
Training Feedforward Neural Networks with
Bayesian Hyper-Heuristics

by

A.N. Schreuder

Submitted in partial fulfilment of the requirements for the degree
Master of Science, Computer Science (Artificial Intelligence)

in the Faculty of Engineering, Built Environment and Information Technology (EBIT)
University of Pretoria,

Pretoria.

February, 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Publication:

Schreuder, A.N. Training Feedforward Neural Networks with Bayesian Hyper-Heuristics. Master’s Dissertation.

University of Pretoria, Department of Computer Science, Pretoria, South Africa. 2022

Electronic, hyperlinked versions of this dissertation, including data and source code are available
online at:

https://github.com/arneschreuder/masters

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/arneschreuder/masters

Training Feedforward Neural Networks with
Bayesian Hyper-Heuristics

by

A.N. Schreuder
E-mail: an.schreuder@up.ac.za

Abstract

Many different heuristics have been developed and used to train feedforward neural networks
(FFNNs). However, selection of the best heuristic to train FFNNs is a time consuming
and non-trivial exercise. Careful, systematic selection is required to ensure that the best
heuristic is used to train FFNNs. In the past, selection was done by trial and error. A
modern approach is to automate the heuristic selection process. Often it is found that
a single approach is not sufficient. Research has proposed the use of hybridisation of
heuristics. One such approach is referred to as hyper-heuristics (HHs). HHs focus on
dynamically finding the best heuristic or combinations of heuristics in heuristic-space
by making use of heuristic performance information. One such implementation of a HH
is a population-based approach that guides the search process by dynamically selecting
heuristics from a heuristic-pool to be applied to different entities that represent candidate
solutions to the problem-space, and work together to find good solutions. This dissertation
introduces a novel population-based Bayesian hyper-heuristic (BHH). An empirical study
is done by using the BHH to train FFNNs. An in-depth behaviour analysis is done and the
performance of the BHH is compared to that of ten popular low-level heuristics each with
different search behaviours. The chosen heuristic pool consists of classic gradient-based
heuristics as well as meta-heuristics. The empirical process is executed on fourteen datasets
consisting of classification and regression problems with varying characteristics. Results
are analysed for statistical significance and the BHH is shown to be able to train FFNNs
well and provide an automated method for finding the best heuristic to train the FFNNs
at various stages of the training process.

Keywords: hyper-heuristics, meta-learning, feedforward neural networks, supervised
learning, Bayesian statistics

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mailto:an.schreuder@up.ac.za

Supervisor: Dr. A.S. Bosman

University of the Pretoria

Department of Computer Science

Supervisor: Prof. C.W. Cleghorn

University of the Witwatersrand

Department of Computer Science

Supervisor: Prof. A.P. Engelbrecht

Stellenbosch University

Department of Industrial Engineering, Computer Science Division

Degree: Master of Science, Computer Science (Artificial Intelligence)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

“Men go abroad to wonder at the heights of mountains, at the huge waves
of the sea, at the long courses of the rivers, at the vast compass of the ocean,
at the circular motions of the stars and they pass by themselves without
wondering.”

- St. Augustine

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

“I’ve made the most important discovery of my life. It’s only in the mysterious
equation of love that any logical reasons can be found. I’m only here tonight
because of you. You are the only reason I am . . . you are all my reasons.”

- Prof. J.F. Nash, Jr.

I would like to thank the following people, without whom this work would never have been
possible:

• To my wife, Taylah. You are all my reasons.

• To my daughters, Beané and Aleah. Thank you for giving life meaning.

• To my parents, Adré and Engela. Thank you for always believing in me.

• To my sister, Jeannie and her husband, Jaco. Thank you for always motivating me.

• To my supervisors, Dr. A.S. Bosman, Prof. C.W. Cleghorn and Prof. A.P. Engel-
brecht. Thank you for not giving up on me.

• To EPI-USE. Thank you for helping out where I needed it.

• To my creator, God. Thank You . . . for everything!

This project was made possible by the National Research Foundation (NRF) and the
Centre for High Performance Computing (CHPC) Cluster at the Council for Scientific and

Industrial Research (CSIR).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

List of Figures vii

List of Algorithms xiii

List of Tables xiv

1 Introduction 1
1.1 Summary of Research Domain . 2
1.2 Problem Statement . 4
1.3 Motivation . 4
1.4 Objectives . 6
1.5 Contributions . 7
1.6 Dissertation Outline . 8

2 Artificial Neural Networks 10
2.1 Biological Neuron . 11
2.2 Artificial Neuron . 12

2.2.1 Input . 13
2.2.2 Weights . 15
2.2.3 Net Input Signal . 16
2.2.4 Biases . 16
2.2.5 Activation Functions . 17
2.2.6 Output . 20

2.3 Artificial Neural Network . 21
2.3.1 Applications . 21
2.3.2 Architecture . 22
2.3.3 Topology . 23
2.3.4 Feedforward Neural Networks . 23

2.4 Training . 25
2.4.1 Supervised Learning . 25
2.4.2 Error Functions . 27

2.5 Summary . 28

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Heuristics 29
3.1 Optimisation . 30
3.2 What is a heuristic? . 31
3.3 Gradient-Based Heuristics . 32

3.3.1 Backpropagation . 32
3.3.2 Stochastic vs. Batch Training . 35
3.3.3 Momentum . 37
3.3.4 Nesterov Accelerated Gradients . 38
3.3.5 Adaptive Gradients . 39
3.3.6 Adaptive Learning Rate . 40
3.3.7 Root Mean Squared Error Propagation 41
3.3.8 Adaptive Moments Estimation . 41

3.4 Meta-Heuristics . 42
3.4.1 Particle Swarm Optimisation . 43
3.4.2 Differential Evolution . 46
3.4.3 Genetic Algorithms . 51

3.5 Summary . 57

4 Hyper-Heuristics 58
4.1 Meta-Learning . 60
4.2 What are Hyper-Heuristics? . 60
4.3 Classification of Hyper-Heuristics . 62

4.3.1 Source of Feedback . 63
4.3.2 Heuristic Search Space . 63

4.4 Summary . 64

5 Probability 66
5.1 Overview of Probability . 67
5.2 Conditional Probability and Independence 68
5.3 Two Laws of Probability for Multiple Events 69
5.4 Bayes’ Theorem . 69
5.5 Probability Distributions . 71

5.5.1 Beta Probability Distribution . 71
5.5.2 Dirichlet Probability Distribution . 72
5.5.3 Bernoulli Probability Distribution 74
5.5.4 Binomial Probability Distribution 75
5.5.5 Categorical Probability Distribution 76
5.5.6 Multinomial Probability Distribution 77

5.6 Conjugate Priors . 78
5.6.1 Binomial Likelihood . 78

ii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.6.2 Categorical and Multinomial Likelihood 79
5.7 Bayesian Statistics . 81

5.7.1 Frequentist vs. Bayesian Statistics 81
5.7.2 Bayesian Analysis . 83

5.8 Summary . 85

6 Bayesian Hyper-Heuristic 86
6.1 Overview . 87
6.2 Architecture . 88
6.3 Heuristic Pool . 90

6.3.1 Heuristic Diversity . 90
6.3.2 Heuristic Pool Size . 91
6.3.3 Proxies . 91

6.4 Entity Pool . 93
6.4.1 Entity State . 93
6.4.2 Population State . 94

6.5 Performance Log . 95
6.6 Credit Assignment Strategy . 96
6.7 Selection Mechanism . 98

6.7.1 Random Events . 98
6.7.2 Independence . 98
6.7.3 Bayes’ Theorem . 99
6.7.4 Predictive Model . 99
6.7.5 Naïve Bayes . 101
6.7.6 Numerical Stability . 103
6.7.7 Mode Collapse . 103

6.8 Optimisation Step . 104
6.8.1 Concentration Parameters and Pseudo Counts 104
6.8.2 Maximum Likelihood Estimation . 105
6.8.3 Maximum A Posteriori Estimation 108

6.9 Hyper-Parameters . 110
6.9.1 Heuristic Pool . 110
6.9.2 Population Size . 111
6.9.3 Credit Assignment Strategy . 111
6.9.4 Reselection Interval . 112
6.9.5 Replay Window Size . 112
6.9.6 Reanalysis Interval . 112
6.9.7 Burn In . 113
6.9.8 Discounted Rewards . 113
6.9.9 Normalisation . 113

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.9.10 Defaults . 114
6.10 The BHH Algorithm . 115
6.11 Summary . 115

7 Methodology 117
7.1 Overview of Empirical Process . 118
7.2 Datasets . 119

7.2.1 Class Balancing . 120
7.3 Models . 120
7.4 Heuristics . 121
7.5 BHH Baseline . 121
7.6 Performance Measures . 124
7.7 Stopping Conditions . 125
7.8 Experiments . 125

7.8.1 Behavioural Case Study . 125
7.8.2 Standalone Heuristics . 126
7.8.3 BHH Variants . 126

7.9 Statistical Analysis . 127
7.10 Implementation and Execution . 128
7.11 Summary . 128

8 Results 129
8.1 Overview . 130
8.2 Behavioural Case Study . 132

8.2.1 Performance Metrics . 133
8.2.2 Concentration Parameters . 134
8.2.3 Probability Distribution of Heuristic Selection Probabilities 136
8.2.4 Prior Heuristic Selection Probabilities 138
8.2.5 Posterior Heuristic Selection Probabilities 140

8.3 BHH vs. Low-Level Heuristics . 142
8.4 Heuristic Pool . 151
8.5 Population Size . 155
8.6 Credit Assignment Strategy . 160
8.7 Reselection Interval . 164
8.8 Replay Window Size . 169
8.9 Reanalysis Interval . 173
8.10 Burn In . 176
8.11 Normalisation . 180
8.12 Discounted Rewards . 184
8.13 Summary . 188

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9 Conclusion 191
9.1 Summary of Research Intent . 192

9.1.1 Review of Problem Statement . 192
9.1.2 Review of Research Motivation . 192
9.1.3 Review of Research Objectives . 192

9.2 Summary of Background Information . 194
9.3 Summary of The Bayesian Hyper-Heuristic 194
9.4 Summary of Methodology . 195
9.5 Summary of Results . 197

9.5.1 Behavioural Case Study . 198
9.5.2 BHH Baseline vs. Low-Level Heuristics 199
9.5.3 Heuristic pool . 200
9.5.4 Population Size . 200
9.5.5 Credit Assignment Strategy . 200
9.5.6 Reselection Interval . 201
9.5.7 Replay . 201
9.5.8 Reanalysis Interval . 201
9.5.9 Burn In . 201
9.5.10 Normalisation . 202
9.5.11 Discounted Rewards . 202

9.6 Future Research Opportunities . 202
9.7 Documentation and Data . 205
9.8 Summary . 205

Bibliography 206

A Acronyms 222

B Symbols 225
B.1 Chapter 2: Artificial Neural Networks . 225
B.2 Chapter 3: Heuristics . 228
B.3 Chapter 4: Hyper-Heuristics . 233
B.4 Chapter 5: Probability . 233
B.5 Chapter 6: Bayesian Hyper-Heuristic . 238
B.6 Chapter 7: Methodology . 241
B.7 Chapter 8: Results . 241

C Datasets 243

D Statistical Analysis 244
D.1 BHH vs. Low-Level Heuristics . 245

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

D.2 Heuristic Pool . 248
D.3 Population Size . 249
D.4 Credit Assignment Strategy . 250
D.5 Reselection Interval . 251
D.6 Replay Window Size . 252
D.7 Reanalysis Internal . 253
D.8 Burn In . 254
D.9 Normalisation . 255
D.10 Discounted Rewards . 256

E Derived Publications 257

Index 258

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

2.1 The biological Neuron . 11
2.2 The artificial neuron . 12
2.3 The LReLU activation function . 18
2.4 The sigmoid activation function . 19
2.5 The hyperbolic tangent activation function 20
2.6 The results of softmax and argmax . 22
2.7 A feedforward neural network . 24

3.1 An illustration of gradient descent (GD) over various time steps showing the
minimisation of the error with regards to weight value. 33

3.2 An illustration of stochastic gradient descent (SGD) fluctuations during
training as taken from [125]. 35

3.3 An illustration of stochastic gradient descent (SGD) with and without mo-
mentum taken from [39]. 37

3.4 An illustration of the weight update vector for Nesterov accelerated gradients
(NAG) taken from [74]. 38

3.5 An illustration of the uniform crossover operator as it applies to sexual
recombination, resulting in two new offspring. 54

3.6 An illustration of the adapted uniform mutation operator as it applies to
mutated offspring. 56

4.1 An illustration of the domain barrier that exists as a result of the separation
between the low-level heuristics and the high-level heuristic as introduced
by HHs. 61

4.2 A classification of HH approaches, according to two dimensions: (i) the
source of feedback used during learning, and (ii) the nature of the heuristic
search space. 62

5.1 A Venn-Diagram showing the proof of the additive law of probability for
multiple events. 70

5.2 An illustration of the Beta probability distribution (left) [77] as well as the
cumulative Beta probability distribution (right) [78] for various values of α
and β . 72

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.3 The probability density functions (PDFs) for the Dirichlet probability dis-
tribution over the 2-simplex. The concentration parameters, α, are varied.
The values of the PDF are shown by the colour maps with contour lines at
equal values as indicated in the colour bars [117]. 74

5.4 An illustration of the coin-flip simulation for different sample sizes that show
the convergence of the mean as per the central limit theorem (CLT). 75

5.5 The experimental outcomes for the mice-population experiments as were
taken from [68] . 82

5.6 An illustration of the prior and posterior probability distributions for the
outcomes of the mice-population experiment, using a Beta prior, as was
taken from [68]. 83

6.1 An illustration of the architecture and high level components of the Bayesian
hyper-heuristic (BHH). 89

6.2 The Beta probability distribution with varying α and β values. 114

7.1 Mapping of proxied heuristic state update operations as implemented by
the BHH . 123

8.1 The average train and test loss and accuracy plots over 30 epochs, obtained
from 30 runs of the case study on the behaviour of the BHH on the iris
dataset, illustrated in log scale. 133

8.2 The average value of the concentration parameter α, are at indices 0, 6,
7, and 8 over 240 steps, obtained from 30 runs of the case study on the
behaviour of the BHH on the iris dataset, illustrated in log scale. 135

8.3 The average sampled heuristic selection probabilities, denoted θ, are at
indices 0, 6, 7, and 8. The heuristic selection probabilities are sampled from
the probability distribution, denoted P (θ|α), over 240 steps, obtained from
30 runs of the case study on the behaviour of the BHH on the iris dataset,
illustrated in log scale. 137

8.4 The average prior heuristic selection probabilities, P (H|θ), are at indices
0, 6, 7, and 8. The prior heuristic selection probabilities are sampled from
the probability distribution of heuristic selection probabilities, denoted by
P (θ|α), over 240 steps, obtained from 30 runs of the case study on the
behaviour of the BHH on the iris dataset, illustrated in log scale. 139

viii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.5 The average calculated proportional posterior heuristic selection probabilities
for heuristics (H) at indices 0, 6, 7, and 8, given the application to entity e0

and requiring a successful credit allocation, c1, from the ibest credit assign-
ment strategy. The proportional posterior heuristic selection probabilities
are calculated from the probabilistic model, denoted P (H|E,C;θ,ϕ,ψ),
over 240 steps, and obtained from 30 runs of the case study on the behaviour
of the BHH on the iris dataset, illustrated in log scale. 141

8.6 Descriptive plots for the average ranks of all low-level heuristics compared to
three heuristic pool variants of the BHH baseline configuration, per dataset,
across all independent runs and epochs. 145

8.7 Critical difference plots for the average ranks of all low-level heuristics
compared to three heuristic pool variants of the baseline BHH, across all
datasets, runs and epochs. 146

8.8 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level
heuristics on the iris dataset over 30 epochs, illustrated in log scale. 147

8.9 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level
heuristics on the car dataset over 30 epochs, illustrated in log scale. 148

8.10 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level
heuristics on the bank dataset over 30 epochs, illustrated in log scale. . . . 149

8.11 The train and test loss plots for the experimental group comparing the
performance of the BHH to individual, standalone, low-level heuristics on
the fish toxicity dataset over 30 epochs, illustrated in log scale. 150

8.12 The train and test loss plots for the experimental group comparing the
performance of the BHH to individual, standalone, low-level heuristics on
the parkinsons dataset over 30 epochs, illustrated in log scale. 150

8.13 Descriptive plots for the average ranks of the BHH with varying heuristic
pools per dataset, across all independent runs and epochs. 153

8.14 Critical difference plots for the average ranks of the BHH with varying
heuristic pools across all datasets, runs and epochs. 153

8.15 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of
the heuristic pool hyper-parameter on the abalone dataset over 30 epochs,
illustrated in log scale. 154

8.16 The train and test loss plots for the experimental group comparing the
performance of the BHH with different configurations of the heuristic pool
hyper-parameter on the forest fires dataset over 30 epochs, illustrated in log
scale. 155

ix

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.17 Descriptive plots for the average ranks of BHH with varying population
sizes per dataset, across all independent runs and epochs. 158

8.18 Critical difference plots for the average ranks of BHH with varying population
sizes across all datasets, runs and epochs. 158

8.19 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
population size hyper-parameter on the mushroom dataset over 30 epochs,
illustrated in log scale. 159

8.20 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
population size hyper-parameter on the student performance dataset over
30 epochs, illustrated in log scale. 159

8.21 Descriptive plots for the average ranks of the BHH with varying credit
assignment strategies per dataset, across all independent runs and epochs. . 162

8.22 Critical difference plots for the average ranks of the BHH with varying credit
assignment strategies across all datasets, runs and epochs. 162

8.23 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
credit assignment strategy hyper-parameter on the bank dataset over 30
epochs, illustrated in log scale. 163

8.24 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
credit assignment strategy hyper-parameter on the housing dataset over 30
epochs, illustrated in log scale. 163

8.25 Descriptive plots for the average ranks of the BHH with varying reselection
interval values per dataset, across all independent runs and epochs. 167

8.26 Critical difference plots for the average ranks of the BHH with varying
reselection interval values across all datasets, runs and epochs. 167

8.27 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of
the reselection interval hyper-parameter on the car dataset over 30 epochs,
illustrated in log scale. 168

8.28 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
reselection interval hyper-parameter on the bike dataset over 30 epochs,
illustrated in log scale. 168

8.29 Descriptive plots for the average ranks of the BHH with varying replay
window sizes per dataset, across all independent runs and epochs. 171

8.30 Critical difference plots for the average ranks of the BHH with varying replay
window sizes across all datasets, runs and epochs. 171

x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.31 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
replay window size hyper-parameter on the diabetic dataset over 30 epochs,
illustrated in log scale. 172

8.32 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the
replay window size hyper-parameter on the fish toxicity dataset over 30
epochs, illustrated in log scale. 172

8.33 Descriptive plots for the average ranks of the BHH with varying reanalysis
intervals per dataset, across all independent runs and epochs. 175

8.34 Critical difference plots for the average ranks of the BHH with varying
reanalysis intervals across all datasets, runs and epochs. 175

8.35 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for
the reanalysis interval hyper-parameter on the mushroom dataset over 30
epochs, illustrated in log scale. 176

8.36 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for
the reanalysis interval hyper-parameter on the parkinsons dataset over 30
epochs, illustrated in log scale. 177

8.37 Descriptive plots for the average ranks of the BHH with varying burn in
values per dataset, across all independent runs and epochs. 180

8.38 Critical difference plots for the average ranks of the BHH with varying burn
in values across all datasets, runs and epochs. 180

8.39 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for
the burn in window size hyper-parameter on the mushroom dataset over 30
epochs, illustrated in log scale. 181

8.40 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for
the burn in window size hyper-parameter on the parkinsons dataset over 30
epochs, illustrated in log scale. 181

8.41 Descriptive plots for the average ranks of the BHH with normalisation
toggled per dataset, across all independent runs and epochs. 184

8.42 Critical difference plots for the average ranks of the BHH with normalisation
toggled across all datasets, runs and epochs. 184

8.43 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the normalisation hyper-
parameter toggled on the abalone dataset over 30 epochs, illustrated in log
scale. 185

xi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.44 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the normalisation hyper-
parameter toggled on the bike dataset over 30 epochs, illustrated in log
scale. 185

8.45 Descriptive plots for the average ranks of the BHH with discounted rewards
toggled per datasets, across all independent runs and epochs. 188

8.46 Critical difference plots for the average ranks of the BHH with discounted
rewards toggled across all datasets, runs and epochs. 188

8.47 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the discounted rewards hyper-
parameter toggled on the wine quality dataset over 30 epochs, illustrated in
log scale. 189

8.48 The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the discounted rewards hyper-
parameter toggled on the housing dataset over 30 epochs, illustrated in log
scale. 189

xii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Algorithms

1 The pseudo-code algorithm for the generic gradient descent (GD) heuristic. 34
2 The pseudo-code algorithm for the gbest PSO heuristic. 46
3 The pseudo-code algorithm for the binomial crossover technique for DE. . . 49
4 The pseudo-code algorithm for the exponential crossover technique for DE. 49
5 The pseudo-code for the general DE heuristic. 50
6 The pseudo-code for the generic EC heuristic. 52
7 The pseudo-code for the uniform crossover operator as used by genetic

algorithms (GAs). 55
8 The pseudo-code for the uniform mutation operator as used by GAs. 55
9 The pseudo-code for the implementation of the Bayesian hyper-heuristic

(BHH) . 116

xiii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

6.1 An example of a mapping of proxied state update operation maintained by
the BHH. 92

6.2 An example of the performance log implemented by the BHH, showing the
first five entities, their allocated heuristics and their resulting performance
measurements for the first step of the training process. 96

6.3 Credit assignment strategy output table showing ibest credit assignment for
the first five entities and their selected heuristics for step 1 of the training
process. 97

7.1 Classification datasets . 119
7.2 Regression datasets . 119
7.3 Model configurations . 120
7.4 Low-level heuristics and their hyper-parameter configurations. 122
7.5 The BHH baseline configuration as it is used in the empirical study. 124
7.6 BHH variants and their configuration . 126

8.1 Empirical results showing test loss and statistics for different low-level
heuristics compared to three heuristic pool variants of the BHH baseline
configuration, across multiple datasets, for all independent runs, measured
at the last epoch. 143

8.2 Empirical results showing normalised average rank and statistics for different
low-level heuristics compared to three heuristic pool variants of the BHH
baseline configuration, across multiple datasets, for all independent runs
and epochs. 144

8.3 Empirical results showing average test loss and statistics for all heuristic pool
configurations used by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 151

8.4 Empirical results showing average rank and statistics for all heuristic pool
configurations used by the BHH across multiple datasets, for all independent
runs and epochs. 152

xiv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.5 Empirical results showing average test loss and statistics for all popula-
tion size configurations used by the BHH across multiple datasets, for all
independent runs and is measured at the last epoch. 156

8.6 Empirical results showing average rank and statistics for different population
sizes used by the BHH across multiple datasets, for all independent runs
and all epochs. 157

8.7 Empirical results showing average test loss and statistics for different credit
assignment strategies used by the BHH across multiple datasets, for all
independent runs and is measured at the last epoch. 160

8.8 Empirical results showing average rank and statistics for different credit
assignment strategies used by the BHH across multiple datasets, for all
independent runs and epochs. 161

8.9 Empirical results showing average test loss and statistics for different reselec-
tion intervals used by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 164

8.10 Empirical results showing average rank and statistics for different reselection
intervals used by the BHH across multiple datasets, for all independent runs
and epochs. 165

8.11 Empirical results showing average test loss and statistics for different replay
window sizes used by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 169

8.12 Empirical results showing average rank and statistics for different replay
window sizes used by the BHH across multiple datasets, for all independent
runs and epochs. 170

8.13 Empirical results showing average test loss and statistics for different reanal-
ysis intervals used by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 173

8.14 Empirical results showing average rank and statistics for different reanalysis
intervals used by the BHH across multiple datasets, for all independent runs
and epochs. 174

8.15 Empirical results showing average test loss and statistics for different burn in
window sizes used by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 177

8.16 Empirical results showing average rank and statistics for different burn in
window sizes used by the BHH across multiple datasets, for all independent
runs and epochs. 178

8.17 Empirical results showing average test loss and statistics for normalisation
toggled by the BHH across multiple datasets, for all independent runs and
is measured at the last epoch. 182

xv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.18 Empirical results showing average rank and statistics for normalisation
toggled by the BHH across multiple datasets, for all independent runs and
epochs. 183

8.19 Empirical results showing average test loss and statistics for discounted
rewards toggled by the BHH across multiple datasets, for all independent
runs and is measured at the last epoch. 186

8.20 Empirical results showing average rank and statistics for discounted rewards
toggled by the BHH across multiple datasets, for all independent runs and
epochs. 187

D.1 ANOVA - Rank - BHH vs. Low-Level Heuristics 245
D.2 Kruskal-Wallis - BHH vs. Low-Level Heuristics 245
D.3 Post Hoc Comparisons - BHH vs. Low-Level Heuristics - Part A 246
D.4 Post Hoc Comparisons - BHH vs. Low-Level Heuristics - Part B 247
D.5 ANOVA - Rank - BHH Variant: Heuristic Pool 248
D.6 Post Hoc Comparisons - BHH Variant: Heuristic Pool 248
D.7 Kruskal-Wallis - BHH Variant: Heuristic Pool 248
D.8 ANOVA - Rank - BHH Variant: Population Size 249
D.9 Post Hoc Comparisons - BHH Variant: Population Size 249
D.10 Kruskal-Wallis - BHH Variant: Population Size 249
D.11 ANOVA - Rank - BHH Variant: Credit Assignment Strategy 250
D.12 Post Hoc Comparisons - BHH Variant: Credit Assignment Strategy 250
D.13 Kruskal-Wallis - BHH Variant: Credit Assignment Strategy 250
D.14 ANOVA - Rank - BHH Variant: Reselection Interval 251
D.15 Post Hoc Comparisons - BHH Variant: Reselection Interval 251
D.16 Kruskal-Wallis - BHH Variant: Reselection Interval 251
D.17 ANOVA - Rank - BHH Variant: Replay Window Size 252
D.18 Post Hoc Comparisons - BHH Variant: Replay Window Size 252
D.19 Kruskal-Wallis - BHH Variant: Replay Window Size 252
D.20 ANOVA - Rank - BHH Variant: Reanalysis Interval 253
D.21 Post Hoc Comparisons - BHH Variant: Reanalysis Interval 253
D.22 Kruskal-Wallis - BHH Variant: Reanalysis Interval 253
D.23 ANOVA - Rank - BHH Variant: Burn In . 254
D.24 Post Hoc Comparisons - BHH Variant: Burn In 254
D.25 Kruskal-Wallis - BHH Variant: Burn In . 254
D.26 ANOVA - Rank - BHH Variant: Normalisation 255
D.27 Post Hoc Comparisons - BHH Variant: Normalisation 255
D.28 Kruskal-Wallis - BHH Variant: Normalisation 255
D.29 ANOVA - Rank - BHH Variant: Discounted Rewards 256
D.30 Post Hoc Comparisons - BHH Variant: Discounted Rewards 256

xvi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

D.31 Kruskal-Wallis - BHH Variant: Discounted Rewards 256

xvii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Introduction

“It is better to solve one problem five different ways, than to solve
five problems one way.”

- George Polya

Machine learning (ML) is one of the most popular fields of research in artificial
intelligence (AI) studies today. In recent years, ML research has seen some notable
achievements in academia [58, 61, 99, 173], as well as the industry at large [103, 148,
149, 186]. ML research has grown tremendously over the past decade with successes
like AlphaGo, which set new standards for AI capabilities by beating the world’s
best Go player, Lee Sedol, 4-1 [149].

Over the past few years, modern hardware capabilities have improved to the point
where workloads in the field of ML that were previously computationally infeasible,
are now possible. One such sub-field of ML is artificial neural networks (ANNs).
ANNs can generally be described as well-organised structures of mathematical
computation and are inspired by the biological brain [45]. ANNs can be trained,
which is the equivalent of “learning” from data. Learning gives rise to the ability
to apply some form of decision making. Decision making as an ability provides a
wide-range of applications from healthcare to finance and yields great interest in
the field. With the improvement of hardware came an influx of ML researchers that
focused their attention on training of ANNs.

Feedforward neural networks (FFNNs) are specific types of ANNs [133]. A popular
field of focus for studying ANNs is the process by which these models are trained.
The most common way of training FFNNs is supervised learning, which is a training
technique that involves exposing the ANNs with input data and comparing the
produced output data to that of predefined target data. Training of ANNs is seen
as an optimisation problem. The ANN maintains a set of parameters, referred to

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 2

as “weights” and “biases”. A search algorithm known as a heuristic [124] is used to
assign optimal values to the parameters of the ANN, such that a specified objective
function is minimised. The research presented in this dissertation focuses on the
development of a specific type of heuristic, called a hyper-heuristic (HH) to train
FFNNs in a supervised learning approach.

This chapter provides the reader with a brief overview of the problem domain
and outlines the research problem, objectives and purpose. The remainder of the
chapter is presented as follows:

• Section 1.1 provides the reader with brief summary of the research domain.

• Section 1.2 outlines the research problem being addressed.

• Section 1.3 provides a motivation for this research.

• Section 1.4 presents the reader with the research objectives and outlines the
goals of this dissertation.

• Section 1.5 outlines the contributions of this research to the field.

• Section 1.6 provides a full dissertation outline.

1.1 Summary of Research Domain

This section provides the reader with a brief summary of the research field and
outlines key concepts that contribute to the topics discussed in this dissertation.

Although the landscape of what can be solved using ANNs today is extensive,
there still exists no single model that can be generalised to solving multiple problem
classes, across multiple problem domains. ANN training algorithms mostly yield
problem specific solutions. This means that a particular approach that works well
for one domain or problem class, often does not necessarily work for another. This
problem is known as the no free lunch theorem (NFL) [178].

The performance and capabilities of ANNs is largely influenced by the learning
process used. The learning process consists of multiple components. These include
the type of underlying optimisation algorithm used, how the model parameters
are initialised, the hyper-parameters used and the constraints of learning such as
allowed search space and boundaries. Each of these elements influences how much a
particular learning technique might focus on a particular solution (exploitation), in
comparison to seeking out novel solutions (exploration) during training.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 3

Techniques exist to dynamically balance the trade-off between exploration and
exploitation during the search process. An example of such a technique is to
dynamically adjust and learn the heuristic hyper-parameters as part of the learning
process. This field of study is known as meta-learning [57]. Meta-learning of heuristic
hyper-parameters as applied in the training of ANNs has shown to yield good
generalisation results [80, 174].

The dynamic nature of the learning process leads towards the idea that ML models
could be trained in a way such that the learning process and learning mechanism
applied are not statically defined, but rather dynamic and under the control of some
mechanism.

A recent suggestion related to the field of meta-learning is to dynamically select
and/or adjust the heuristic used throughout the training process. This approach
focuses on the hybridisation of learning paradigms. The main concept behind this
paradigm is that the learning process is dynamic and problem specific. A particular
learning technique might work well for one problem and not for another. At the
same time, a particular learning technique might work well for a particular part
of the search landscape, but not for another. By dynamically combining the best
of different learning paradigms throughout the learning process, a trade-off can be
made between exploration and exploitation as is required.

One such form of hybridisation of learning paradigms is referred to as heteroge-
neous learning approaches. Heterogeneous learning approaches make use of different
search behaviours by selecting from a behaviour pool. Heterogeneous approaches
have shown to balance the trade-off between exploration and exploitation [116].

A step further in the concept of hybridisation of learning paradigms is that
of hybridisation of different heuristics as they are applied to some optimisation
problem [20]. These methods are referred to as hyper-heuristics (HHs) and focus
on finding the best heuristic in heuristic space to solve a specific problem. One
such form of HH is a population-based approach that guides the search process by
automatically selecting heuristics from a heuristic-pool to be applied to a collection
of different candidate solutions in the solution-space. This collection of candidate
solutions are referred to as a population of entities, where each entity is a single
candidate solution to the problem being optimised. Population-based HHs implement
a strategy where multiple heuristics work together to solve a problem. This technique
requires a mechanism that selects a specific heuristic to be applied to a specific
candidate solution.

Finding the best heuristic to use is non-trivial and some selection strategy must
be used to select the best heuristic. HHs that implement such a selection strategy

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 4

are referred to as selection HHs. The term selection refers to the ability of the HH
to select the best heuristic from a pool of low-level heuristics.

One specific type of selection HH is called a multi-method population-based
meta-heuristic [171]. The term multi-method refers to the incorporation of different
low-level heuristics, with different search behaviours, into the heuristic space. The
term population-based refers to the utilisation of a population of entities that represent
candidate solutions. Finally, the term meta-heuristics refers to the HH as a heuristic
that does not have any domain knowledge and only makes use of information from
the search process.

