied in such instances and this assists retailers
to enhance revenue for the specific period of delay in the payment. Haley and Higgins
(1973) investigated this aspect. Later researches such as Jaggi and Aggarwal (1994) also
looked at optimal inventory replacement scenarios under various conditions. Furthermore
researches have examined the impact of trade credit and the stock replacement policy in
subsequent practical studies.

Traditional inventory models are applied within the realm of a single warehouse facility.
Practically however, limited capacity of the facility may mean that additional storage space
is required and this leads to a deteriorating inventory scenario with two warehouses. The
notion of a dual-warehouse stock model was investigated by Pakkala and Achary (1991).
They developed models for this scenario of deteriorating items with shortages and finite
replacement rates.

Since 2001, inventory systems that deteriorate have been complied into a research
report and documented by Bakker et al. (2012). This report deals with specific categories
that would be applicable to the model of deterioration.

The authors Bai et al. (2010), suggest an EOQ event with general economies of scale,
cost functions that would be applicable to decaying inventory. The investigation pertains
to a uniformly distributed fixed lifetime inventory. Back-ordering is permitted and optimal
solutions together with certain properties are examined.

For fixed lifetime stock level-dependent demand and also for age dependent decaying
rate, the work of Akkerman et al. (2010) reviewed qualitative operations management.
They considered perishability in the supply chain. The focus of their work concentrated
on food quality, food safety and overall sustainability. They investigated the impact of the
strategic design of networks, tactical network plans and operational transport planning.

A model by Alamri (2011) investigated a general uniform stock-level scenario for the
integrated production of new items, within a longer term planning horizon. The first
facility produces new items while the second one re-works and recycles the return goods
so that they appear new. Another facility collects the items to be sent back for reprocessing
as in the initial step.

The dynamic pricing issue that a firm faces when it sells the first inventories of many
perishable and substitutable products over a given time horizon was studied by Akçay
et al. (2010). They account for interchangeable and complimentary items in a multi-item
inventory model under situations of uniformly distributed age dependent deterioration.

Balkhi and Tadj (2008) investigated an age dependent deterioration rate with time
varying deterministic demand. Furthermore cost parameters are also presumed to be
universal variables of time.

In recent years authors such as Blackburn and Scudder (2009) have modelled the
costs and benefits of using preservation technology in the supply chain process relating
to the storage of fresh produce. This would have an impact on the rate at which normal
deterioration occurs. It can be considered as an extension to the concept of deterioration.
The study shows that the correct model to minimise the value lost in a supply chain
would be a compensate of the time taken from harvesting to refrigeration, with an efficient
preservation in the supply chain at the end.

Various assumptions that may be required to justify using the EOQ model may not
always be met. According to the Moussawi-Haidar et al. (2014) model that closely replicate
real-life situations may need to have certain assumptions relaxed. Research investigated
a modified inventory EOQ model for a deteriorating item with erratic supply. It means
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that a certain percentage could be lost to deterioration of that inventory on hand.
Subsequently, the investigation by Jaggi et al. (2017) arrived at a dual-warehouse model

for inventory simultaneously taking into account imperfect quality items deterioration and
certain trade credits. Total profit is maximised in this study through optimisation of the
order quantity over time.

In many issues related to deterioration in a real world situation some items may be
impacted on by other items in proximity. Studies by Khakzad and Gholamian (2020)
made proposals that considered the effect of inspection times when replenishment was
taking place on the average deterioration of those items. In this examination the supplier
is required to implement certain prepayments onto the retailer.

More recently the inspection process is important to monitor the quality of the items.
Despite good planning certain defective items may be delivered to retailers in each delivery
lot. The EOQ paper by Jayaswal and Mittal (2022) arrives at a set of models that demon-
strate learning, or assimilates the impact of defective and decaying items in a scenario of
inflation. The purpose is to evaluate the impact of learning on the best order quantity
and the corresponding total profit in a scenario of inflation.

Work by Rahman et al. (2022) evaluated a model with interval based parameters for
items that deteriorate. Two situations were considered namely, those where shortages
are applicable and those without any shortages in a discounted environment. The rate of
deterioration is considered as the interval value while the carrying cost would be a function
of the time that it had been stored together with the purchase cost.

As the review of the literature progresses the focus will increasing shift towards one of
the anticipated outcomes, which is an investigation of perishable items with expiry dates.

The literature shows that researchers had previously focused their studies on the effects
of perishability as viewed from the perspective of a supplier of goods. In other words, the
impact of perishability from the perspective of the consumer needed further attention.
More recently, it has been found that the impact of freshness is one of the most critical
considerations that would affect the decision of consumers when purchasing goods.

The work by Fujiwara and Perera (1993) considers ongoing deterioration of product
usefulness together with an exponential cost function penalty as the measurement of that
deterioration. This enables the impact of item freshness on the customer demand to be
taken into account.

The impact of inventory policies on demand for perishable products is negatively af-
fected by the age of the available stocks according to Sarker et al. (1997). The research
describes such a model where the demand is considered as a composite function incor-
porating both consistent and variable components that would be directly related to the
inventory level.

The Bai and Kendall (2008) model investigated inventory control issues that are asso-
ciated with fresh produce. It considers deteriorating inventory control for perishable goods
by extending the demand to incorporate freshness and shelf-space dependencies. Many
perishable goods have very limited shelf-life and demand tends to zero as the expiry dates
are approached.

The date of expiry was examined by Wu et al. (2016). That work configured the best
replacement cycle time for the retailer and also the stock-end level when the demand is
based on the freshness of the product with the stock level prominently displayed.

Chen et al. (2016) expanded this concept to find the optimal lot size, ending-stock
levels and shelf space for a retailer by considering the aspect of shelf-space size as an
additional variable for consideration.

Work by Wang et al. (2014) looked at the maximum life time span as an additional
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concept for study. Certain perishable products deteriorate continuously but they may also
have expiry dates. To increase sales sellers may offer purchases a credit period to settle
the purchase amount.

According to Giuseppe et al. (2014) the food supply chain can be affected by the loss
of products as the expiry date approaches. In order to manage expiring products such as
food at the retail stage this work investigated the optimal time that would be required to
withdraw that food from the shelf of retail supplier.

The work of Giuseppe et al. (2014) was extended by Muriana (2015) to consider prod-
ucts that could be adversely impacted on by uncertainties in shelf-life. Furthermore, loss
of profits and a deterioration costs are included in this study.

In another study by Aiello et al. (2015) alternatives of food recovery for humanitar-
ian non-profit organisations was discussed. Consumer demand for perishable products is
more appropriately stochastically modelled than through deterministic models. The pa-
per presents a mathematical model for the coordination of the supply chain process by
operating a food recovery policy. It determines the optimal time for withdrawing products
from the shelves and passing that product to other users thereof.

Additional work was also carried out by Muriana (2016) with the development of an
EOQ model for goods that are perishable under the stochastic demand scenario. This
permits amendments to consumer behaviour that can be weather related and where pur-
chasing power can be a factor.

It is found that retailers may discount their products if they have expiry dates, as that
date of expiry approaches. According to the work of Banerjee and Agrawal (2017) it was
possible to create a model to optimise the ordering, discounting and pricing policies for
an inventory system that will expire if it has a demand that depends on the sales price.
As a perishable good begins to deteriorate it is often discounted to be able to boost sales.
This may benefit the retailer if appropriately applied.

The Feng et al. (2017) zero-level inventory model (similar to the Wu et al. (2016)
investigation), assumptions were relaxed. A profit maximisation model for inventory, with
expiration dates, price-dependent demand and freshness was investigated. An additional
consideration permitted for a postponement in the payment which would have been an
inducement for the supplier to deliver goods to the seller without immediate payment
settlement.

An extension of the work of Wu et al. (2016) is presented in Wu et al. (2018) by
considering allowable payment delays as an incentive where the supplier is able to deliver
the order but does not require immediate settlement. Rather a specific amount of time is
grated for the settlement of the bill to be implemented. This is of particular significance
in respect of perishable products in a situation where the buyer is offered a interest free
payback period over the short term on the purchasing cost.

Trade credit was incorporated into the Wu et al. (2016) model by Li et al. (2019) in a
manner whereby the period of trade credit was treated as an added variable in the overall
decision making process. The optimal credit term, order size and selling price are derived
simultaneously for the retailer to achieve maximum profit.

The issue of expiry dates when shortages are permitted for deteriorating items had
previously not been considered. Khan et al. (2019) suggested an EOQ model to cater for
this in a situation, where the end user demand relies on the sales price of the products.

Perishable food products may be influenced by the selling price and the age of those
items. As perishable products have little brand identification, factors such as freshness and
age become significant determinants of demand. Sebatjane and Adetunji (2020b) used this
concept to investigate perishable inventory. However, it is increasingly important to do this
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investigation in a collaborative sense with other participants in the supply chain process
rather than studying it merely from the perspective of the retailer. This has resulted in a
model to manage perishable goods within the supply chain that commences with farming
operations and ends with the consumption of that inventory at its destination. In effect
there are three echelons in this specific supply chain comprising production (or farming),
processing and finally retail distribution. Jointly optimising pricing and inventory policies
is investigated for this study.

2.5 Inventory level-dependent demand

2.5.1 The original inventory level-dependent demand model

It has been observed that larger display volumes can influence demand for a product.
The configuration and volume of product that is displayed thus becomes an additional
attraction for end users of that product. The Baker and Urban (1988) analysis sought to
develop a scenario where the demand for the product of a company would be a function
of the inventory on-hand of that particular product. A typical inventory profile for such
a situation is illustrated in Figure 2.5. This depiction is based on consumer demand and
marketing theory which notes an increase in consumer demand with increased levels of
stock on display according to the work of Levin et al. (1972).