Grobler [64] mentioned that HHs have been shown to solve a number of problems
including bin-packing, examination timetabling, production scheduling, the travelling
salesman problem, vehicle routing problem and many more.

1.2 Problem Statement

Many different heuristics have been developed and used to train FFNNs [66, 111, 131].
Each of these heuristics has different search behaviours, characteristics, strengths
and weaknesses. Finding the best heuristic to train the FFNN is required in order to
yield optimal results. This process is often non-trivial and could be a time-consuming
exercise. Consider that selection of the best heuristic as applied to optimisation
problems, such as training FFNNs, is problem specific [3, 38, 126].

Careful, systematic selection is thus required to find and select the best heuristic
to train FFNNs. In the past, researchers selected the best heuristic by trial and error.
A set of heuristics and carefully selected hyper-parameters would be implemented,
followed by an empirical test to evaluate the performance of each heuristic for a given
problem domain [127]. In this way, researchers were able to determine which heuristics
and which hyper-parameters performed well for different problems. However, this
approach is problematic, because it is time-consuming and laborious.

1.3 Motivation

A process is required to alleviate the burden of having to exhaustively test each
implementation of heuristic and hyper-parameters, for every problem being optimised.

In Section 1.2 above, it is mentioned that finding the best heuristic to train FFNNs
is a timely and tedious process. A modern approach is to use HHs to automate the
process of selecting the best heuristic when applied to some optimisation problem.
The best heuristic might not be a single heuristic, but rather a hybridisation of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 5

heuristics [127].
In the general context of optimisation, many different types of HHs have been

implemented and applied to many different problems. Some notable examples include
the simulated annealing-based HH by Dowsland et al. [37], the tabu-search HH
of Burke et al. [19], the heterogeneous meta-hyper-heuristic by Grobler et al. [65] and
work done by Van der Stockt et al. [171] on the analysis of selection hyper-heuristics
for population-based meta-heuristics (MHs) in real-valued dynamic optimisation.
However, research on the application of HHs in the context of FFNN training is
scarce. Nel [115] provides the first research in this field, applying a HH to FFNN
training.

Training of FFNNs is seen as a computational search problem. A hyper-heuristic
(HH), as defined by Burke et al. [19], is “a search method or learning mechanism
for selecting or generating heuristics to solve computational search problems”. HHs
is a field of research aimed at the automated selection, combination, adaptation or
generation of multiple lower-level heuristics to efficiently solve computational search
problems.

Grobler et al. [65] mention that the focus of HHs is on automating the development
of the learning mechanism used to find the best heuristic to obtain an appropriate
solution to an optimisation problem. Grobler et al. explain that HHs employ a
high-level heuristic that focuses on finding the best low-level heuristic in heuristic
space that could include single-method and multi-method optimisation algorithms
(heuristics). HHs relieve the burden of having to select the best heuristic to use by
trial and error. Furthermore, HHs can generally be applied to multiple problems
given that the set of low-level heuristics include heuristics that have the potential to
solve the problem at hand [19]. Automation of the heuristic selection process and
the general application to a wider range of problems are characteristics of HHs that
can be beneficial when applied in the context of training FFNNs.

Note that training of FFNNs using HHs is not to be confused with the training of
FFNNs using ensemble networks or query by committees. Pappa et al. [123] describe
ensemble networks as a combination method in meta-learning whereby multiple
ANNs are jointly used to solve a problem. Each member network in the ensemble is
trained using a specified heuristic, and generally this heuristic is applied to the same
member throughout the training process. The results of all of the member networks
are then joined together using some consensus mechanism [184]. This mechanism
could be weighted averages, majority voting or weighted voting. Ensemble networks
do not search through the heuristic space to find the best training algorithm for each
member, while HHs do.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 6

This research takes a particular interest in developing a selection HH that makes
use of probability theory and Bayesian statistical concepts to guide the heuristic
selection process. This research develops the novel Bayesian hyper-heuristic (BHH),
a new high-level heuristic that utilises a statistical approach, referred to as Bayesian
analysis, which combines prior information with new evidence to the parameters of
a selection probability distribution. This selection probability distribution is the
mechanism by which the HH selects appropriate heuristics to train FFNNs during
the training process. This process takes place dynamically and during the training
process (online learning).

1.4 Objectives

The main objective of this research is focused on developing a novel Bayesian hyper-
heuristic (BHH) selection mechanism in a HH framework that can be used to train
FFNNs. In order to reach this objective, the following sub-objectives are defined.

• Conduct a literature study on ANNs in order to provide the necessary back-
ground information of the AN, FFNNs and the training process.

• Conduct a literature study on different types of heuristics that have been used
to train FFNNs. The literature study will provide the necessary background
information to understand how different heuristics can be used in the set of
heuristics to be selected to train the FFNN.

• Conduct a literature study on meta-learning and HHs in order to provide
the required background information necessary to propose and develop a new
high-level heuristic and selection mechanism.

• Conduct a literature study on probability theory and Bayesian statistics such as
Bayesian inference and Bayesian analysis to provide the necessary background
information required to understand how Bayesian approaches can be used as a
learning technique.

• Develop a novel BHH selection mechanism for a HH that makes use of Bayesian
statistics to guide the HH search process while training FFNNs on different
problems.

• Conduct an empirical study to show that the developed BHH can effectively
be used to train FFNNs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 7

• Conduct an empirical study to investigate the behavioural characteristics of
the BHH as it is used to train FFNNs on an example problem.

• Conduct an empirical study and critically evaluate the performance of the
developed BHH compared to individual heuristics in the heuristic space as they
are used to train FFNNs on a number of different problems.

• Conduct an empirical study that investigates variations of the BHH and the
effects of design decisions and hyper-parameters on the search process.

• Provide a statistical analysis of the results obtained from the empirical study.

1.5 Contributions

The results obtained from this research contribute to the field of study in the following
ways.

• A novel heuristic selection operator is used that focuses on using Bayesian
statistics to calculate the probability that a heuristic should be selected in order
to efficiently train FFNNs. The resulting HH is referred to as the Bayesian
hyper-heuristic (BHH).

• The results of the empirical study show with statistical significance and certainty
that the BHH performs generally well on multiple problems. It is shown that,
for each problem, the BHH performance is comparable to the best low-level
heuristics included in the heuristic selection pool.

• The results of the empirical study show that the BHH is able to select the best
heuristic to train FFNNs in general. This relieves researchers from the burden
of having to do this selection process manually through trial and error.

• The results of the empirical study show that the BHH, given a diverse set
of lower-level heuristics, will generally produce good results when applied to
multiple problems at the same time.

• Finally, the results of the empirical study show that the BHH is capable of
utilising a priori 1 knowledge in which a predefined selection bias is used for
heuristics that are known to be well suited for certain problems.

1Latin word, meaning “from what comes before”.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 8

1.6 Dissertation Outline

The remainder of this dissertation is structured as follows:

• Chapter 2 provides a literature study on ANNs and the various components
that make up an artificial neuron (AN). The focus is on training of FFNNs.
It is shown how training of FFNNs is seen as an optimisation problem.

• Chapter 3 provides details on various types of heuristics and MHs that have
been used to train FFNNs. A literature study is done to provide details on
the search behaviours, application and implementation of each heuristic in the
context of training FFNNs.

• Chapter 4 presents a literature study on the details of HHs and meta-learning
in general. A discussion follows on the current landscape of HH research and a
review of different selection approaches for HHs is conducted. It is shown how
HHs are suitable for FFNN training.

• Chapter 5 presents a literature study on probability theory. Probability
distributions and conjugate priors are discussed in detail. The chapter con-
cludes with a detailed discussion on Bayesian statistics, specifically focusing on
Bayesian inference and analysis.

• Chapter 6 presents the developed BHH. It is shown how the BHH is im-
plemented as a selection mechanism in the context of a HH framework. The
BHH is shown to implement a Naïve Bayes classifier. The probabilistic model
that is implemented is derived and discussed in detail. Finally, the chapter
concludes with a detailed discussion on how Bayesian analysis is used to guide
the heuristic selection process. The update step (training step) for prior proba-
bility concentration parameters is derived and discussed in detail. The BHH
algorithmic implementation, variants and suggested application are presented
as well.

• Chapter 7 presents a detailed description of the empirical process and the setup
of each experiment. It discusses the datasets used, the FFNN architecture and
topology used, heuristics that are used, the configuration of hyper-parameters,
initialisation techniques used and performance measures used. Finally, discus-
sions follow on how the results are analysed. This includes a discussion on the
method used to determine statistical significance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 9

• Chapter 8 provides and discusses the results of the empirical study in detail. A
baseline comparison is done by comparing the performance of the BHH to that
of all the individual lower-level heuristics on all datasets. These datasets include
classification and regression problems of various sizes and complexity. Detailed
results are presented on the performance of the BHH as a selection mechanism
for HHs and a brief comparison is made to other selection mechanisms. Finally,
results are presented on the effects of the hyper-parameters of the BHH on the
training process. Discussions follow on how the BHH is shown to automate
the selection of the best heuristic during the training of FFNNs, as applied to
a range of problems, alleviating the burden on researchers to apply traditional
trial and error approaches.

• Chapter 9 summarises the research done in this dissertation along with a
brief overview of the findings made throughout the research process. A review
of the research goals are given and suggestions for future research are made.

This dissertation is accompanied by a full index given at page 258 along with the
following appendices:

• Appendix A provides a list of the important acronyms used or newly defined
in the course of this work, as well as their associated definitions.

• Appendix B lists and defines the mathematical symbols used in this work,
categorised according to the relevant chapter in which they appear.

• Appendix C provides details on the datasets used for the empirical analysis.

• Appendix D provides details on the outcomes of the statistical analyses.

• Appendix E lists the publications derived from this work.

To best view the illustrations, tables and figures presented throughout this
dissertation, it is recommended that the dissertation be viewed in colour.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Artificial Neural Networks

“Men ought to know that from the brain, and from the brain only,
arise our pleasures, joy, laughter and jests, as well as our sorrows, pains,
griefs, and tears.”

- Hippocrates

The human brain is one of the most complicated biological organs in nature. It
gives us the ability to think and learn. The field of ML has taken a lot of inspiration
from the biological brain which lead to the development of ANNs [139]. ANNs are
used throughout this dissertation as the model to be trained using HHs. The purpose
of this chapter is to provide the necessary background information needed on ANNs
and is structured as follows:

• Section 2.1 gives background information on the BN.

• Section 2.2 introduces the AN. Brief discussions follow on input, weights and
biases, net input signal, activation functions, and output.

• Section 2.3 introduces the ANN. Brief discussions follow on ANN architecture,
topology, and FFNNs.

• Section 2.4 provides details on the training process, supervised learning,
training sets, stopping conditions, performance measures and error functions.

• Section 2.5 provides a brief summary of the chapter.

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 11

Figure 2.1: An illustration of the biological Neuron.

2.1 Biological Neuron

This section introduces the BN and provides the necessary background information
that show how the BN has inspired the development of the AN.

The biological neural systems are made up of microscopic nerve cells called
neurons [85]. Figure 2.1 illustrates a single BN. The main components of the BN
include the cell body, dendrites and the axon. Neural networks (NNs) are formed
through the connections between the axons and dendrites of various neurons. This
is known as synaptogenesis [81]. Such a connection is referred to as a synapse.
Communication takes place, through the synapse, by electro-chemical pulse and
is often referred to as an activation or action potential. Communication signals
propagate from the dendrites, through the cell body to the axon of a neuron,
provoking a signal in the post-synaptic neuron [45]. The greater the connection
between two neurons, the stronger the communication. Kennedy [91] defines stronger
synapses as ones that contribute more depolarisation to the neural membrane upon
activation than weaker ones. Stronger synapses have a higher probability of generating
an action potential in the post-synaptic neuron. During activation, the pre-synaptic
neuron release neurotransmitters that bind to the post-synaptic neuron. The frequent
release of these molecules cause the synapse to grow. Connections that grow over
time yield stronger signals (learning), while connections that are weak propagate
low intensity signals and vanish over time (forgetting). The ability of synapses to
strengthen and weaken over time is known as synaptic plasticity [81].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 12

2.2 Artificial Neuron

This section introduces the AN. Brief discussion follow on the various components
that make up the AN.

The AN implements a non-linear mapping from RI to RT , usually in the ranges
[0, 1] or [−1, 1], depending on the activation function used [45] and is given as

fAN : RI → RT (2.1)

where fAN is the mapping function produced by the AN, I is the total number
of dimensions of the input in real-number space (R), and T is the total number of
dimensions of the target (desired output) in real-number space.

The AN implements various components and is illustrated in Figure 2.2.

Figure 2.2: An illustration of the artificial neuron.

Each of the components of the AN is inspired by some element of the BN. Brief
descriptions of these are given as follows:

• Input: The input models the activations received from the pre-synaptic neuron
or from some environment sensor. Input is represented by the input vector x,
in Figure 2.2.

• Weights: The weights model the synapses and connection strengths. Weights
are represented by the weight vector v, in Figure 2.2.

• Net input signal: The net input signal models the net resulting activations
from all connected pre-synaptic neurons or environment sensors. The net input
signal is represented by net, in Figure 2.2.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 13

• Biases: The biases model a mechanism introduced to influence the strength
of the activation (output signal) of the AN. The bias is represented by θ, in
Figure 2.2.

• Activation function: The activation function models the action potential
of the BN and is based on the net input signal. The activation function is
represented by f , in Figure 2.2.

• Output: The output models the activation by the post-synaptic neuron.
Output is represented by the output vector y, in Figure 2.2.

The following sections provide a detailed discussion on each of the above mentioned
components.

2.2.1 Input

Input signals are I-dimensional vectors of numerical values that are obtained either
through some environment sensor or from other ANs. Input signals are often referred
to as features or independent variables [54]. Throughout this dissertation, a single
input vector is referred to as a pattern. Input data must first be pre-processed before
it is presented to the AN. Input pre-processing techniques are presented in the
following sections.

Input Pre-Processing

Input pre-processing improves the training process and contributes to the success
of the practical application of the ANN [97]. The primary purpose of input pre-
processing is to modify the input data so that it can better match predicted output
data. There are many techniques to consider when pre-processing input data. These
techniques include methods to encode data to certain formats, to scale to the correct
ranges and to deal with incomplete, invalid or irrelevant data. For the purposes of
this dissertation, data encoding and normalisation techniques are considered.

Encoding

For qualitative data, the class labels have to be converted from textual to numerical
representations. In general, class labels are encoded as numerical vectors [17]. One
such encoding technique is referred to as one-hot encoding. Harris and Harris [71]
describe one-hot encoding as a group of vector elements where the classes are
represented with a single high element (represented by 1) and all the others low
(represented by 0). Each element yk, where k is the k-th element of the encoded

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 14

vector y, uniquely refers to a class. An activation, represented by a value of 1 at a
given index thus represents a class associated with that index.

Normalisation

Numerical data must be normalised and scaled appropriately for the AN. In general,
input data is normalised to a range that is appropriate for the activation function
being used by the AN. Normalisation and scaling yields input data that is comparable
to the output produced by the AN. For the purposes of this dissertation, the min-max
scaler [1] and the standard score scaler [84] are considered.

Min-Max Scaler

The min-max scaler, also called unity-based normalisation, scales values to the range
[0, 1]. The min-max scaler is used as a pre-processing technique for target values
when the sigmoid activation function is used. The min-max scaler is given as

x′
i,p = xi,p − ximin

ximax − ximin

(2.2)

where x′
i,p is the normalised form of xi,p, the i-th dimension of the input vector

xp, p ∈ {1, 2, . . . , P}, where P is the total number of input patterns, ximin
and ximax

are respectfully the minimum and maximum values of the i-th dimension for all
input vectors xp.

Standard Score Scaler

The standard score scaler, also known as the z-score scaler, scales values by subtracting
the mean and scaling to the unit variance of each dimension i for all input patterns
xp, p ∈ {1, 2, . . . , P}. The standard score scaler is used as a pre-processing technique
for target values when the hyperbolic tangent activation function is used. The
standard score scaler is given as

x
′

i,p = xi,p − µi

σi

(2.3)

where µi and σ2
i are respectfully the mean and unit variance of the i-th dimension

of all input vectors xp.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 15

2.2.2 Weights

The connection strength that synapses in the BN have is modelled in the AN as weight
vectors of numerical values associated with each dimension of the input. Weights can
either dampen or strengthen the input by some negative or positive numerical value.
Changes in the weight associated with a feature changes the influence that that
particular feature has on the predicted output. Finding the correct value for each
weight, such that the AN yields optimal output, is an optimisation problem [161].
Research has shown that weight initialisation plays an important role in the efficient
training of ANNs [162].

Weight Initialisation

Weight initialisation is the process by which candidate solutions (represented by
the weights of the AN) to the problem are “placed” in the search space. Weight
initialisation influences the speed of convergence, the probability of convergence and
the generalisation capabilities of ANNs [49]. Finding the optimal initialisation values
for weights is non-trivial and can be seen as another optimisation problem [46, 152,
180].

Weight initialisation is dependent on the activation function used. If weights are
initialised as values that are too small, the vanishing gradients problem can occur [70].
If weights are initialised as values that are too big, output of the activation function
would not be in the active range. This leads to unit saturation, and exploding
gradients can occur [70].

Many different weight initialisation techniques have been developed [46]. For
the purposes of this dissertation, focus is put on random uniform sampling, Glorot
uniform (Xavier) sampling and Glorot normal sampling [58]. Brief discussions on
each of these weight initialisation techniques are presented as follows.

Random Uniform Sampling

Random uniform sampling initialises weights uniformly in the range [ωmin, ωmax],
written as ωi ∼ U(ωmin, ωmax), where the ωmin and ωmax are respectfully the lower
and upper bounds of the uniform distribution. Suggested parameter values are
(−1, 1) or (−0.5, 0.5) [119].

Glorot Uniform Sampling

Glorot uniform sampling is a specialisation of random uniform sampling, whereby
ωmax =

√
6

fanin+fanout
and fanin is the number of input neurons to the weight vector

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 16

and fanout is the number of output neurons from the weight vector.

Glorot Normal Sampling

Glorot normal sampling initialises weights by sampling from a truncated normal
distribution centred on a mean of 0 and with σ =

√
2

I+K
, where σ is the standard

deviation of the distribution. I and K are respectfully the number of input and
output units in the weight vector. Glorot normal sampling has been shown to
decrease training time [58].

2.2.3 Net Input Signal

ANs accumulate the net resulting input signal from all input dimensions into a value
called the net input signal, expressed as net. This signal is passed to the activation
function, which provokes an artificial action potential in the AN.

A common way by which the net input signal is calculated is by means of
summation units (SUs) [45], which compute the net input signal as the weighted
sum of all input signals and is given as

net =
I∑

i=1
xivi (2.4)

where xi is the i-th dimension of the input vector x, and vi is the i-th dimension
of the weight vector v, associated with the given input dimension.

2.2.4 Biases

A bias/threshold term θ is introduced to help translate the output of the activation
function [10]. The value of θ can be learned during the training process along with
the weights of the ANN. In order to simplify equations, the input and weight vectors
are augmented such that the input and hidden layers have an additional neuron/unit,
called the bias unit [45]. The net input signal can then be rewritten to consider the
bias unit, leading to an augmented net input signal.

Augmented Net Input Signal

The augmented net input signal, that includes the bias unit, has the form net
′ =

net−θ, with θ = xi+1vi+1. A constant value xi+1 = −1 can be used, meaning that the
weight associated with the bias unit, vi+1, is optimised along with the other weights
during the optimisation process. The net input signal, as given in Equation (2.4),
then changes as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 17

net′ = net− θ

=
I∑

i=1
xivi − θ

=
I∑

i=1
xivi + xi+1vi+1

=
I+1∑
i=1

xivi

(2.5)

2.2.5 Activation Functions

An activation function is used to model the action potential of the AN [75, 185]. The
activation function takes as a parameter, the augmented net input signal. When
the output produced by the activation function surpasses some threshold value τ ,
we consider that neuron to have “fired” an output signal. Activation functions thus
model phase shift. In the context of classification problems, activation functions
form decision boundaries between classes. In the context of regression problems,
activation functions try to approximate some function that maps the input data to
some target data.

In general, activation functions produce a non-linear mapping of RI to the range
[0, 1] or [−1, 1] as shown in Equations (2.6) and (2.7) below.

fAN : RI → [0, 1] (2.6)

fAN : RI → [−1, 1] (2.7)

Many different activation functions have been developed [88]. For the purposes of
this dissertation, focus is put on the rectified linear unit (ReLU) [87, 113], the leaky
rectified linear unit (LReLU) [105], the sigmoid [100] and the hyperbolic tangent [104]
activation functions.

Rectified Linear Unit

The rectified linear unit (ReLU) activation function is an activation function defined
in the positive part of its argument and is given as

f(x) = x+ = max(0, x) (2.8)

An advantage of ReLU is that it is not susceptible to the vanishing gradients

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 18

problem [179] which occurs when gradients in the first layers of a multi-layer ANN
approach zero, and have no effect on the training process.

Leaky Rectified Linear Unit

The leaky rectified linear unit (LReLU) activation function is a variant of the ReLU
activation function that avoids zero gradients in the negative part of its argument
by introducing a scaling parameter, α > 0 [179]. Similar to ReLU, LReLU is not
susceptible to the vanishing gradients problem. However, LReLU does not suffer
from the dying ReLU problem [165], which occurs when the neurons that use ReLU
activation functions become inactive and only output 0 due to a negative net input
signal. The LReLU activation function is given as

fAN(net− θ) =

net− θ if net ≥ θ

α(net− θ) otherwise
(2.9)

By introducing a parameter α > 0, negative net input signals will still yield
non-zero activations, resulting in non-zero gradients and avoiding gradient saturation.
Non-zero gradients are required by some heuristics such as SGD in order to be able
to effectively train ANNs [70]. An illustration of LReLU with various values for α
and θ = 0 is given in Figure 2.3.

Figure 2.3: An illustration of the LReLU activation function with various values for α
and θ = 0.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 19

Sigmoid

The sigmoid activation is the continuous differentiable approximation of the step func-
tion, which was used in the original perceptron model developed by Rosenblatt [138],
and yields output in the range (0, 1). The sigmoid activation function is given as

fAN(net− θ) = 1
1 + e−λ(net−θ) (2.10)

where λ is a control parameter that controls the steepness of the sigmoid activation
function and is usually set to λ = 1. An illustration of the sigmoid activation function
with various values for λ and θ = 0 is given in Figure 2.4.

Figure 2.4: An illustration of the sigmoid activation function with various values for λ
and θ = 0.

Hyperbolic Tangent

The hyperbolic tangent activation function has a similar shape to that of the sigmoid
activation function, but yields output in the range (−1, 1). The hyperbolic tangent
activation function is given as

fAN(net− θ) = eλ(net−θ) − e−λ(net−θ)

eλ(net−θ) + e−λ(net−θ) (2.11)

An illustration of the hyperbolic tangent activation function with various values
for λ and θ = 0 is given in Figure 2.5.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 20

Figure 2.5: An illustration of the hyperbolic tangent activation function with various
values for λ and θ = 0.

2.2.6 Output

Output signals are numerical values that represent the output of the AN’s activation
function. Output signals are often referred to as predictions. Output values need to
be post-processed to ensure the practical application of the AN.

Output Post-Processing

Output post-processing converts output values to ranges that better match that of
the target values. The post-processing techniques that are applicable depend on the
type of problem (regression or classification), pre-processing techniques used, as well
as the activation function used. For the purposes of this dissertation, data decoding,
normalisation and re-scaling techniques are considered.

Decoding

Data decoding refers to the process of undoing the encoding process. For min-max
scaling, data is converted back to the range (xmin, xmax). In the context of an AN,
binary logistic regression problems map the output to the positive or negative class,
usually separating the class decision boundary using a threshold value τ . In the
context of multiple ANs’ output, the output is a vector of numerical values. The
one-hot encoded output is then decoded by mapping the index of the output vector
that yields the highest activation (argmax) to its associated class.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 21

Softmax

The softmax function, also known as the softargmax [60, p. 184] or normalised
exponential function [12] is a generalisation of the logistic function that converts
a K-dimensional output vector y into a K-dimensional output vector y′ where
each element y′

k is in the range (0, 1) and all elements sum up to 1 as is shown in
Equation (2.12) below.

y
′ : RK →

{
y

′ ∈ RK |y′

k ∈ (0, 1),
K∑

k=1
yk = 1

}
(2.12)

The softmax function is then given as

y
′

k = eyk∑K
k=1 e

yk
(2.13)

Argmax

The argmax function is similar to the softmax function, with the difference that the
element yk, k ∈ {1, 2, . . . , K} with the highest output value is set to 1 and the rest
are set to 0. All elements still sum to 1, but the activation is only observed at index
k where the activation is 1. The argmax function is given as

y
′

k =

1 if yk = max(y1, y2, . . . , yK)

0 otherwise
(2.14)

Figure 2.6 illustrates the comparison of transformations of the output vector y,
where the sigmoid, the softmax and the argmax activation functions are used.

2.3 Artificial Neural Network

Multiple ANs can be organised and used together forming a “network” of ANs
referred to as an artificial neural network (ANN). This section presents ANNs
and discussions follow on their applications, architecture, and topologies. Specific
reference is made to feedforward neural network (FFNN), a specific type of AN used
in this dissertation.

2.3.1 Applications

ANNs are inspired by the biological brain. Our brains model biological neural
networks with neuron counts in the hundreds of billions and synapse counts in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 22

Figure 2.6: An illustration of softmax and argmax applied after the sigmoid activation
function.

trillions. To emulate the computational capability of the human brain is not yet
possible on modern day hardware. Sandberg et al. [142] approximates a computational
requirement of 256 000 terabytes/s to emulate the entire brain. Despite our shortage
in hardware capabilities, ANNs have been successfully applied to a range of problem
classes. Engelbrecht [45] summarises some common problems that are solved using
ANNs and can be listed as follows:

• Classification: Predicting the class of an input vector [92].

• Pattern Matching: Producing closely associated patterns based on an input
vector [21, 96].

• Pattern Completion: Completing the missing parts of an input vector [32].

• Optimisation: Producing optimal values of parameters in a optimisation
problems [153].

• Data Mining: Feature discovery in large datasets [150].

The composition of ANs in an ANN is expressed as the architecture and topology
of the AN. The exact composition to use depends on the problem being solved.

2.3.2 Architecture

The architecture of the ANN refers to the way in which ANs are organised. ANNs
can be organised in layers where a single layer can contain multiple ANs. Generally,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 23

each layer makes use of the same activation function. Output from one layer is
propagated as input to the next layer. This dissertation focuses on the simplest
architecture, containing three particular layers, including the input, hidden and
output layers. ANNs with this type of architecture are usually referred to as shallow
NNs. A description of each layer is given as follows.

Input Layer

The input layer contains the input data to the ANN. Since the input layer simply
provides the input data, some literature do not consider the input layer as an actual
part of the ANN [45].

Hidden Layer

The hidden layer contains a collection of “hidden” ANs, also referred to as hidden
units or nodes. Hidden units are used if the target data is not linearly separable [45].
It has been shown that ANNs that incorporate monotonically increasing differentiable
activation functions can approximate any continuous function with just one hidden
layer, given that the hidden layer has enough hidden units [79].

Output Layer

The output layer contains the final activations or the predictions of the ANN. These
outputs can be used to measure the performance of the ANN.

2.3.3 Topology

The topology of the ANN refers to the way that layers of ANs are connected to each
other. There are many different topologies [108]. For the purposes of this dissertation
focus is put on a fully connected topology where each AN in one layer is connected
to all ANs in the next, without any cycles [183].

2.3.4 Feedforward Neural Networks

FFNNs were the first and simplest type of ANNs developed [144] and implement
input, hidden and output layers by arranging them in sequential order. Furthermore,
FFNNs implement fully connected topologies. In FFNNs, information moves forward,
in one direction, from the input nodes, through the hidden nodes and finally to
the output nodes. Depending on the optimisation algorithm used, error correction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 24

information can be propagated backwards through the network. An illustration of a
FFNN is given in Figure 2.7 below.

Figure 2.7: An illustration of a feedforward neural network implementing input, hidden
and output layers using a fully connected topology.

In Figure 2.7, xi refers to the i-th dimension in the input vector x, hj refers to
the j-th dimension in the hidden layer, yk refers to the k-th dimension in the output
vector y, vi,j refers to the weight associated with input node xi and the hidden node
hj , and wj,k refers to the weight associated with hidden node hj and the output node
yk.

Assuming the use of SUs and bias weights, the output for the FFNN at index k,
denoted yk, is calculated as

yk = f (neth,y)

= f

J+1∑
j=0

hjwj,k

= f

J+1∑
j=0

f (neti,h)wj,k

= f

J+1∑
j=0

f

(
I+1∑
i=0

xivi,j

)
wj,k

(2.15)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 25

The remainder of this dissertation makes use of FFNNs and is sometimes referred
to as the model.

2.4 Training

Details on the training of FFNNs are presented in this section along with detailed
discussions on supervised learning and loss functions.

Training is the process whereby the weights of the FFNN are systematically
changed with the aim of improving the performance of the FFNN. During the
training process, the FFNN is exposed to data while trying to produce some target
outcome.

The degree to which the produced outcome differs from the target outcome is
referred to as loss. Since training of FFNNs is an optimisation problem, the goal of
the training process is to minimise the loss of the FFNNs as it related to input and
target data.

Finding the optimal weights that produce the best performance on a given task
is an optimisation problem. The optimisation algorithm used to find the optimal
weights is referred to as a heuristic. Heuristics search for possible solutions in the
solution-space and make use of information from the search space to guide to process.

2.4.1 Supervised Learning

Supervised learning is the process of training where the data that is presented to
the FFNN during training, includes the desired solution [56]. The FFNN learns the
mapping function from the input to the target output [16]. The desired solutions
are referred to as labels. Supervised learning can be used for both classification and
regression problems.

The training data that is used during supervised learning, is split proportionally
into a training and validation set. Data in the training set is used to train the
FFNN [86] and update the weights, while the validation dataset is used for hyper-
parameter tuning, where the parameters of the training process are altered, but not
the weights of the FFNN.

Exposing the FFNN to all training data once is referred to as an epoch. The FFNN
is trained until some stopping condition is reached. Once the stopping condition has
been reached, the performance of the FFNN is evaluated. The performance is directly
related to the loss of the FFNN as it relates to a test dataset. The test dataset is
a collection of data that is not used during training and is used to determine the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 26

generalisation capabilities of the FFNN as it relates to unseen data. Overfitting and
underfitting describe two possible outcomes of the training process.

Overfitting

Overfitting describes a scenario where the trained FFNN performs well on training
data, but does not generalise well to never before seen data from the test set [56,
160]. Géron [56] describes overfitting as the case where FFNN is too complex relative
to the noisiness of the training data.

Underfitting

Underfitting describes a scenario where the FFNN is not able to effectively learn the
underlying structure of the training data [56, 160]. Géron [56] describe underfitting
as the case where the FFNN is too simple relative to the underlying structure of the
training data.

There are two types of supervised learning algorithms based on when weights are
updated [45]. These include stochastic training and batch training.

Stochastic Training

Stochastic training, also known as online learning, is a supervised learning variation
whereby weights are adjusted after each training pattern presented. Stochastic
training benefits from shuffling data in the training dataset before presenting it to
the FFNN, in order to avoid overfitting or memorising the order in which patterns
are presented [45]. It has been shown that shuffling the training data can speed up
convergence [8].

Batch Training

Batch training, also known as offline learning, is a supervised training variation
whereby weight changes are accumulated and used to adjust the weights only once,
after all the training patterns have been presented.

Mini-Batch Training

Research suggests a trade-off between stochastic and batch training by making use
of mini-batches [8]. Mini-batch training is similar to batch training, however weights
are updated after β patterns have been presented, where β is the mini-batch size.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 27

Performance metrics are used during training on the training set and evaluation on
the test set. There are many different performance measurements that can be used,
however this dissertation focuses on performance measures related to loss. Loss is
calculated using an error function. The following section presents the reader with
more detail on the error functions that can be used during the training process.

2.4.2 Error Functions

This dissertation focuses on a number of error functions, including sum squared error
(SSE), mean squared error (MSE), root mean squared error (RMSE), mean absolute
error (MAE), binary cross entropy (BinXE), categorical cross entropy (CatEX) and
sparse categorical cross entropy (SparseCatXE).

Sum Squared Error

The SSE is given as

ϵ =
P∑

p=1

K∑
k=1

(ŷk,p − yk,p)2 (2.16)

where ŷk,p is k-th dimension of the target output of pattern p, yk,p is k-th dimension
of the predicted output vector yp for pattern p, P is the number of patterns in the
mini-batch, and K is the number of dimensions in the output vector y.

Mean Squared Error

The MSE is given as

ϵ =
∑P

p=1
∑K

k=1(ŷk,p − yk,p)2

PK
(2.17)

Root Mean Squared Error

The RMSE is given as

ϵ =

√∑P
p=1

∑K
k=1(ŷk,p − yk,p)2

PK
(2.18)

Mean Absolute Error

The MAE is given as

ϵ =
∑P

p=1
∑K

k=1 |ŷk,p − yk,p|
PK

(2.19)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 28

Binary Cross-Entropy

BinXE is used in classification problems, where there are only two classes in the
target output data. BinXE is given as

ϵ = −
∑P

p=1
∑K

k=1(ŷk,p log (yk,p) + (1− ŷk,p) log (1− yk,p))
PK

(2.20)

Categorical Cross-Entropy

CatEX is used in classification problems where the target output or label is a one-hot
encoded vector. CatEX is given as

ϵ = −
∑P

p=1
∑K

k=1
∑C

c=1(1ŷk,p∈Cc log (yk,p [yk,p ∈ Cc]))
PK

(2.21)

where 1 is the indicator function that the k-th index observation belongs to the c-th
class. C is the total number of unique class labels. If C = 2, then BinXE can be
used instead.

Sparse Categorical Cross-Entropy

SparseCatXE error function is similar to CatEX with the only difference being that
the target output or label is a one-hot embedding of a class represented as an integer,
c ∈ {1, 2, . . . , C}.

2.5 Summary

This chapter presented background information on the BN. The AN was introduced
and discussions followed on the various components that make up the AN. Details
on input, weights and biases, net input signal, activation functions, and output
were provided. The ANN was introduced. ANN design was described in terms of
architecture and topologies. Special emphasis was put on FFNNs. Background
information on the training of FFNNs was presented. A variant of training, called
supervised learning was presented and led to discussions on datasets, performance
measures and training outcomes. The chapter concluded with a number or error
functions that can be used to calculate the loss in the context of supervised learning.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Heuristics

“It is not the strongest of the species that survives. It is also not the
most intelligent that survives. It is the one that is the most adaptable to
change.”

- Charles Darwin

Many different techniques have been used to train FFNNs [94]. Finding the
best technique to use to train a FFNN has been shown to be problem dependent
in many cases [93]. Every technique has its characteristics, constraints, advantages
and disadvantages. At the time of writing, the majority of work that is published
around the training of FFNNs, involves the use of gradient-based techniques [115].
Gradient-based techniques are not without flaws and can, for example, yield slow
convergence or get trapped in local optima [110]. Other techniques have also been
used to successfully train FFNNs, including MHs such as particle swarm optimisation
(PSO) [131, 172], differential evolution (DE) [47] and genetic algorithms (GAs) [67].

Chapter 2 briefly introduced the reader to the concept of heuristics and meta-
heuristics (MHs)s. This chapter presents more detailed background information on
various different heuristics that have been used to train FFNNs. Broadly speaking,
this chapter focuses on two different groups of heuristics, including classical gradient-
based approaches and population-based MHs. Each technique is presented and
discussed in detail. Pseudo-code algorithms are provided for each technique and
discussions follow on advantages, disadvantages, capabilities and limitations. The
remainder of this chapter is structured as follows:

• Section 3.1 provides a brief review of optimisation. It is shown that training
of FFNNs is an optimisation problem.

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 30

• Section 3.2 provides background information on the origins and definition of
the term heuristic. It is shown that heuristics are a class of algorithms that
are used to solve optimisation problems.

• Section 3.3 presents seven low-level, gradient-based heuristics, including
stochastic gradient descent (SGD), momentum (Momentum), Nesterov ac-
celerated gradients (NAG), adaptive gradients (Adagrad), root mean squared
error propagation (RMSProp), adaptive learning rate (Adadelta) and adaptive
moment estimation (Adam).

• Section 3.4 presents three different population-based MHs, including particle
swarm optimisation (PSO), differential evolution (DE) and genetic algorithms
(GAs).

• Section 3.5 provides a brief summary of the chapter.

3.1 Optimisation

Optimisation is the task of finding a solution to a given problem that is better than
alternative solutions. Better stated by Oldewage [120], optimisation is the task of
finding values for a set of variables such that some measure of optimality is satisfied
given a set of constraints. Engelbrecht [45] breaks optimisations problems down into
three components:

• An objective function: Represents the quantity to be optimised and is used
as the “measure of optimality”. Optimisation can be defined in terms of the
minimisation or maximisation of the objective function f .

• A set of unknowns or independent variables: Affects the outcome of the
objective function f and is denoted as x. f(x) is thus the quantification of the
objective function over the unknowns, represented by x. Note that x could be
a scalar value, a vector or a matrix and notation is left out for simplicity.

• A set of constraints: Restrict and limit the values that can be assigned to
the unknowns, represented by x. Optimisation problems that must adhere to a
set of constraints are referred to as constraint satisfaction problems (CSPs).

Optimisation problems come in a wide variety, and can be defined in terms of the
number of variables used (uni- vs. multivariate), the number of objective functions
used (single- vs. multi-objective), the degree of linearity (linear vs. quadratic/poly-
nomial), the number of optima (uni- vs. multi-modal), the nature of the environment

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 31

(static vs. dynamic), the types of variables used (separable vs. inseparable, dis-
crete vs. continuous) and the set of constraints that the solution must adhere to
(constrained vs unconstrained).

Optima can be defined as local or global optima. Local optima is the best
optimisation of f(x) in a neighbourhood of solutions, while the global optima is the
best optimisation of f(x) over all solutions in the solution space.

As stated in Chapter 2, the training of an FFNNs is a particular type of optimi-
sation problem, where the goal is to find the configuration of weights, such that the
FFNN yields output that minimises some loss function. The mechanism by which the
optimal weights for a FFNN is sought out, is executed by an optimisation algorithm
known as a heuristic.

3.2 What is a heuristic?

The term heuristic comes from the Latin word heuristicus which means “to find
out or discover”. Romanycia et al. [137] provide a complete study on the history
and origins of the term heuristic. From their research, a proposal is made to define
heuristics in the context of artificial intelligence (AI), as any device, be it a program,
rule, piece of knowledge, which is added to a problem-solving system, in expectation
that, on average, the performance will improve.

In the context of this dissertation, a heuristic refers to an algorithmic search
technique that serves as a guide to a search process where good solutions to a
optimisation problem is being sought out. Different heuristics make use of different
information during the search process [93]. During training of FFNNs, heuristics such
as gradient-based heuristics make use of the derivatives obtained by evaluating the
FFNN. It can thus be said that gradient-based heuristics make use of information
directly from the search space. On the contrary, heuristics such as MHs make
use of meta-information obtained as a result of evaluating the FFNN [13]. The
meta-information that MHs make use of could include ranked-performance of a
population of candidate solutions, referred to as entities. Meta-heuristics are useful
when there is imperfect information about the search space [11], and are generally
less problem-specific than other classes of heuristics [13]. This dissertation takes a
particular interest in gradient-based heuristics and MHs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 32

3.3 Gradient-Based Heuristics

Gradient-based heuristics are optimisation techniques that make use of derivates
obtained from evaluating the model being optimised. Specifically, in the context of a
minimisation problem, these techniques are called gradient descent (GD) heuristics
as they minimise some loss function. GD is generally attributed to Cauchy [101],
who first suggested it in 1847. In 1907 Hadamard [69] independently proposed a
similar method.

Although gradient-based heuristics where not the first heuristics used to train
FFNNs [45], they are certainly the most widely used. Gradient-based heuristics have
become increasingly popular partly due to their simplicity and low computational
overhead compared to other heuristics such as MHs and other second-order derivative
methods such as Newtons’ method. There are many variants of gradient-based
heuristics, however, they all fundamentally apply the same generic gradient descent
(GD) framework called backpropagation (BP).

3.3.1 Backpropagation

Chapter 2 introduced supervised learning and presented a number of loss functions.
In the context of supervised learning, loss functions produce a scalar value ϵ, that
represents the error between the output of the FFNN and the desired output. When
using GD to train FFNNs, the loss function is used to adjust the weights of the
FFNN in order to minimise the error [45]. Engelbrecht [45] states that training of
FFNNs using GD, is done by calculating the gradient of ϵ in weight-space, and then
moving the weight vector along the negative gradient. An illustration of GD is given
in Figure 3.1.

In the context of training shallow FFNNs using supervised learning, the error
signal is propagated backwards in the network from the output layer, through the
hidden layer to the input layer, updating the weights at the output and hidden
layers. The algorithm that propagates the error signal backwards is known as
backpropagation (BP). BP was popularised by Werbos [177]. Nel [115] states that
BP provides a procedure for updating the network weights, layer by layer, by
evaluating the derivatives of the error function E , with respect to the weights at each
layer. Engelbrecht [45] describes the BP process in two steps:

• Feedforward Pass: During this phase the output values of the FFNN is
calculated for each training pattern.

• Backward Propagation: During this phase the error signal is propagated

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 33

Figure 3.1: An illustration of gradient descent (GD) over various time steps showing the
minimisation of the error with regards to weight value.

backwards from the output layer, through the hidden layer, to the input layer
of the FFNN. Weights at the output and hidden layers are then adjusted as
functions of the backpropagated error signal.

The update step for GD by means of BP can be formulated as is shown in
Equations (3.1) to (3.4). The general weight update step is given as

wi(t) = wi(t− 1) + ∆wi(t) (3.1)

where wi is the weight value at index i, t is the time step, ∆wi(t) is the weight
update vector at index i and time step t. The delta weight term ∆wi(t), is given as

∆wi(t) = −η ∂ϵ
∂wi

(3.2)

where η is the learning rate and ∂ϵ
∂wi

is the gradient of the error, as a result of
a loss function E , relative to the weight at index i. The learning rate controls the
step-size that is taken in the direction of the negative gradient at each time step.
Assuming the use of SSE as the loss function, the partial derivative of ϵ, relative to
the weight vector w, at index i, is given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 34

∂ϵ

∂wi

= −2(ti,p − oi,p) ∂f

∂netp
zi,p (3.3)

where ti,p refers to the i-th element of the target value for pattern p, oi,p refers to
the i-th element of the output value for pattern p, f refers to the activation function,
netp refers to the net input signal for pattern p, and zi,p refers to the input value at
index i for pattern p.

Finally, assuming the use of the sigmoid activation function, the partial derivative
of the activation function, relative to the net input signal is given as

∂f

∂netp
= op(1− op) (3.4)

Again, assuming the use of SSE as the loss function, the pseudo-code implemen-
tation for the generic GD algorithm is taken from Engelbrecht [45] and is presented
in Algorithm 1 below.

Algorithm 1 The pseudo-code algorithm for the generic gradient descent (GD)
heuristic.

Initialise the FFNN weights and biases, the learning rate η and the time step/epoch
T = 0;
while stopping conditions are not met do

Let ϵT = 0;
for each training pattern p do

Calculate the output of the hidden and output layers (feedforward);
Compute the error signals of the hidden and output layers;
Adjust the weights of the output and hidden layers (backpropagate);
ϵT += [ϵTp = ∑K

k=1(tk,p − ok,p)2];
end for
T+ = 1;

end while

A simplified notation is proposed from which the gradient-based heuristics can
be compared. Consider a simplification of the update-step for SGD as presented in
Equations (3.1) and (3.2) where ∂ϵ

∂wi
is simply represented as the gradient term g,

resulting in a simplified weight update step and is given as

w = w − ηg (3.5)

where w refers to the weight vector, η refers to the learning rate as before and g

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 35

refers to the gradient of the error function relative to weight vector. Note that some
subscripts related to layers, indices, time steps and training patterns are omitted for
convenience.

3.3.2 Stochastic vs. Batch Training

This section shines light on the algorithmic implementation of BP with specific
context to stochastic and batch training. The implementation of GD using stochastic
training is referred to as stochastic gradient descent (SGD).

SGD was one of the first widely used heuristics to train FFNN, however, it is
not without flaws. With stochastic training, only one training pattern is presented
at each iteration/epoch. As such, weight updates are done with high variance and
noise [140]. An illustration of the fluctuations caused by SGD during training is
given in Figure 3.2.

Figure 3.2: An illustration of stochastic gradient descent (SGD) fluctuations during
training as taken from [125].

With batch training, all the training patterns are presented at once and the
FFNN converges to the global minimum of the loss function w.r.t w (assuming the
loss function is convex). However, this is computationally expensive and impractical
to implement in many situations. While SGD is able to jump out of local minima
into new, potentially better local minima [140], SGD complicates convergence to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 36

the minima as SGD can potentially keep overshooting better minima. By slowly
decreasing the learning rate η during training, the same convergence behaviour is
achieved as with batch training.

A compromise is to make use of mini-batches of training patterns, where a small
number of training patterns are presented to the FFNN at once. This is referred to
as mini-batch training. Input patterns from mini-batches are approximations of the
total population of training patterns. According to Ruder [140] this has two main
advantages:

• Mini-batch training reduces the high variance of weight updates as observed
for SGD, which leads to better convergence.

• Mini-batch training allows for the implementation of GD using highly optimised
matrix operations, common to the state-of-the-art ML libraries used today.

In the context of this dissertation, the implementation of SGD refers to the mini-
batch training implementation of GD. Although mini-batch training does provide
a compromise between stochastic and batch training, there are still a number of
challenges faced by mini-batch training. These include:

• The appropriate value to use for the learning rate η, is difficult to determine and
is often problem-specific. A learning rate that is too small causes premature
exploitation, leading to slow and bad convergence. On the contrary, a learning
rate that is too high may lead to bad learning outcomes as the heuristic keeps
overshooting good minima.

• Learning rate schedules [135] can be introduced to dynamically change the
learning rate throughout the training process, however, these schedules and
their parameters have to be defined a priori and are often problem specific [28].

• The learning rate that has been introduced so far is applied to all elements of
the weight update vector. If the training data is sparse and the features have
varying frequencies, an equal update to all weight elements is inefficient. Larger
weight updates are required for less frequently occurring features. Inefficient
updates of all elements in the weight vectors contribute to the credit assignment
problem [141], common to GD variants.

• It is difficult to avoid getting trapped in local minima, especially for highly non-
convex loss functions used for training FFNNs. Dauphin et al. [31] mentions
the role of saddle points in getting trapped in local minima. Saddle points

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 37

are points at which one dimensions slopes upwards, while another dimension
slopes downwards. Ruder [140] mentions that these saddle points are usually
surrounded by plateaus of the same error, leading to gradients that are close
to zero in all dimensions.

Alternative variants have been proposed that lead to better control over the
convergence characteristics caused by GD. The first of these GD variants include
Momentum.

3.3.3 Momentum

Research shows that SGD has difficulty navigating ravines [158]. Ravines are areas
where the surface curves much more steeply in one dimension than in another. These
ravines are common around local minima. As such, SGD is shown to oscillate across
the slopes of the ravine while only making minor progress towards the local minima.

Momentum [129] is a variant of SGD that helps accelerate SGD in the relevant
direction, dampening oscillations. Ruder [140] mentions that this is done by adding
a fraction α, of the weight update vector of the previous time step to the current
weight update vector. An illustration of SGD with and without momentum is given
in Figure 3.3.

Figure 3.3: An illustration of stochastic gradient descent (SGD) with and without
momentum taken from [39].

The accumulation of momentum is given as

v = αv − ηg (3.6)

while the update step is then amended as

w = w + v (3.7)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 38

By redefining the SGD update steps as shown above in Equations (3.6) and (3.7),
the Momentum heuristic allows for the increase of momentum for dimensions whose
gradients point in the same direction, while simultaneously reducing momentum for
dimensions whose gradients change direction, leading to faster convergence and less
oscillation. The momentum term α is usually set to 0.9 [45, 140].

3.3.4 Nesterov Accelerated Gradients

Nesterov accelerated gradients (NAG) is a variant of the Momentum heuristic devel-
oped by Sutskever et al. [157] and is inspired by Nesterov’s [118] work on optimising
convex functions. NAG provides an improvement to the momentum accumulation
term by providing a look-ahead term that better refines the weight update step.

In the NAG heuristic, the gradient is not calculated w.r.t the current weights,
but rather w.r.t the approximate future positions of the weights [140, 157]. An
illustration of the weight update vector using NAG is taken from Geoffrey Hinton’s
lecture on mini-batch GD [74] and is presented in Figure 3.4 below.

Figure 3.4: An illustration of the weight update vector for Nesterov accelerated gradients
(NAG) taken from [74].

The difference in the update step for Momentum and the update step for NAG as
developed by Sutskever et al. [157] is described by Ruder [140] as follows. Momentum
first calculates the current gradient, represented by the small blue vector in Figure 3.4
and then takes a large step in the direction of the updated accumulated gradient,
presented by the big blue vector. In contrast, NAG first takes a big step in the
direction of the previous accumulated gradient presented by the brown vector. At this
point the gradient is measured and NAG makes a correction represented by the red
vector. The complete update step is represented by the green vector. By anticipating
approximate future positions of the weights, the weight update step as defined by
NAG controls the optimisation process from going too fast and results in increased
responsiveness [9]. Along with the same velocity update step for Momentum, as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 39

presented in Equation (3.6), the NAG weight update step is given as

w = w + αv − ηg (3.8)

3.3.5 Adaptive Gradients

Adaptive gradients (Adagrad) is an adaptation of SGD that implements a learning rate
for every element in the weight vector and is developed by Duchi et al. [41]. Ruder [140]
mentions that Adagrad adapts the learning rate to the elements of the weight vector,
by performing small updates (i.e. low learning rates) for weights associated with
frequently occurring features and larger updates (i.e. high learning rates) for weights
associated with infrequent features. For this reason, Adagrad is well suited for dealing
with situations where training data is sparse.

In the GD variants presented thus far, the weight updates have been applied by
making use of the same learning rate η, for all elements of the weight update vector.
Adagrad uses a different learning rate for every weight element wi, at every time
step t. The weight update step for Adagrad is given as

wt+1,i = wt,i −
η√

Gt,ii + ϵ
.gt,i (3.9)

where wi is the i-th element of the weight vector, Gt,ii ∈ Rd×d is a diagonal matrix
where each diagonal element i, i, is the sum of the squared gradients w.r.t. wi, up
to time step t and ϵ is a smoothing term that avoids division by zero and is set to
an insignificant value such as 1 × 10−8. Since Gt contains the sum of the squares
of the gradients along its diagonal, the weight update step can be vectorised and
updated using the matrix-vector product, represented by ⊙, between Gt,i and gt,i.
The simplified update step as implemented by Adagrad is given as

wt+1,i = wt,i −
η√

Gt,i + ϵ
⊙ gt,i (3.10)

Adagrad’s main benefit is that it does not require manual tuning of the learning
rate η. However, a problem with Adagrad is in the accumulation of squared gradients
in the denominator, represented by Gt. Since every term that is added is positive,
Gt keeps growing, leading to a situation where the learning rate shrinks to the point
that the heuristic is no longer able to learn.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 40

3.3.6 Adaptive Learning Rate

Zeiler [182] presents Adadelta, an improvement of Adagrad that eliminates the
accumulation of squared gradients in the denominator. Ruder [140] mentions that
instead of accumulating all past squared gradients as in the case of Adagrad, Adadelta
restricts the window of accumulation to a window with a fixed size W . However,
storing W previous squared gradients is very inefficient. Instead, the accumulation
of gradients over W steps is defined recursively as a decaying average of all past
squared gradients. The moving average of squared gradients at time step t, denoted
by E[g2]t depends on a fraction α of the previous average of squared gradients and
the current gradient, similar to the update step for Momentum. Also similar to
Momentum, α is set to 0.9. The update step for E[g2]t is given as

E[g2]t = αE[g2]t−1 + (1− α)g2
t (3.11)

To illustrate the difference between Adagrad and Adadelta, the SGD weight
update step for Adagrad, as presented in (3.10) is rewritten such that the diagonal
matrix Gt, is replaced with the moving average of squared gradients and is given as

wt+1 = wt −
η√

E[g2]t + ϵ
gt (3.12)

Since the denominator is the root mean squared (RMS) error criterion of the
gradient, the criteria short-hand notation is used and is given as

wt+1 = wt −
η

RMS[g]t
gt (3.13)

Zeiler [182] noted that the units of the update step as presented in Equation (3.13)
do not match. The weight update vector should have the same hypothetical units
as the weight vector. To fix the aforementioned problem, another exponentially
decaying average is defined in terms of squared weight updates and is given as

E[∆w2]t = αE[∆w2]t−1 + (1− α)∆w2
t (3.14)

The root mean squared (RMS) error of weight updates is given as

RMS[∆w]t =
√
E[∆w2]t + ϵ (3.15)

Note that RMS[∆w]t is unknown at time step t. RMS[∆w]t is approximated

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 41

with the root mean squared (RMS) of weight updates until the previous time step.
The learning rate in Equation (3.13) is then replaced. The weight update step for
Adadelta is then concluded and is given as

wt+1 = wt −
RMS[∆w]t−1

RMS[g]t
gt (3.16)

The main advantage of Adadelta is in removing the learning rate, which eliminates
the need for hyper-parameter tuning of the learning rate.

3.3.7 Root Mean Squared Error Propagation

Root mean squared error propagation (RMSProp), presented by Hinton et al. [74]
is similar to Adadelta and was developed independently around the same time.
RMSProp is the same as the first weight update vector for Adadelta, presented in
Equation (3.12). A disadvantage of RMSProp is that it still includes the learning
rate term η that needs to be tuned. For RMSProp, Hinton et al. [74] suggests α be
set to 0.9 and η be set to 0.001.

3.3.8 Adaptive Moments Estimation

Adaptive moment estimation (Adam) is another variant of SGD that includes adaptive
learning rates and is presented by Kingma et al. [94]. In addition to storing an
exponentially decaying average of past squared gradients like Adadelta and RMSProp,
Adam also stores an exponentially decaying average of past gradients, similar to
Momentum [140]. Heusel et al. [73] uses the analogy that, if Momentum can be
seen as a ball running down a slope, then Adam behaves like a heavy ball with
friction, which prefers flat minima in the error surface. The decaying averages for
past gradients and past squared gradients is given in Equations (3.17) and (3.18)
respectively.

mt+1 = β1mt + (1− β1)gt (3.17)

vt+1 = β2vt + (1− β2)g2
t (3.18)

In Equations (3.17) and (3.18) above, β1 and β2 are decay rates, similar to α

for Momentum. Kingma et al. [94] suggest default values β1 = 0.9, β2 = 0.999 and
ϵ = 1× 10−8.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 42

Ruder [140] mentions that mt and vt presented above are estimates of the
first moment (the mean) and the second moment (the uncentered variance) of the
gradients respectively. Kingma et al. [94] mentions that because mt and vt are
initialised to be vectors of 0’s, they are biased towards 0. The aforementioned bias
is especially prominent during the initial time steps and/or when the decay rates
β1 and β2 are small (β1 and β2 are close to 1). The bias-corrected first and second
moment estimates are presented in Equations (3.19) and (3.20) respectively.

m̂t = mt

1− βt
1

(3.19)

v̂t = vt

1− βt
2

(3.20)

The Adam weight update rule is then given as

wt+1 = wt −
η√
v̂t + ϵ

m̂t (3.21)

3.4 Meta-Heuristics

Gradient-based heuristics are sensitive to the problem that they are applied to, with
hyper-parameter selection often dominating the research focus [7, 50]. Blum et al. [13]
mention that since the 1980’s, a new kind of approximate algorithm has emerged
which tries to combine basic heuristic methods in higher level frameworks aimed at
efficiently and effectively exploring a search space. These methods are referred to as
meta-heuristics.

This section aims to introduce the concept of MHs, with focus on population-
based meta-heuristics. Three well known MHs, that have been shown to train FFNN,
are presented. These MHs include particle swarm optimisation (PSO), differential
evolution (DE) and genetic algorithms (GAs). Carvalho et al. [22] compared various
PSO variants for training FFNNs. Espinal et al. [47] compared DE and PSO when
applied to FFNN training and Gupta et al. [67] compared BP to a GA for training
FFNNs.

The term meta-heuristic (MH) was first introduced by Glover [59] in 1986 and
is derived from the composition of two Greek words. Heuristic derives from the
verb heuriskein which means “to find”. The prefix, meta, means “beyond, in an
upper level”. MHs were often called modern heuristics [134]. Blum et al. [13] mention
that there is a debate as to what the formal definition of MHs is and suggests the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 43

definition of MHs to be “high level strategies for exploring search spaces by using
different methods”.

The biggest difference between MHs and gradient-bases heuristics is that MHs
make use of meta-information obtained as a result of evaluating the FFNN during
training and is not limited to information about the search space [13].

3.4.1 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic population-based search algorithm
based on the social behaviour of birds in a flock [90]. By definition, the PSO heuristic
is nature-inspired. PSOs were first presented by Kennedy et al.[90]. Kennedy and
Eberhart first applied PSOs to train of FFNNs [44, 89]. The application of PSOs
in the context of training FFNN have been widely studied [131, 172]. This section
aims to provide the details of PSO implementation.

This dissertation uses the term entity for candidate solutions and a population for a
collection of entities, in the general context of population-based MHs. Engelbrecht [45]
mentions that in PSOs individual candidate solutions are referred to as particles and
the population is referred to as a swarm. These particles are “flown” through a hyper-
dimensional search space. Changes in particle position is due to social-psychological
tendencies of individuals to emulate the success of other individuals. The changes
in the particle position are then influenced by the experience or knowledge of the
particle’s neighbours. The social behaviour of particles is modelled such that they
stochastically return to previously successful regions in the search space.

Van Wyk [172] mentions that the swarm is usually arranged in a predefined
structure, called a neighbourhood topology that governs the communication between
particles. Two specific configurations of neighbourhood topologies that exists are
referred to as local best (lbest) PSO and global best (gbest) PSO. There are two main
differences between the two approaches in terms of their convergence characteris-
tics [42]. These include:

• Due to the larger particle interconnectivity of gbest PSO, the heuristic converges
faster than with lbest PSO. Engelbrecht [45] mentions that faster convergence
comes at a cost of less diversity.

• As a consequence of larger diversity, the lbest PSO is less susceptible to getting
trapped in local minima.

Shi et al. [146] proposed a modification of the original PSO as was presented
by Kennedy et al. [90]. Their implementation focuses on the gbest PSO with inertia

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 44

weights. This dissertation focuses on the Shi et al. [146] implementation of global
best PSO and particles in this specific implementation has a number of properties
associated with them [172]. These include:

• Position: Refers to the candidate solution that is represented by the particle
and defines the particle position within the optimisation problem’s hyper-
dimensional solution space. Let the current position vector, for particle i, at
time step t be denoted by xi(t). Let I denoted the population size and J

denote the search space dimensionality.

• Velocity: Represents a step size for the particle in the search space. The
velocity at vector, for particle i, at time step t is denoted vi(t).

• Solution Quality: Refers to the evaluation of the particle’s position with
respect to the objective function. Let f(xi(t)) denote the quality of the solution
represented by the particle’s position.

• Personal Best Position: Refers to a cognitive memory construct, where each
particle keeps track of their personal best position found during optimisation
thus far. The personal best position is denoted yi(t).

• Global Best Position: Refers to a social memory construct, where each
particle has a reference to the best solution found in the particle’s neighbourhood
thus far. In the case of gbest PSO, the global best position is the best position
of the entire swarm. The global best position is denoted ŷi(t).

During initialisation, particles are randomly placed within the search space by
sampling from a uniform distribution such that xi ∼ U(xmin,xmax) and the velocity
is set to 0. At time step 0, the particle’s initial position is set to be the particle’s
personal best solution such that yi(0) = xi(0). The particle’s update step is then
broken into two parts, including a velocity update step presented in Equation (3.22)
followed by a position update step as presented in Equation (3.23).

vij(t+ 1) = wvij(t) + c1r1j
(t)[yij(t)− xij(t)] + c2r2j

(t)[ŷij(t)− xij(t)] (3.22)

xij(t+ 1) = xij(t) + vij(t+ 1) (3.23)

In Equations (3.22) and (3.23) above, i refers to the i-th particle in the swarm
and j refers to the j-th dimension of the particle’s position. The velocity update
step consists of:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 45

• Previous Velocity: Denoted by the term vij(t). This term represents the
particle’s momentum at index j and is used to formulate an update step for the
particle in the search space. Van Wyk [172] mentions that it forces the particle
to maintain a consistent direction, preventing drastic changes in terms of
update steps. This term is then scaled by the inertia weight control parameter,
denoted w. Inertia weight was introduced by Shi et al. [146] as a mechanism
to control the exploration and exploitation abilities of the swarm.

• Cognitive Component: Denoted by the term c1r1j
(t)[yij − xij(t)]. This

component represents the particle’s personal experience at index j. It introduces
an attractor to the particle’s personal best position so far. The cognitive
component is stochastically scaled with random numbers r1 ∼ U(0, 1)J and
the cognitive acceleration coefficient c1 is used to control the influence of the
cognitive attractor.

• Social Component: Denoted by the term c2r2j
(t)[ŷij−xij(t)]. This component

represents the particle’s social experience at index j. It introduces an attractor
to the swarm’s best position so far. The social component is also stochastically
scaled with random numbers r2 ∼ U(0, 1)J , while also introducing the social
acceleration coefficient c2 that is used to control the influence of the social
attractor.

Van Wyk [172] mentions that when PSOs where first developed, it was possible
for particle velocities to become inappropriately large during optimisation, leading to
situations where particles fly out of the feasible search space. This is known as swarm
explosion and occurs when there are frequent changes in the global best position. In
order to address this issues, the concept of velocity clamping was introduced [42].
The idea behind velocity clamping is to restrict particle velocities to some Vmax
threshold, modelling a form of terminal velocity. Velocity clamping is applied after
the velocity update step and is given in Equation (3.24) below.

vij(t+ 1) =

v′

ij(t+ 1) if − Vmax,j < v′
ij(t+ 1) < Vmax,j

−Vmax,j if v′
ij(t+ 1) ≤ −Vmax,j

Vmax,j if v′
ij(t+ 1) ≥ Vmax,j

(3.24)

V max is another hyper-parameter that must be defined a priori. Appropriate
values for V max may prevent swarm explosion, but also has an effect on the exploration
and exploitation of the heuristic. If V max is small, particle update steps are small,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 46

resulting in exploitation [42]. If V max is big, it allows for larger update steps,
promoting more exploration.

It should be noted that the choice of control parameters play a vital role in the
behaviour and characteristics of the PSO. Van den Berg and Engelbrecht [168, 169]
have done extensive work on the effects of different values for control parameters.
For the purposes of this dissertation, the c1 and c2 control parameter are set to
1.496180 and the inertia weight w is set to 0.0729844 as these correspond to values
used in [43] and have been shown to be appropriate for a number of problems.

An example of the pseudo-code implementation of the gbest PSO is taken from [45]
and is given in Algorithm 2.

Algorithm 2 The pseudo-code algorithm for the gbest PSO heuristic.
Create swarm of N entities, each with J dimensions;
while stopping condition are not met do

for each particle i = 1, . . . , N do
// Set the personal best position;
if f(xi) < f(yi) then
yi = xi;

end if
// Set the global best position;
if f(xi) < f(ŷ) then
ŷ = xi;

end if
end for
for each particle i = 1, . . . , N do

for each dimension j = 1, . . . , J do
// Perform velocity update step;
vij = wvij + c1r1j

[yij − xij] + c2r2j
[ŷij − xij]

// Perform position update step;
xij = xij + vij

end for
end for

end while

3.4.2 Differential Evolution

This section aims to introduce the next population-based MH, called differential
evolution (DE). Similar to PSO, DE is a stochastic population-based search strategy

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 47

developed by Storm and Price [128] in 1995. DE shares a lot of similarities with other
evolutionary MH paradigms such as PSOs and GAs. However, DE differs significantly
in how distance and direction information from the current population is used to
guide the search process [45]. Originally, DE was focused on multi-dimensional
real-valued optimisation problems, but unlike gradient-based heuristics, it does not
require any gradient information. DE does not require the underlying optimisation
problem to be differentiable and can thus be applied to problems that are discrete,
noisy and dynamic [136].

Lots of research has been done on using DE to train FFNNs. Some notable
work include [82, 110, 151]. In these works, the authors often highlight the low
computational complexity and simplicity of implementation for DE.

Similar to other evolutionary algorithms (EAs), variation from one generation to
the next is achieved through the application of crossover and mutation operators.
Engelbrecht [45] mentions that for other EAs, if both crossover and mutation operators
are used, crossover is applied first, after which the generated offspring is mutated.
Furthermore, other EAs sample mutation step sizes from some probability distribution.
DE differs from the aforementioned EAs in two ways. Firstly, mutation is applied
first to generate a trial vector, which is then used within the crossover operator to
produce one offspring. Secondly, mutation step sizes are not sampled from prior
known probability distributions.