Time

Inventory level

𝑸

𝑻

Figure 2.5: Inventory level-dependent demand rate graph.

The variables used in this analysis are defined below;

� D is the demand rate.
� I(t) is the inventory level over time.
� δ would be the scaling parameter (the maximum attainable demand) for that demand
rate.

� ψ the elasticity of demand with respect to inventory level displayed (a shape param-
eter for the graph).

� pv purchasing price for each item in an order.
� pr selling price for each item that is sold.
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� hr is the holding cost for the company per unit of time to keep each item in stock.
� Kr is the fixed ordering cost for the company.
� Q is the lot size ordered.

The function Equation (2.8) of Baker and Urban (1988) was applied as follows.

D = δ[I(t)]ψ, 0 ≤ t ≤ T (2.8)

Inventory levels would change with time according to the differential equation as shown
in Equation (2.9).

dI(t)

dt
= −D = −δ[I(t)]ψ, 0 ≤ t ≤ T (2.9)

The solution to the Equation (2.9) would produce an expression for I(t) (in terms of
Q) which would be used to calculate the holding costs for the company per unit of time.
This means that if the company sells the items for pr then the total profit in each unit of
time, TPU is in Equation (2.10).

TPU = prδ(1− ψ)Qψ − Krδ(1− ψ)

Q(1−ψ) − pvδ(1− ψ)Qψ − hr(1− ψ)Q

2− ψ
(2.10)

It is difficult to obtain a closed form solution to Equation (2.10) so various other
techniques are applied to determine the optimal lot-size Q∗.

2.5.2 Extensions to the inventory level-dependent demand model

Research by Baker and Urban (1988) has confirmed that large exhibits or quantities of
inventory are able to stimulate market demand. Baker and Urban (1988) devised an EOQ
model for items with demand which would depend on inventory levels that are available on-
hand. This applies inventory with continuous deterministic demand illustrated by means
of a polynomial function that would rely on the inventory level. Their model was expressed
as an exponential function that represented the rate of demand of inventory dependency
levels and it had suggested that a new inventory series would commence when the level of
the inventory in the current series had reduced to nothing.

Mandal and Phaujdar (1989) extended the work of Baker and Urban (1988) with a
linear function that illustrates the rate of the demand of the inventory level dependency.
With deteriorating items produced by constant production rates with stock-dependent
demand an order-level inventory model had been produced. Shortages had been permitted
and surplus demand was back-ordered.

An extension was provided by Urban (1992) that illustrated the advantage of applying
a policy whereby the level of the inventory had been a positive, at the conclusion of the
cycle. The nil policy of inventory at the end of the cycle is not necessary for demand rates
in deterministic models and hence it is limitation that is relaxed in this study.

Complimentary studies by Urban and Baker (1997) and Teng and Chang (2005) pro-
duced research where the rate of demand would be dependent on the selling price and
the level of inventory. Urban and Baker (1997) investigated a positive or non-zero final
inventory level together with the reduction in price at the termination of the replacement
cycle. The model of Teng and Chang (2005) applied to items that deteriorate under this
scenario.

The demand of retail items that have been displayed has been recognised as being
dependent on the quantity of inventory that was on the display. Work by Urban (2005)
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where the rate of demand for an item would be based on the initial inventory level and
furthermore, that the demand relies on the specific amount of stock at any moment in
time.

Another approach that used a discounted cash flow model to reflect the impact of
inflation on an inventory system was investigated by Hou and Lin (2006). This model,
together with the time-value of money relies on a stock level-dependent demand scenario,
with the amount of the stock items and their selling prices.

The Wu et al. (2006) study investigated the issue of ascertaining the best replacement
strategy for items that deteriorate with stock-dependent demand. These items would not
deteriorate instantaneously in the model. Shortages are permitted with a variable back-
ordering rate, but it requires a waiting time for future replenishment. The work identifies
the optimal circumstances in such situations, benchmarked against the minimum total
respective cost per unit of time.

Work by Goyal and Chang (2009) examined an inventory model that determines the
best order quantity for the retailer and the rate of transfer per order from the warehouse to
the final selling show premises. The display space would be constrained and the demand
relies on the level of inventory on exhibit. The aim had sought to maximise the mean
profit over time that the customer would be able to realise.

Two inventory control models were considered by Duan et al. (2012). One of the
models considered the back order shortages, while the other model did not. The model
examined items that deteriorate at a rate of demand that relies on the actual stock level.

Mishra et al. (2013) evaluated a model of deterministic stock with demand that is time-
dependent and also with time-varying storage costs in a situation where the deterioration
would be time proportional. This model tolerates shortages with partially back-ordered
demand. It seeks to find the best inventory costs for the business where the deterioration
rates and the holding costs are time-dependent.

Many retailers increase product offerings to enhance their market share. By offering a
number of like products means that they are substitutable by the consumer. The work by
Krommyda et al. (2015) investigated inventory control in a situation where demand could
be addressed through substitution. The demand for the specific product is affected by the
stock levels of each of those products at specific points in time.

A study of production capabilities by Sargut and Işık (2017) produced a dynamic
economic order quantity issue for a single item that perishes. The objective was to identify
the production, inventory and back-ordering decisions that would be necessary during the
planning horizon. The parameters are deterministic but change over time and the producer
has constant production capacity that limits production in each period. Outstanding
demand is able to be met at some time in the future.

The Pando et al. (2019) study examined a stock system that sought to establish the
maximum profit cost ratio. This assumed that the rate of demand would depend on the
amount of the stock. Furthermore, the stock holding cost and the amount of stock would
be not be a linear function over time.

A production inventory model for items that deteriorate with non-linear price and
linear dependent inventory demand was investigated by Halim et al. (2021). This incor-
porated a production facility that could produce more goods in overtime situations.

A model where the rate of demand relies on the eventual selling price and that stock
level was considered by Pando et al. (2021). Lower prices or higher stock levels did result
in increased demand rates. The selling price, the order level and the point at which re-
ordering happens were the three decision variables that were evaluated. The objective was
to maximise the relationship between the total profit and the total costs that accrue to

24

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the inventory system.
Expiry dates on perishable goods impact significantly on purchasing behaviour from

consumers. Marketing and inventory display also increases demand by consumers for
such items. Furthermore, primary products generally require processing before they can
be transformed into a consumable product by the retail sector. Customer demand at the
consumer end relies on the stock level and also the date of expiry of the products. Sebatjane
and Adetunji (2021) derived a model to ascertain the effectiveness of a mechanism to
enhance profit in a situation that removes the earlier zero-end inventory policy in the
supply chain. In essence, it permits for shortages. The assumption is that inventory is kept
at the retailer and that it is replenished when a certain minimum level has been attained.
Clearance sales are held to ensure that the required level of inventory is maintained at an
acceptable level of freshness. This enhances profitability and is preferred to the traditional
notion of ending with zero inventory level studies.

Palanivel and Suganya (2022) examined an inventory scenario to maximise the profit
for an optimally ordered quantity, with back-ordering and holding cost dependent on the
storage time period and the market demand. The model assumed to vary as a function of
the selling price together with the stock level. It was concluded that total profit can be
increased by permitting shortages together with some back-ordering.

Using a fuzzy EOQ model analysis Poswal et al. (2022) investigated deteriorating
items that have a price sensitive and stock-dependent function where shortages would
have been permitted. By displaying a large quantity of goods sellers invariably attract
more customers to purchase more in certain business situations.

2.6 Literature review conclusion

An important feature of this study is to analyse the available literature to be able to
place into context any shortcomings within the supply chain framework that has been
studied. There is detailed referral to other literature that is available in respect of these
issues in Chapter 2. Primarily, studies by Harris (1913) (the classical model), Salameh and
Jaber (2000) (the imperfect quality model) and Ghare and Schrader (1963) (the concept of
deterioration analysis), forms the basis of supply chain inventory models. With a broader
approach, Baker and Urban (1988) expressed demand rate as a power function of the level
of the inventory. The concept of freshness was used byWu et al. (2016) to derive a freshness
index that was based on the expiry dates of those goods. However, demand by consumers is
increasingly seeking goods that have minimal inherent defects. To extend on this concept
Lin and Hou (2015) considered an inventory model that has imperfect quality items with
advanced receiving methods. Work by Jaggi and Mittal (2011) elaborated on these studies
to integrate deterioration with imperfect quality items. Sebatjane and Adetunji (2021)
incorporated the concept of both freshness and inventory level to determine demand.

One of the shortcomings identified from the Lin and Hou (2015) study was the omission
of the concept of deterioration. The Jaggi and Mittal (2011) assumed constant demand
which may also not be realistic. The Sebatjane and Adetunji (2021) study did not focus
on deterioration and imperfect quality items.

This has resulted in a shortcoming (or gap in the research) which is to combine elements
of imperfect quality, deterioration and freshness into a single entity model. This has
become the central theme of the study as proposed here. The gap is illustrated in Table 2.2.
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Table 2.2: Research gap.

Author Imperfect Deterioration Freshness Inventory-level

Salameh and Jaber (2000) ✓

Ghare and Schrader (1963) ✓

Baker and Urban (1988) ✓

Wu et al. (2016) ✓

Lin and Hou (2015) ✓

Jaggi and Mittal (2011) ✓ ✓

Sebatjane and Adetunji (2021) ✓ ✓

This thesis ✓ ✓ ✓ ✓

The objective of this study is to address a research gap by creating a scenario whereby
imperfect quality, deterioration and freshness can be quantitatively assessed. A mathe-
matical model will be constructed to reflect these issues and it will be tested with numeric
data to ascertain the viability thereof. Certain sensitivity studies are also to be conducted
to determine the effects of changes to the numeric data on the overall outcome of the
model. Ultimately this should lead to it being able to create a scenario which will better
reflect real-life situations.

The benchmark against which these various components will be adjudicated is the
total profit per cycle. The primary objective will be to maximise the profit per cycle in
each instance.

Although previous studies have contributed much to the understanding of the effects of
stock-levels on demand, most of them have not taken into consideration the combined ef-
fects of freshness (which is determined by the expiration date), and stock-level on demand.
Imperfect quality and deterioration have been comprehensively addressed in many stud-
ies, but the concept of combining this with levels of freshness and stock-levels collectively
is something that has not been adequately investigated. The objective is to address a
research gap by creating a scenario whereby imperfect quality, deterioration and freshness
are combined to maximise profit.
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Chapter 3

Mathematical model

3.1 Introduction

Reference has already been made to the fact that the concepts of quality, deterioration
and freshness in Chapter 1 have not been adequately investigated within a collective
environment, or a situation where these factors are integrated within a single supply
chain mechanism. Furthermore the literature review in Chapter 2 had provided a basis
on which to identify the shortcomings that manifest themselves with such issues. This
has culminated with a proposal to address the shortcomings (or a gap in the research,
identified in Chapter 1) in terms of the published models currently available. The purpose
of the Chapter 3 is to clearly understand those shortcomings and to develop a quantitative
or theoretical background upon which a solution to this issue can be based. After the
theoretical model has been proposed the intention is to assess its applicability by testing
it with a set of numerical examples that test the viability thereof.

3.2 Problem definition

In a study of imperfect quality, deterioration and freshness, the analysis assumes that the
products (Q in Figure 3.1) get delivered and are stored at their destination.

This is based on the assumption that it is a single product-type, but with that product-
type being of varying quality. On arrival, the products are screened to determine their
quality. The process of screening individually examines each product for defects. The
screening process results in two separate categories of product but of differing quality.
The first category would comprise the good product, while the second category comprises
the goods that are of imperfect quality. The rate at which screening takes place results
in the amount of good product always exceeding the demand for that good product.
During the screening phase when a product has been classified as an imperfect product,
it is separated from the delivered products and is then stored separately. Immediately
following the completion of the screening process (t1 in Figure 3.1), the imperfect quality
goods are sold at a price that is lower than the price of the good product.
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𝑇
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Q
−𝒂 𝑰 𝒕 𝒃

𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕

Inventory level

Time

−𝒂 𝑰 𝒕 𝒃
𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕

−𝒂 𝑰 𝒕 𝒃
𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕

Figure 3.1: A graphical representation of an Economic Order Quantity (EOQ) model for
imperfect and deteriorating items with freshness and inventory level-dependent demand.

Assuming that there was no inherent deterioration and no imperfect quality products,
the graph would illustrate the demand for the good product. The demand in such in-
stances is a function of the inventory level, the freshness of the goods and a measure of
consumer trends. Furthermore, the demand for the product decreases as the expiry date
for that product approaches. By introducing deterioration, it impacts adversely on the
quantity of goods that are available for sale. However, deterioration does occur and cer-
tain intervention is necessary to remove the deteriorated items from the saleable goods.
The deteriorated items are sold off at a reduced price as part of this process. This is an
additional factor that needs to be considered in the determination of the good product to
be sold. All the good products are held until a sale takes place.

At the end of the cycle (T in Figure 3.1) there are no goods left for sale. The process
then repeats itself for subsequent goods delivery. The Figure 3.1 illustrates a commodity
that would be subject to deterioration and also its freshness. A practical example would
be fruit such as a bananas.
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3.3 Notations

Table 3.1: Notations used in the formulation of the mathematical model.

Symbol Description

Q Order size per cycle.

D Demand rate.

x Screening rate.

ps Percentage rate of imperfect items in Q.

I(t) The instantaneous state of inventory level at time t.

t1 Screening time.

T Cycle length.

F (t) Products freshness index of the inventory at time t, which is a function of
the expiration date.

L The expiration date (or shelf life) of the product.

θ Rate of deterioration for each unit of time.

a Scaling parameter for the demand function.

b The shape parameter representing the elasticity of demand.

h Holding cost per unit of the perfect product for each unit of time.

hs Holding cost per unit of the imperfect product for each unit of time.

K Fixed ordering cost.

Cd Deterioration cost.

Cs Screening cost per unit item screened.

Cg Cost price per unit of each product.

Sg Selling price per unit of each perfect product.

Sd Selling price per unit of each imperfect product.

3.4 Model development

3.4.1 Assumptions

Levin et al. (1972) noted that an important determinant of demand is the inventory
level of that item that is on display. It has been found that the greater extent to which
inventory is displayed has an effect of being able to induce customers to increase their
levels of purchase. For inventory models various functions can be applied to portray this
observation. The use of the power function to address this matter is acknowledged as
illustrated in Equation (3.1). Baker and Urban (1988) have expressed the rate of demand
as being some power function of the level of the inventory.

D = a[I(t)]b (3.1)
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In this instance a would be the scaling parameter for the rate of demand. Alternatively it
is the asymptotic level of demand that would be attainable whenever an inventory level is
considered at the most optimal for its consumers. Similarly, b is a shape parameter that
represents the elasticity of the demand rate with respect to the inventory level that is being
displayed. Furthermore, 0 < a and 0 ≤ b < 1. From the Equation (3.1) the relationship
shows that the rate of demand for inventory increases with a rising levels of inventory that
are displayed at the customer. Similarly, when the inventory level decreases, the demand
rate also decreases. The relationship expressed in the power form also illustrates that
at the commencement of a replacement cycle (with maximum inventory level), inventory
is depleted at a higher rate and with the progression of time the depletion rate of that
inventory slows down.

The dependence on the rate of demand on the expiry date is introduced with the
concept of a freshness index. In an environment where a product has a finite shelf life the
consumers of that product are likely to make their purchases after consideration of the age
of that product to be purchased. This means that expiration date on food products are
more likely to be purchased when the expiry date is further away than those items which
are close to becoming expired. Wu et al. (2016) applied the date of expiry of an item to
categorise the freshness index of that product as in Equation (3.2).

F (t) =
L− t

L
(3.2)

The expiry date of the product is represented by L. Over time, the product becomes less
fresh and is less attractive to consumers. This means that Equation (3.2) will be able
to quantify the attributes of freshness just after delivery to the customer. The inventory
would be in its most fresh just after it had been delivered to the customer. At that moment
of time t = 0, with F (0) = 1. The product becomes least fresh when it has reached its
expiry date. The time to expiry or the maximum shelf-life of the product would then be
t = L with F (L) = 0. This means that the inventory cycle time of the retailer, T , cannot
exceed the expiration date T < L.

From studies by Chen et al. (2016) and Feng et al. (2017), Equation (3.1) and Equa-
tion (3.2) are integrated to compute the demand rate as being a multiplication function
of inventory together with the freshness attributes of that inventory. This is shown in
Equation (3.3).

D = a[I(t)]b
(
L− t

L

)
(3.3)

During the cycle, deterioration occurs and intervention is initiated to remove the de-
teriorated items from the goods that are for sale. This deterioration is determined by the
size of the inventory level θI(t) where 0 < θ < 1.

The screening rate x, which is, ps(Q/t1). The screening of the goods has to be un-
dertaken so that there would be sufficient goods available for the end-user during the
screening period, t1. In this instance, it is assumed that the screening rate is larger than
the demand namely, D < x. It is necessary to have sufficient product of adequate quality
available to satisfy the demand for that product to the end user.

3.4.2 General inventory equation

The inventory throughout the replenishment cycle would be depleted because of demand
and deterioration. The inventory level is dependent on the freshness index of that inventory
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and the manner in which product deterioration occurs. Hence, the level of the inventory
is determined by the differential Equation (3.4).

dI(t)

dt
= −D − θI(t), 0 ≤ t ≤ T (3.4)

By substituting Equation (3.3) in Equation (3.4) it becomes Equation (3.5).

dI(t)

dt
= −a[I(t)]b

(
L− t

L

)
− θI(t), 0 ≤ t ≤ T (3.5)

With algebraic rearrangement of the terms, Equation (3.5) can be rewritten as shown
in Equation (3.6).

dI(t) =

[
−a[I(t)]b

(
L− t

L

)
− θI(t)

]
dt, 0 ≤ t ≤ T (3.6)

Integrating both sides of Equation (3.6) results in Equation (3.7).

e(1−b)θt[I(t)]1−b =
(
ae(1−b)θt

)[(
t

L
− 1

)(
1

θ

)
−
(

1

(1− b)θ2

)(
1

L

)]
+ C (3.7)

The amount of the inventory reduces to zero at the completion of each cycle of re-
plenishment (alternatively stated, I = 0 at t = T ). Therefore, the boundary condition
I(T ) = 0 is binding. The boundary condition I(T ) = 0 is then used to solve for C from
Equation (3.7) and the result is Equation (3.8).

C = −
(
ae(1−b)θT

)[(
T

L
− 1

)(
1

θ

)
−
(

1

(1− b)θ2

)(
1

L

)]
(3.8)

An expression for the inventory level at any time is determined by substituting Equa-
tion (3.8) into Equation (3.7) and rearranging the terms. The result is Equation (3.9).

[I(t)] =

[
a

θL

[
t− L− 1

(1− b)θ
− e(1−b)θ(T−t)

[
T − L− 1

(1− b)θ

]]] 1

1− b
(3.9)

When a subsequent replenishment cycle commences, the retailer receives an order of
inventory from the supplier of Q items. This implies that the boundary condition I(0) = Q
is binding. The inventory lot size or the amount of inventory at the beginning of the cycle
is determined by substituting the boundary condition into Equation (3.9). It is illustrated
in Equation (3.10).