In DE, mutation step sizes are influenced by the differences in positions of different
entities in the current population. The positions of entities in the population provide
valuable information about the fitness landscape, a concept DE aims to exploit in
order to find optimal solutions. There are three main components to the DE heuristic.
These include mutation, crossover and selection operators [128]. Each of these is
presented in detail in the following sections.

Mutation

The purpose of the mutation operator is to produce a trial vector for each entity in
the current population by mutating a target vector with a weighted differential [45].
The trial vector is used in the crossover operator to produce offspring. The mutation
process then follows as such. For each parent xi(t) generate a trial vector ui(t) as
follows:

• Select a target vector, xi1(t) from the population that is not the same as the
parent i.e. i ̸= i1. Various different selection strategies can be used to select
the target vector.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 48

• Randomly select two other individuals xi2(t) and xi3(t). Importantly, all of
these entities must be unique such that i ≠ i1 ≠ i2 ≠ i3 and i2, i3 ∼ U(1, N)
where N is the size of the swarm/population.

• Selected individual entities are then used to calculate the trial vector by
perturbing the target vector as presented in Equation (3.25) below.

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (3.25)

In Equation (3.25) β ∈ (0,∞) is the scale factor and controls the amplification
of the differential variation [45].

Crossover

In the context of EAs, reproduction and recombination is done through the crossover
operation. The same applies to DE. The DE crossover operator implements a
discrete recombination of the trial vector, ui(t), as was generated in Equation (3.25)
above, and the parent vector xi(t) to produce new offspring x′

i(t). The crossover
operator is given in Equation (3.26) below.

x′
ij(t) =

uij(t) if j ∈ J

xij(t) otherwise
(3.26)

In Equation (3.26), xij(t) refers to the j-th element of the vector xi(t) and J
refers to a set of crossover points or indices at which perturbation is done. Different
techniques for determining the set J , has been proposed [154, 155]. These include:

• Binomial crossover: A crossover mask is generated by randomly selecting
indices from the set of possible crossover points {1, 2, . . . , J} where J is the
problem dimension. Binomial crossover is presented in Algorithm 3. In
Algorithm 3, pr is the crossover probability. The higher the value of pr, the
more points will be included in the set J . A Bernoulli distribution can be used
to generate the binomial crossover mask. Note that due to the probabilistic
nature of this process, it is possible that no crossover points are selected. To
counteract this situation, a randomly selected crossover point j∗ is included in
the set J such that J ̸= ∅ where ∅ is the empty set.

• Exponential crossover: Engelbrecht [45] states that with exponential crossover,
a sequence of adjacent crossover points are selected from some randomly se-
lected crossover index. This means that the set of possible crossover points J is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 49

a circular array in indices. Exponential crossover does not require the selection
of an additional crossover point j∗ as this technique includes at the very least
one index, which is the starting index that is randomly selected. From the
starting index, the next index is selected until U(0, 1) ≥ pr or |J | = N , and pr

is the same crossover probability as mentioned above for binomial crossover.
The implementation of exponential crossover is given in Algorithm 4.

Algorithm 3 The pseudo-code algorithm for the binomial crossover technique for
DE.
j∗ ∼ U(1, N);
J ← J ∪ {j∗};
for each j ∈ {1, . . . , N} do

if U(0, 1) < pr and j ̸= j∗ then
J ← J ∪ {j};

end if
end for

Algorithm 4 The pseudo-code algorithm for the exponential crossover technique
for DE.
J ← {};
j ∼ U(0, N − 1);
repeat
J ← J ∪ {j + 1};
j = (j + 1) mod N

until U(0, 1) ≥ pr or |J | = N ;

Selection

Selection refers to the technique that is used to determine which entities are included
in the mutation operator to produce a trial vector [45]. Various selection operators
have been suggested [154, 155]. With reference to the mutation operator, most DE
implementations make use of random selection or the best entity is used as the target
vector xi1(t). To construct the population for the next generation, deterministic
selection is used. As such, a parent is replaced if the offspring produces a better
solution than the parent such that f(x′

i(t)) ≤ f(xi(t)). Engelbrecht [45] states that
deterministic selection for the next generation ensures the average fitness of the
population does not deteriorate.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 50

General Differential Evolution Algorithm

Algorithm 5 is taken from Engelbrecht [45] and presents the general DE algorithm.
The population is initialised by randomly placing entities in the search space such
that the positions of the entities are confined to some search boundary. As such,
xij(t) ∼ U(xmin,j, xmax,j), where xmin,j and xmax,j define the search boundaries.

Algorithm 5 The pseudo-code for the general DE heuristic.
Set the generation counter, t = 0;
Initialise the control parameters, β and pr

while stopping condition not met do
for each entity xi(t) ∈ C(t) do

Evaluate the fitness, f(xi(t));
Create the trial vector, ui(t) by applying the mutation operator;
Create an offspring, x′

i(t) by applying the crossover operator;
if f(x′

i(t)) is better than f(xi(t)) then
Add x′

i(t) to C(t+ 1);
else

Add xi(t) to C(t+ 1);
end if

end for
end while
Return the individual with the best fitness as the solution;

As with other heuristics, DE also contains a set of control parameters. These
include:

• Population size: The population size has a direct influence on the exploration
ability of the DE heuristic [45]. The larger the population size, the more
differential vectors are available and thus, more directions can be explored.

• Scaling Factor: The scaling factor, β ∈ (0,∞) controls the amplification
of the differential variations (xi2(t)− xi3(t)). A lower scaling factor leads to
smaller step sizes and as a result, convergence will take longer. Larger values
facilitate exploration, but could cause the algorithm to overshoot. Similar to
other heuristics, adaptive mechanisms can be used to dynamically alter the
scaling factor throughout the optimisation process.

• Recombination Probability: The probability of recombination, pr has a
direct influence on the diversity of the DE heuristic [45]. This parameter

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 51

controls the number of elements that are included during crossover. The higher
the probability of recombination, the more variation is introduced in the new
population. Similar to the scaling factor, dynamic techniques can be used to
adjust this the recombination probability during optimisation.

DE/x/y/z Notation

Many variants of DE have been created and researched [107]. A general notation for
DE heuristic variants have been developed by Storn [154, 155]. The notation follows
the form DE/x/y/z where x, y and z refer to the components that are used by the
particular DE. A breakdown of this notation is provided as follows:

• x: The selection mechanism for the target vector.

• y: The number of difference vectors to include.

• z: The type of crossover operator used.

For this dissertation, random and best entity selection, a single difference vector
and binomial and exponential crossover are considered. This results in the DE
notations as follows:

• DE/rand/1/bin

• DE/best/1/bin

• DE/rand/1/exp

• DE/best/1/exp

3.4.3 Genetic Algorithms

EC refers to a collection of nature-inspired optimisation algorithms that lend their
foundation to biological evolution. Engelbrecht [45] mentions that EC refers to
computer-based problem solving systems that use computational models of evolu-
tionary processes such as natural selection, survival of the fittest and reproduction.
Charles Darwin’s theory of natural selection [29] became the foundation of biological
evolution [30]. Engelbrecht [45] summarises the Darwinian theory of evolution as
follows. In a world with limited resources and stable populations, each individual
competes with others for survival. Those individuals with the “best” characteristics
(traits) are more likely to survive and to reproduce and those characteristics will
be passed on to their offspring. These desirable characteristics are inherited by

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 52

the following generations and (over time) become dominant among the population.
Evolution via natural selection of a randomly chosen population of entities can be
seen as a search through the space of possible chromosome values. This makes the
EC search process a stochastic search for an optimal solution to the given problem.

So far, two population-based MHs have been introduces. These include PSO and
DE. The DE heuristic that was presented in Section 3.4.2 is one type of EC algorithm.
This section introduces another population-based, nature-inspired optimisation EC
algorithm, referred to as genetic algorithms (GAs). The details of the implementation
of GAs is given in this section. GAs have been widely used to train FFNNs [109,
111, 147].

GAs where first proposed by Fraser [55] and later by Bremermann et al. [15]
and Reed et al. [132]. However, Holland [76] is widely regarded as the father of
GAs. Similar to DEs, GAs are also nature-inspired population-based MHs and model
genetic evolution of entities in a hypothetical population. As with other EAs, GAs
implement a number of operators that drive the optimisation process. Primarily,
GAs implement selection, modelling survival of the fittest and crossover, modelling
reproduction. The remainder of this section presents the aforementioned operators
in more detail.

For sake of clarity, a generic EC algorithm is presented first, as a frame of
reference. The generic EC algorithm is referred to as the canonical GA (CGA) and
was proposed by Holland [76]. The generic EC algorithm is taken from [45] and is
presented in Algorithm 6 below.

Algorithm 6 The pseudo-code for the generic EC heuristic.
Let t = 0 be the generation counter;
Create an initialise a J-dimensional population C(0), to consist of N individuals;
while stopping condition not met do

Evaluate the fitness, f(xi(t)) of each individual xi(t);
Perform reproduction to create offspring;
Select the new population, C(t+ 1);
Advance to the new generation, i.e. t = t+ 1

end while

From Algorithm 6 above, it can be seen that a number of components influence
the search process. These include:

• Encoding: Refers to the representation of a candidate solution to some
optimisation problem as the of some entity. Every element in the chromosomes

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 53

is referred to as a gene or allele.

• Fitness Function: Refers to the objective function that measures the fitness
of an entity. Fitness refers to the survivability of an entity and measures the
strength of a candidate solution represented by the entity’s chromosomes.

• Initialisation: Refers to the initialisation strategy used to generate the initial
population. Often entities’ chromosomes are uniformly sampled in the feasible
search space for the underlying optimisation problem.

• Selection: Refers to the techniques that are used to select entities for repro-
duction and generation of the new population as well as the selection of genes
for mutation. Selection is implemented through selection operators.

• Reproduction: Refers to the generation of the next population and is imple-
mented through crossover operators.

The initial implementations of EC heuristics such as GAs did not contain a
mutation operator as it was only introduced later [45]. The following sections provide
the crossover, mutation and selection operators for GAs.

Crossover

As with DE, crossover operators model the reproduction of entities in the popu-
lation. Broadly speaking, the crossover operators can be divided into three main
categories [45] and are based on arity of the operator i.e. the number of parents used
for reproduction.

• Asexual: Offspring are generated from one parent.

• Sexual: Offspring are generated from two parents and can produce one or two
offspring.

• Multi-recombination: Offspring are generated from more than two parents
and can produce one or more offspring.

Engelbrecht [45] mentions that crossover operators can be further classified based
on their encoding/representation scheme. These include binary-specific operators
used for binary representations and operators focused on floating-point representa-
tions. Since the focus is put on training FFNNs, from this point on, floating-point
representations are assumed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 54

During crossover, parents are selected using a selection operator. As with DEs,
recombination is applied probabilistically and thus, selection of a parent does not
guarantee reproduction. Each parent has a probability pc of producing offspring.
Usually a high crossover probability is used [45]. In addition to recombination, GAs
implement a replacement policy where fit offspring can replace weaker parents in the
population.

Although floating-point representations of chromosomes are assumed, binary
crossover operators can also be used, since they produce a mask that defines how
parents are recombined. Specifically, in the context of this dissertation, focus is put
on uniform crossover. Uniform crossover refers to a crossover operator where an
J-dimensional crossover mask is generated randomly [159]. Uniform crossover is
illustrated in Figure 3.5 below and the algorithm for uniform crossover is given in
Algorithm 7. In Algorithm 7, px is the bit-swapping probability.

Figure 3.5: An illustration of the uniform crossover operator as it applies to sexual
recombination, resulting in two new offspring.

Mutation

The mutation operator is applied in order to introduce new genetic material into an
existing entity [45]. In doing so, diversity is added into the genetic characteristics
of the population. Mutation is applied at a certain mutation probability pm, to
each gene of the offspring xi(t) to produce mutated offspring x′

i(t). Engelbrecht [45]
mentions that the mutation probability, also referred to as the mutation rate, is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 55

Algorithm 7 The pseudo-code for the uniform crossover operator as used by GAs.
Initialise the mask, mj(t) = 0,∀j = 1, . . . , J ;
for j = 1 to J do

if U(0, 1) ≤ px then
mj(t) = 1;

end if
end for

usually small such that pm ∈ [0, 1] to ensure that good solutions are not distorted
too much.

Similar to the crossover operator, mutation operators can be classified according
to the representation scheme used. In the context of training FFNNs, binary crossover
operators such as the uniform mutation operator can be used to generate a mutation
mask that specifies which genes are mutated. For the purposes of this dissertation,
the application of the mutation operator on xij(t) results in a small update step for
that gene such that x′

ij(t) = xij(t)+vij(t). In this case, vij(t) is sampled using Glorot
uniform sampling within the bounds (−limit, limit), as was presented in Chapter 2.
An adaptation of the uniform mutation operator is provided in Algorithm 8 below.

Algorithm 8 The pseudo-code for the uniform mutation operator as used by GAs.
for i = 1 to N do

for j = 1 to J do
if U(0, 1) ≤ pm then

Sample update step vij(t) ∼ U(−limit, limit)
x′

ij(t) = xij(t) + vij(t);
end if

end for
end for

An illustration of the adapted uniform mutation operator is presented in Figure 3.6
below.

Selection

Selection is a widely used concept in all EAs and models survival of the fittest in the
evolutionary context. The main idea behind the selection operator is to emphasise
better solutions [45]. Selection is applied in two of the main steps of EAs. These

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 56

Figure 3.6: An illustration of the adapted uniform mutation operator as it applies to
mutated offspring.

include:

• Selection of the new population: A new population of candidate solutions
are selected at the end of each generation to serve as the population for the
next generation. The new population can be selected from both the parents
and offspring. The selection operator is thus responsible for ensuring that good
entities survive to the next generation.

• Reproduction: Offspring is created through the crossover and/or the mutation
operators. In terms of crossover, good solutions should have a high probability
of reproducing to ensure that offspring contain genetic material of the best
entities. In terms of mutation, selection mechanisms should focus on weaker
entities. By mutating weak entities, the hope is to introduce better traits,
increasing their chance to survive.

Engelbrecht [45] mentions that selection operators are characterised by their
selective pressure. Selective pressure is defined as the speed at which the best
entity’s solution will occupy the entire population by repeated application of the
selection operator alone [5]. A selection operator with a high selective pressure rapidly
decreases the diversity in the population, possibly leading to premature convergence.
A high selective pressure limits the exploration abilities of the population. Selection
operators should maintain a balance between exploration and exploitation.

Various selection mechanisms have been proposed. For the purposes of this
dissertation, focus is put on the following selection mechanisms and concepts.

• Tournament Selection: Tournament selection selects a group of Nt entities
randomly from the population such that Nt < N , where N is the population
size. The performance of the selected Nt entities are then compared and the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Heuristics 57

best entities from this group are selected and returned by the operator. It
should be mentioned that for sexual crossover of two parents, tournament
selection is applied twice, first for the first parent and then again for the second
parent. Engelbrecht [45] mentions that tournament selection prevents the best
entities from dominating, provided that Nt is not too large. This results in a
lower selective pressure. If Nt is too small, the chances that bad entities will
be selected increase.

• Rank-based Selection: Rank-based selection uses the rank-ordered fitness
values to determine the probability of selection and not the absolute fitness
value. Engelbrecht [45] mentions that the advantage of this approach is that the
best entities will not dominate the selection process. Non-deterministic linear
sampling selects an entity xi(t) such that i ∼ U(0, U(0, N − 1)). Importantly,
in the context of a minimisation problem, entities are first sorted in decreasing
order of fitness value, assuming that the best heuristic is then contained at
index 0, while the worst entity is contained at index N − 1.

• Elitism: Elitism refers to the process of ensuring that the best entities from the
current population survive to the next generation. The best entities are simply
passed on to the next generation without mutation. The more entities that
survive to the next generation, the lower the diversity of the new population.

3.5 Summary

This chapter provided detailed background information on heuristics. Different
heuristics were presented that have been shown to be able to train FFNNs. Two
main groups of heuristics where presented and discussed in detail. These include
gradient-based heuristics and meta-heuristics (MHs). A number of different variants
for each group have been presented and was discussed in detail.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Hyper-Heuristics

“The capacity to learn is a gift; the ability to learn is a skill; the
willingness to learn is a choice.”

- Brian Herbert

Chapter 3 introduced the concept of a heuristic as an optimisation algorithm
that is used in a search process that seeks out optimal solutions to an optimisation
problem. Finding the best heuristic to use for a given optimisation problem is
non-trivial. Furthermore, finding optimal solutions is often dependent on using the
appropriate configurations. In the context of training FFNNs, these configurations
could include heuristic hyper-parameters and model architecture. It is often the case
that the application of a specific configuration only applies to a specific problem and
does not necessarily translate or generalise to other problems [93].

The optimal configuration of heuristics to use, along with hyper-parameters
and model architecture, lies in some hyper-dimensional configuration space yielding
yet again, another optimisation problem on its own. Traditionally, if multiple
configurations are to be considered, an empirical process of trial and error is executed.
Trial and error approaches are time consuming and laborious.

One particular approach to the configuration optimisation problem mentioned
above, is to try and automate the process to find the best configuration. One such
automated process involves considering many different configurations in an iterative
fashion, sweeping over different configurations parameters within the configuration
space. Techniques such as Design of Experiments (DoE), proposed by Fisher et
al. [53], follow an iterative approach, where a configuration space is defined in terms
of its extremities, while retrieving candidate configurations by interpolating over the
configuration space. Iterative approaches implement a form of offline learning where
the optimisation of configuration only happens after all configurations have been
considered and evaluated.

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 59

More modern techniques automate the search for optimal configuration as part
of the underlying search process itself, resulting in a form of dynamic configuration
during the search process. An example of such a technique is to dynamically adjust
the heuristic hyper-parameters as part of the optimisation process. This field of study
is known as meta-learning [57]. The term learning refers to the optimisation of the
configuration and hyper-parameters.

A recent suggestion related to the field of meta-learning is to dynamically select
and/or adjust the heuristic characteristics and behaviours used throughout the
search process and not just the heuristic hyper-parameters. This approach focuses
on the hybridisation of heuristic paradigms. By dynamically combining the best of
different paradigms throughout the learning process, a trade-off can be made between
focussing on a particular solution (exploitation), in comparison to seeking out novel
solutions (exploration) during the search process. The dynamic trade-off between
exploration and exploitation could also be seen as a dynamic trade-off between the
strengths and weaknesses of different heuristics during the search process.

One such form of hybridisation of heuristic paradigms is referred to as heteroge-
neous approaches. Heterogeneous approaches make use of different search behaviours
by selecting from a behaviour pool. Heterogeneous approaches have shown to balance
the trade-off between exploration and exploitation [116].

Another form of hybridisation of heuristic paradigms is that of hybridisation
of different heuristics that are applied to some optimisation problem [20]. These
methods are referred to as hyper-heuristics (HHs) and focus on finding the best
heuristic in heuristic space to solve a specific problem. This dissertation takes a
particular interest in developing a novel selection HH that can be used to train
FFNNs. This chapter provides the reader with the necessary background information
of meta-learning and HHs. The remainder of the chapter is structured as follows:

• Section 4.1 provides the reader with a brief definition and discussion on
meta-learning.

• Section 4.2 presents the concept of a HH and a formal definition is provided.
It is shown how HHs implement a form of meta-learning.

• Section 4.3 provides a detailed discussion on the classification and types of
HHs. Distinction is made between online and offline learning mechanisms.
Discussions follow on selection and generation HHs, and construction and
perturbation mechanisms.

• Section 4.4 provides a brief summary of the chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 60

4.1 Meta-Learning

Meta-learning is inspired by a branch of meta-cognition that is concerned with
learning about learning processes. Meta-learning studies how learning systems can
increase efficiency through experience [174] and is broadly defined as the learning
process concerned with the concept of learning to learn [164]. The goal of meta-
learning is to provide a learning/optimisation process that is flexible to the problem
domain or task under consideration.

Vilalta et al. [174] mention that meta-learning differs from base-learning in the
scope of the level of adaptation. Meta-learning is concerned with learning how
to choose the right configuration and biases dynamically. On the contrary, for
base-learning, biases and configurations are predefined and fixed a priori. Thrun
et al. [164] mention that meta-learning aims at discovering ways to dynamically
search for the best learning strategy as the number of tasks increase, implying some
form of generalisation of the learning process to other problems.

In the context of training FFNNs, meta-learning could be applied to dynamically
adjust the hyper-parameters of a heuristic during the training process. K-fold
cross-validation is a common technique that applies dynamic adjustment of hyper-
parameters during the training process [2]. K-fold cross-validation is based on
the idea that the optimal hyper-parameters for a given problem can be found by
evaluating the performance of the heuristic on a subset of the training data.

Dynamic adjustment of hyper-parameters might not be enough. Different search
behaviours or techniques might be needed to balance the trade-off between exploration
and exploitation. The following section provides a brief introduction to the concept
of a hyper-heuristic (HH), a modern approach that builds on the foundations of
meta-learning.

4.2 What are Hyper-Heuristics?

The term hyper-heuristic (HH) was first used in 1997 by Burke et al. [19] and was
used to describe a protocol that combines several AI methods in the context of
automated theorem proving. The term was independently used in 2000 by Cowling
et al. [27] to describe “heuristics to choose heuristics”.

Burke et al. [19] define HHs as search methods or learning mechanism for selecting
or generating heuristics to solve computational search problems. Burke et al. [18]
mentions that a HH is a high-level approach that, given a particular problem instance
and a number of low-level heuristics, can select and apply an appropriate low-level

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 61

heuristic at each decision point.
Grobler [64] states that HHs promote the design of more generally applicable

search methodologies and tend to perform relatively well on a large set of different
problems, in contrast to specialised algorithms, which typically focus on outperform-
ing the state-of-the-art for a single application.

HHs implement a form of meta-learning that is concerned with the selection of
the best heuristic from a pool of heuristics to solve a given problem. In the context
of population-based HHs, an entity pool exists that represent a pool of candidate
solutions to the given problem. Each entity in the entity pool is assigned its own
low-level heuristic from the heuristic pool.

The selection of the best heuristic to apply to a candidate solution, is based on
the performance of the heuristic relative to that particular candidate solution at a
particular point in the search process. It can be said that HHs are concerned with
finding the best heuristic in heuristic space, while the underlying low-level heuristics
find solutions in the feasible search/solution space. HHs, introduce a domain barrier
that separates the information that the high-level heuristic and low-level heuristics
use during the search process and is illustrated in Figure 4.1 below.

Domain Barrier

Solution space information

Heuristic space information

H
1

H
2

H
3

H
4 H

K
…

E
1

E
2

E
3

E
4 E

J
…

Heuristic Pool

Entity Pool

Figure 4.1: An illustration of the domain barrier that exists as a result of the separation
between the low-level heuristics and the high-level heuristic as introduced by HHs.

Figure 4.1 shows the separation of information that is accessible to the entity pool
and heuristic pool. At a higher level abstraction, the high level heuristic implemented
by HHs, do not make use of domain specific information such as an entity’s position

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 62

or gradient from the search space.
To summarise, Grobler [64] highlights two fundamental ideas behind HHs. Firstly,

the recognition that the process of selecting or designing efficient hybrid and/or
cooperative heuristics can be regarded as a computational search problem in itself.
Secondly, there is significant potential to improve search methodologies by the
incorporation of learning mechanisms that can adaptively guide the search. These
two fundamental ideas have inspired different types of hyper-heuristics [19].

In the general context of optimisation, many different types of HHs have been
implemented and applied to many different problems. Some notable examples
include the simulated annealing-based HH by Dowsland et al. [37], the tabu-search
HH of Burke et al. [19], the heterogeneous meta-hyper-heuristic by Grobler et al. [65]
and work done by Van der Stockt et al. [171] on the analysis of selection hyper-
heuristics for population-based MHs in real-valued dynamic optimisation. Research
on the application of HHs in the context of FFNN training is still scarce. Nel [115]
provides the first research in this field, applying a HH to FFNN training. The
following section provides a framework for HH classification.

4.3 Classification of Hyper-Heuristics

Burke et al. [19] proposed a modern classification scheme used to classify HHs.
According to the proposed classification scheme, HHs are classified in two dimensions.
These include the source of feedback used during learning and the nature of the
heuristic search space. Figure 4.2 presents the classification scheme as proposed
by Burke et al. [19].

Figure 4.2: A classification of HH approaches, according to two dimensions: (i) the source
of feedback used during learning, and (ii) the nature of the heuristic search space.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 63

4.3.1 Source of Feedback

HHs make use of feedback from the search process to adapt and guide the search
process. Some HHs implement a learning mechanism that utilises this feedback.
Learning HHs can implement a form of online learning or offline learning.

HHs that implement online learning, implement a form of learning that continues
to takes place while the algorithm is solving an instance of the underlying optimisation
problem. Task-dependent, local properties can be used by the high-level heuristic
to determine the appropriate low-level heuristic to apply at various points in the
search process. Examples of online learning approaches within HHs include the
use of reinforcement learning (RL) and meta-heuristics (MHs) as high-level search
strategies.

HHs that implement offline learning, implement a form of learning where knowl-
edge, in the form of rules or programs, is gathered from a set of training instances
and is then applied independently from the search process itself. Examples of offline
learning approaches within hyper-heuristics include learning classifier systems and
case-based reasoning.

4.3.2 Heuristic Search Space

According to the classification proposed by Burke et al. [19], the second dimension
of classification involves the nature of the heuristic search space. Distinction is made
between heuristic selection and heuristic generation.

Selection vs. Generation

Selection HHs implement a high-level search mechanism that is used to determine
which heuristic to apply to the underlying optimisation problem at a given point in the
optimisation process. Selection mechanisms can include probabilistic approaches or
high level meta-heuristics (MHs). On the contrary, heuristic generation methodologies
implement a mechanism that generate new heuristics from a pool of components
of various heuristics. Generation HHs often make use of evolutionary algorithms
(EAs) [19].

Selection HHs consist of two components, including a low-level heuristic selection
strategy and a move acceptance strategy. Low-level heuristic selection can be done
in a simple, non-adaptive way. No learning is involved in these approaches. For
non-adaptive techniques, heuristic selection is based on a predefined heuristic ordering
that is generated either randomly or in a ordered cycle that is repeated throughout
the optimisation process [27]. As an alternative, heuristic selection may incorporate

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 64

an adaptive (online learning) mechanism, based on the probabilistic weighting of the
low-level heuristics [18] or some type of performance statistics [27].

A move acceptance strategy is the mechanism by which the application of a
low-level heuristic is either accepted or rejected. In general, a move is accepted or
rejected based on the quality of the move and the current solution during a single
point search. Burke et al. [18] mention that many move acceptance strategies have
been explored within HHs.

Move acceptance strategies can be divided into two categories. These include
deterministic and non-deterministic move acceptance strategies. Deterministic move
acceptance strategies generate the same result for the same candidate solution(s)
used for the move acceptance test. Non-deterministic move acceptance strategies
can involve other parameters, such as the current time, or a sampling operation that
yields possibly different outcomes when repeated for the move acceptance test [18].

Construction vs. Perturbation

Selection and generation HHs can be further classified in terms of construction and
perturbation mechanisms. According to Burke et al. [19], construction approaches
build a solution incrementally. Starting with an empty solution, the goal is to
intelligently select and use construction heuristics to gradually build a complete solu-
tion. As such, the HH framework is provided with a set of pre-existing construction
heuristics.

Perturbation approaches refer to approaches that start with a complete solution,
generated either randomly or using simple construction heuristics. Perturbation
heuristics try to iteratively improve the current solution. As such, the hyper-heuristic
framework is provided with a set of neighbourhood structures and/or simple local
searchers.

4.4 Summary

This chapter provided the reader with the necessary background information on meta-
learning and HHs. Formal definitions were given, followed by detailed discussions. A
modern classification scheme for HH as proposed by Burke et al. [19] was presented
in detail. Distinction is made between the source of feedback information used
during learning and the nature of the heuristic search space. Detailed discussions on
selection and generation heuristics are provided, followed by a further classification
of construction and perturbation mechanisms.

This chapter concludes the background information of heuristics in general.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Hyper-Heuristics 65

The following chapter aims to provide the reader with the necessary background
information on statistics and probability theory.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Probability

“Probability theory is nothing but common sense reduced to calcula-
tion.”

- Pierre-Simon Laplace

Probability theory and statistics can be traced back to as early as the 18th
century. In 1718, De Moivre [33] published the Doctrine of Chance; a book that is
widely regarded as the first published book on probability theory. In 1763, Thomas
Bayes [6] published an article titled An Essay towards solving a Problem in the
Doctrine of Chances where the first version of Bayes’ theorem was introduced.

Probability theory, statistics and machine learning (ML) are transdisciplinary
fields with many shared concepts. There are many examples of how probability theory
has been incorporated into ML research. In 1991, Denker et al. [35] proposed a way
to transform artificial neural network (ANN) outputs to probability distributions.
In 1993, Neal [114] developed a Markov Chain Monte Carlo (MCMC) sampling
algorithm for Bayesian neural networks (BNNs). These are but a few examples of
the role that probability theory has played in ML research in the past.

Chapter 4 provided the concept of a hyper-heuristic (HH). This dissertation
aims to develop a selection HH that makes use of probability theory to select the
best HH to solve a given problem. This chapter aims to provide the necessary
background information on probability theory and statistics. These are large fields
and focus is put on the elements that are required to formulate the proposed Bayesian
hyper-heuristic (BHH). The remainder of the chapter is structured as follows:

• Section 5.1 provides a brief overview of what probability is and how it is used.

• Section 5.2 presents the concept of conditional probability.

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 67

• Section 5.3 presents the two laws of probability related to the intersection
and union of multiple events.

• Section 5.4 introduces Bayes’ theorem, the fundamental theorem upon which
the BHH is built.

• Section 5.5 presents the reader with relevant probability distributions.

• Section 5.6 presents the reader with relevant conjugate prior probability
distributions.

• Section 5.7 presents Bayesian statistics. Brief discussions follow on the
frequentist view and Bayesian view of probability. Detailed discussions follow
on Bayesian optimisation methods such as Bayesian analysis.

• Section 5.8 provides a brief summary of the chapter.

5.1 Overview of Probability

In everyday conversation, the term probability is a measure of belief in the occurrence
of a future event [175]. Probability is a necessary tool used in many fields including
physics, biology, chemistry and computer science. These fields contain many cases
that generate observations that cannot be predicted with absolute certainty [175].
Probability can be inferred and confirmed through past events. These events are
referred to as random or stochastic events. The probability that a certain event, A,
might occur is denoted by P (A). Although these random events cannot be predicted
with absolute certainty, the relative frequency with which they occur over many
trials, is often remarkably stable.

Consider flipping an unbiased, fair coin. The coin has two possible outcomes. It
can conclude that each side has a 1

2 or 50% chance of occurring. In statistics, the
decimal probability notation is used, where 0 <= P (A) <= 1. Suppose the fair coin
is thrown 10 times, there is no guarantee of observing 0.5 heads and 0.5 tails. There is
some probability (although small) that the coin might fall on heads 0/10 times. The
probability of such an event occurring is 0.0009765625. In the coin flip example, the
central limit theorem (CLT) shows that the normalised sum of events tends toward a
normal distribution with a mean value of 0.5, if the number of events observed, N , is
large [175]. The larger the value of N , the higher the confidence of mean probability
and relative frequency of the event. The stable long-term relative frequency by which
a random event occurs, provides an intuitive and meaningful measure of belief that
a certain event will occur again at some point in the future [175].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 68

Probability can also be expressed over multiple random events. Multiple random
events can be considered together, dependently or conditionally. The following
sections provide insight into conditional and joint probabilities of multiple random
events.

5.2 Conditional Probability and Independence

The occurrence of a given random event, A, can often be conditional on the occur-
rence of another event, B. In the field of medicine, an example of this is to calculate
the probability of a certain diagnosis of a sick patient given his/her symptoms. The
aforementioned relationship between events is referred to as the conditional probabil-
ity between two events. The conditional probability is expressed as P (A|B) and is
read the probability of A given B. On the contrary, the unconditional probability is
the probability of an event, not dependent on any other. The conditional probability
of A given B can be expressed as is given in Definition 1 below [175].

Definition 1 (Conditional Probability). The conditional probability of an event
A, subject to the occurrence of event B is expressed as

P (A|B) = P (A ∩B)
P (B) (5.1)

where P (B) > 0. Note that conditional probability does not suggest causation.
If an event A has a high probability of occurring after observing event B, it does not
necessarily mean that A is caused by B. Conditional probability simply expresses
the dependence amongst events.

It could also be the case that the outcome of observing event A is not affected by
the occurrence of B. In this case, it is said that events A and B are independent.
The independence between two events are expressed in Definition 2 below.

Definition 2 (Independence of Events). Two events, A and B, are said to be
independent of each other if, and only if the following criteria hold:

• P (A|B) = P (A)

• P (B|A) = P (B)

• P (A ∩B) = P (A)P (B)

Otherwise, events A and B are said to be dependent random events.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 69

5.3 Two Laws of Probability for Multiple Events

Suppose there are two random events, A and B, then one can calculate the probability
of the union and intersection of these events. From the aforementioned concept, two
laws of probability can be formulated. These are referred to as the multiplicative and
additive laws of probability [175] and is given below in Theorems 1 and 2 respectively.

Theorem 1 (The Multiplicative Law of Probability). The probability of the
intersection of two events, A and B, is given as

P (A ∩B) = P (A)P (B|A)

= P (B)P (A|B)
(5.2)

If A and B are independent, then

P (A ∩B) = P (A)P (B) (5.3)

Proof. Proof is given from Definition 1.

Theorem 2 (The Additive Law of Probability). The probability of the union of
two events, A and B, is given as

P (A ∪B) = P (A) + P (B)− P (B ∩ A) (5.4)

Proof. The geometric proof of the additive law of probability is given by the Venn
Diagram presented in Figure 5.1. Note that A∪B = A∪ (Ā∩B), where A and Ā∩B
are mutually exclusive events. Furthermore, consider that B = (Ā ∩B) ∪ (A ∩B),
where Ā∩B and A∩B are mutually exclusive. Then P (A∪B) = P (A) +P (Ā∩B)
and P (B) = P (Ā∩B)+P (A∩B). The equality on the right implies that P (Ā∩B) =
P (B)− P (A ∩B). By substituting the expression for P (Ā ∩B) into the expression
for P (A ∪ B), the resulting expression P (A ∪ B) = P (A) + P (B) − P (A ∩ B) is
obtained.

5.4 Bayes’ Theorem

Bayes’ theorem, named after Thomas Bayes, describes the probability of an event,
A, based on prior knowledge of conditions that might be related to A [181]. In order

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 70

Figure 5.1: A Venn-Diagram showing the proof of the additive law of probability for
multiple events.

to derive the formal theorem and proof, first consider Definition 3 below [181].

Definition 3. For some positive integer, K, let the sets B1, B2, . . . , BK be such that

1. S = B1 ∪B2 ∪ · · · ∪BK

2. Bi ∩Bj = ∅, for i ̸= j

Then the collection of sets {B1, B2, . . . , BK} is said to be a partition of S, the
union of mutually exclusive subsets.

Theorem 3 (Bayes’ theorem). Assume that {B1, B2, . . . , BK} is a partition of S
such that P (Bi) > 0, for i = 1, 2, . . . , K then

P (Bj|A) = P (A|Bj)P (Bj)∑K
i=1 P (A|Bi)P (Bi)

(5.5)

Proof. The proof follows from the definition of conditional probability as was pre-
sented in Section 5.2:

P (Bj|A) = P (A ∩Bj)
P (A)

= P (A|Bj)P (Bj)∑K
i=1 P (A|Bi)P (Bi)

(5.6)

One of the many applications of Bayes’ theorem is to do statistical inference.
Bayes’ theorem expresses how a degree of belief, expressed as a probability, should
rationally change to account for the availability of related evidence.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 71

5.5 Probability Distributions

Probability distributions are mathematical functions that give the probabilities
of the occurrences of different possible outcomes in the experiment. The theory
and equations presented in the following sections where all taken from Wackerly
et al. [175].

5.5.1 Beta Probability Distribution

The Beta probability distribution is a family of univariate, continuous, probability
distributions over some x, with support on the interval [0, 1] [175]. It is parameterised
by two shape parameters α > 0, α ∈ R and β > 0, β ∈ R. The Beta probability
distribution is denoted as Beta(α, β). The probability density function (PDF) of the
Beta probability distribution is given as

P (x|α, β) = fBeta(x;α, β) = 1
B(α, β)x

α−1(1− x)β−1 (5.7)

The normalising constant, B(α, β), is defined as

B(α, β) = Γ(α)Γ(β)
Γ(α + β) (5.8)

where Γ is the Gamma function defined as

Γ(n) = (n− 1)! (5.9)

It should be noted that the Gamma function can also be written as

Γ(n+ 1) = n! (5.10)

The control parameters α and β determine the shape of the distribution. There
exists a special case where α = β. This is referred to as the symmetric Beta probability
distribution. In the case where α = β = 1 the distribution is equivalent to the
uniform distribution over all points in its support. The Beta probability distribution
for various values of α and β, including the symmetric version is illustrated in Figure
5.2.

The expected value of x is given as

E[x] = α

α + β
(5.11)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 72

(a) Beta probability distribution (b) Cumulative Beta probability distribution

Figure 5.2: An illustration of the Beta probability distribution (left) [77] as well as the
cumulative Beta probability distribution (right) [78] for various values of α and β .

Similarly, the expected value of the natural logarithm of x is calculated as

E[ln(x)] = ψ(α)− ψ(α + β) (5.12)

where ψ is the logarithmic derivative of the Gamma function, called the Digamma
function. The Digamma function is given as

ψ(n) = d

dn
ln(Γ(n)) = Γ′(n)

Γ(n) (5.13)

Finally, the mode of the distribution is given as

M [x] = E[x]− 1 = α− 1
α + β − 2 (5.14)

5.5.2 Dirichlet Probability Distribution

The Dirichlet probability distribution is a family of multivariate continuous proba-
bility distributions over some x in K dimensions [175]. The Dirichlet probability
distribution is a multivariate generalisation of the Beta probability distribution and
is thus sometimes referred to by its alternative name, i.e. the multivariate Beta
probability distribution. The Dirichlet probability distribution is parameterised by
some vector α = (α1, . . . , αK),∀K

k=1αk > 0, αk ∈ R. The parameters, α, are referred
to as the concentration parameters. The Dirichlet probability distribution of order
K ≥ 2 with parameters α, denoted Dir(α), has a PDF given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 73

P (x|α) = fDir(x;K,α) = 1
B(α)

K∏
k=1

xαk−1
k (5.15)

The normalising constant, B(α), is defined as

B(α) =
∏K

k=1 Γ(αk)
Γ(α0)

(5.16)

where α0 is defined as

α0 =
K∑

k=1
αk (5.17)

Importantly, the set {xk}K
k=1 belongs to the standard K − 1 probability simplex

S, meaning that xK = 1−∑K−1
k=1 xk with support ∀K

k=1xk ∈ [0, 1]. Under the simplex
S, this means that the sum over all values of the vector x must be 1. The simplex
can thus be rewritten as ∑K

k=1 xk = 1.
Similar to the Beta probability distribution, α determines the shape of the

distribution in K dimensions and thus, there also exist a special case, referred to
as the symmetric distribution when ∀K

k=1αk = c, where c is some constant. In the
case where c = 1, the distribution is referred to as a flat distribution and yields the
uniform distribution over all points in S. The Dirichlet probability distribution of
order K = 3 for various values of α, including the symmetric version, is presented in
Figure 5.3.

The expected value of xk is calculated as

E[xk] = αk

α0
(5.18)

Similarly, the expected value of the natural logarithm of xk is calculated as

E[ln(xk)] = ψ(αk)− ψ(α0) (5.19)

where ψ is the Digamma function as defined in Equation (5.13). Finally, the
mode of the distribution is given as

M [xk] = E[xk]−K−1

= αk − 1
α0 −K

(5.20)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 74

Figure 5.3: The probability density functions (PDFs) for the Dirichlet probability distri-
bution over the 2-simplex. The concentration parameters, α, are varied. The values of the
PDF are shown by the colour maps with contour lines at equal values as indicated in the
colour bars [117].

5.5.3 Bernoulli Probability Distribution

The Bernoulli probability distribution is a discrete probability distribution over some
random variable x that takes the value of 1 with probability θ and 0 with probability
1− θ [175]. The Bernoulli probability distribution is denoted as Ber(θ) with support
x ∈ {0, 1}. In probability theory, the Bernoulli probability distribution is often used
to explain the possible outcomes of a single experiment that asks a yes-no question
such as flipping a coin. The outcome of such an experiment is a Boolean value. The
Bernoulli probability distribution has a PMF, given as

P (x|θ) = fBer(x; θ) =

θ if x = 1

1− θ if x = 0
(5.21)

Equation (5.21) can also be expressed as

fBer(x; θ) = θx(1− θ)1−x (5.22)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 75

The mean of the Bernoulli probability distribution approaches θ over many
samples according to the CLT [63]. Figure 5.4 illustrates a fair-coin flipping simulation.
The mean converges to 0.5 for various sample sizes.

(a) 100 Samples (b) 10000 Samples

Figure 5.4: An illustration of the coin-flip simulation for different sample sizes that show
the convergence of the mean as per the central limit theorem (CLT).

The expected value of the distribution is thus given as

E[x] = θ (5.23)

The mode of the distribution is given as

M [x] =

0 if θ < 0.5

0, 1 if θ = 0.5

1 if θ > 0.5

(5.24)

5.5.4 Binomial Probability Distribution

The Binomial probability distribution is a discrete probability distribution over a
random variable x taking on a number of successes in N sequential independent
experiments that each ask a yes-no question [175]. The probability of a single
independent experiment yielding a success is given as θ and the Binomial probability
distribution is denoted as Bin(N, θ), with support x ∈ {0, 1, . . . , N}. It should be
noted that the Binomial probability distribution is an extension of the Bernoulli

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 76

probability distribution over N independent sequential experiments, and thus each
experiment also yields some Boolean outcome. When N = 1, the experiment is
referred to as a Bernoulli trial, and the distribution is just a Bernoulli probability
distribution. When N > 1, the sequence of outcomes is referred to as a Bernoulli
process. The PMF of the Binomial probability distribution is given as

P (x|θ;N) = fBin(x;N, θ) =
(
N

x

)
θx(1− θ)1−x (5.25)

Similar to the Bernoulli probability distribution, the mean of the Binomial
probability distribution is Nθ given the CLT as was shown in Figure 5.4. The
expected value of the Binomial probability distribution is thus given as

E[x] = Nθ (5.26)

The mode of the distribution is given as

M [x] = E[x] + θ

= Nθ + θ

= (N + 1)θ

(5.27)

5.5.5 Categorical Probability Distribution

The Categorical probability distribution is a discrete probability distribution over
some random variable, x, taking on any one of K possible categories [175]. There is
no ordering to these categories and therefore, for simplicity, each category is assigned
a numerical representative value such that k ∈ {1, 2, . . . , K}. The probabilities for
all outcomes is given by the probability vector θ = (θ1, . . . , θK). This means that the
probability P (x = k) = θk has support x ∈ {1, . . . , K}. The Categorical probability
distribution, denoted Cat(θ), is a generalisation of the Bernoulli probability distri-
bution and is sometimes referred to it by its alternative names, i.e. the generalised
Bernoulli probability distribution or the Multinoulli probability distribution. In
probability theory, the Categorical probability distribution is often used to explain
the outcome of a single experiment with more than two possible outcomes, such as
rolling a six-sided die [175]. The PMF of the Categorical probability distribution is
given as

P (x|θ;K) = fCat(x;K,θ) =
K∏

k=1
θ

[x=k]
k (5.28)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 77

where the term, [x = k], is the Iversion Bracket [83], yielding 1 if x = k and 0
otherwise. Given class k, the categorical distribution simply yields θk as follows:

fCat(x = k;K,θ) = θk (5.29)

The random variable x can also be encoded in binary format, yielding a vector
x = (x1, . . . , xK) of Bernoulli probability distributions such that the support is
∀K

k=1xk ∈ {0, 1}. Importantly, if the outcome of the random event is of category k,
then xk = 1 and ∀K

j=1xj = 0, j ̸= k so that the standard K − 1 probability simplex S
still holds. The PMF of the Categorical probability distribution is rewritten as

fCat(x;K,θ) =
K∏

k=1
θ
11(xk)
k (5.30)

where 1(xk) is the indicator function, yielding 1 if xk = 1 and 0 otherwise.
Since there is no order to the underlying categories, the mean of the distribution

does not yield any relevant information. The mode of the distribution is given as

M [x] = arg max
k

(θ1, . . . , θK) (5.31)

5.5.6 Multinomial Probability Distribution

The Multinomial probability distribution is a discrete probability distribution over
some random variable x = (x1, . . . xK) that takes on the counts for each occurrence
of K possible classes in N independent trials [175]. The probabilities for all possible
outcomes in a single trial is given by the probability vector, θ = (θ1, . . . , θK). The
Multinomial probability distribution, denoted Mul(N,K,θ), is thus a generalisation
of the Binomial probability distribution to K dimensions. Consider the following
special cases:

• When K is 2 and N = 1, the Multinomial probability distribution is the
Bernoulli probability distribution.

• When K is 2 and N > 1, the Multinomial probability distribution is the
Binomial probability distribution.

• When K > 2 and N = 1, the Multinomial probability distribution is the
Categorical probability distribution.

The support for the Multinomial is ∀K
i=1xk ∈ {1, . . . , N},

∑K
k=1 xk = N and the

PMF for the Multinomial probability distribution is given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 78

P (x|θ;N ;K) = fMul(x;N,K,θ) = N !∏K
k=1 xk!

K∏
k=1

θxk
k (5.32)

Similar to the Categorical probability distribution, the random variable x can also
be encoded in binary format, yielding an N ×K matrix X of Bernoulli probability
distributions. The support is then given as X ∈ {0, 1}N×K ,∀N

i=1
∑K

k=1 xi,k = 1 so
that the standard K − 1 probability simplex S still holds for each trial. The PMF of
the Multinomial probability distribution is then rewritten as

fMul(X;N,K,θ) = N !∏
k=1(

∑N
i=1 xi,k)!

N∏
i=1

K∏
k=1

θ
11(xi,k)
k

= N !∏
k=1(

∑N
i=1 xi,k)!

K∏
k=1

θ
∑N

i=1 11(xi,k)
k

= N !∏
k=1(

∑N
i=1 xi,k)!

K∏
k=1

θNk
k

(5.33)

where Nk is a summary variable, denoting the number of times a category k

occurs over all trials in N .

5.6 Conjugate Priors

Wackerly et al.[175] state that conjugate priors are prior probability distributions that
result in posterior distributions that are of the same functional form, A(v), as the
prior, but with different parameter values. This section considers the conjugate priors
that are used with the Binomial likelihood and Categorical/Multinomial likelihood.

5.6.1 Binomial Likelihood

The conjugate prior to a Bernoulli probability distribution is the Beta probability
distribution [175]. This is shown by demonstrating that the posterior distribution
has the same functional form, A(v), as the prior distribution as follows.

Setup:

• Let I be a number of independent, identical (iid) random events.

• Let α ∈ R, α > 0 and β ∈ R, β > 0 be the shape parameters to the Beta
probability distribution.

• Let θ be the probability of a success. With θ|α, β ∼ Beta(α, β).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 79

• P (θ) is the prior probability distribution with the functional form A(v).

• Let X = (x1, . . . , xI) be the outcomes of I independent, identical random
events, each with Boolean outcome. That is xi|θ

iid∼ Ber(θ) and L(xi|θ) is the
Bernoulli likelihood.

• Let D denote all the prior data of X, parameterised by α, β.

• Let N1 = ∑I
i=1 1(xi = 1) and N0 = ∑I

i=1 1(xi = 0).

The Bernoulli likelihood is given as

L(D) = P (D|θ)

∝ θN1(1− θ)N0
(5.34)

By Bayes’ theorem, the posterior distribution with given prior data D is given as

P (θ|D) = P (D|θ)P (θ)
P (D) (5.35)

Since the denominator sums to 1, the denominator and constants for the Bernoulli
likelihood and the Beta prior can be removed by expressing the posterior as propor-
tional to the likelihood times the prior as follows:

P (θ|D) ∝
[
θN1(1− θ)N0

] [
θα−1(1− θ)β−1

]
∝ θ(N1+α)−1(1− θ)(N0+β)−1

∝ Beta(N1 + α,N0 + β)

(5.36)

The posterior distribution has the same functional form, A(v), as the prior, but
with updated prior parameters α′ = N1 + α and β′ = N0 + β. This shows that the
Beta probability distribution is the conjugate prior used with the Bernoulli likelihood.

5.6.2 Categorical and Multinomial Likelihood

The conjugate prior to a Categorical and Multinomial probability distribution is
the Dirichlet probability distribution [175]. The proof of the conjugate prior for the
Bernoulli probability distribution is similar to the proof presented in Section 5.6.1.
This means that the posterior distribution must have the same functional form, A(v),
as the prior distribution. The proof is shown as follows.

Setup:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 80

• Let I be a number of independent, identical (iid) random events.

• Let K be a number of possible outcomes for each event, with K ≥ 2.

• Let α = (α1, . . . , αK),∀K
k=1αk ∈ R, αk > 0 be the concentration parameters to

the Dirichlet probability distribution.

• Let θ = (θ1, . . . , θK),∀K
k=1θk ∈ (0, 1),∑K

k θk = 1 be the probability of each
class in K and θ belongs to the standard K − 1 probability simplex S. With
θ|α ∼ Dir(K,α).

• P (θ) is the prior probability distribution with the functional form A(v).

• Let X = (x1, . . . ,xI) be the outcomes of I independent, identical random
events, each with K possible outcomes. That is xi|θ iid∼ Cat(θ) and L(xi|θ) is
the Categorical likelihood.

• Let D denote all the prior data of X, parameterised by α.

• Let N = (N1, . . . , NK), Nk = ∑I
i=1 1(xi,k = 1), denote the counts for each

occurrence of a class k.

The likelihood of the Categorical and Multinomial probability distributions is
given as

L(D) = P (D|θ)

∝
K∏

k=1
θNk

k

(5.37)

By Bayes’ theorem, the posterior distribution with given prior data D is given as

P (θ|D) = P (D|θ)P (θ)
P (D) (5.38)

Since the denominator sums to 1, the denominator and constants for the Dirichlet
prior can be removed by expressing the posterior as proportional to the likelihood
times the prior as follows:

P (θ|D) ∝
K∏

k=1
θNk

k

K∏
k=1

θαk−1
k

∝
K∏

k=1
θ

(Nk+αk)−1
k

∝ Dir(K,N +α)

(5.39)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 81

The posterior distribution has the same form, A(v), as the prior, but with updated
prior parameters α′ = N +α. This shows that the Dirichlet probability distribution
is the conjugate prior used with the Categorical/Multinomial likelihood.

5.7 Bayesian Statistics

This section provides detailed discussions on various aspects related to Bayesian
statistics and probability. Brief discussion follow on the frequentist and the Bayesian
approach to statistics and probability. Finally, the concept of Bayesian analysis is
presented in detail.

5.7.1 Frequentist vs. Bayesian Statistics

In general, there are two main views to probability and statistics. These include
the frequentist and the Bayesian view of statistics. Naturally, Bayesian statistics is
based on Bayes’ theorem as was presented in Section 5.4. Bayesian statistics describe
the probability of an event in terms of some belief, based on previous knowledge of
the event and the conditions under which the event happened [68]. To introduce
the concept of Bayesian inference and Bayesian analysis, the differences between the
frequentist and the Bayesian view of statistics need to be presented.

Bayesian statistics out-date the frequentist approach, but lacked interest in the
early days, partly because of the limited applications where the conjugate priors where
known [68]. More recent advancements in mathematical methods popularised the
Bayesian approach again. A notable contribution to this switch was the development
of the Markov Chain Monte Carlo (MCMC) algorithm in the 1950s. This family
of algorithms allowed for the construction of random sampling algorithms from a
probability distribution, which allows for the calculation of Bayesian hierarchical
models [68]. Soon after followed one of the earliest papers that use Bayesian statistics
in the field of medicine in 1982 [4].

The difference between the frequentist approach and the Bayesian approach can
be illustrated using an example. Hackenberger [68] suggests an experiment that
investigates whether the gender ratio in some hypothetical mice population is 1 : 1.
Two experiments were designed. In the first experiment, mice are randomly selected
until the first male is chosen. The result in this experiment will then be the total
number of mice chosen by gender. For the second experiment, exactly seven mice
are randomly selected. The result of the second experiment would be the number
of males and females in a sample of seven. Suppose the outcome of the experiment
was FFFFFFM , where F represents a female and M represents a male. If the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 82

experimental design is not known ahead of time, the result is useless. Consider the
p-value for each of these experiments. The p-value is the probability of obtaining
results at least as extreme as the observed results of a statistical hypothesis test [163].
For the first experiment, the p-value is 0.031 and for the second experiment, the
p-value is 0.227. Using a confidence level of α = 0.05, opposite outcomes could be
concluded for these two experiments when it comes to rejecting the null hypothesis,
despite using the same data. The reason for the difference in outcomes, is due to
the difference in their null distributions, which represent the probability distribution
of the test statistic when the null hypothesis is true. The first approach uses a
geometrical approach, and the second used a binomial approach as illustrated in
Figure 5.5.

Figure 5.5: The experimental outcomes for the mice-population experiments as were
taken from [68] .

If Bayesian statistics is used, the experimental design that was chosen does not
matter. In Bayesian statistics it is common to use a Beta probability distribution
as a prior distribution. If the prior distribution is sampled from Beta(3, 3), then
using Bayesian analysis, the posterior distribution, according to the outcomes of this
experiment, would yield Beta(9, 4).

Hackenberger [68] mentions that the Beta probability distribution can be seen
as a probability distribution of the occurrence of specific parameters. From the
information that is now known about the Beta probability distribution, it is possible
to calculate the probability that the gender ratio in this mice population is not
1 : 1, with the Beta probability distribution as a prior, yielding a p-value of 0.92.
This means that there is a probability of 92% that the mice population is not 1 : 1,
regardless of experimental design. An illustration of this is given in Figure 5.6.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 83

Figure 5.6: An illustration of the prior and posterior probability distributions for the
outcomes of the mice-population experiment, using a Beta prior, as was taken from [68].

Figure 5.6 shows how the posterior distribution differs from the prior distribution.

5.7.2 Bayesian Analysis

Bayesian analysis is the process by which prior beliefs are updated as a result of
observing new data/evidence. Similar to the approaches followed above to explain
Bayesian statistics, a proposal is made to explain Bayesian analysis by means of
an example taken from [175]. Let Y = (Y1, Y2, . . . , YN) denote the random variable
that is observed over a sample size of N . Then the likelihood of the sample is given
as L(y1, y2, . . . , yn|θ). In the discrete case, the likelihood function is defined to be
the joint probability, P (Y1 = y1, Y2 = y2, . . . , YN = yn), and for the continuous case,
yields the joint density of Y1, Y2, . . . , YN , evaluated at y1, y2, . . . , yn. The Bayesian
view models the parameter θ as a random variable with a probability distribution,
referred to as the prior distribution of θ. The symbol θ, is included in the notation
of L as an argument to illustrate that this function is dependent, explicitly, on the
value of θ. Importantly, the prior distribution is specified before any data is collected
and represents the theoretical prior knowledge about θ. Assume that the parameter
θ has a continuous distribution with density g(θ) that has no unknown parameters.
Considering the likelihood of the data and the prior on θ, then the joint likelihood of
Y1, Y2, . . . , YN , θ is given as

f(y1, y2, . . . , yn, θ) = L(y1, y2, . . . , yn|θ)g(θ) (5.40)

The marginal density or mass function of Y1, Y2, . . . , YN is given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 84

m(y1, y2, . . . , yn) =
∫ ∞

−∞
L(y1, y2, . . . , yn|θ)g(θ)dθ (5.41)

Finally, the posterior density of θ|y1, y2, . . . , yn denoted by g∗(θ|y1, y2, . . . , yn),
according to Bayes’ theorem, is given as

g∗(θ|y1, y2, . . . , yn) = L(y1, y2, . . . , yn|θ)g(θ)∫∞
−∞ L(y1, y2, . . . , yn|θ)g(θ)dθ

(5.42)

Wackerly et al.[175] mention that the posterior density summarises all the perti-
nent information about the parameter θ by making use of the information contained
in the prior for θ, as well as the information in the observed data/evidence.

Consider now how Bayesian analysis can be used to update the priors on θ based
on newly observed data. As with the example above, the discussion below is taken
from [175]. Let Y1, Y2, . . . , YN denote a random sample from a Bernoulli probability
distribution, where P (Yi = 1) = θ and P (Yi = 0) = 1− θ and the prior distribution
for θ is Beta(α, β). The posterior distribution for θ can be formulated as follows.
The Bernoulli probability function is written as

P (yi|θ) = θyi(1− θ)1−yi (5.43)

where yi = {0, 1} and 0 < θ < 1. The likelihood L(y1, y2, . . . , yn|θ) is presented
as follows:

L(y1, y2, . . . , yn|θ) = P (y1, y2, . . . , yn|θ)

= θy1(1− θ)1−y1 × θy2(1− θ)1−y2 × · · · × θyn(1− θ)1−yn

= θ
∑

yi(1− θ)n−
∑

yi

(5.44)

Then the joint likelihood of Y1, Y2, . . . , YN , θ from Equation (5.40) is formulated
as

f(y1, y2, . . . , yn, θ) = L(y1, y2, . . . , yn|θ)g(θ)

= θ
∑

yi(1− θ)n−
∑

yi × Γ(α + β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1

= Γ(α + β)
Γ(α)Γ(β)θ

∑
yi+α−1(1− θ)n−

∑
yi+β−1

(5.45)

The marginal density of Y1, Y2, . . . YN is then given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Probability 85

m(y1, y2, . . . , yn) =
∫ 1

0

Γ(α + β)
Γ(α)Γ(β)θ

∑
yi+α−1(1− θ)n−

∑
yi+β−1dθ

= Γ(α + β)
Γ(α)Γ(β)

Γ(∑ yi + α)Γ(n−∑ yi + β)
Γ(n+ α + β)

(5.46)

Finally, the posterior density of θ, denoted by g∗(θ|y1, y2, . . . , yn), is given as

g∗(θ|y1, y2, . . . , yn) =
Γ(α+β)

Γ(α)Γ(β)θ
∑

yi+α−1(1− θ)n−
∑

yi+β−1

Γ(α+β)
Γ(α)Γ(β)

Γ(
∑

yi+α)Γ(n−
∑

yi+β)
Γ(n+α+β)

= Γ(n+ α + β)
Γ(∑ yi + α)Γ(n−∑ yi + β)θ

∑
yi+α−1(1− θ)n−

∑
yi+β−1

(5.47)

The posterior density has the same functional form, A(v), as the prior, yielding
the update on prior parameters as α′ = ∑

yi + α and β′ = n−∑ yi + β.

5.8 Summary

This chapter provided all the necessary background information on probability theory
and statistics. The origins of statistical analysis were discussed and the differences
between the frequentist and Bayesian view of statistics were discussed in detail.
Probability distributions and proofs of conjugate priors were provided with detailed
mathematical descriptions. Finally, a detailed description of Bayesian analysis was
provided with detailed mathematical descriptions.

This chapter concludes all the relevant background information that is needed to
formulate the BHH. The proposed BHH is presented in the following chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6

Bayesian Hyper-Heuristic

“The result is a posterior distribution, which the agent may use as its
new prior in the next step.”

- Pedro Domingos, The Master Algorithm

The above quote was the inspiration for the development of a novel hyper-heuristic
(HH) that uses Bayesian probability concepts as a selection mechanism to drive the
heuristic selection process. Thus far the reader has been presented with all of
the necessary background information on ANNs (Chapter 2), low-level heuristics
(Chapter 3), HHs (Chapter 4) and lastly, probability theory (Chapter 5). These
elements form the fundamental components of the proposed Bayesian hyper-heuristic
(BHH). This chapter provides the details around the implementation of the BHH and
explains how it is used to train FFNNs. The remainder of the chapter is structured
as follows:

• Section 6.1 provides a brief overview of the BHH.

• Section 6.2 provides the general architecture and HH framework implemented
by the BHH.

• Section 6.3 presents the heuristic pool, a collection of low-level heuristics.
Discussions follow on the importance of diversity amongst heuristics in the
heuristic pool.

• Section 6.4 presents details on entity (local) and population (global) memory
(state).

• Section 6.5 presents detailed discussions on performance measurement. The
performance log, implemented by the BHH, is presented.

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 87

• Section 6.6 presents detailed discussions on credit assignment strategies.

• Section 6.7 presents the Bayesian probabilistic model that is used as the
heuristic selection mechanism.

• Section 6.8 presents the learning mechanisms by which the probabilistic model
can be optimised.

• Section 6.9 summarises and discusses the associated hyper-parameters and
default values.

• Section 6.10 provides the pseudo-code algorithm for the BHH.

• Section 6.11 provides a brief summary of the chapter.

6.1 Overview

This section provides an overview of the workings of the Bayesian hyper-heuristic
(BHH). The general concept of the BHH can be summarised as follows: The BHH
implements a high-level heuristic selection mechanism that learns to select the best
heuristic from a pool of low-level heuristics, to apply to a population of entities, each
implementing a candidate solution to a FFNN, with the intent of both optimising
the underlying FFNN and FFNN training process. The BHH does so by learning
the probability that a given heuristic will perform well at a given stage in the FFNN
training process. These probabilities are then used as heuristic selection probabilities
in the next step of the training process.

Formal classification of the BHH is needed. Chapter 4 presented the reader with
a proposed classification scheme for HHs by Burke et al. [19]. According to the
aforementioned classification scheme, the BHH is a population-based, meta-hyper-
heuristic that utilises selection and perturbation of low-level heuristics in an online
learning fashion. A breakdown of the classification is given as follows:

• Population-Based: The BHH implements a population-based approach,
where a collection of different candidate solutions, referred to as entities, work
together to yield a global best solution.

• Meta-Hyper-Heuristic: There exists a domain barrier, where the BHH
searches through the heuristic space, using only heuristic performance infor-
mation, while lower level heuristics search through the solution space using
information from the search domain itself. Furthermore, the heuristic pool

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 88

implemented by the BHH supports both gradient-based low level heuristics, as
well as MHs.

• Selection and Perturbation of Low-Level Heuristics: The BHH im-
plements a heuristic selection mechanism that selects from a collection of
lower level heuristics, called a heuristic pool. Selection is biased towards good
performing heuristics. A credit assignment strategy is used to reward good
heuristic performance. The BHH maintains entity and population state through
operations that proxy update steps from different heuristics (perturbation),
as is required. These proxy operations ensure that heuristic requirements are
satisfied even when different heuristics are used for different entities throughout
the training process.

• Online Learning: The BHH applies learning, at specified intervals, throughout
the FFNN training process.

6.2 Architecture

This section aims to present the reader with all the high level components in the
architecture of the BHH. Burke et al. [19] propose an initial framework for HHs
and Grobler [64] further propose a framework for a heterogeneous meta-HH. The
aforementioned frameworks are adapted for the implementation of the BHH. An
illustration of the high-level architecture of the BHH is given in Figure 6.1.

With reference to Figure 6.1, the components are briefly given below in the order
of information flow during the FFNN training process steps:

• Initialisation Step: The initialisation step refers to the initialisation strategy
implemented by the BHH.

• Heuristic Pool: The heuristic pool contains a collection of low-level heuristics.

• Entity Pool: The entity pool represents a collection of candidate solutions
for the underlying FFNN, referred to as entities in a population.

• Selection Mechanism: The selection mechanism refers to the Bayesian
probabilistic model.

• Heuristic-Entity Selections: Every entity in the entity pool is assigned a
selected heuristic.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 89

Initialisation Strategy

Selection Mechanism

E 1
E 2

E 3
E 4

E 5
E 6

E 7
E 8

E 9
...

E J

E 1
 S

ta
te

E 2
 S

ta
te

E 3
 S

ta
te

E 4
 S

ta
te

E 5
 S

ta
te

E 6
 S

ta
te

E 7
 S

ta
te

E 8
 S

ta
te

E 9
 S

ta
te

...
.

E J
 S

ta
te

H
eu

ris
tic

-E
nt

ity
 S

el
ec

tio
ns

E 1
 S

ta
te

E 2
 S

ta
te

E 3
 S

ta
te

E 4
 S

ta
te

E 5
 S

ta
te

E 6
 S

ta
te

E 7
 S

ta
te

E 8
 S

ta
te

E 9
 S

ta
te

...
.

E J
 S

ta
te

H
E1

 P
ro

xy
H
E2

 P
ro

xy
H
E3

 P
ro

xy
H
E4

 P
ro

xy
H
E5

 P
ro

xy
H
E6

 P
ro

xy
H
E7

 P
ro

xy
H
E8

 P
ro

xy
H
E9

 P
ro

xy
...

.
H
EJ

 P
ro

xy

Po
pu

la
tio

n
St

at
e

En
tit

y
Po

ol
 (S

ol
ut

io
n

Sp
ac

e)

H
1

Pr
ox

y
H
2

Pr
ox

y
H
3

Pr
ox

y
H
4

Pr
ox

y
H
5

Pr
ox

y
H
6

Pr
ox

y
H
7

Pr
ox

y
H
8

Pr
ox

y
H
9

Pr
ox

y
...