Q =

[
a

θL

[
−L− 1

(1− b)θ
− e(1−b)θ(T )

[
T − L− 1

(1− b)θ

]]] 1

1− b
(3.10)

3.4.3 Total Cost Function (TCF)

Inventory models generally have some form of costs associated with them which enables
them to reflect real-world situations. The investigation so far provides the background
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to quantify these costs. In this section, the investigation aims to clarify and quantify the
total cost function for the parameters being studied.

Figure 3.2 is a graphical illustration of this.

t1
𝑇

psQ

Q
−𝒂 𝑰 𝒕 𝒃

𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕

Inventory level

Time

−𝒂 𝑰 𝒕 𝒃
𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕

−𝒂 𝑰 𝒕 𝒃
𝑳 − 𝒕

𝑳
− 𝜽𝑰 𝒕(1)

(2)

(1)

(1)

Area (1)

Area (2)

Figure 3.2: A graphical representation of the holding cost for an EOQ model for imperfect
and deteriorating items with freshness and inventory level-dependent demand.

The total cost function that is being investigated in this study only focuses on the
costs that are defined by the Equation (3.11).

Total cost function = Holding cost of the good product

+Holding cost of the imperfect product

+Deterioration cost

+ Screening cost

+ Purchasing cost of the product

+Ordering cost

(3.11)

Alternatively, the Equation (3.11) can be stated as Equation (3.12).

TCF = HC +HCs +DC + SC + PC +OC (3.12)

TCF is the total cost, HC is the holding cost of the good product, HCs is holding
cost of the imperfect product, DC is the deterioration cost, SC is the screening cost, PC
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is the purchasing cost of the product and OC is the ordering cost.

Holding cost of the good product
The Area (1) in Figure 3.2 is multiplied by holding cost per unit of the good prod-

uct for each unit of time, to determine the holding cost of the good product. Stated
mathematically the area is reprsented by Equation (3.13).

HC = h

∫ T

0

I(t)dt+ h

(
1

2

)
(t1)(psQ) (3.13)

Where Equation (3.9) is substituted into Equation (3.13). This is depicted in Equa-
tion (3.14).

HC = h

∫ T

0

[
a

θL

[
t− L− 1

(1− b)θ

− e(1−b)θ(T−t)
[
T − L− 1

(1− b)θ

]]] 1

1− b
dt+ h

(
1

2

)
(t1)(psQ)

(3.14)

To arrive at a practical solution of the computation that is required to solve the mat-
ter, it may be done by applying the Maclaurin expansion theorem. With this theorem it
becomes feasible to replace the exponential function of I(t) in Equation (3.9) and Q in
Equation (3.10).

Maclaurin expansion of I(t)

eθ(1−b)(T−t) =

∞∑
i=1

θi(1− b)i(T − t)i

i!

= 1 +
θ(1− b)(T − t)

1!
+
θ2(1− b)2(T − t)2

2!

+
θ3(1− b)3(T − t)3

3!
+
θ4(1− b)4(T − t)4

4!
+ . . .

(3.15)

In the situation where the values of (T − t) and (1 − b) are low, for small values
of θ, then the expansion shown in Equation (3.15) is approximated and represented by
Equation (3.16).

eθ(1−b)(T−t) ≈ 1 + θ(1− b)(T − t) (3.16)

Using Equation (3.16) and substituting this into I(t) from Equation (3.9), Equa-
tion (3.17) is obtained.

I(t) =

[
a

θL

[
t− L− 1

(1− b)θ

− (1 + θ(1− b)(T − t))

[
T − L− 1

(1− b)θ

]]] 1

1− b

(3.17)
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Simplification of Equation (3.17) provides a modified I(t) as shown in Equation (3.18).

I(t) =

[
−
( a
L

)
(1− b)(T − t) (T − L)

] 1

1− b
(3.18)

Maclaurin expansion of Q

eθ(1−b)(T ) =

∞∑
i=1

θi(1− b)i(T )i

i!

= 1 +
θ(1− b)(T )

1!
+
θ2(1− b)2(T )2

2!

+
θ3(1− b)3(T )3

3!
+
θ4(1− b)4(T )4

4!
+ . . .

(3.19)

In the situation where the values of (T ) and (1−b) are low, for small values of θ, then the
expansion shown in Equation (3.19) is approximated and represented by Equation (3.20).

eθ(1−b)(T ) ≈ 1 + θ(1− b)(T ) (3.20)

Using Equation (3.20) and substituting this into Q from Equation (3.10), Equa-
tion (3.21) is obtained.

Q =

[
a

θL

[
−L− 1

(1− b)θ
− (1 + θ(1− b)(T ))

[
T − L− 1

(1− b)θ

]]] 1

1− b

(3.21)

Simplification of Equation (3.21) provides a modified Q as shown in Equation (3.22).

Q =

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b
(3.22)

This information from Equation (3.18) and Equation (3.22) can be used to substitute
into Equation (3.14) which is the holding cost of good products.

HC = h

∫ T

0

[
−
( a
L

)
(1− b)(T − t) (T − L)

] 1

1− b
dt

+ h

(
1

2

)
(t1)(ps)

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

(3.23)

Using integration and by simplifying Equation (3.23) the holding cost of the good
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product is obtained, as shown in Equation (3.24).

HC = h

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+ h

(
1

2

)
(t1)(ps)

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

(3.24)

Holding cost of the imperfect product
The Area (2) in Figure 3.2 is similarly multiplied by holding cost per unit of the

imperfect product for each unit of time, to determine the holding cost of the imper-
fect product. Stated mathematically the area is represented by Equation (3.25).

HCs = hs

(
1

2

)
(t1)(psQ) (3.25)

By substituting Q from Equation (3.22) into Equation (3.25), Equation (3.26) is ob-
tained, which is the holding cost of the imperfect product.

HCs = hs

(
1

2

)
(t1)(ps)

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b
(3.26)

Deterioration cost
This is a cost that is attributed to the products that deteriorate. It is derived from

the effort applied to identify and remove those deteriorated products from the remaining
inventory that is still adequate for sale. The derivation of the cost is based on the level of
the inventory. It is the cost of the deterioration multiplied by the rate of deterioration for
the cycle as shown in Equation (3.27).

DC = Cd

∫ T

0

θI(t)dt (3.27)

By substituting the approximation of I(t), given in Equation (3.18), into Equation (3.27)
the result becomes Equation (3.28).

DC = Cd

∫ T

0

θ

[
−
( a
L

)
(1− b)(T − t) (T − L)

] 1

1− b
dt

(3.28)

With mathematical integration and simplification the result from Equation (3.28) is
shown in Equation (3.29).

DC = Cdθ

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b

 (3.29)

Screening cost
A certain component of those items ps, would be of imperfect quality. The screening

procedure for the period t1, is conducted to separate the items of good quality from those
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of imperfect quality. The costs of the screening process are Cs, to screen a unit of the
product. The cost to screen all of the items in each cycle is presented by Equation (3.30).

SC = CsQ (3.30)

By substituting Q from Equation (3.22) into Equation (3.30), Equation (3.31) is ob-
tained, which is the screening cost of the cycle.

SC = Cs

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b
(3.31)

Purchasing cost of the product
The cost of the delivered product per unit multiplied by the numerical quantity ordered

is shown in Equation (3.32).

PC = CgQ (3.32)

By substituting Q from Equation (3.22) into Equation (3.32), Equation (3.33) is ob-
tained, which is the purchasing cost of that product.

PC = Cg

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b
(3.33)

Ordering cost
Ordering costs are the expenses incurred to acquire the products that are ordered.

This is a fixed cost per order and is shown in Equation (3.34).

OC = K (3.34)

From TCF represented in Equation (3.12) and by substituting in the the holding
cost of the good product (HC) from Equation (3.24), the holding cost of the imperfect
product (HCs) Equation (3.26), the deterioration cost (DC) from Equation (3.29), the
screening cost (SC) from Equation (3.31), the purchasing cost of the products (PC)
from Equation (3.32) and the ordering cost (OC) from Equation (3.34) the following cost
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function is obtained in Equation (3.35).

TCF = h

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+ h

(
1

2

)
(t1)(ps)

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+ hs

(
1

2

)
(t1)(ps)

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+ Cdθ

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+ Cs

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+ Cg

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+K

(3.35)

Simplification of Equation (3.35) to get to the total cost function in Equation (3.36).

TCF = (h+ Cdθ)

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+

[
(ps)(h+ hs)

(
1

2

)
(t1) + Cs + Cg

][
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+K

(3.36)

3.4.4 Total Revenue Function (TRF)

The total revenue comprises the revenue from the good product and the revenue from the
imperfect/deteriorated product.

Total revenue function = Revenue of good product

+ Revenue of the imperfect/deteriorated product
(3.37)

Alternatively, the Equation (3.37) can be stated as Equation (3.38).

TRF = TRG+ TRD (3.38)
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TRF is the total revenue, TRG is the total revenue from the good product and TRD
is the revenue from the imperfect/deteriorated product.

The selling price of the good product is multiplied by the number of good products
that are sold. The quantity of the good product is made up of the quantity delivered, less
the imperfect/deteriorated products that had been removed from the system. This is the
revenue of the good product. The goods that have been removed is made up of imper-
fect/deteriorated product. Those goods are then multiplied by the discounted selling price
of the deteriorated/imperfect. This represents the revenue of the imperfect/deteriorated
product. These two revenue streams make up the total revenue function in Equation (3.39).

TRF = Sg

[
Q− θ

∫ T

0

I(t)dt− (psQ)

]
+ Sd

[
θ

∫ T

0

I(t)dt− (psQ)

]
(3.39)

By substituting I(t) from Equation (3.18) and Q from Equation (3.22) the Equa-
tion (3.40) is obtained.

TRF = Sg

[[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

− θ

∫ T

0

[
−
( a
L

)
(1− b)(T − t) (T − L)

] 1

1− b
dt

− ps

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

]

+ Sd

[
θ

∫ T

0

[
−
( a
L

)
(1− b)(T − t) (T − L)

] 1

1− b
dt

− ps

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

]

(3.40)

Integration and simplification of Equation (3.40) results in Equation (3.41).

TRF = (Sg + Sd)

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+ (Sg − ps (Sg − Sd))

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

(3.41)

The Equation (3.41) is the final TRF .

3.4.5 Total Profit per Unit of Time (TPU )

Profit is defined as the revenue less the costs. This is stated in Equation (3.42).

Total profit function = Total revenue function − Total cost function (3.42)
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Alternatively, the Equation (3.42) can be stated as Equation (3.43).

TPF = TRF − TCF (3.43)

Total Profit Function (TPF ) is the total profit, TRF is the total revenue and TCF is
the total cost.

By substituting TRF from Equation (3.41) and TCF from Equation (3.36) into Equa-
tion (3.43) to give the TPF in Equation (3.44).

TPF = (Sg + Sd)

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+ (Sg − ps (Sg − Sd))

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

−

[
(h+ Cdθ)

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b



+

[
(ps)(h+ hs)

(
1

2

)
(t1) + Cs + Cg

][
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

+K

]

(3.44)

With simplification Equation (3.44) becomes Equation (3.45).

TPF = [−h+ θ (−Sg + Sd − Cd)][
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b


+

[
Sg − Cs − Cg + ps

[
−Sg + Sd − (h+ hs)

(
1

2

)
(t1)

]]
[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

−K

(3.45)
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TPF in Equation (3.45) is divided by time T , to arrive at the TPU in Equation (3.46).

TPU = [−h+ θ (−Sg + Sd − Cd)]

[T ]−1

[
−
( a
L

)
(1− b)(T − L)

] 1

1− b
1− b

2− b
(T )

2− b

1− b


+

[
Sg − Cs − Cg + ps

[
−Sg + Sd − (h+ hs)

(
1

2

)
(t1)

]]

[T ]−1

[
−
( a
L

)
(1− b)(T ) (T − L)

] 1

1− b

−K [T ]−1

(3.46)

Through the simplification of Equation (3.46) it becomes Equation (3.47).

TPU = [−h+ θ (−Sg + Sd − Cd)]

[
1− b

2− b

][
−
( a
L

)
(1− b)(T )(T − L)

] 1

1− b

+

[
Sg − Cs − Cg + ps

[
−Sg + Sd − (h+ hs)

(
1

2

)
(t1)

]]

[T ]

b

1− b

[
−
( a
L

)
(1− b) (T − L)

] 1

1− b

−
[
K

T

]

(3.47)

In this format the Equation (3.47) can be set-up for testing with numerical data.
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3.4.6 Numerical example

The initial priority is to ascertain the optimal cycle time namely, T so that the maximum
total profit per unit of time, TPU can be calculated. To illustrate that a unique solution to
this exercise exists, it first needs to be proven that the objective function would be concave
which would seek to maximise the total profit. To test that the profit is maximised a second
derivative of Equation (3.47) would need to be computed to ensure that it is negative. A
negative value for the second derivative of Equation (3.47) ensures that it is concave and
hence a maximum value can be obtained. Using Equation (3.47) the first mathematical
derivative with respect to the T is calculated and shown in Equation (3.48).

d(TPU )

dT
= [−h+ θ (−Sg + Sd − Cd)]

[
1− b

2− b

]
[
−
( a
L

)
(1− b)(T )(T − L)

] b

1− b
[
−
( a
L

)
(2T − L)

]

+

[
Sg − Cs − Cg + ps

[
−Sg + Sd − (h+ hs)

(
1

2

)
(t1)

]]
[ b

1− b
T

2b− 1

1− b

[
−
( a
L

)
(1− b) (T − L)

] 1

1− b

+
[
− a

L

] [
−
( a
L

)
(1− b)(T ) (T − L)

] b

1− b

]
+

[
K

T 2

]

(3.48)
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Thereafter, with the outcome of Equation (3.48) the second mathematical derivative
with respect to T is represented in Equation (3.49).

d2(TPU )

dT 2
= [−h+ θ (−Sg + Sd − Cd)]

[
1− b

2− b

][[
−
( a
L

)
(1− b)(T )(T − L)

] b

1− b
[
−2a

L

]

+

[
−
( a
L

)
(1− b)(T )(T − L)

]2b− 1

1− b
[( a
L

)2
(b)(2T − L)2

]]
+

[
Sg − Cs − Cg + ps

[
−Sg + Sd − (h+ hs)

(
1

2

)
(t1)

]]
[ b

1− b
T

2b− 1

1− b

[
− a

L

] [
−
( a
L

)
(1− b) (T − L)

] b

1− b

+

(b)(2b− 1)

(1− b)2
T

3b− 2

1− b

[
−
( a
L

)
(1− b) (T − L)

] 1

1− b

+

[( a
L

)2
(b)(2T − L)

] [
−
( a
L

)
(1− b)(T ) (T − L)

]2b− 1

1− b

]
−
[
2K

T 3

]

(3.49)

The complex nature of Equation (3.49) means that it is cumbersome to assimilate and
therefore it is very difficult from a practical perspective to prove concavity. It means that
an alternate method to do this exercise will be required.

To address this, an iterative process has been applied to determine concavity of the
TPU in Equation (3.47). In short, a series of steps are followed. The initial task is to
set T=1. Thereafter, the value of T is substituted into Equation (3.47) to compute TPU .
By making incremental increases to T , different values of TPU can be ascertained. The
expectation is that the TPU ought to increase until a turning point (or a maximum value)
is derived. After which the TPU starts to decline.

Figure 3.3 is a graphical representation of this concavity. For this exercise Figure 3.3
is able to provide a maximum value and hence it indicates that the Figure 3.3 is concave
in nature and hence a relevant and applicable solution methodology.
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Figure 3.3: Concavity TPU maximisation illustration.
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3.5 Sensitivity analysis

A sensitivity analysis can also be applied to verify the optimum cycle length T ∗ from
the TPU of Equation (3.47). This has been computed using the Solver function that is
available from Microsoft Excel. In the Microsoft Excel solution, the following parameters
from Table 3.2 were used as inputs for that computation. These inputs are representation
of a product that had deterioration, imperfect quality and inventory and freshness level
dependent demand. An example of a product is a banana and used as the determination
of the parameter inputs in Table 3.2.

Table 3.2: Sensitivity analysis numerical inputs.

Symbol Value

a 50 kg/day

L 20 Days

b 0.2

h 0.1 Rand/kg/day

hs 0.05 Rand/kg/day

θ 0.05

Sg 12.00 Rand/kg

Sd 5.00 Rand/kg

Cd 0.01 Rand/kg/day

ps 0.15

t1 3 Days

K 500 Rand

Cs 0.05 Rand/kg

Cg 4.00 Rand/kg

The Microsoft Solver enabled the parameters in Table 3.2 to be used. After substi-
tution of those parameters into Equation (3.47), the optimal T ∗ value is computed. The
optimal cycle length, T ∗ becomes 3.98 days with this method of calculation. Thereafter,
substituting the input parameters of Table 3.2 and T ∗ into Equation (3.22), the optimal
quantity, Q∗ becomes 428.75 kgs. Using the input parameters from Table 3.2 and by
substituting T ∗ into Equation (3.47) the TPU is arrived at, which is Rand 527.85.

The basic methodology of the construction and formulation of the numerical Table 3.3
was derived as follows. Numerical values for each of the variables listed was estimated
from Table 3.2. Thereafter, the value of each of those variables from Table 3.2 was in-
creased and/or decreased by a certain percentage as shown in the Table 3.3. The resultant
application of those changes are reflected in changes in cycle length T (here expressed as
number of days), the quantity Q (here expressed as kilograms) and TPU (here expressed
as Rands). From Table 3.3 certain trends emerge which are further commented on below.

An analytical overview of Table 3.3 would indicate that certain variables have a greater
impact on the overall TPU situation than other variables. The salient features that
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emerge from testing of the model with numeric data are available in Table 3.3. The
written comment herewith highlights specific findings and attributes from the Table 3.3
that need to be further elaborated upon. The objective here is to attribute greater focus
to understanding those variables that have the greatest overall impact. The change in
parameter is calculated by using the base parameter and increasing and decreasing the
value by increments of 25 percent.

When the scale parameter of the demand rate a, decreases, the cycle length T increases.
This is because fewer products will be required so the goods do not have to be delivered as
frequently. Similarly, if a, increases, the cycle length T decreases. However, when the scale
parameter of the demand rate a is decreased, there is a corresponding decrease, so that
the quantity ordered Q would also decrease. Similarly, for increases in the demand rate a,
it is found that Q also increases. If the quantity Q increases, the ordering cost K per item,
will actually decrease because more items per shipment will have been delivered and this
has a positive impact on the TPU . For a constant value of K the price per unit (or the
Rand price per kilogram) of stock ordered has actually declined. However, this also has
an adverse impact on the holding cost of both the good h and the imperfect/deteriorated
items hs. It would thus have a negative impact on the TPU . The reverse applies if the
quantity ordered for each shipment of the goods reduces. The scale parameter a, is used
as a parameter to determine the scale or size of the demand. It implies that a large value
for a will have the effect of appropriately increasing demand. With more goods to sell the
TPU would increase. The reverse is also true where the value of a declines.