.
H
J P

ro
xy

H
1:

SG

D
H
2:

M

om
en

tu
m

H
3:

N

AG
H
4:

Ad
ad

el
ta

H
5:

Ad

ag
ra

d
H
6:

R

M
SP

ro
p

H
7:

Ad

am
H
8:

PS

O
H
9:

D

E
...

H
eu

ris
tic

 P
oo

l (
H

eu
ris

tic
 S

pa
ce

)

H
K:

G

A

Tr
ai

n
D

at
as

et

M
od

el

Te
st

D

at
as

et
Loss Function

Optimisation Strategy

Domain Barrier

*r
ep

ea
t u

nt
il

st
op

pi
ng

 c
on

di
tio

n

C
re

di
t A

ss
ig

nm
en

t S
tra

te
gy

i
k

j
c

St
ep

H
eu

ris
tic

En
tit
y

C
re
di
t

Pe
rfo

rm
an

ce
 L

og

i
k

j
l

St
ep

H
eu

ris
tic

En
tit
y

Lo
ss

Low-Level Heuristics Update Step

Figure 6.1: An illustration of the architecture and high level components of the Bayesian
hyper-heuristic (BHH).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 90

• Train and Test Datasets: The training set is used to train the model while
the test set is used to evaluate the model’s generalisation capabilities.

• Model: The underlying FFNN to be trained.

• Low-Level Heuristics Update Step: The low-level heuristics’ update step
as it applies to its allocated entity.

• Loss Function: In supervised learning, the loss function is a measure of
distance between predicted output and the ground truth, and is the mechanism
used to evaluate the model’s performance.

• Domain Barrier: The domain barrier is the logical separation of information
available in the heuristic space and the solution space. The BHH searches in
the heuristic space, while low-level heuristics search in the solution space.

• Performance Log: Contains a record of heuristic-entity performance at each
step of the training process.

• Credit Assignment Strategy: The strategy used to assign credit to heuristics
for their performance.

• Update Step: The high-level heuristic update step as implemented by the
BHH.

6.3 Heuristic Pool

Generally speaking, the heuristic pool is a collection of low-level heuristics under
consideration by the BHH. The heuristic pool contains the set of low-level heuristics
that, together with their performance information, make up the heuristic space.
Importantly, the BHH searches in heuristic space. The heuristic pool is defined in
terms of the diversity of heuristics, as well as the number of heuristics in the heuristic
pool. Each of these is discussed in the following sections.

6.3.1 Heuristic Diversity

A heuristic’s eligibility for inclusion in the heuristic pool is determined by its ability
to solve the underlying problem and its search behaviour and characteristics. The
heuristic pool should contain a variety of different heuristics that have different search
behaviours, so that a trade-off can be made between exploration and exploitation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 91

of solutions, as is required during the training process. Heuristics that explore a
lot should be selected when exploration is needed, and heuristics that exploit a lot
should be selected accordingly. The trade-off between exploration and exploitation
is managed by the high-level heuristic. The BHH learns to select and apply the
appropriate heuristic at the appropriate time, throughout the training process. In
doing so, a balance is achieved between exploration and exploitation.

6.3.2 Heuristic Pool Size

Another design decision with respect to the heuristic pool is heuristic pool size. Since
the BHH is a learning HH, every heuristic that is included in the heuristic pool
increases the requirement of more statistical evidence of heuristic performance. Not
only does a large heuristic pool drastically complicate the learning process that is
required by the BHH, but it also drastically complicates the process of maintaining
state. State is the term used to describe data that is relevant to the training process,
and is maintained between training steps. An example of local state is an entity’s
position, while an example of global state is the global best solution found thus far.

6.3.3 Proxies

The concept of proxies arise from the sparsity of state as maintained by different
heuristics. Since heuristics maintain (possibly) different states, there is an uncertainty
of state transition when switching between heuristics. Consider an example where
the heuristic pool consists of just two heuristics. One heuristic is a gradient-based
heuristic that maintains momentum, such as Adam [94]. The other is a meta-heuristic
that does not require a gradient, such as PSO [146]. Both these heuristics track
different parameters in their state. For Adam, the expected gradient mean and
variance is maintained, while the PSO maintains record of the gbest and pbest
solutions of all of entities. A solution to state indifference is to proxy heuristic state
update operations. State is then maintained in two parts:

• Primary State: Refers to the state that is originally maintained by a heuristic.
The selected heuristic simply applies the normal state update operations to its
state.

• Proxied State: Refers to the state that is not directly maintained by the
heuristic, but can be updated by outsourcing the required state update operation
to another heuristic.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 92

Primary and proxied state parameters must be maintained together. Since entities
represent candidate solutions, which are forms of state, entities are ideal candidates
to store and maintain these state parameters. Entities are extended to include
the primary state elements of all the underlying low-level heuristics, as well as the
candidate solution (weights) for the FFNN. At each heuristic-entity application step,
all state parameters, per entity, are updated either by primary method or by proxied
method. The BHH thus incorporates a mapping of proxied state update operation
as given in the example in Table 6.1.

Table 6.1: An example of a mapping of proxied state update operation maintained by the
BHH.

State Parameter

1 2 3

Heuristic
A n/a B n/a
B n/a n/a A
C n/a B A

From the example given in Table 6.1, when heuristic A is selected, it will outsource
state update operations from heuristic B for state parameter 2. Heuristic B will
outsource from heuristic A for state parameter 3. Finally, heuristic C will outsource
from heuristic A and B for state parameters 2 and 3 respectively. In this way, all
heuristics maintain all the state parameters.

Proxied state update operations is a simple concept in principle, but requires
detailed decomposition of the heuristics included in the heuristic pool. Overlapping
and unique state parameters must be identified so that a proxy mapping, such as the
one given in Table 6.1, can be constructed. A suggestion to simplify this process is to
borrow concepts from the equations of motion from physics. These include position,
velocity, acceleration, and momentum. Expressing heuristic update steps according
to these parameters drastically simplify the process. However, it is possible that
heuristics implement unique state parameters that do not overlap. These have to be
catered for in the proxy mapping.

State parameters and update operations should not be considered in isolation. An
example is position and velocity. Consider, for example, heuristics such as DE [128]
and GAs [76]. These heuristics recombine entities. In the aforementioned case, the
concept of an equation of motion does not entirely make sense, since the displacement
of its position is not a result of maintaining velocity or momentum, but rather
by displacement through recombination. In this particular case, a solution is to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 93

apply the recombination operation to all applicable state parameters as well, or to
nullify the necessary state parameters. Unfortunately, there is no general, automated
solution to formulate these heuristic state overlaps. Each heuristic must be carefully
considered.

6.4 Entity Pool

The entity pool refers to a collection of entities that each represent a candidate
solution to the underlying FFNN being trained. The entities contain information of
the solution space. A common naming convention for such a collection is a population
of entities. The BHH is a population-based HH and as such, the entity pool size or
population size is an important design choice. The population size is defined as a
hyper-parameter of the BHH and can be empirically evaluated.

The entity pool maintains two different types of state. These include entity (local)
and population (global) state. Each of these is discussed in more detail next.

6.4.1 Entity State

Entities represent candidate solutions to the model’s trainable parameters (weights)
and other heuristic-specific state parameters, as was discussed in Section 6.3.3. It can
be said that entities implement local state. It was mentioned that these entities can
be treated as physical particles in a hyper-dimensional search environment. Entities
model concepts from physics. For example, the candidate solution is represented
as the entity’s position, and an entity’s velocity and acceleration are analogous to
the gradient and momentum of the entity respectfully. Examples of entity state
parameters, as derived from various low-level heuristics, is given as follows:

• position: A general parameter that represents the actual candidate solution
and is thus a primary state parameter for all heuristics.

• velocity: Directly implemented by heuristics such as PSOs and is analogous
to the gradient for gradient-based heuristics such as Momentum.

• gradient: The last known gradient, as derived from gradient-based heuristics.

• position delta: The last computed position delta between the current time
step and the previous time step.

• sum of the gradients squared: As required and maintained by heuristics
such as Adagrad.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 94

• expected position delta variance: As required and maintained by heuristics
such as Adadelta.

• expected gradient mean: As required and maintained by heuristics such as
Momentum, NAG and Adam.

• expected gradient variance: As required and maintained by heuristics such
as RMSProp, Adadelta and Adam.

• personal best position: A parameter that tracks that best known position
by the entity thus far, as required and maintained by heuristics such as PSO.

• personal best loss: A parameter that tracks that best known loss by the
entity thus far, as required and maintained by heuristics such as PSO.

• loss: A parameter that tracks the loss as achieved by the entity throughout
training.

From the list above, it should be clear that entity state becomes increasingly
complicated with the increase of the number of distinct heuristics in the heuristic
pool with unique state parameters.

6.4.2 Population State

The population state refers to a collection of parameters that are shared between
the entities in the population. Population state is also referred to as global state and
represents the population’s memory. The population state generally contains state
parameters that are of importance to multiple heuristics, and usually tracks the state
of the population and not individual heuristic. Some examples of population state
that can arise from different heuristics are given below:

• entities: Naturally, the population state contains the list of entities in the
population.

• ibest and ibest loss: Refers to the best position and loss achieved by the
population for the current iteration/step.

• rbest and rbest loss: Refers to the best position and loss achieved by
the population for a number of steps, referred to as the replay window size.
The replay window size defines a window of memory for tracking historical
performance data of heuristics.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 95

• gbest and gbest loss: Refers to the overall/global best position and loss
achieved by the population for the entire training process. This parameter is
introduced by heuristics such as PSOs.

Entities in the entity pool are each assigned an associated heuristic. The BHH
selects from the heuristic pool a low-level heuristic to be applied to an individual
entity. The outcome of this selection process is a mapping table that tracks which
heuristic has been selected for which entity. The selection process is executed
by the selection mechanism of the BHH. These heuristic-entity combinations are
applied to the underlying FFNN. The BHH tracks the performance of each of these
combinations throughout the training process in a performance log.

6.5 Performance Log

The BHH incorporates a form of probabilistic modelling in its selection mechanism.
Probability is calculated based on heuristic-entity performance over time. Evidence
of heuristic-entity performance is thus required for the BHH to learn. Since the
performance log can become very big, only a sliding window of the performance
history is maintained at each step in the learning process. The sliding window is
also referred to as a replay buffer, a term borrowed from the field of reinforcement
learning (RL). The replay window size is defined as a hyper-parameter of the BHH.
The performance log is then simply a table of events and metrics. The BHH tracks
the following metrics in the performance log:

• step: The current mini-batch step.

• heuristic: The selected heuristic’s index.

• entity: The entity’s index to whom the heuristic is applied.

• loss: The heuristic-entity performance metric. The loss is retrieved from the
loss function.

• ibest loss: Keeps track of the iteration best loss. Thus, the best loss value
achieved by all entity-heuristic combinations, for a single mini-batch step.

• rbest loss: Keeps track of the replay best loss. Thus, the best loss value
achieved by all entity-heuristic combinations, over all mini-batch steps currently
in the performance log/replay window.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 96

• gbest loss: Keeps track of the global best loss. Thus, the best loss value
achieved by all entity-heuristic combinations over all mini-batch steps thus far.

An example of the performance log implemented by the BHH is given in Table
6.2.

Table 6.2: An example of the performance log implemented by the BHH, showing the
first five entities, their allocated heuristics and their resulting performance measurements
for the first step of the training process.

step entity heuristic loss ibest loss pbest loss rbest loss gbest loss

1 1 1 0.016444 0.016444 0.016444 0.016444 0.016444
1 2 2 0.337965 0.016444 0.337965 0.016444 0.016444
1 3 1 0.134781 0.016444 0.134781 0.016444 0.016444
1 4 1 0.998719 0.016444 0.998719 0.016444 0.016444
1 5 3 0.708702 0.016444 0.708702 0.016444 0.016444

The performance log itself introduces a number of design considerations as well.
The larger the performance log, the longer memory is retained throughout the training
process. The performance log size, referred to as the replay window size, controls
the recency of evidence from which the BHH must learn. If the replay window size
is too small, it does not accumulate enough samples/evidence to statistically make
accurate selections. If the replay window size is too big, a bias could exist for selecting
heuristics that performed well in the past. Furthermore, it is not guaranteed that
past performance is indicative of future performance during the training process. The
performance log should be considered along with the selection of a credit assignment
strategy.

6.6 Credit Assignment Strategy

The credit assignment strategy is a mechanism that assigns a discrete credit indicator
to heuristics that perform well, based on their performance metrics such as loss. The
credit assignment strategy implements the “move acceptance” process as proposed
by Özcan et al. [121, 122] and addresses the credit assignment problem as discussed
by Burke et al. [19]. A good credit assignment strategy will correctly allocate credit
to the appropriate heuristic-entity combination. The credit assignment strategy
to use is defined as a hyper-parameter. The BHH implements the following credit
assignment strategies to choose from:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 97

• ibest: Credit is assigned to the heuristic-entity combination that set the ibest
loss value, meaning that it is the entity-heuristic combination that achieved
the best performance in the current mini-batch iteration.

• pbest: Credit is assigned to the heuristic-entity combination that set the pbest
loss value, meaning that it is the entity-heuristic combination that was able to
improve on its personal best past performance loss.

• rbest: Credit is assigned to the heuristic-entity combination that set the rbest
loss value, meaning that it is the entity-heuristic combination that achieved
the best performance in the current replay window.

• gbest: Credit is assigned to the heuristic-entity combination that set the gbest
loss value, meaning that it is the entity-heuristic combination that achieved
the overall best performance so far.

• symmetric: Credit is assigned to all entity-heuristic combinations, regardless
of their performance. The symmetric credit assignment strategy does not
randomly assign credit, but rather assigns credit to all events. In effect, no
learning and performance-bias is achieved with the symmetric credit assignment
strategy and thus the symmetric credit assignment strategy is implemented
as a basis for comparison. Comparing a credit assignment strategy to the
symmetric credit assignment indicates the ability of the other credit assignment
strategy to have an effect on the learning process and performance of the BHH.

The implementation of a credit assignment strategy is simply a function that
translates the performance log from Table 6.2 into Table 6.3.

Table 6.3: Credit assignment strategy output table showing ibest credit assignment for
the first five entities and their selected heuristics for step 1 of the training process.

step entity heuristic credit

1 1 1 true
1 2 2 false
1 3 1 false
1 4 1 false
1 5 3 false

Credit is used by the selection mechanism of the BHH.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 98

6.7 Selection Mechanism

This section provides the detail around the selection mechanism as it is implemented
by the BHH. Detail is provided around random events as observed by the BHH.
An argument for independence between random events is made. Bayes’ theorem is
briefly reviewed in the context of the BHH implementation. It is shown how the
BHH implements a probabilistic, predictive model based on the fundamentals of the
Naïve Bayes algorithm. Brief discussions follow on numerical stability and mode
collapse.

6.7.1 Random Events

Observation of random events is treated as evidence. In the context of a Bayesian
approach, this evidence is used to update prior beliefs. The BHH distinguishes
between the following events:

• H : The event of observing heuristics.

• E: The event of observing entities.

• C: The event of observing credit assignments that indicate that the credit
assignment performance criteria are met.

It should be noted that event information is stored and observed directly from the
performance log as presented in Table 6.3. From the above list of events, the event
C is dependent on the occurrence of H and E and a credit assignment strategy.

6.7.2 Independence

The dependence between random events can have an impact on the probabilistic
model that is implemented. For simplicity, the BHH assumes independence between
events, although the event C is clearly dependent on the occurrence of H and E.
Furthermore, the BHH assumes independence between steps and treats each training
step as if training has restarted. The BHH implements a form of Naïve Bayes classifier,
where the appropriate heuristic to assign to an entity is a classification problem.
Domingos et al. [36] mention that although the probability estimates of Bayesian
classifiers are only optimal under quadratic loss if the independence assumption
holds, the classifier itself can still be optimal under zero-one loss (misclassification
rate), even when this assumption is violated by a wide margin. This means that
independence can be assumed when the probabilistic model is used as a classifier.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 99

6.7.3 Bayes’ Theorem

Chapter 5 presented Bayes’ theorem, but for convenience, it is given below:

P (A|B) = P (B|A)P (A)
P (B) (6.1)

Since the BHH implements a Bayesian classifier, the BHH is not concerned with
actual probabilities. Equation (6.1) can thus be evaluated for proportionality. The
resulting proportionality is expressed as

P (A|B) ∝ P (B|A)P (A) (6.2)

The conditionality implemented by Bayes’ theorem can be extended to include
multiple criteria. Bayes’ theorem is used by the selection mechanism of the BHH.

6.7.4 Predictive Model

This section presents the predictive model as implemented by the selection mechanism
of the BHH. The predictive model is arguably the most important component of
the BHH, because it drives the heuristic selection process. The BHH implements a
predictive model that predicts which heuristic to select, given the conditionality that
a particular entity is used and a particular credit assignment criteria is met. The
predictive model can be derived as follows.

Setup:
Let

• I denote the maximum number of instances in the replay window.

• J denote the entity pool (population) size.

• K denote the heuristic pool size.

• L denote the number of credit assignment output classes. Since the output of
credit assignment is Boolean, L = 2.

• α = (α1, . . . , αK) denote the concentration parameters for the heuristic proba-
bility distribution.

• β = (β1, . . . , βK)J denote the concentration parameters for the entity-heuristic
probability distributions.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 100

• γ = (γ1, . . . , γK)L denote the concentration parameters for the credit-heuristic
probability distribution.

• θ|α ∼ Dir(α;K) denote the heuristic probability distribution, implementing
a Dirichlet probability distribution parameterised by α and K. Heuristic
selection probabilities are sampled from this distribution.

• ϕ|β ∼ Dir(β;K)J denote the entity-heuristic probability distribution, imple-
menting a Dirichlet probability distribution parameterised by β and K for each
entity in the entity pool with population size J . Entity-heuristic probabilities
are sampled from this distribution.

• ψ|γ1, γ0 ∼ Beta(γ1, γ0) denote the credit-heuristic probability distribution,
implementing a Beta probability distribution parameterised by γ1 and γ0.
Credit-heuristic probabilities are sampled from this distribution.

• H|θ ∼Mult(θ; I,K) denote the distribution of heuristics (event H), imple-
menting a Multinomial distribution, parameterised by the sampled heuristic
selection probabilities θ, the heuristic pool size K, and maximum number of
instances I.

• E|ϕ ∼Mult(ϕ; I,K)J denote the distribution of entity-heuristic combinations
(event E), implementing a Multinomial distribution, parameterised by the
sampled entity-heuristic selection probabilities ϕ, the heuristic pool size K,
and maximum number of instances I for each entity in J .

• C|ψ ∼ Bin(ψ, I) denote the distribution of credit-heuristic combinations
(event C), implementing a Binomial probability distribution, parameterised
by the sampled credit-heuristic selection probabilities ψ and the maximum
number of instances I.

The parameterised predictive model, as derived from Bayes’ theorem, is then
given as

P (H|E,C;θ,ϕ,ψ) = P (E,C|H;ϕ,ψ)P (H|θ)
P (E,C|θ,ϕ,ψ)

= P (E|H;ϕ)P (C|H;ψ)P (H|θ)
P (E|θ,ψ)P (C|θ,ϕ)

= P (E|H;ϕ)P (C|H;ψ)P (H|θ)[∑K
k P (E,H = k|θ,ϕ)

] [∑K
k P (C,H = k|θ,ψ)

]
= P (E|H;ϕ)P (C|H;ψ)P (H|θ)[∑K

k P (E|H = k,ϕ)P (H = k|θ)
] [∑K

k P (C|H = k,ψ)P (H = k|θ)
]

(6.3)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 101

Notice the joint probability over events E and C, given the selection of a heuristic
H, denoted by the product of the sums of the separate parts for E and C, in the
denominator. The calculation in the denominator can be intractable. Since the
BHH selection mechanism uses the predictive model as a classifier, the posterior
distribution as given in Equation (6.1) can be evaluated for proportionality as follows:

P (H|E,C;θ,ϕ,ψ) ∝ P (E|H ;ϕ)P (C|H ;ψ)P (H|θ) (6.4)

The predictive model thus models the proportional probability of the event
(selection of) heuristicH , given allocation to entity E and credit C, parameterised by
sampled θ, ϕ and ψ. These parameters are in turn parameterised by concentrations
α, β, γ1 and γ0, which denote the prior beliefs of the BHH.

6.7.5 Naïve Bayes

This section aims to dissect the probabilistic model that is presented in Equation (6.4).
The BHH implements a form of Naïve Bayes classifier, and thus independence between
events can be assumed. The following derived PMFs are provided as fundamental
building blocks to show the mechanism by which the BHH learns.

The independence between events for class label H, simply yields the PMF of
the Multinomial distribution as presented below:

P (H|θ) ∝
I∏

i=1

K∏
k=1

P (hi,k|θk)

∝
I∏

i=1

K∏
k=1

θ
11(hi,k)
k

∝
K∏

k=1
θ
∑I

i=1 11(hi,k)
k

∝
K∏

k=1
θNk

k

(6.5)

where Nk is a summary variable such that Nk = ∑I
i=i 11(hi,k), denoting the count

of occurrences of the event hi taking on class k in I independent, identical runs.
The independence between events E, given class label H, is denoted by the

likelihood of E, conditional to the occurrence of heuristic k and model parameter ϕ
as follows:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 102

P (E|H ;ϕ) ∝
I∏

i=1

J∏
j=1

K∏
k=1

P (ei,j,k|hi,k;ϕj,k)

∝
I∏

i=1

J∏
j=1

K∏
k=1

ϕ
11(ei,j,k)11(hi,k)
j,k

∝
J∏

j=1

K∏
k=1

ϕ

∑I

i [11(ei,j,k)11(hi,k)]
j,k

∝
J∏

j=1

K∏
k=1

ϕ
Nj,k

j,k

(6.6)

where Nj,k is a summary variable such that Nj,k = ∑I
i=i 11(ei,j,k)11(hi,k), denoting

the count of occurrences of the events ei taking on class j and hi taking on class k,
i.e. the count of occurrences of both entity j and heuristic k occurring together in I
independent, identical runs.

Finally, the independence between events for the performance criteria C, given
class label H, is denoted by the likelihood of C, conditional to the occurrence of
heuristic k and model parameter ψ as given below:

P (C|H ;ψ) ∝
I∏

i=1

K∏
k=1

P (ci,k|hi,k;ψk)

∝
I∏

i=1

K∏
k=1

ψ
11(ci,k)11(hi,k)
k (1− ψk)10(ci,k)11(hi,k)

∝
K∏

k=1
ψ
∑I

i=1 11(ci,k)11(hi,k)
k (1− ψk)

∑I

i=1 10(ci,k)11(hi,k)

∝
K∏

k=1
ψ

N1,k

k (1− ψk)N0,k

∝
K∏

k=1
ψ

N1,k

k (1− ψk)(Nk−N1,k)

(6.7)

where Nk is the same summary variable as described for Equation (6.5). N1,k

is a summary variable such that N1,k = ∑I
i=1 11(ci,k)11(hi,k), denoting the count

of occurrences of the events ci taking on a success (i.e. ci = 1) and hi taking
on class k, i.e. the count of occurrences of both succeeding in the performance
criteria and heuristic k occurring together in I independent, identical runs. Similarly,
N0,k = Nk−N1,k denotes the count of occurrences of the events ci taking on a failure
(i.e. ci = 0) and hi taking on class k.

Equations (6.5), (6.6) and (6.7) can be substituted into the proportional evaluation
of the predictive model as given in Equation (6.4), resulting in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 103

P (H|E,C;θ,ϕ,ψ) ∝ P (E|H ;ϕ)P (C|H ;ψ)P (H|θ)

∝

 J∏
j=1

K∏
k=1

ϕ
Nj,k

j,k

 [K∏
k=1

ψ
N1,k

k (1− ψk)(Nk−N1,k)
] [

K∏
k=1

θNk
k

] (6.8)

Consider the practical implementation of the predictive model as shown in
Equation (6.8). Computationally, the equation presented in Equation (6.8) will
underflow on a real computer if the resulting probabilities are very small.

6.7.6 Numerical Stability

When Equation (6.8) is evaluated, the numerical stability is shown to underflow if
the resulting probabilities from its parts are very small. Multiplication of multiple
fractional parameters leads to an even smaller fractional number. Probabilities might
be very low at some points during training. Consider an example where training has
stagnated, effectively leading to a scenario where a credit assignment strategy never
fulfils a credit assignment, yielding an extremely small probability for ψ. A solution
to the aforementioned problem is to apply the log-sum-exp trick. The transformation
of Equation (6.8) using the log-sum-exp trick is given as

LSE(P (hk|ej, c1;θ,ϕ,ψ)) = ln(exp(ϕj,k) + exp(ψk) + exp(θk)) (6.9)

The log-sum-exp trick as shown above caters for very small probabilities. However,
there might be a situation where a random event is never seen, purely by chance.
This results in a scenario referred to as mode collapse.

6.7.7 Mode Collapse

Mode collapse is the situation that occurs where the selective pressure towards a
heuristic is close to zero as a result of random sampling, low initial bias, or bad
performance. This leads to a situation where the probabilistic model continually
decreases the selective pressure, until the selection probability of that heuristic is 0,
yielding no further observations of that particular random event. The BHH addresses
the aforementioned issue by

• using symmetric initialisation of the concentration parameters α, β, γ1 and γ0;

• setting the lower-bound of the concentration parameters α, β, γ1 and γ0 to 1,
so that a selection probability of 0 is highly improbable; and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 104

• continuously resampling heuristics throughout the training process, before
and after optimisation, eliminating mode collapse as a result of just random
sampling.

Another suggestion is to ensure that at least one of every heuristic is always
selected during training. The BHH does not incorporate this approach, because
this could result in a situation where a bad choice of heuristic is continually used
throughout the training process, possibly resulting in bad update steps/selections.
Instead, the BHH relies on the underlying learning process to control the selective
pressure according to performance and nothing else. If this leads to a situation where
mode collapse occurs, the BHH accepts the outcome.

6.8 Optimisation Step

Thus far all the fundamental components of the BHH have been presented. The final
step that is missing is to present the optimisation step by which the learning process
takes place. This section provides a solid mathematical explanation to show exactly
how the BHH is able to learn. This section provides a brief overview of the role of
concentration parameters and pseudo counts. Detailed discussions and mathematical
descriptions follow for two techniques, known as MLE and MAP, that are used to
train Naïve Bayes classifiers.

6.8.1 Concentration Parameters and Pseudo Counts

The intent of the BHH is to gather evidence that can be used to update prior beliefs
about which heuristics perform well during training. These beliefs are represented by
the concentration parameters α, β, γ1 and γ0. A change in prior beliefs is represented
by a change in these concentration parameters. Specifically, it can be said that the
optimisation process implemented by the BHH updates pseudo counts of events that
are observed in the performance logs. These pseudo counts track the occurrence of a
heuristic, an entity, and resulting performance of these two elements. Through the
credit assignment strategy, these pseudo counts are biased towards entity-heuristic
combinations that meet performance requirements and yield credit allocations.

The BHH is an adaptive HH, meaning that it implements online learning. Online
learning refers to a process where learning happens during the training process.
Throughout the training process, concentration parameters are updated strategically
to guide the selection mechanism towards heuristics that perform well. The learning
capability of the BHH lies in carefully updating these concentration parameters. An-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 105

other possibility is to introduce a priori information in the form of expert knowledge.
A priori biases can be introduced by carefully setting the concentration parameters
to values that are known to be good.

Generally, there are two different techniques that are used to train Naïve Bayes
classifiers. The frequentist approach implements maximum likelihood estimation
(MLE) and the Bayesian approach implements maximum a posteriori estimation
(MAP). These methods are provided in Sections 6.8.2 and 6.8.3 respectively and
show how the concentration parameters are updated throughout the training process,
yielding the mechanism by which optimisation and learning takes place. It should be
mentioned that the BHH makes use of MAP to optimise the predictive model. How-
ever, the details of MLE is provided as well as it contains fundamental mathematical
building blocks that are required to present MAP.

6.8.2 Maximum Likelihood Estimation

In probability theory and statistics, maximum likelihood estimation (MLE) is a
method that estimates the parameters of a prior probability distribution and is based
on newly observed data and evidence. This section shows that the values for θ, ϕ
and ψ can be estimated by MLE as follows:

θ̂k = E[θk] = Nk

N
(6.10)

ϕ̂j,k = E[ϕj,k] = Nj,k

Nj
(6.11)

ψ̂k = E[ψk] = N1,k

Nk

(6.12)

The derivations of the MLE for θ̂k, ϕ̂j,k and ψ̂k are presented as follows: The log
likelihood of θ̂, ϕ̂ and ψ̂ as derived from the Equation (6.4) is given as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 106

L(θ,ϕ,ψ)

= ln
 J∏

j=1

K∏
k=1

ϕ
Nj,k

j,k

 [K∏
k=1

ψ
N1,k

k (1− ψk)(Nk−N1,k)
] [

K∏
k=1

θNk
k

]
= ln

 J∏
j=1

K∏
k=1

ϕ
Nj,k

j,k

+ ln
(

K∏
k=1

ψ
N1,k

k (1− ψk)(Nk−N1,k)
)

+ ln
(

K∏
k=1

θNk
k

)

=
 J∑

j=1

K∑
k=1

Nj,k ln (ϕj,k)

+
(

K∑
k=1

N1,k ln (ψk) + (Nk −N1,k) ln (1− ψk)
)

+
(

K∑
k=1

Nk ln (θk)
)

(6.13)

Equation (6.13) is broken down into each of its components. Consider the log
likelihood of ψ as denoted by

L(ψ) =
K∑

k=1
N1,k ln (ψk) + (Nk −N1,k) ln (1− ψk) (6.14)

The MLE for ψ̂k is calculated by taking the partial derivative of Equation (6.14)
with respect to ψk and equating to zero as follows:

∂L(ψ)
∂ψk

= N1,k
1
ψk

+ (Nk −N1,k) −1
(1− ψk)

∴ 0 = N1,k (1− ψk) + (N1,k −Nk)ψk

ψk (1− ψk)
∴ 0 = N1,k (1− ψk) + (N1,k −Nk)ψk

∴ 0 = N1,k −N1,kψk +N1,kψk −Nkψk

∴ 0 = N1,k −Nkψk

∴ Nkψk = N1,k

∴ ψ̂k = N1,k

Nk

(6.15)

The MLE for θ̂k can be calculated similarly. However, the K − 1 simplex S

has to be compensated for by adding error factor, ϵ, to correct values for θ, where∑K
k θk ̸= 1. The new log likelihood function is then given as

L(θ, ϵ) =
(

K∑
k=1

Nk ln (θk)
)

+ ϵ

(
1−

K∑
k=1

θk

)

=
(

K∑
k=1

Nk ln (θk)
)

+
(
ϵ− ϵ

K∑
k=1

θk

) (6.16)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 107

Solving first for ϵ yields

∂L(θ, ϵ)
∂ϵ

= 1−
K∑

k=1
θk

∴
K∑

k=1
θk = 1

(6.17)

Then solving for θk yields

∂L(θ, ϵ)
∂θk

= Nk
1
θk

+ ϵ(−1)

∴
Nk

θk

= ϵ

∴ Nk = θkϵ

∴
K∑

k=1
Nk =

K∑
k=1

θkϵ

∴ N = ϵ
K∑

k=1
θk

∴ N = ϵ

(6.18)

Substitution of N = ϵ back into Equation (6.18) yields

Nk = θkϵ

Nk = θkN

θ̂k = Nk

N

(6.19)

The MLE for ϕ̂j,k is calculated similarly. To compensate for the K − 1 simplex
S, an error, λ = (λ1, . . . , λJ) is added as follows:

L(ϕ,λ) =
 J∑

j=1

K∑
k=1

Nj,k ln (ϕj,k)
+

J∑
j=1

λj

(
1−

K∑
k=1

ϕj,k

)

=
 J∑

j=1

K∑
k=1

Nj,k ln (ϕj,k)
+

J∑
j=1

λj −
J∑

j=1
λj

K∑
k=1

ϕj,k

(6.20)

Solving first for λj yields

∂L(ϕ,λ)
∂λj

= 1−
K∑

k=1
ϕj,k

∴
K∑

k=1
ϕj,k = 1

(6.21)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 108

Then solving for ϕj,k yields

∂L(ϕ,λ)
∂ϕj,k

= Nj,k
1
ϕj,k

− λj

∴
Nj,k

ϕjk

= λj

∴ Nj,k = ϕj,kλj

∴
K∑

k=1
Nj,k =

K∑
k=1

ϕj,kλj

∴ Nj = λj

K∑
k=1

ϕj,k

∴ Nj = λj

(6.22)

Substitution of Nj = λj back into Equation (6.22) yields

Nj,k = ϕj,kλj

Nj,k = ϕj,kNj

ϕ̂j,k = Nj,k

Nj

(6.23)

6.8.3 Maximum A Posteriori Estimation

Another approach to optimise the values for θ̂k, ϕ̂j,k and ψ̂k is to optimise the
parameters by their probability distributions’ parameters. This process is referred to
as Bayesian analysis. This section provides the mathematical details of Bayesian
analysis and maximum a posteriori estimation (MAP) as it is implemented in the
BHH.