When the expiry date of that inventory L is reduced, the optimal solution of the
model would manifest itself through a reduction in the cycle length T . A reduction in the
expiration date L implies that the quantity Q is reduced. This leads to a reduced holding
costs, because the inventory spends less time as stock on hand. Alternatively, the fixed
costs of placing an order K will increase because the frequency of the number of orders
has also increased. Since the rate of demand is a function of the freshness index and the
stock level of that inventory, reduced expiration dates L will have a negative effect on
the rate of demand. When the expiration date L increases, the adverse effects of smaller
order sizes Q on the demand, combined with the fixed increased cost K and the reduced
holding costs (h and hs where applicable) has the overall effect of reducing the TPU . The
TPU increases when the expiration date L increases, even though the order size K and
holding costs (h and hs) moves in the opposite direction. Practically, management may be
able to apply this outcome to increase the TPU by extending the cycle length T of that
inventory. Freshness needs to be protected and this can possibly be attained by investing
in technology, such as refrigeration and other preservation methods.

When the shape parameter b decreases, which incorporates the elasticity of demand,
the optimal solution responds by decreasing the cycle length T , but by a small amount.
With a big decrease in the quantity Q ordered, the holding costs (h and hs) are decreased
and this increases the per unit ordering cost K. As the shape parameter b is decreased,
the impact would result in a lower demand rate and hence the TPU is decreased. The
reverse is also applicable when b is increased. Essentially b has the most significant impact
on the TPU and the quantity Q.

There is another tier of variables that have an impact on specific aspects of the TPU
calculation. These variables have an impact in terms of how they influence the overall
process within the comprehensive TPU scenario.

The impact of the holding cost of the good items h and the holding cost of the imperfect
product hs were of relatively little significance in terms of their impact in the numerical
analysis.
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The unit rate of deterioration for each item θ, provides a quantitative method to
assess deterioration. If the rate of deterioration is low, there will be additional quantity Q
available for a longer cycle length T . This has a positive impact by increasing the TPU ,
even if the holding costs (h and hs) increase in tandem, because there is more quantity
Q. This will also have an associated ordering cost K per unit reduction. Similarly, the
reverse applies for increased deterioration rates θ.

With no other change, the greater the selling price Sg of a good product, the greater
the influence will be on the TPU . The reverse applies when prices are reduced. However,
this might impact on demand because the price may no longer be competitive in the
marketplace. It also applies to the selling price Sd of the imperfect/deteriorated items.
Attempts should always be made to maximise these prices because that will have a direct
influence on the TPU .

The cost of deterioration Cd did not have much of an impact in the numerical analysis.
The percentage rate ps of imperfect items in Q also has an impact on the TPU . The

amount of imperfect product impacts on the profitability because with a higher ps more
products become available for sale at the deteriorated/imperfect price Sd, even if this
price is less than the price that the good products are sold for. Low levels of deterio-
rated/imperfect goods means that there will be more good products to be sold at better
prices Sg, even if there is a small cost associated with the storage h of the additional
volume of the good product.

The time it takes to screen the products t1 did not have much of an impact in the
numerical analysis.

The ordering cost K has a direct influence on the TPU because it is a fixed cost per
order that is placed. If the ordering cost K increases, the unit cost attributable to K will
increase. If the ordering cost K decreases the unit cost attributable to K will decrease.
Ordering cost K have a marginal impact on cycle length L and quantity ordered Q.

The cost associated to the screening of the products Cs did not have much of an impact
in the numerical analysis.

The Cg is the cost price per unit of the goods. The lower Cg, the bigger the TPU
purchase scenario outcome would be. As a purchaser goods are purchased from the same
supplier at the lowest possible price. Buyers must strive for the lowest possible price to
optimise the TPU . Buyers may elect to find alternate suppliers if the Cg can be sourced
elsewhere.
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Table 3.3: Numerical analysis.

Parameter Cycle Quantity TPU

length (T ) (Q)

% % % %

Symbol Value change Days change kgs change Rands change

Base 3.98 428.75 527.85

25 -50 5.24 +31.66 229.47 -46.48 159.20 -69.84

37.5 -25 4.43 +11.16 329.77 -23.09 332.51 -37.01

a 50 0 3.98 0 428.75 0 527.85 0

62.5 +25 3.70 -7.12 528.18 +23.19 739.54 +40.10

75 +50 3.50 -12.08 628.78 +46.65 964.38 +82.70

10 -50 2.81 -29.47 242.23 -43.50 365.63 -30.73

15 -25 3.46 -13.14 341.95 -20.24 465.75 -11.76

L 20 0 3.98 0 428.75 0 527.85 0

25 +25 4.41 +10.81 504.69 +17.71 570.96 +8.17

30 +50 4.77 +19.82 571.32 +33.25 602.92 +14.22

0.10 -50 4.13 +3.70 256.84 -40.10 251.14 -52.42

0.15 -25 4.01 +0.60 324.07 -24.42 363.54 -31.13

b 0.20 0 3.98 0 428.75 0 527.85 0

0.25 25 4.07 +2.20 602.20 +40.45 776.83 +47.17

0.30 50 4.28 +7.40 908.14 +111.81 1 172.58 +122.14

0.050 -50 4.06 +1.99 436.74 +1.86 538.67 +2.05

0.075 -25 4.02 +0.99 432.73 +0.93 533.24 +1.02

h 0.100 0 3.98 0 428.75 0 527.85 0

0.125 +25 3.94 -0.97 424.82 -0.92 522.5 -1.01

0.150 +50 3.91 -1.93 420.93 -1.82 517.2 -2.02

0.0250 -50 3.97 -0.01 428.72 -0.01 528.45 +0.11

0.0375 -25 3.98 0 428.74 0 528.15 +0.06

hs 0.0500 0 3.98 0 428.75 0 527.85 0

0.0625 +25 3.98 0 428.77 0 527.55 -0.06

0.0750 +50 3.99 +0.01 428.78 +0.01 527.24 -0.11

(continued on the next page)
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Table 3.3: Numerical analysis (continued)

Parameter Cycle Quantity TPU

length (T ) (Q)

% % % %

Symbol Value change Days change kgs change Rands change

Base 3.98 428.75 527.85

0.0250 -50 4.27 +7.33 457.76 +6.77 562.36 +6.54

0.0375 -25 4.12 +3.57 443.00 +3.32 544.82 +3.22

θ 0.0500 0 3.98 0 428.75 0 527.85 0

0.0625 +25 3.85 -3.37 415.08 -3.19 511.42 -3.11

0.0750 +50 3.72 -6.54 402.00 -6.24 495.51 -6.13

6 -50 6.11 +53.46 612.74 +42.91 54.29 -89.71

9 -25 4.53 +13.80 482.41 +12.51 284.71 -46.06

Sg 12 0 3.98 0 428.75 0 527.85 0

15 +25 3.68 -7.47 398.14 -7.14 775.49 +46.91

18 +50 3.49 -12.27 377.98 -11.84 1025.39 +94.26

2.50 -50 3.81 -4.37 410.95 -4.15 464.1 -12.08

3.75 -25 3.89 -2.20 419.86 -2.07 495.86 -6.06

Sd 5.00 0 3.98 0 428.75 0 527.85 0

6.25 +25 4.07 +2.21 437.59 +2.06 560.05 +6.10

7.50 +50 4.16 +4.42 446.36 +4.11 592.47 +12.24

0.0050 -50 3.99 +0.01 428.79 +0.01 527.90 +0.01

0.0075 -25 3.98 0 428.77 0 527.87 0

Cd 0.0100 0 3.98 0 428.75 0 527.85 0

0.0125 +25 3.98 0 428.73 0 527.82 0

0.0150 +50 3.97 -0.01 428.71 -0.01 527.8 -0.01

0.0750 -50 3.95 -0.75 425.74 -0.70 586.20 +11.06

0.1125 -25 3.97 -0.38 427.21 -0.36 557.02 +5.53

ps 0.1500 0 3.98 0 428.75 0 527.85 0

0.1875 +25 4.00 +0.40 430.37 +0.38 498.68 -5.53

0.2250 +50 4.02 +0.83 432.08 +0.78 469.52 -11.05

(continued on the next page)
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Table 3.3: Numerical analysis (continued)

Parameter Cycle Quantity TPU

length (T ) (Q)

% % % %

Symbol Value change Days change kgs change Rands change

Base 3.98 428.75 527.85

1.50 -50 3.98 -0.02 428.65 -0.02 529.66 +0.34

2.25 -25 3.98 -0.01 428.70 -0.01 528.76 +0.17

t1 3.00 0 3.98 0 428.75 0 527.85 0

3.75 +25 3.98 +0.01 428.80 +0.01 526.94 -0.17

4.50 +50 3.98 +0.02 428.85 +0.02 526.03 -0.34

250 -50 3.36 -15.63 363.61 -15.19 595.87 +12.89

375 -25 3.69 -7.32 398.77 -6.99 560.42 +6.17

K 500 0 3.98 0 428.75 0 527.85 0

625 +25 4.25 +6.64 455.05 +6.13 497.47 -5.75

750 +50 4.49 +12.77 478.56 +11.62 468.86 -11.17

0.0250 -50 3.96 -0.04 428.61 -0.03 530.54 +0.51

0.0375 -25 3.97 -0.02 428.68 -0.02 529.19 +0.25

Cs 0.0500 0 3.98 0 428.75 0 527.85 0

0.0625 +25 3.99 +0.02 428.82 +0.02 526.50 -0.25

0.0750 +50 4.00 +0.04 428.90 +0.03 525.16 -0.51

2 -50 3.89 -2.43 418.90 -2.30 743.34 +40.82

3 -25 3.93 -1.32 423.41 -1.24 635.56 +20.41

Cg 4 0 3.98 0 428.75 0 527.85 0

5 +25 4.05 +1.60 435.18 +1.50 420.24 -20.39

6 +50 4.13 +3.59 443.10 +3.35 312.75 -40.75
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Chapter 4

Conclusion and future work

The study has been completed by following a sequential format which has itemised the
issues, set certain study objectives, evaluated the available research in respect of these
matters and finally, developed a mathematical model and numeric scenario to address the
concerns that had been highlighted.