Bayesian analysis makes use of the posterior probability distribution. The
posterior distribution is simply expressed proportionally as

POSTERIOR ∝ LIKELIHOOD × PRIOR (6.24)

The event H is a multinomial distribution with probability parameter θ. It is
known that the conjugate prior to a multinomial distribution is a Dirichlet probability
distribution. The prior probability distribution for θ is thus presented as

P (θ|α) ∝
K∏

k=1
θαk−1

k (6.25)

Furthermore, the event E is also a multinomial distribution with parameter ϕ.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 109

The prior probability distribution for ϕ is thus presented as

P (ϕ|β) ∝
J∏

j=1

K∏
k=1

ϕ
βj,k−1
j,k (6.26)

Finally, the event C is a Binomial probability distribution with probability
parameter ψ. It is known that the conjugate prior to a Binomial probability
distribution is a Beta probability distribution. The prior probability distribution for
ψ is thus presented as

P (ψ|γ1, γ0) ∝
K∏

k=1
ψ

γ1,k

k (1− ψk)γ2,k (6.27)

Putting the likelihood and priors together yields the posterior distribution as
given below:

P (θ,ϕ,ψ|H,E,C;α,β, γ1, γ0) ∝ P (H|E,C;θ,ϕ,ψ)P (θ,ϕ,ψ|α,β, γ1, γ0)

= P (E|H;ϕ)P (C|H;ψ)P (H|θ)P (ϕ|β)P (ψ|γ1, γ0)P (θ|α)

=

 J∏
j=1

K∏
k=1

ϕ
Nj,k

j,k

[K∏
k=1

ψ
N1,k

k (1− ψk)(Nk−N1,k)

][
K∏

k=1
θNk

k

]

×

 J∏
j=1

K∏
k=1

ϕ
βj,k−1
j,k

[K∏
k=1

ψ
γ1,k−1
k (1− ψk)γ2,k−1

]

×

[
K∏

k=1
θαk−1

k

]

=

 J∏
j=1

K∏
k=1

ϕ
(Nj,k+βj,k)−1
j,k

×

[
K∏

k=1
ψ

(N1,k+γ1,k)−1
k (1− ψk)(N0,k+γ2,k)−1

]

×

[
K∏

k=1
θ

(Nk+αk)−1
k

]
(6.28)

From Equation (6.28) above, it can be seen that the posterior distribution has
the same form, A(v), as the prior distribution. The concentration update operations
are then be given as

αk(t+ 1) = Nk + αk(t) (6.29)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 110

βj,k(t+ 1) = Nj,k + βj,k(t) (6.30)

γ1,k(t+ 1) = N1,k + γ1,k(t) (6.31)

γ2,k(t+ 1) = N0,k + γ2,k(t) (6.32)

It can be seen that the prior and posterior probability distributions are of the
same form, A(v). It can therefore be said that the BHH implements a Gaussian
process [62]. Since the reselection of heuristics happens at regular intervals, the
outcome of a selection in one iteration may influence the outcome of another in the
next iteration, making the implementation of the BHH a HMM [130].

6.9 Hyper-Parameters

This section provides a breakdown of all the hyper-parameters that were identified
and briefly mentioned in this chapter. The following hyper-parameters are presented:
heuristic pool, population size, credit assignment strategy, reselection interval, re-
play window size, reanalysis interval, burn in window size, discounted rewards and
normalisation. Some logical arguments can be made as to what their values should
be. However it is still up to empirical analysis to determine the effects of certain
hyper-parameter design decisions. Where possible, a range of possible values are
provided.

6.9.1 Heuristic Pool

Section 6.3 provided the reader with the context and detail of the heuristic pool as it
is included in the architecture of the BHH. A detailed discussion was given around
the importance of diversity and balancing exploration and exploitation capabilities.
The heuristic pool hyper-parameter refers to the heuristic-pool configuration that is
used. The configuration of the heuristic pool should account for the following factors:

• The type of low-level heuristics to include in the heuristic pool. This dissertation
investigates two main groups, including gradient-based heuristics and MHs.

• The low-level heuristics’ hyper-parameters. At a lower-level, each of these
heuristics has their own set of hyper-parameters.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 111

• The heuristic pool size. This refers to the number of heuristics in the heuristic
pool.

The design choices at a high level are not as strict for the BHH as it is for low-level
heuristics. If the choice of hyper-parameters is uncertain, multiple configurations of
a low-level heuristic, each with its own unique hyper-parameter configurations, can
be included in the heuristic pool.

6.9.2 Population Size

Population size refers to the number of entities included in the entity pool. The
population size to use is to be determined empirically. Naturally, an assumption is
made that a larger population could lead to better results, assuming that entities are
initialised uniformly across the solution search space. However, larger population
sizes are computationally more expensive. Oldewage [120] mentions that a large
number of particles (entities) may be able to traverse a greater portion of the search
space, because every particle provides additional information about the search space.
However, it is to be determined if this is indeed the case for the BHH. The following
factors need to be considered when picking a population size:

• When considering the lower bound of possible population sizes, take into account
the highest, minimum population size required by all low-level heuristics. For
example, if DE is included into the heuristic pool, a population size of at least
four is required. For PSO, the minimum population size is three.

• When considering the upper bound of possible population sizes, take into ac-
count that a bigger population size results in a more computationally expensive
training process. Furthermore, there could exist a point of diminishing returns
where an increase in population size does not yield any better outcome.

6.9.3 Credit Assignment Strategy

Five different credit assignment strategies were presented in Section 6.6. The choice
of credit assignment is assumed to be problem dependent. However, this is to be
tested empirically. Along with the credit assignment strategy itself, the following
factors related to the credit assignment strategy should be considered:

• When to apply credit assignment during the training process.

• What should the credit assignment score/value be (default = 1).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 112

• To what degree should credit assignment be allocated to past results in the
performance log.

A number of other hyper-parameters are specifically included to address the
list of considerations as given above. These include the reselection interval, replay
window size and reanalysis interval, burn in window size, discounted rewards and
normalisation.

6.9.4 Reselection Interval

The reselection interval is a hyper-parameter that controls how often heuristic
selections are resampled from the heuristic distribution, parameterised by the heuristic
selection probability that is learnt. The choice of reselection should be influenced
by the following considerations: If reselection happens too frequently, heuristics are
not allowed sufficient time to achieve their goals and to smooth out update steps.
If reselection happens too infrequently, it does not allow for sufficient collection of
samples/evidence from which learning is done. Naturally, the correct reselection
interval to use is to be determined empirically.

6.9.5 Replay Window Size

The replay window size is a hyper-parameter that controls how much historical
performance information is kept in the performance log for the BHH to learn from
and was introduced in Section 6.5. The replay window size is a parameter that is
borrowed from reinforcement learning (RL) and aims to control the effect that past
performances have on the BHH. A replay window size that is too small includes
little to no memory, resulting in a situation where the BHH simply looks at the most
recent evidence that is collected and nothing more. On the contrary, if the replay
window size is large, the BHH tracks a longer history of past performances, leading
to a situation where previously well-performing heuristics that are not relevant later
in the training process, are still selected often.

6.9.6 Reanalysis Interval

The reanalysis interval is a hyper-parameter that controls how often the BHH updates
its past beliefs (priors). The reanalysis interval goes hand in hand with the reselection
interval and replay window size. If the reanalysis interval is too small, the BHH
prematurely updates its priors. Similar to other hyper-parameters discussed thus far,
the correct value to use for the reanalysis interval is to be determined empirically.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 113

However, some logical exclusions can be made. A reanalysis interval that is smaller
than the reselection interval does not make sense, since the effects of reanalysis are
only realised during reselection. A reanalysis interval that is too big could lead to a
situation where the delay in updating priors could be detrimental to the outcomes of
the BHH.

6.9.7 Burn In

Burn in is a hyper-parameter that is borrowed from Markov Chain Monte Carlo
(MCMC) and aims to delay the learning process of the BHH. The intent of the burn
in hyper-parameter is to determine if heuristics need time to execute before reanalysis
starts. Notice that a delay in the learning process does not mean that reselection
does not occur or that performance information is not collected in the replay window.
Therefore, it should be noted that the burn in window size, reselection interval,
replay window size, and reanalysis interval should be considered together. If the
replay window size is smaller than the burn in window size, performance information
is discarded and an opportunity to learn is lost.

6.9.8 Discounted Rewards

Discounted rewards is another hyper-parameter that is borrowed from RL and is a
flag that determines if discounted rewards are applied or not. Discounted rewards
refer to an implementation where credit assignments for past performances are
exponentially decreased further into the past. An exponential decay factor of 0.5
is proposed. The intent of the discounted rewards flag is to scale the effect of past
performances that are further back in the performance log, such that they have a
smaller impact than more recent evidence on the learning process of the BHH.

6.9.9 Normalisation

Normalisation is a hyper-parameter that provides a mechanism of control for the
degree to which exploration is allowed. Figure 6.2 shows the effect of different
concentrations (α and β) on the Beta probability distribution. By normalising the
concentration parameters for the BHH (α, β, γ1 and γ0), the variance of the selection
probability distributions increases, allowing for sampled probabilities further from
the mean and thus allowing for more exploration.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 114

(a) α = 1, β = 1 (b) α = 5, β = 5

(c) α = 20, β = 20

Figure 6.2: The Beta probability distribution with varying α and β values.

6.9.10 Defaults

Section 6.3.3 provided the reader with the concept of proxied heuristic update step
operations. As was mentioned in Section 6.9.1, low-level heuristics each have their
own set of hyper-parameters as well. A set of default low-level parameters must be
allocated specifically for these proxies. Consider a scenario where two instances of
Adam is included in the heuristic pool. Each has its own set of hyper-parameters
that differ from each other. In the case of Adam, there are four hyper-parameters
that include learning rate, η, β1, β2 and ϵ. If another heuristic needs to proxy Adam’s
expected gradient mean operation, a default β1 parameter must be supplied that
is applied by the proxy mechanism. This is only the case when multiple instances
of a heuristic is included and there is uncertainty about which instance’s hyper-
parameters to use for the proxied heuristic update steps. If there is only one instance
of a particular heuristic, that instance’s hyper-parameters are used.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 115

6.10 The BHH Algorithm

The high level pseudo-code implementation of the BHH is given in Algorithm 9.

6.11 Summary

This chapter provided extensive detail on the inner workings and design of the BHH.
The BHH was formally classified and the details around various components of the
BHH’s architecture was presented. Formal mathematical descriptions of the Bayesian
selection method have been provided. The selection mechanism was presented as a
probabilistic, predictive classifier. The optimisation process, by means of Bayesian
analysis, has also been presented. Hyper-parameters were discussed in detail and a
pseudo-code implementation of the BHH was presented.

This methodology for the empirical process is provided in the following chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Bayesian Hyper-Heuristic 116

Algorithm 9 The pseudo-code for the implementation of the Bayesian hyper-
heuristic (BHH)

step ← 0
select initial heuristics
initialise population and entities
evaluate entities’ initial position
update population state
while stopping condition not met do

for all entities in entity pool do
if selected heuristic is gradient-based then

get gradients
end if
apply low-level heuristic and proxy operations
update population state
log performance metrics to performance log
if step < burn-in window size then

select heuristic
else

if step % reanalysis interval = 0 then
apply Bayesian analysis

end if
if step % reselection interval = 0 then

select heuristic
end if
if step > replay window size then

prune performance log
end if

end if
end for
step ← step + 1

end while

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7

Methodology

“Observation, reason and experimentation make up what we call the
scientific method.”

- Richard P. Feynman

So far, this dissertation has provided background information on artificial neural
networks (ANNs), heuristics, HHs and probability theory in Chapters 2 to 5. Chapter
6 provided the detail of the implementation of the proposed BHH with all its
components and hyper-parameters. Scientific experimentation can now be conducted.
Chapter 1 identified a set of empirical goals for this dissertation. The goals of
this dissertation include an empirical evaluation of the BHH, its behaviour and
performance, and a comparison to state of the art low-level heuristics. This chapter
provides the detailed specification of the methodology that is followed for the
empirical process. Details are provided on the implementation of experiments,
datasets, selection of hyper-parameters and design decisions. The process by which
the results are statistically analysed are also presented. The remainder of the chapter
is structured as follows:

• Section 7.1 provides a brief overview of the overall empirical process.

• Section 7.2 presents the detail around the datasets that are used.

• Section 7.3 provides the details of the models (FFNNs) that are trained.

• Section 7.4 presents the detail around the different heuristics that are used
along with their hyper-parameters.

• Section 7.5 provides the detail of the configuration of the BHH baseline.

• Section 7.6 sheds light into the performance evaluation measures that are
used.

117

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 118

• Section 7.7 discusses the stopping conditions that are used.

• Section 7.8 presents the different experimental groups that are executed.

• Section 7.9 presents the procedures that are followed for the statistical analysis
of the results.

• Section 7.10 sheds light on the implementation and execution of the empirical
process.

• Section 7.11 presents a brief summary of the chapter.

7.1 Overview of Empirical Process

The purpose of the empirical process is to conduct a carefully crafted set of exper-
iments that produce data that can be used to reject of verify a hypothesis about
the element under investigation. Chapter 1 identified a number of empirical tests to
execute. These include:

• An empirical study to show that the BHH can effectively be used to train
FFNNs.

• An empirical study to investigate the behavioural characteristics of the BHH
as it is used to train FFNNs on an example problem.

• An empirical study to critically evaluate the performance of the BHH compared
to individual low-level heuristics in the heuristic space as they are used to train
FFNNs on a number of different problems.

These empirical tests represent a set of questions, related to the BHH, that need
to be answered. The empirical process is designed to answer these questions. The
empirical process is structured as follows.

Each empirical test starts with a question to be answered. A hypothesis is
formulated for the outcome of the empirical test. The empirical tests are then
designed around the implementation of the components under evaluation. Each
empirical test defines the configuration of elements and generally include a set of
parameters that are altered between experiments. Each experiment is evaluated
by means of a performance measurement. In the context of training FFNNs, the
underlying model is trained across a number of datasets. Each dataset is split into
a training set comprising of 80% of the data, and a test set comprising of 20% of
the data. The training set is used to train the model, while the test set is used to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 119

evaluate the model’s performance on unseen data. Training epochs are split into
mini-batch iterations with a specified mini-batch size per dataset. Evaluation takes
place at every mini-batch step. Due to the stochastic nature of the experiments,
each experiment is repeated over 30 independent runs to provide sufficient sample for
statistical certainty about the outcome of the results. Each run contains a different
random seed, such that each run is unique. The evaluation data forms the results of
the empirical test. These results are analysed for statistical significance, from which
findings and conclusions are then made. The null hypothesis is then either rejected
or accepted based on these findings.

Details around each of these elements is provided in the following sections.

7.2 Datasets

This section provides the detail around the different datasets that are used throughout
the empirical process. These datasets originate from the UCI Machine Learning
Repository [40]. Datasets are grouped by problem type and include seven classification
and seven regression datasets. The classification datasets are given in Table 7.1 and
the regression datasets are given in Table 7.2 below.

Table 7.1: Classification datasets

dataset output types attributes classes instances batch steps citation

iris multivariate real 4 3 150 16 10 [51]
car multivariate categorical 6 4 1728 128 14 [14]

abalone multivariate categorical, integer, real 8 28 4177 256 17 [176]
wine quality multivariate real 12 11 4898 256 20 [26]
mushroom multivariate categorical 22 2 8214 512 17 [143]

bank multivariate real 17 2 45211 512 89 [112]
diabetic multivariate integer 55 3 100000 1024 98 [156]

Table 7.2: Regression datasets

dataset output types attributes instances batch steps citation

fish toxicity multivariate real 7 908 64 15 [23]
housing univariate real 13 506 32 16 [72]

forest fires multivariate real 13 517 32 17 [24]
student performance multivariate integer 33 649 32 21 [25]

parkinsons multivariate integer, real 26 5875 256 23 [166]
air quality multivariate, time series real 15 9358 256 37 [34]

bike univariate integer, real 16 17389 256 68 [48]

Details on how the datasets where preprocessed and prepared is given in Appendix
C.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 120

7.2.1 Class Balancing

A number of classification datasets given in Table 7.1 contain an unbalanced repre-
sentation of classes. The empirical process defined in this dissertation does not apply
mechanisms to cater for class balancing, in order to eliminate as many variables
and factors in the empirical process as possible. It is therefore suggested that the
BHH first be studied under the assumption of balanced classes, before applying class
balancing techniques. In future research opportunities, class balancing should be
utilised.

7.3 Models

All models that are trained in this dissertation follow implementations of shallow
FFNNs, meaning that they only have one hidden layer. The architecture of a model
is dependent on the dataset being trained on, the type of optimisation problem, the
number of input dimensions and the number of output dimensions. The number of
hidden layers used were determined empirically. Weights are initialised by means of
Glorot uniform sampling [58]. The models and their configuration, as it is used for
each dataset, are given in Table 7.3.

Table 7.3: Model configurations

dataset inputs hidden output biases parameters topology l1 activation l2 activation

fish toxicity 6 3 1 yes 25 dense LReLU (α = 0.3) sigmoid
iris 4 5 3 yes 43 dense LReLU (α = 0.3) softmax

air quality 12 8 1 yes 113 dense LReLU (α = 0.3) sigmoid
housing 13 8 1 yes 121 dense LReLU (α = 0.3) sigmoid

wine quality 13 10 7 yes 217 dense LReLU (α = 0.3) softmax
parkinsons 21 10 1 yes 231 dense LReLU (α = 0.3) sigmoid

car 21 10 4 yes 264 dense LReLU (α = 0.3) softmax
forest fires 43 16 1 yes 721 dense LReLU (α = 0.3) sigmoid

abalone 10 36 28 yes 1432 dense LReLU (α = 0.3) softmax
bank 51 32 1 yes 1697 dense LReLU (α = 0.3) softmax
bike 61 32 1 yes 2017 dense LReLU (α = 0.3) sigmoid

student performance 99 32 1 yes 3233 dense LReLU (α = 0.3) sigmoid
adult 108 64 1 yes 7041 dense LReLU (α = 0.3) softmax

mushroom 117 64 1 yes 7617 dense LReLU (α = 0.3) softmax
diabetic 2369 32 3 yes 75939 dense LReLU (α = 0.3) softmax

For the classification problems presented in Tables 7.1 and 7.3, the softmax
activation function is added after training and is not included in the model during
training. The loss functions, sparse categorical cross entropy (SparseCatXE) and
binary cross entropy (BinXE), that are used, contain a softmax function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 121

7.4 Heuristics

This section provides the details of the low-level heuristics that are used in the
empirical process. Each of these low-level heuristics is implemented as standalone
heuristics and is also included in the heuristic pool of the BHH. Table 7.4 contains a
list of all the standalone, low-level heuristics that are used as well as their hyper-
parameter configurations.

Note from Table 7.4 that values that are configured to make use of a decay
schedule are presented with the initial value first and the decay rate in brackets next
to it. The number of steps is the total number of mini-batch training steps that are
executed for that particular dataset.

Furthermore, it should be noted that a learning rate was added to PSO as an
attempt to avoid overshooting solutions later in the training process. A learning rate
parameter does not traditionally form part of PSO, but was found to be useful. The
position update step for PSO using a learning rate is then defined as

xij(t+ 1) = xij(t) + ηvij(t+ 1) (7.1)

where η is the added learning rate with 0 ≤ η ≤ 1, η ∈ R.
Section 6.3.3 presented the concept of a mapping of proxied heuristic state update

operations. The mapping of proxied heuristic state update operations implemented
by the BHH in the empirical process is given in Figure 7.1.

In Figure 7.1, cells containing x indicate that the associated heuristic implements
that particular state parameter explicitly, and cells containing o indicate that the
state parameter is implicitly implemented as part of the BHH algorithm. The
required mapping of proxied heuristic state operations is then implemented as a
lookup of the table presented in Figure 7.1.

7.5 BHH Baseline

The BHH baseline is a name given to a specific configuration of the BHH which,
during development, has been found to provide a reasonable baseline performance.
The baseline configuration is used as the cornerstone configuration from which all
other heuristics and their configurations are evaluated. The BHH baseline is also
used for the behavioural study of the BHH. The BHH baseline configuration is given
in Table 7.5.

In Table 7.5, the heuristic pool configuration that is used, is referred to as all.
The all configuration refers to a configuration where the heuristic pool contains

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 122

Table 7.4: Low-level heuristics and their hyper-parameter configurations.

heuristic configuration value citation

sgd learning rate 0.1 (0.01) [157]
momentum learning rate 0.1 (0.01) [157]

momentum 0.9
nag learning rate 0.1 (0.01) [157]

momentum 0.9
adagrad learning rate 0.1 (0.01) [41]

epsilon 1E-07
rmsprop learning rate 0.1 (0.01) [74]

rho 0.95
epsilon 1E-07

adadelta learning rate 1.0 (0.95) [182]
rho 0.95
epsilon 1E-07

adam learning rate 0.1 (0.01) [94]
beta1 0.9
beta2 0.999
epsilon 1E-07

pso population size 10 [170]
learning rate 1.0 (0.9)
inertia weight (w) 0.729844
cognitive control (c1) 1.49618
social control (c2) 1.49618
velocity clip min -1.0
velocity clip max 1.0

de population size 10 [107]
selection strategy best
xo strategy exp
recombination probability 0.9 (0.1)
beta 2.0 (0.1)

ga population size 10 [98]
selection strategy rand
xo strategy bin
mutation rate 0.2 (0.05)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 123

En
ti

ty
 S

ta
te

Po
p

u
la

ti
o

n
 S

ta
te

n
o

te
s

h
eu

ri
st

ic
hy

p
er

-p
ar

am
et

er
p

o
si

ti
o

n
ve

lo
ci

ty
gr

ad
ie

n
t

su
m

 o
f

gr
ad

ie
n

ts
sq

u
ar

ed

ex
p

ec
te

d
p

o
si

ti
o

n
 d

el
t a

va
ri

an
ce

ex
p

ec
te

d
gr

ad
ie

n
t

m
ea

n
(h

p
1)

ex
p

ec
te

d
 g

ra
d

ie
n

t
va

ri
an

ce
 (

h
p

2)
p

b
es

t
ib

es
t

rb
es

t
gb

es
t

R
ep

re
se

nt
s

th
e

ca
n

d
id

at
e

so
lu

ti
o

n

Is
 a

n
al

o
go

u
s

t o
th

e
n

eg
at

iv
e

gr
ad

ie
nt

Is
 a

n
al

o
go

u
s

to
 v

el
o

ci
ty

G
o

es
 h

an
d

 in
h

an
d

 w
it

h
gr

ad
ie

nt
 a

n
d

th
u

s
al

so
ve

lo
ci

ty

G
o

es
 h

an
d

 in
 h

an
d

w
it

h
 g

ra
d

ie
nt

^2
 a

n
d

th
u

s
al

so
ac

ce
le

ra
ti

o
n

sg
d

le
ar

n
in

g
ra

te
x

x
x

-
-

-
-

-
-

-
x

m
o

m
en

tu
m

le
ar

n
in

g
ra

te
, m

o
m

en
tu

m
(m

ap
s

to
 h

p
1)

x
x

x
-

-
x

-
-

-
-

x

n
ag

x
x

x
-

-
x

-
-

-
-

-

ad
ag

ra
d

le
ar

n
in

g
ra

te
, e

ps
ilo

n
x

x
x

x
-

-
-

-
-

-
x

rm
sp

ro
p

le
ar

n
in

g
ra

te
, r

h
o

 (
m

ap
s

to
h

p
2)

, m
o

m
en

tu
m

 (
m

ap
s

to
h

p
1)

, e
ps

ilo
n

x
x

x
-

-
-

x
-

-
-

x

ad
ad

el
ta

rh
o

 (
m

ap
s

to
 h

p
2)

, e
p

si
lo

n
x

x
x

-
x

-
x

-
-

-
x

ad
am

le
ar

n
in

g
ra

te
, m

o
m

en
tu

m
(m

ap
s

t o
 h

p
1)

, r
h

o
 (

m
ap

s
to

h
p

2)

x
x

x
-

-
x

x
-

-
-

x

PS
O

W
, C

1,
 C

2
x

x
o

-
-

-
-

x
o

-
x

D
E

x
o

o
-

-
-

-
-

o
-

x

G
A

m
u

t a
ti

o
n

 r
at

e
x

o
o

-
-

-
-

-
-

-
x

B
H

H
b

u
rn

 in
, r

ep
la

y
w

in
d

o
w

 s
iz

e,
p

o
p

u
la

ti
o

n
 s

iz
e,

 r
es

el
ec

ti
o

n
an

d
 r

ea
n

al
ys

is
 w

in
d

o
w

 s
iz

e,
n

o
rm

al
is

at
io

n
, d

is
co

u
nt

ed
re

w
ar

d
s

x
x

x
x

x
x

x
x

x
x

x

Figure 7.1: Mapping of proxied heuristic state update operations as implemented by the
BHH

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 124

Table 7.5: The BHH baseline configuration as it is used in the empirical study.

hyper-heuristic variant configuration value

bhh baseline heuristic pool all
population 5

credit ibest
burn in 0

reselection 10
replay 10

reanalysis 10
normalise false

discounted rewards false

all the low-level heuristics as presented in Section 7.4, including all gradient-based
heuristics and meta-heuristics.

7.6 Performance Measures

This section provides the performance measures that are used to evaluate the different
experimental runs during the empirical process. Chapter 2 provided a number of loss
functions. These loss functions are used to measure the performance of the FFNNs
being trained. In this dissertation, BinXE is used for classification problems with
two classes and SparseCatXE is used for classification problems with more than two
classes. For the classification problems, accuracy is also measured. Accuracy refers
to the proportion of correct classifications. For regression problems, the RMSE is
used as a performance metric.

The test set is used as a validation set during training. All performance metrics
are measured for the training set as well as the test/validation set during training. As
such, a divergence in performance metrics between the training and test/validation
set is used to evaluate for overfitting during the training process.

After training has been completed, the average rank, based on test loss, for all
configurations, is calculated at each mini-batch step. A total of 30 independent runs
with different random seed configurations are executed for each empirical test. The
test loss metric and average rank are then statistically analysed across all runs, and
are used to derive findings and conclusions.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 125

7.7 Stopping Conditions

This section provides the stopping conditions that are used during the empirical
process. For this dissertation, the maximum epoch stopping condition is used, where
a fixed, maximum number of training steps and epochs are executed and training
is not halted until the maximum number of epochs have been reached. FFNNs are
trained for a maximum of 30 epochs. Early stopping is a technique where training is
stopped when the heuristic is not able to improve the performance of the FFNN for
a number of steps. If the performance has not improved, the training is halted and
the last known best model weights are restored. Early stopping is not implemented
for the empirical process in this dissertation. This design decision is made so that
the behaviour of the BHH can be studied beyond the point of optimal results.

7.8 Experiments

This section presents the experimental groups that are executed in the empirical
process. Three main experimental groups are formulated. Each of these is discussed
in more detail in the following sections.

7.8.1 Behavioural Case Study

The behavioural case study analyses the behaviour of the BHH baseline configuration
as it relates to an example problem dataset, across 30 independent runs. The example
problem dataset is the iris dataset, presented in Table 7.1. The behavioural case
study is meant to provide an introductory analysis of the inner workings of the BHH
and includes analysis of the selection mechanism, as well as the perturbative nature
of the BHH. The behavioural case study is used to determine if the BHH is learning
and that selection is indeed biasing towards better performance. These observations
also provide an opportunity to observe the outcome of the perturbative nature of
the BHH, which includes proxied heuristic update step operations.

The behavioural case study provides an implementation of the BHH baseline
which, by default, has a replay window size of 10. The baseline configuration is
provided and compared to an implementation of a BHH configuration where the
replay window size is large (250), as well as an implementation of the BHH using the
symmetric credit assignment strategy. The large replay window size configuration
is used to show the behaviour of the BHH when it has access to a large number of
performance log samples, which increases the statistical certainty of the learning
outcome. The BHH configuration that uses the symmetric credit assignment strategy

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 126

is used to illustrate the behaviour of the BHH where no performance bias takes place
and thus, no learning occurs.

7.8.2 Standalone Heuristics

For the standalone heuristics experimental group, the heuristics, as presented in
Section 7.4, are used along with their specified hyper-parameters. Each of these
standalone low-level heuristics is compared to that of the BHH baseline configuration,
across all datasets.

The intent of the standalone heuristics experimental group is to determine if the
BHH baseline configuration can generalise to multiple problems in comparison to
individual low-level heuristics.

Additional to the BHH baseline configuration, two more BHH configurations are
included. These include BHH configurations where the heuristic pool only makes use
of gradient-based heuristics, and a configuration where the heuristic pool only makes
use of MHs. The intent behind the inclusion of these configurations is to determine
the effectiveness of multi-method approaches in the heuristic pool as it applies to
training FFNNs.

7.8.3 BHH Variants

This section provides the details of the experimental group that focuses on BHH
variants and the effect that different hyper-parameter configurations can have on
the outcome of the BHH. The different variants of the BHH and their possible
configurations are given in Table 7.6.

Table 7.6: BHH variants and their configuration

hyper-heuristic variant values

bhh heuristic pool all, gd, mh
population 5, 10, 15, 20, 25

credit ibest, pbest, rbest, gbest, symmetric
reselection 1, 5, 10, 15, 20

replay 1, 5, 10, 15, 20
reanalysis 1, 5, 10, 15, 20
burn in 0, 5, 10, 15, 20

normalise false, true
discounted rewards false, true

In Table 7.6, the heuristic pool configuration gd refers to the heuristic pool

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 127

configuration where only gradient-based heuristics are included, and mh refers to
the heuristic pool configuration where only MHs are included.

7.9 Statistical Analysis

This section provides the detail of the process that is used to execute the statistical
analysis of the results.

Various experimental groups and configurations have been presented in Sections
7.8.1, 7.8.2 and 7.8.3. The results from each of these experimental groups is statisti-
cally analysed. To ensure that there are sufficient samples for statistical analysis,
each experiment and configuration is trained for 30 epochs and is repeated over 30
runs, for each of the fourteen datasets. The experimental results contain performance
evaluation data for the training and testing datasets, and includes loss and accuracy
measurements. Statistical analysis is executed on the results from the testing datasets.
An average rank is calculated across all 30 runs, for all experimental groups and
configurations, at each step, for every epoch of training. Each run is executed using
a unique random seed, such that each run is identical in its setup and configuration,
but unique between runs.

The evaluation of outcome is based on the aggregated statistical results as
mentioned above. A descriptive analysis is executed on the spread of the data.
The results are analysed and checked for overfitting and outliers are identified.
The skewness of the results is evaluated per dataset and the Shapiro-Wilk test
for normality [145] (α = 0.001) is used to determine if the results are normally
distributed. Furthermore, the Levene’s test for equality of variance [102] (α = 0.001)
is used. The output of the full statistical analysis is presented in Appendix D.

Dependent on the outcomes of the above statistical tests, the appropriate statis-
tical significance test is then executed. For experiments where there are only two
configurations, the Mann-Whitney U independent samples t-Test [106] (α = 0.001) is
executed. For experiments with three or more configurations, the ANOVA statistical
test [52] (α = 0.001) is used. The Kruskal-Wallis ranked non-parametric test [95]
for statistical significance (α = 0.001) is used for cases where data is not normally
distributed.

Regardless of the statistical test that is used, a post-hoc Tukey honest significant
difference test [167] (α = 0.001) is used from which significant ranking is retrieved.
Descriptive and critical difference plots are then retrieved from these results to
provide visual aid.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Methodology 128

7.10 Implementation and Execution

All implementations are done from first principles in Python 3.9 using Tensorflow
2.7 and Tensorflow Probability 0.15.0. Most underlying mathematical functions are
reused from the Tensorflow library, however, all heuristics are implemented from first
principles to fit the HH framework that was developed. The source code and data for
this dissertation is provided and made public at https://github.com/arneschreuder/
masters.

It should be noted that this implementation makes heavy use of CPU processing,
due to flattening of the FFNN weights by the heuristics. For this reason, execution
is much more timely and costly than with GPU training.

All experiments were run on the Centre for High Performance Computing (CHPC)
cluster. A total of 14 different server were used, each running 24 to 56 cores and
256GB of memory. The entire empirical process took six days.

7.11 Summary

This chapter provided the detail around the methodology that was used to execute
the empirical process. The datasets, FFNNs and heuristics that are used during the
empirical process have been presented in detail, along with details around various
BHH configurations. A baseline BHH has been formulated. The empirical process
was defined in terms of a number of different experimental groups and finally, the
process of statistical analysis of the results was provided.