A research gap in the literature has been identified and it has resulted in the creation
of a scenario whereby it has been possible to investigate imperfect quality, deterioration
and freshness in a quantitative manner. The mathematical outcome has been tested
with numeric data to ascertain its applicability to this situation. Sensitivity studies were
conducted to measure the effects of changes to the numeric data on the model that was
derived. Ultimately, it has led to a situation whereby more informed real-life situations
can be replicated. The benchmark to evaluate this outcome in each instance, has always
been to maximise the total profit for each cycle in the logistical space. It is now clear that
the nature of the product will have an increasingly important influence so as to be able
to satisfy the demands of the end user. From the sensitivity analysis the most important
factor affecting the Total Profit per Unit of Time (TPU ) of the model was the selling price
of the perfect product. Increasing the selling price of the good product however may have
adverse affects on demand as the price would also need to be competitive in the market
especially for a product that is readily available to consumers. A product that is more rare
or specialised there may be an opportunity to increase the price of the perfect product but
in the scenario used in this thesis it is unlikely that increasing the selling price of the good
product will result in increased profits as demand would likely decrease. The elasticity of
demand b has the most significant impact on the TPU and the quantity Q. The price and
demand are important factors that affect the output of the model.

As more recent trends and studies indicate, logistical solutions do not apply uniformly
across an economic environment. It means that customers are increasingly demanding
business solutions that are unique to their own specific operating environments. The
concepts of imperfect quality, deterioration and freshness and inventory level-dependent
demand clearly illustrate this phenomenon in the marketplace.

It is also true that there is no single solution to the complex realities of the mod-
ern supply chain operating environment. While such Economic Order Quantity (EOQ)
models offer realistic attempts at addressing the issues, there is always need for updates
or enhancements to the processes as technology evolves. This model can be enhanced
by further optimising the profit scenarios for both the retailer and the supplier through
mutual co-operation between both parties seeking the same set of objectives. If profit
maximisation remains the ultimate objective, other efficiencies need to be investigated to
see if they can further enhance the functioning of such a supply chain, to the benefit of

50

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



everyone involved therein. For example, savings may be achievable through bulking-up of
orders to reduce the costs of transportation. Such discounts can even be shared through
an arrangement between the supplier and the end-user. Furthermore, there is scope to do
additional studies of items that are defective and need to be returned back to the supplier.
The whole aspect of return logistics needs further investigation, especially if issues such
harmful carbon emissions are factored into the overall costing thereof. For example, the
function of returning goods to a supplier needs to happen in such a manner that the overall
profitability of the entire process is not adversely impacted upon. It is also possible to
investigate a range of goods that have more than one category of deterioration, or possible
expiry dates. Additionally, the concept of goods being in short supply, can be a realistic
impediment to the proper functioning of any supply chain. There is scope to do further
study to ensure continuity of supply (with minimum disruptions), to enhance the efficiency
of that overall process.
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Akçay, Y., Natarajan, H. P., and Xu, S. H. (2010). Joint dynamic pricing of multiple
perishable products under consumer choice. Management Science, 56(8):1345–1361.

Akkerman, R., Farahani, P., and Grunow, M. (2010). Quality, safety and sustainability
in food distribution: a review of quantitative operations management approaches and
challenges. OR spectrum, 32(4):863–904.

Alamri, A. A. (2011). Theory and methodology on the global optimal solution to a
general reverse logistics inventory model for deteriorating items and time-varying rates.
Computers & Industrial Engineering, 60(2):236–247.

Andriolo, A., Battini, D., Grubbström, R. W., Persona, A., and Sgarbossa, F. (2014). A
century of evolution from harris s basic lot size model: Survey and research agenda.
International Journal of Production Economics, 155:16–38.

Bai, Q.-G., Zhang, Y.-Z., and Dong, G.-L. (2010). A note on an economic lot-sizing
problem with perishable inventory and economies of scale costs: Approximation solu-
tions and worst case analysis. International Journal of Automation and Computing,
7(1):132–136.

Bai, R. and Kendall, G. (2008). A model for fresh produce shelf-space allocation and
inventory management with freshness-condition-dependent demand. INFORMS Journal
on Computing, 20(1):78–85.

Baker, R. A. and Urban, T. L. (1988). A deterministic inventory system with an inventory-
level-dependent demand rate. Journal of the operational Research Society, 39(9):823–
831.

Bakker, M., Riezebos, J., and Teunter, R. H. (2012). Review of inventory systems with
deterioration since 2001. European journal of operational research, 221(2):275–284.

Balkhi, Z. T. and Tadj, L. (2008). A generalized economic order quantity model with
deteriorating items and time varying demand, deterioration, and costs. International
Transactions in Operational Research, 15(4):509–517.

52

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Banerjee, S. and Agrawal, S. (2017). Inventory model for deteriorating items with fresh-
ness and price dependent demand: Optimal discounting and ordering policies. Applied
Mathematical Modelling, 52:53–64.

Bensoussan, A., Nissen, G., and Tapiero, C. (1975). Optimum inventory and product qual-
ity control with deterministic and stochastic deterioration–an application of distributed
parameters control systems. IEEE Transactions on Automatic Control, 20(3):407–412.

Bertrand, J. W. M. and Fransoo, J. C. (2002). Operations management research method-
ologies using quantitative modeling. International Journal of Operations & Production
Management.

Blackburn, J. and Scudder, G. (2009). Supply chain strategies for perishable products:
the case of fresh produce. Production and Operations Management, 18(2):129–137.

Buzacott, J. (1975). Economic order quantities with inflation. Journal of the Operational
Research Society, 26(3):553–558.

Chan, W. M., Ibrahim, R. N., and Lochert, P. B. (2003). A new epq model: integrating
lower pricing, rework and reject situations. Production Planning & Control, 14(7):588–
595.

Chang, H.-C. (2004). An application of fuzzy sets theory to the eoq model with imperfect
quality items. Computers & Operations Research, 31(12):2079–2092.

Chang, H.-C. and Ho, C.-H. (2010). Exact closed-form solutions for “optimal inventory
model for items with imperfect quality and shortage backordering”. Omega, 38(3-4):233–
237.

Chen, L.-H. and Kang, F.-S. (2010). Coordination between vendor and buyer consider-
ing trade credit and items of imperfect quality. International Journal of Production
Economics, 123(1):52–61.

Chen, S., Min, J., Teng, J., and Li, F. (2016). Inventory and shelf-space management for
fresh produce with freshness-and-stock dependent demand and expiration date. Journal
of the Operational Research Society, 67(6):884–896.

Chung, K.-J., Her, C.-C., and Lin, S.-D. (2009). A two-warehouse inventory model with
imperfect quality production processes. Computers & Industrial Engineering, 56(1):193–
197.

Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inven-
tory with known demand. Naval Research Logistics Quarterly, 24(2):257–268.

Covert, R. P. and Philip, G. C. (1973). An eoq model for items with weibull distribution
deterioration. AIIE transactions, 5(4):323–326.

De, M., Das, B., and Maiti, M. (2018). Green logistics under imperfect production system:
A rough age based multi-objective genetic algorithm approach. Computers & Industrial
Engineering, 119:100–113.

Duan, Y., Li, G., Tien, J. M., and Huo, J. (2012). Inventory models for perishable
items with inventory level dependent demand rate. Applied Mathematical Modelling,
36(10):5015–5028.

53

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Eroglu, A. and Ozdemir, G. (2007). An economic order quantity model with defective
items and shortages. International journal of production economics, 106(2):544–549.

Feng, L., Chan, Y.-L., and Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing polices
for perishable goods when the demand depends on selling price, displayed stocks, and
expiration date. International Journal of Production Economics, 185:11–20.

Fujiwara, O. and Perera, U. (1993). Eoq models for continuously deteriorating products
using linear and exponential penalty costs. European Journal of Operational Research,
70(1):104–114.

Ghare, P. and Schrader, G. (1963). A modelforexponentiallydecayinginventory system.
InternationalJournal of Production Research, 21:49–46.

Giuseppe, A., Mario, E., and Cinzia, M. (2014). Economic benefits from food recovery at
the retail stage: An application to italian food chains. Waste management, 34(7):1306–
1316.

Goel, V. and Aggarwal, S. (1981). Order level inventory system with power demand
pattern for deteriorating items. In Proceedings of the All India Seminar on Operational
Research and Decision Making, pages 19–34. University of Delhi New Delhi.

Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in
payments. Journal of the operational research society, pages 335–338.

Goyal, S. K. and Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity
model for items with imperfect quality–a practical approach. International Journal of
Production Economics, 77(1):85–87.

Goyal, S. K. and Chang, C.-T. (2009). Optimal ordering and transfer policy for an in-
ventory with stock dependent demand. European Journal of Operational Research,
196(1):177–185.

Goyal, S. K. and Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory.
European Journal of operational research, 134(1):1–16.

Gurnani, C. (1983). Economic analysis of inventory systems. The International Journal
of Production Research, 21(2):261–277.

Hadley, G. and Whitin, T. M. (1963). Analysis of inventory systems. Technical report.

Haley, C. W. and Higgins, R. C. (1973). Inventory policy and trade credit financing.
Management science, 20(4-part-i):464–471.

Halim, M. A., Paul, A., Mahmoud, M., Alshahrani, B., Alazzawi, A. Y., and Ismail, G. M.
(2021). An overtime production inventory model for deteriorating items with nonlinear
price and stock dependent demand. Alexandria Engineering Journal, 60(3):2779–2786.

Harris, F. W. (1913). How many parts to make at once. The magazine of management,
10(4):135–136.

Hauck, Z., Rabta, B., and Reiner, G. (2021). Analysis of screening decisions in inventory
models with imperfect quality items. International Journal of Production Research,
59(21):6528–6543.

54

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Hou, K.-L. and Lin, L.-C. (2006). An eoq model for deteriorating items with price-and
stock-dependent selling rates under inflation and time value of money. International
journal of systems science, 37(15):1131–1139.

Hsu, J.-T. and Hsu, L.-F. (2013). An eoq model with imperfect quality items, inspection
errors, shortage backordering, and sales returns. International Journal of Production
Economics, 143(1):162–170.

Hu, J., Guo, C., Xu, R., and Ji, Y. (2010). Fuzzy economic order quantity model with
imperfect quality and service level. In 2010 Chinese Control and Decision Conference,
pages 4042–4047. IEEE.

Hua, G., Cheng, T., and Wang, S. (2011). Managing carbon footprints in inventory
management. International journal of production economics, 132(2):178–185.

Huang, C.-K. (2002). An integrated vendor-buyer cooperative inventory model for items
with imperfect quality. Production Planning & Control, 13(4):355–361.

Jaber, M., Goyal, S., and Imran, M. (2008). Economic production quantity model for items
with imperfect quality subject to learning effects. International Journal of Production
Economics, 115(1):143–150.

Jacobs, R. F., Berry, W. L., Whybark, D. C., and Vollmann, T. E. (2018). Manufacturing
planning and control for supply chain management: The CPIM Reference. McGraw-Hill
Education.

Jaggi, C. and Aggarwal, S. (1994). Credit financing in economic ordering policies of
deteriorating items. International Journal of Production Economics, 34(2):151–155.

Jaggi, C. K., Cárdenas-Barrón, L. E., Tiwari, S., and Shafi, A. (2017). Two-warehouse
inventory model for deteriorating items with imperfect quality under the conditions of
permissible delay in payments. Scientia Iranica, 24(1):390–412.

Jaggi, C. K. and Mittal, M. (2011). Economic order quantity model for deteriorating items
with imperfect quality. Investigación Operacional, 32(2):107–113.

Jaggi, C. K., Tiwari, S., and Shafi, A. (2015). Effect of deterioration on two-warehouse
inventory model with imperfect quality. Computers & Industrial Engineering, 88:378–
385.

Jayaswal, M. K. and Mittal, M. (2022). Learning-based inventory model for deteriorating
imperfect quality items under inflation. International Journal of Management Practice,
15(4):429–444.

Khakzad, A. and Gholamian, M. R. (2020). The effect of inspection on deterioration rate:
An inventory model for deteriorating items with advanced payment. Journal of cleaner
production, 254:120117.

Khan, M., Jaber, M., and Wahab, M. (2010). Economic order quantity model for items
with imperfect quality with learning in inspection. International journal of production
economics, 124(1):87–96.

Khan, M., Jaber, M. Y., and Bonney, M. (2011). An economic order quantity (eoq) for
items with imperfect quality and inspection errors. International Journal of Production
Economics, 133(1):113–118.

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Khan, M., Jaber, M. Y., Zanoni, S., and Zavanella, L. (2016). Vendor managed inventory
with consignment stock agreement for a supply chain with defective items. Applied
Mathematical Modelling, 40(15-16):7102–7114.

Khan, M. A.-A., Shaikh, A. A., Panda, G. C., Konstantaras, I., and Taleizadeh, A. A.
(2019). Inventory system with expiration date: Pricing and replenishment decisions.
Computers & Industrial Engineering, 132:232–247.

Krommyda, I., Skouri, K., and Konstantaras, I. (2015). Optimal ordering quantities for
substitutable products with stock-dependent demand. Applied Mathematical Modelling,
39(1):147–164.

Lee, W. J. and Kim, D. (1993). Optimal and heuristic decision strategies for integrated
production and marketing planning. Decision Sciences, 24(6):1203–1214.

Levin, R. I., Lamone, R. P., Kottas, J. F., and McLaughlin, C. P. (1972). Production
operations management: contemporary policy for managing operating systems. New
York: McGraw-Hill.

Li, R., Teng, J.-T., and Zheng, Y. (2019). Optimal credit term, order quantity and selling
price for perishable products when demand depends on selling price, expiration date,
and credit period. Annals of operations Research, 280(1):377–405.

Lin, T.-Y. (2010). An economic order quantity with imperfect quality and quantity dis-
counts. Applied Mathematical Modelling, 34(10):3158–3165.

Lin, T.-Y. and Hou, K.-L. (2015). An imperfect quality economic order quantity with
advanced receiving. Top, 23(2):535–551.

Maddah, B., Moussawi, L., and Jaber, M. Y. (2010a). Lot sizing with a markov production
process and imperfect items scrapped. International Journal of Production Economics,
124(2):340–347.

Maddah, B., Salameh, M. K., and Moussawi-Haidar, L. (2010b). Order overlapping: A
practical approach for preventing shortages during screening. Computers & Industrial
Engineering, 58(4):691–695.

Malakooti, B. (2014). Operations and production systems with multiple objectives. John
Wiley & Sons.

Mandal, B. A. and Phaujdar, S. (1989). An inventory model for deteriorating items
and stock-dependent consumption rate. Journal of the operational Research Society,
40(5):483–488.

Mishra, V. K., Singh, L. S., and Kumar, R. (2013). An inventory model for deterio-
rating items with time-dependent demand and time-varying holding cost under partial
backlogging. Journal of Industrial Engineering International, 9(1):1–5.

Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating
inventory. The International Journal of Production Research, 13(5):495–505.

Moussawi-Haidar, L., Salameh, M., and Nasr, W. (2014). Effect of deterioration on the
instantaneous replenishment model with imperfect quality items. Applied Mathematical
Modelling, 38(24):5956–5966.

56

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Muriana, C. (2015). Effectiveness of the food recovery at the retailing stage under shelf
life uncertainty: an application to italian food chains. Waste Management, 41:159–168.

Muriana, C. (2016). An eoq model for perishable products with fixed shelf life under
stochastic demand conditions. European Journal of Operational Research, 255(2):388–
396.

Nobil, A. H., Sedigh, A. H. A., and Cárdenas-Barrón, L. E. (2020). Reorder point for
the eoq inventory model with imperfect quality items. Ain Shams Engineering Journal,
11(4):1339–1343.

Padmanabhan, G. and Vrat, P. (1995). Eoq models for perishable items under stock
dependent selling rate. European Journal of Operational Research, 86(2):281–292.

Padmanabhan, G. a. and Vrat, P. (1990). An eoq model for items with stock dependent
consumption rate and exponential decay. Engineering Costs and Production Economics,
18(3):241–246.

Pakkala, T. and Achary, K. (1991). A two-warehouse probabilistic order-level inventory
model for deteriorating items. Journal of the Operational Research Society, 42(12):1117–
1122.

Palanivel, M. and Suganya, M. (2022). Partial backlogging inventory model with price
and stock level dependent demand, time varying holding cost and quantity discounts.
Journal of Management Analytics, 9(1):32–59.

Palanivel, M. and Uthayakumar, R. (2016). Two-warehouse inventory model for non-
instantaneous deteriorating items with partial backlogging and inflation over a finite
time horizon. Opsearch, 53(2):278–302.

Pando, V., San-Jose, L. A., and Sicilia, J. (2019). Profitability ratio maximization in an
inventory model with stock-dependent demand rate and non-linear holding cost. Applied
Mathematical Modelling, 66:643–661.

Pando, V., San-Jose, L. A., Sicilia, J., and Alcaide-Lopez-de Pablo, D. (2021). Maxi-
mization of the return on inventory management expense in a system with price-and
stock-dependent demand rate. Computers & Operations Research, 127:105134.

Philip, G. C. (1974). A generalized eoq model for items with weibull distribution deterio-
ration. AIIE transactions, 6(2):159–162.

Poswal, P., Chauhan, A., Boadh, R., Rajoria, Y. K., Kumar, A., and Khatak, N. (2022).
Investigation and analysis of fuzzy eoq model for price sensitive and stock dependent
demand under shortages. Materials Today: Proceedings, 56:542–548.

Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models.
Journal of the Operational Research society, 42(1):27–37.

Raafat, F. F., Wolfe, P. M., and Eldin, H. K. (1991). An inventory model for deteriorating
items. Computers & Industrial Engineering, 20(1):89–94.

Rahman, M. S., Duary, A., Khan, M., Shaikh, A. A., Bhunia, A. K., et al. (2022). Interval
valued demand related inventory model under all units discount facility and deteriora-
tion via parametric approach. Artificial Intelligence Review, 55(3):2455–2494.

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Rengarajan, S. and Vartak, M. (1983). A note on dave’s inventory model for deteriorating
items. Journal of the Operational Research Society, pages 543–546.

Rezaei, J. (2014). Economic order quantity for growing items. International Journal of
Production Economics, 155:109–113.

Rezaei, J. and Salimi, N. (2012). Economic order quantity and purchasing price for items
with imperfect quality when inspection shifts from buyer to supplier. International
Journal of Production Economics, 137(1):11–18.

Sadjadi, S. J., Yazdian, S. A., and Shahanaghi, K. (2012). Optimal pricing, lot-sizing and
marketing planning in a capacitated and imperfect production system. Computers &
Industrial Engineering, 62(1):349–358.

Salameh, M. and Jaber, M. (2000). Economic production quantity model for items with
imperfect quality. International journal of production economics, 64(1-3):59–64.
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