The results and findings of the empirical process are presented in the following
chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/arneschreuder/masters
https://github.com/arneschreuder/masters

Chapter 8

Results

“Without data, you are just another person with an opinion.”

- W. Edwards Deming

The last step in the scientific process requires the presentation of the outcomes
of the empirical process. Objective discussions based on statistical analysis of the
findings are required. The design and methodology of the empirical process was
presented in Chapter 7. The methodology presented a number of experimental groups
to conduct. The experimental groups that were identified include a case study on the
behaviour of the BHH during training, an empirical comparison to the performance
of state-of-the-art, standalone, low-level heuristics, and a number of experiments
related to the empirical testing of the effects of hyper-parameters on the outcomes of
the BHH.

This chapter provides the outcomes of the empirical processes and provides results
on all the experiments that have been conducted. Detailed discussions follow on
the outcomes of each experiment. Discussions are accompanied by figures and plots
to help provide visual aid for discussions. The output of the statistical analysis
that yielded the results is provided in Appendix D. The remainder of the chapter is
structured as follows:

• Section 8.1 provides a brief overview of the outcomes of the empirical process
and highlights key aspects to observe in the results.

• Section 8.2 provides detailed discussions on the outcomes of the case study
on the behaviour of the BHH. Illustrations are provided to show the change
in parameter values to illustrate the outcomes of the learning process of the
BHH, while training the underlying feedforward neural network (FFNN).

129

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 130

• Section 8.3 provides the results of the performance of the BHH compared to
individual low-level heuristics on all datasets. Three variants of the BHH are
included in these results. These include the baseline configuration, as well as a
configuration that only includes gradient-based heuristics in the heuristic pool,
and a configuration that only includes MHs in the heuristic pool.

• Section 8.4 provides the results for the experimental group that analyses the
effects of the heuristic pool hyper-parameter on the outcomes of the BHH.

• Section 8.5 provides the results for the experimental group that analyses the
effects of the population size hyper-parameter on the outcomes of the BHH.

• Section 8.6 provides the results for the experimental group that analyses the
effects of the credit assignment strategy hyper-parameter on the outcomes of
the BHH.

• Section 8.7 provides the results for the experimental group that analyses the
effects of the reselection interval hyper-parameter on the outcomes of the BHH.

• Section 8.8 provides the results for the experimental group that analyses the
effects of the replay window size hyper-parameter on the outcomes of the BHH.

• Section 8.9 provides the results for the experimental group that analyses the
effects of the reanalysis interval hyper-parameter on the outcomes of the BHH.

• Section 8.10 provides the results for the experimental group that analyses
the effects of the burn in window size hyper-parameter on the outcomes of the
BHH.

• Section 8.11 provides the results for the experimental group that analyses
the effects of the normalisation hyper-parameter on the outcomes of the BHH.

• Section 8.12 provides the results for the experimental group that analyses
the effects of the discounted rewards hyper-parameter on the outcomes of the
BHH.

• Section 8.13 provides a brief summary of the chapter.

8.1 Overview

This section provides a brief discussion on the general outcome of the empirical
process as a whole. Overall, the BHH is shown to successfully train the underlying

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 131

FFNNs for all datasets. In general, the BHH performs well and the empirical process
provides key insights into the workings of the BHH. Where possible, a number
of improvements to the BHH are identified and recommended as it relates to the
outcomes of the results.

Given the nature of the BHH, it is recommended that the following aspects be
kept in mind when observing the results. The BHH applies a form of online learning.
As such, the BHH applies the learning mechanism during training in a single run of
the training process. The training process is not repeated iteratively. All experiments
conducted are executed for 30 epochs. The number of training steps executed is
dependent on the batch size applied for each dataset.

All of the underlying FFNNs trained in the empirical process are relatively small.
As such, most of the training progress is observed to occur within the first five epochs.
As a result, the BHH should apply most learning at the early stages of the training
process. After five epochs, the training of most of the underlying FFNNs converges
and little performance gain is observed after that point. Since this empirical process
does not apply early stopping of the training process, the BHH will continue to
explore the heuristic space beyond the five epoch mark.

The BHH does not implement a move-acceptance strategy, where the application
of a heuristic to an entity is only accepted if it leads to a better solution. In some
cases the BHH then selects heuristics that yield sub-optimal results, but is shown to
mostly return to optimal solutions over a number of steps.

Given the stochastic nature of the heuristic selection mechanism, sufficient sam-
ples of the performance of each heuristics-entity combination in the performance log
is required for the BHH to learn. This requirement is further strengthened by the
Bayesian nature of the probabilistic model implemented by the BHH. The probabilis-
tic model implements probability distributions of heuristic selection probabilities and
as such, insufficient samples in the performance log could render a form of random
search.

The reanalysis interval defines intervals at which the BHH reanalyses the perfor-
mance log, in effect, resetting the concentration parameters to their default values
and reapplying the underlying Bayesian analysis process on the performance log.
Furthermore, the replay window size defines the amount of performance evidence in
the performance log. By default, the BHH baseline configuration has a reanalysis
interval of 10, and a replay window size of 10, which is a small window to learn from.
Despite the small reanalysis interval and the small replay window size, it should be
observed that the BHH exploits small performance biases regardless and does find
small performance gains throughout.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 132

8.2 Behavioural Case Study

This section provides the empirical results of the case study on the behaviour of
the BHH as it is used to train a FFNN on the iris dataset. As a reminder, the iris
dataset contains 150 records, split into a training dataset containing 120 records, and
a test dataset that contains 30 records. The test dataset is treated like a validation
dataset, and is evaluated at every training step to illustrate the outcomes of the
BHH throughout the training process. Mini-batch training is executed with a batch
size of 30. The results that are presented are averaged over 30 independent runs.

Furthermore, the case study focuses on three variants of the BHH. These
include the baseline configuration, as was provided in Chapter 6 and is denoted
as bhh_baseline (illustrated throughout in red). Furthermore, the case study also
includes a configuration of the BHH that has a “long memory” by setting the replay
window size hyper-parameter to 250, and is denoted as bhh_replay_250 (illustrated
throughout in green). Finally, the case study includes a configuration that makes
use of the symmetric credit assignment strategy hyper-parameter, and is denoted as
bhh_credit_symmetric (illustrated throughout in blue).

These configurations were specifically chosen for the following reasons: the large
replay window size configuration is chosen to illustrate a case where the BHH does
not “forget” past performances of the low-level heuristics in the heuristic pool, and
the configuration that utilises the symmetric credit assignment strategy is chosen to
illustrate a case where there BHH does not reward good performance, and does not
yield a bias towards heuristics that perform well at all. This section is structured as
follows:

• Section 8.2.1 provides illustrations and discussions around the outcomes of
the performance metrics as obtained by the BHH.

• Section 8.2.2 provides illustrations and discussions around the changes in con-
centration parameter values as a result of the learning mechanism implemented
by the BHH.

• Section 8.2.3 provides illustrations and discussions around the changes in
the probability distribution of heuristic selection probabilities as a result of the
learning mechanism implemented by the BHH.

• Section 8.2.4 provides illustrations and discussions around the changes in
the prior heuristic selection probabilities as a result of the learning mechanism
implemented by the BHH.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 133

• Section 8.2.5 provides illustrations and discussions around the changes in the
posterior heuristic selection probabilities as a result of the learning mechanism
implemented by the BHH.

8.2.1 Performance Metrics

This section provides illustrations and discussions around the outcomes of the train
and test performance metrics as obtained by the BHH. Figures 8.1a to 8.1d provide
illustrations of the train and test loss and accuracy plots of the BHH over 30 epochs,
obtained from 30 runs of the case study on the behaviour of the BHH on the iris
dataset, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

100

Tr
ai

n
Lo

g
Lo

ss

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - Train Log Loss - Dataset: Iris

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

100
Te

st
 L

og
 L

os
s

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - Test Log Loss - Dataset: Iris

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - Train Log Accuracy - Dataset: Iris

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - Test Log Accuracy - Dataset: Iris

(d) Test log accuracy

Figure 8.1: The average train and test loss and accuracy plots over 30 epochs, obtained
from 30 runs of the case study on the behaviour of the BHH on the iris dataset, illustrated
in log scale.

The first logical observation that can be made is that the BHH was indeed able to
successfully train the underlying FFNN, observed by the convergence of the training
process, yielding good results. Figures 8.1c and 8.1d show that the trained FFNN
achieved an accuracy of almost 100%.

Although the different configurations of the BHH are all able to successfully train
the underlying FFNN, in this particular case, there is no clear distinction between
the performance of any of the configurations under consideration.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 134

The volatility and minor divergence of the test loss compared to the training
loss, observed in Figure 8.1b, is due to overfitting and partly due to the noisiness
that results from mini-batch training. Early stopping can be applied to the training
process to halt training before the model overfits on the training data. The training
dataset is also very small, with just 120 samples. Furthermore, a very small batch
size of 16 is used. As such, noisiness and overfitting can be expected.

From Figure 8.1a, at the 22nd epoch, a small divergence of the train loss can
be observed. This could simply be a result of momentum that is maintained when
switching between low-level heuristics in an attempt to find better solutions. For
example, momentum can be built up by one of the gradient-based heuristics, after
which the BHH switches to another heuristic in an attempt to find better solutions.
The BHH does not incorporate a move-acceptance strategy, whereby a heuristic’s
outcome is rejected if it does not improve on previous solutions, yielding a possibly
worse loss measurement as it relates to the test set. A move-acceptance strategy
can be utilised on a validation set as a mechanism to accept or reject heuristic
progressions from one step to the other.

Finally, it should be noted that the BHH implements learning at every mini-batch
step, while Figure 8.1 only provides the outcomes of performance metrics at the end
of each epoch. Further investigation is required at a mini-batch step level and is
provided in the following sections.

8.2.2 Concentration Parameters

To illustrate the learning process undergone by the BHH, further investigation is
required. Consider the concentration parameter α that parameterises the Dirichlet
probability distribution, denoted P (θ|α). The probability distribution, P (θ|α), is
used to sample prior heuristic selection probabilities. Figures 8.2a to 8.2d provide
illustrations that show that change in values of the concentration parameter α, are at
indices 0, 6, 7, and 8 respectively. Indices 0, 6, 7, and 8 represent the concentration
parameters for the SGD, Adam, PSO and GA low-level heuristics respectively, and
only represent a subset of the elements in α and thus, the heuristic pool. Similar
illustrations for the other elements in α are left out for brevity as they contain similar
illustrations.

The first logical observation to be made from Figures 8.2a to 8.2d is the step-wise,
increasing nature of α for the bhh_replay_250 configuration, illustrated in green.
Since the replay window size is sufficiently large to contain the performance log
for all the steps executed in the training process, the BHH does not forget past
performances of low-level heuristics at all. The value for α is never reset to its

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 135

0 50 100 150 200 250
Step

100

101

102
Lo

g
al

ph
a[

0]
heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - alpha[0] - Dataset: Iris

(a) α0 - SGD

0 50 100 150 200 250
Step

100

101

102

Lo
g

al
ph

a[
6]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - alpha[6] - Dataset: Iris

(b) α6 - Adam

0 50 100 150 200 250
Step

100

101

102

Lo
g

al
ph

a[
7]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - alpha[7] - Dataset: Iris

(c) α7 - PSO

0 50 100 150 200 250
Step

100

101

102

Lo
g

al
ph

a[
8]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - alpha[8] - Dataset: Iris

(d) α8 - GA

Figure 8.2: The average value of the concentration parameter α, are at indices 0, 6, 7,
and 8 over 240 steps, obtained from 30 runs of the case study on the behaviour of the BHH
on the iris dataset, illustrated in log scale.

initial value of 1.0, and thus, α continues to increase throughout the training process.
However, it should be noted that the rate and degree of change is different for
different indices of α. The aforementioned observation is the first indicator of the
learning process yielded by the BHH. Heuristics that perform well will see their
corresponding element in α increase more rapidly than other heuristics that do not
perform well.

The next observations that can be made are for the bhh_baseline configuration,
illustrated in red, and the bhh_credit_symmetric configuration in blue. Both these
configurations see α being reset to its initial value of 1.0 as regular intervals. This
interval is defined by the reanalysis interval hyper-parameter. The reanalysis interval
dictates the frequency at which Bayesian analysis is conducted on the performance
log, maintained by the BHH. Bayesian analysis is used to update α only at the
reanalysis interval. As a result, small plateaus appear where α does not change.

Notice from Figure 8.2 that α ≥ 1.0 for multiple elements. This is due to the
accumulation of pseudo counts for α by the Bayesian analysis process. Furthermore,
this is also because the same heuristic can be allocated to multiple entities, each
contributing a minimum pseudo-count gain of 1.0 to the corresponding element in α
through the Bayesian analysis process. Consider a case where all five entities in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 136

entity pool are allocated the same heuristic and that a the replay window size of 10
is used. Then for all ten samples defined in the performance log, αi = 50, where i is
the index of the i-th heuristic in the heuristic pool.

Furthermore, it is important to mention that a change in α between reanalysis
windows does not yet necessarily indicate that the BHH is learning. The concentration
parameter α tracks the occurrence of the random event of observing heuristics
(denoted H). Heuristics can be observed as a result of good performance, by which
the BHH then learns to frequently reselect these heuristics again, or just by chance
through the stochastic nature of probabilistic sampling as implemented by the BHH.
Further investigation is required to illustrate the learning mechanism of the BHH.

8.2.3 Probability Distribution of Heuristic Selection Proba-
bilities

This section provides a detailed investigation into the probability distribution of
heuristic selection probabilities as it changes throughout the training process. As a
reminder, the BHH implements a Bayesian view of probabilistic modelling and thus,
heuristic selection probabilities are defined by an underlying probabilistic distribution
themselves. The probability distribution of heuristic selection probabilities is denoted
by P (θ|α), where θ ∼ Dir(α,K) are the sampled heuristic selection probabilities.

Figures 8.3a to 8.3d provide illustrations of the distribution of heuristic selection
probabilities, θ, sampled from the probability distribution P (θ|α) throughout the
training process, and averaged over all 30 runs. These illustrations are presented
in log scale. Indices 0, 6, 7, and 8 represent the distribution of heuristic selection
probabilities for the SGD, Adam, PSO and GA low-level heuristics respectively, and
only represent a subset of the distribution of heuristic selection probabilities in θ.
Similar illustrations for the other elements in θ are left out for brevity as they contain
similar illustrations.

From the illustrations presented in Figures 8.3a to 8.3d, a clearer picture of the
learning process of the BHH is formed. The first important observation to make
is for the bhh_replay_250 configuration, presented in green. As a reminder, ten
low-level heuristics are included in the heuristic pool, yielding an expected mean
heuristics selection probability of 0.1, for each heuristic, by the frequentist view of
probabilistic modelling.

Towards the end of the training process, the heuristic selection probability
converges back to the symmetrical, uniform probability distribution, yielding a
heuristic selection probability of 0.1, for all heuristics. This can be explained as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 137

0 50 100 150 200 250
Step

10 1

Lo
g

th
et

a[
0]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - theta[0] - Dataset: Iris

(a) P(θ0|α0) - SGD

0 50 100 150 200 250
Step

10 1

Lo
g

th
et

a[
6]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - theta[6] - Dataset: Iris

(b) P(θ6|α6) - Adam

0 50 100 150 200 250
Step

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

Lo
g

th
et

a[
7]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - theta[7] - Dataset: Iris

(c) P(θ7|α7) - PSO

0 50 100 150 200 250
Step

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

Lo
g

th
et

a[
8]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - theta[8] - Dataset: Iris

(d) P(θ8|α8) - GA

Figure 8.3: The average sampled heuristic selection probabilities, denoted θ, are at
indices 0, 6, 7, and 8. The heuristic selection probabilities are sampled from the probability
distribution, denoted P (θ|α), over 240 steps, obtained from 30 runs of the case study on
the behaviour of the BHH on the iris dataset, illustrated in log scale.

follows: most of the training progress is made in the early stages of the training
process, and training converges towards the end of the training process. Since training
converges, all heuristics, no matter their past performances, fail to yield better
solutions towards the end of the training process. As a result of training convergence,
heuristics then fail to meet the performance criteria and credit allocations by means
of the credit assignment strategy.

Both the bhh_baseline (red) and the bhh_replay_250 (green) configurations
make use of the ibest credit assignment strategy. The ibest credit assignment
strategy allocates credit to the heuristic that yields the best performance for the
current iteration/step and thus, towards the end of the training process, any random
heuristic can yield the best iteration performance. However, since the bhh_baseline
is configured with a small replay window size of 10, and a reanalysis interval of 10,
the concentration parameter α is reset to its default value of 1.0 more often than
the bhh_replay_250 configuration, resulting in a probability distribution that is
broader, and thus, explaining the larger variance of θ throughout.

Another observation to make occurs in the first 30 steps of the training process.
In Figure 8.3, notice how all three configurations mostly yield the same heuristic

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 138

selection probabilities in these first 30 steps. This can be explained as follows: all
three configurations use a different random seed per run, but use the same random
seed across configurations for the same run number. This is done so that any
difference in the behaviour of the different BHH configurations are then not a result
of random sampling, but solely because of differences in their approaches. This is
especially applicable to the initialisation process, where entities are randomly placed
in the search space, as well as the early stages of training, where most of the training
progress is made.

It should be noted that, despite using the same random seed across configurations
for the same run number, the behavioural changes between the configurations
start to show after about 30 steps. As a reminder, the bhh_credit_symmetric
(blue) configuration, does not bias towards best performing heuristics. Where the
bhh_baseline and bhh_replay_250 configurations then diverge from the behaviour
of the bhh_credit_symmetric configuration is proof of the effect of performance bias.

Furthermore, it can be observed for small windows, at various steps for mul-
tiple runs, that the variance of θ, for the bhh_baseline configuration and the
bhh_credit_symmetric configuration, do not yield means that are equal to the
expected heuristic selection probabilities of 0.1. This is proof that the BHH does not
just implement a form of random search, despite having small reanalysis interval and
replay window size configurations. This is also true for the bhh_credit_symmetric
configuration, as the bhh_credit_symmetric configuration biases towards heuristics
that happen to be sampled, despite not biasing towards good performance.

Finally, the bhh_baseline configuration and the bhh_credit_symmetric con-
figuration both yield similar volatile behaviour, much more so than with the
bhh_replay_250 configuration. This can be attributed to a very small reanaly-
sis window combined with a small replay window size of 10, that contains very
few samples to learn from. A small reanalysis interval and a small replay window
size allows for more exploration of the heuristic space, but can also yield greater
variance of the heuristic selection probabilities. Once again, any differences then in
the behaviour of the bhh_baseline compared to the bhh_credit_symmetric configu-
rations is proof of small performance exploitations and biases by the bhh_baseline
configuration.

8.2.4 Prior Heuristic Selection Probabilities

This section provides a brief investigation into the prior heuristic selection probabilities
that result from the probabilistic model implemented by the BHH. The prior heuristic
selection probability distribution is denoted P (H|θ). As such, P (H|θ) = θ and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 139

heuristics are initially sampled such that H ∼ Cat(θ).
Figures 8.4a to 8.4d provide illustrations of the prior heuristic selection proba-

bilities, denoted by P (H|θ), are at indices 0, 6, 7, and 8, throughout the training
process, and averaged over all 30 runs. Similar to before, these illustrations are also
presented in log scale.

0 50 100 150 200 250
Step

10 1

Lo
g

p_
H[

0]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_H[0] - Dataset: Iris

(a) P(h0|θ0) - SGD

0 50 100 150 200 250
Step

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

Lo
g

p_
H[

6]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_H[6] - Dataset: Iris

(b) P(h6|θ6) - Adam

0 50 100 150 200 250
Step

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

Lo
g

p_
H[

7]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_H[7] - Dataset: Iris

(c) P(h7|θ7) - PSO

0 50 100 150 200 250
Step

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1

Lo
g

p_
H[

8]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_H[8] - Dataset: Iris

(d) P(h8|θ8) - GA

Figure 8.4: The average prior heuristic selection probabilities, P (H|θ), are at indices 0,
6, 7, and 8. The prior heuristic selection probabilities are sampled from the probability
distribution of heuristic selection probabilities, denoted by P (θ|α), over 240 steps, obtained
from 30 runs of the case study on the behaviour of the BHH on the iris dataset, illustrated
in log scale.

The main observation to make from these figures is that they are much less
volatile and noisy than the figures presented for the distribution of heuristic selection
probabilities, θ, presented in the previous section in Figure 8.3. This is because of
the reselection interval hyper-parameter. The reselection interval hyper-parameter is
implemented as a way to control the frequency by which new heuristics are selected
and allocated to each entity. Since the default reselection interval is set to 10,
the heuristic selection probabilities are only resampled at intervals of 10. These
illustrations then simply yield rough approximations of the illustrations provided in
Figures 8.3a to 8.3d for the distribution of heuristic selection probabilities. As such,
the same observations and conclusions that are made in Section 8.2.3 also apply in
this section.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 140

Finally, it should be mentioned that at each step, the goal of the BHH is to update
these prior “beliefs” based on newly observed evidence of heuristic performances.
Since these prior heuristic selection probabilities change over time, it can be concluded
that the change in prior heuristic selection probabilities is a result of the learning
mechanism of the BHH. Furthermore, the prior heuristic selection probability
distribution provides an opportunity to utilise prior knowledge by some expert before
training starts, by injecting heuristic selection biases, by means of the initial values
for the concentration parameter α.

8.2.5 Posterior Heuristic Selection Probabilities

This section provides a detailed discussion on the outcomes of the posterior heuristic
selection probabilities. These posterior heuristic selection probabilities form the basis
of the probabilistic model implemented by the BHH. The posterior heuristic selection
probability distribution is defined as P (H|E,C;θ,ϕ,ψ), where E represents the
vector of entities in the entity pool, and C represents the vector of credit allocation
outcomes as implemented by the credit assignment strategy. Furthermore θ and
ϕ represent the probability distributions of heuristic selection probabilities and
the entity selection probabilities respectively. Finally, ψ represents the probability
distribution of successful credit allocation probabilities.

Figures 8.5a to 8.5d provide illustrations of the calculated posterior heuristic
selection probabilities at indices 0, 6, 7, and 8, throughout the training process,
averaged over 30 runs. Similar to before, these illustrations are also presented in log
scale. As before, illustrations for the other indices are left out for brevity as they
yield similar illustrations.

The main observation to make from Figures 8.5a to 8.5d is that the implemented
posterior heuristic selection distribution, defined by P (H|E,C;θ,ϕ,ψ), does not
yield normalised probabilities, but rather yield unnormalised logits, which are used
to parameterise a Categorical probability distribution from which new heuristic
selections are sampled. The reasons for the aforementioned is because the probabilistic
model is evaluated proportionally as was discussed in Chapter 6. As a reminder,
the log-sum-exp trick is used in order to maintain numerical stability, yielding logits
instead of probabilities.

Another observation to make is for the bhh_replay_250 configuration (green).
Figures 8.5a to 8.5d show that the posterior heuristic selection probabilities converge
to the expected heuristic selection probabilities later in the training stages. The
aforementioned suggests that the BHH is not able to find further performance biases
and cannot exploit better solutions. At this point, the BHH starts to explore more

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 141

0 50 100 150 200 250
Step

1.2 × 100
1.25 × 100
1.3 × 100

1.35 × 100
1.4 × 100

1.45 × 100
1.5 × 100

1.55 × 100
1.6 × 100

Lo
g

p_
Hg

EC
[0

][0
]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_HgEC[0][0] - Dataset: Iris

(a) P (h0|e0, c1) - SGD

0 50 100 150 200 250
Step

1.2 × 100
1.25 × 100
1.3 × 100

1.35 × 100
1.4 × 100

1.45 × 100
1.5 × 100

1.55 × 100
1.6 × 100

Lo
g

p_
Hg

EC
[0

][6
]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_HgEC[0][6] - Dataset: Iris

(b) P (h6|e0, c1) - Adam

0 50 100 150 200 250
Step

1.2 × 100
1.25 × 100
1.3 × 100

1.35 × 100
1.4 × 100

1.45 × 100
1.5 × 100

1.55 × 100

Lo
g

p_
Hg

EC
[0

][7
]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_HgEC[0][7] - Dataset: Iris

(c) P (h7|e0, c1) - PSO

0 50 100 150 200 250
Step

1.2 × 100
1.25 × 100
1.3 × 100

1.35 × 100
1.4 × 100

1.45 × 100
1.5 × 100

1.55 × 100

Lo
g

p_
Hg

EC
[0

][8
]

heuristic

bhh_baseline
bhh_replay_250
bhh_credit_symmetric

BHH Case Study - p_HgEC[0][8] - Dataset: Iris

(d) P (h8|e0, c1) - GA

Figure 8.5: The average calculated proportional posterior heuristic selection probabilities
for heuristics (H) at indices 0, 6, 7, and 8, given the application to entity e0 and requiring a
successful credit allocation, c1, from the ibest credit assignment strategy. The proportional
posterior heuristic selection probabilities are calculated from the probabilistic model,
denoted P (H|E,C;θ,ϕ,ψ), over 240 steps, and obtained from 30 runs of the case study
on the behaviour of the BHH on the iris dataset, illustrated in log scale.

as the concentration parameters are reanalysed more uniformly, resolving more and
more to a random search in attempt to find better solutions.

Furthermore, the posterior heuristic selection probability distribution is con-
ditional on the occurrence of a specific entity that the potential heuristic will be
applied to, as well as a specific performance criterion enforced by a specific credit
assignment strategy. This means that heuristic selection is specific to each entity.
A particular heuristic might be good for one entity, but not for another. This is a
strong characteristic of the BHH, as it learns to apply the correct heuristic to the
correct entity at the correct time in the training process.

Finally, the posterior heuristic selection probabilities are much less volatile
than their prior heuristic selection probability equivalents. This is a result of the
information that is added in the performance log by tracking the entity and credit
allocation as well.

It can be concluded from Sections 8.2.1 to 8.2.5 that the BHH is able to successfully
train the underlying FFNN for the case study on the iris dataset. Furthermore it
can be concluded that the learning mechanism implemented by the BHH is able to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 142

exploit minor performance biases, and thus the BHH is able to correctly allocate the
correct heuristic to the correct entity at the correct time in the training process.

8.3 BHH vs. Low-Level Heuristics

This section provides the empirical results for the experimental group that compares
the performance of the BHH to the performance of the individual, standalone, low-
level heuristics. Detailed discussions and illustrations follow. As a reminder, the set
of low-level heuristics includes a number of gradient-based heuristics and a number of
MHs. Three variants of the BHH is included in the experiment, including the BHH
baseline configuration with a heuristic pool that contains all the low-level heuristics
(denoted bhh_all), the BHH configuration with a heuristic pool that contains only
gradient-based heuristics (denoted bhh_gd), and finally, the BHH configuration with
a heuristics pool that contains only meta-heuristics (denoted bhh_mh).

Table 8.1 presents the empirical results for this experimental group, showing the
average test loss and statistics for all the low-level heuristics, compared to the three
variants of the BHH that was implemented. The test loss is measured at the last
epoch for each dataset, over all independent runs.

Table 8.1 shows that the bhh_gd configuration produced the best results of
the BHH variants and managed to perform well, producing generally good results
across all datasets. The bhh_gd configuration managed to produce results that
are comparable to the top three heuristics for each dataset, while the bhh_all and
bhh_mh produced average results compared to all the heuristics.

Table 8.2 provides the empirical results from Table 8.1 in ranked format. The
performance rank is calculated as the average rank produced by each heuristic, across
all datasets, for all independent runs and all epochs. The average rank across all
epochs produces a view on the performance of the heuristics as it relates to the
entire training process. Finally, a normalised average rank is provided for the overall
performance of all heuristics at the bottom of the table. The normalised average
rank is calculated as a discrete normalisation of the average rank achieved across all
datasets, for all independent runs and epochs.

From the normalised average ranks provided in Table 8.2, it can be seen that
the bhh_gd configuration ranked fourth, while the bhh_all and bhh_mh config-
urations ranked sixth and eighth amongst all thirteen heuristic implementations
respectively. These results show that the BHH generally performs well, but is not
able to outperform the best heuristic for each dataset.

Figure 8.6 provides an illustration showing a descriptive plot of the average ranks

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 143

T
ab

le
8.

1:
Em

pi
ric

al
re

su
lts

sh
ow

in
g

te
st

lo
ss

an
d

st
at

ist
ic

s
fo

r
di

ffe
re

nt
lo

w
-le

ve
lh

eu
ris

tic
s

co
m

pa
re

d
to

th
re

e
he

ur
ist

ic
po

ol
va

ria
nt

s
of

th
e

B
H

H
ba

se
lin

e
co

nfi
gu

ra
tio

n,
ac

ro
ss

m
ul

tip
le

da
ta

se
ts

,f
or

al
li

nd
ep

en
de

nt
ru

ns
,m

ea
su

re
d

at
th

e
la

st
ep

oc
h.

B
H

H
vs

.
L

ow
-L

ev
el

H
eu

ri
st

ic
s

-
A

ve
ra

ge
T

es
t

L
os

s

da
ta

se
t

ad
ag

ra
d

ad
am

rm
sp

ro
p

bh
h_

gd
na

g
bh

h_
al

l
ad

ad
el

ta
bh

h_
m

h
ga

ps
o

sg
d

m
om

en
tu

m
de

ab
al

on
e

1.
96

78
(±

0.
03

2)
1.

96
51

(±
0.

03
5)

1.
94

55
(±

0.
03

5)
2.

01
25

(±
0.

06
8)

2.
01

56
(±

0.
03

5)
2.

05
87

(±
0.

08
8)

2.
01

99
(±

0.
03

4)
2.

29
42

(±
0.

05
5)

2.
81

55
(±

0.
05

5)
3.

03
84

(±
0.

29
4)

2.
42

8
(±

0.
02

9)
2.

49
42

(±
0.

02
9)

3.
29

59
(±

0.
01

6)
ai

r
qu

al
it

y
0.

25
69

(±
0.

00
7)

0.
26

06
(±

0.
00

9)
0.

25
13

(±
0.

00
8)

0.
26

42
(±

0.
01

1)
0.

25
68

(±
0.

00
6)

0.
27

29
(±

0.
01

6)
0.

25
68

(±
0.

00
6)

0.
26

37
(±

0.
00

7)
0.

27
59

(±
0.

00
8)

0.
29

23
(±

0.
02

3)
0.

28
52

(±
0.

01
5)

0.
29

29
(±

0.
01

6)
0.

30
97

(±
0.

01
7)

ba
nk

0.
20

96
(±

0.
00

5)
0.

20
65

(±
0.

00
4)

0.
20

58
(±

0.
00

6)
0.

21
64

(±
0.

00
5)

0.
21

64
(±

0.
00

6)
0.

24
56

(±
0.

06
5)

0.
21

86
(±

0.
00

4)
0.

25
62

(±
0.

01
1)

0.
28

81
(±

0.
01

3)
0.

34
54

(±
0.

03
4)

0.
23

82
(±

0.
00

6)
0.

23
86

(±
0.

00
5)

0.
34

37
(±

0.
02

8)
bi

ke
0.

04
58

(±
0.

00
2)

0.
06

82
(±

0.
06

8)
0.

11
23

(±
0.

10
3)

0.
05

45
(±

0.
00

5)
0.

09
95

(±
0.

00
2)

0.
06

51
(±

0.
02

)
0.

06
79

(±
0.

00
2)

0.
11

79
(±

0.
00

6)
0.

15
31

(±
0.

00
5)

0.
15

03
(±

0.
02

5)
0.

15
99

(±
0.

00
3)

0.
16

14
(±

0.
00

3)
0.

23
99

(±
0.

04
)

ca
r

0.
20

27
(±

0.
01

8)
0.

09
72

(±
0.

02
4)

0.
10

39
(±

0.
03

1)
0.

16
9

(±
0.

02
5)

0.
24

54
(±

0.
02

9)
0.

15
72

(±
0.

03
4)

0.
28

59
(±

0.
02

7)
0.

48
91

(±
0.

07
7)

0.
73

74
(±

0.
06

3)
0.

56
32

(±
0.

15
8)

0.
70

35
(±

0.
05

2)
0.

73
22

(±
0.

04
3)

0.
83

32
(±

0.
07

4)
di

ab
et

ic
0.

88
95

(±
0.

00
4)

0.
91

93
(±

0.
01

)
0.

89
57

(±
0.

00
4)

0.
89

76
(±

0.
01

1)
0.

88
09

(±
0.

00
4)

1.
29

83
(±

0.
66

)
0.

88
39

(±
0.

00
5)

0.
91

37
(±

0.
00

8)
0.

96
13

(±
0.

00
7)

0.
96

61
(±

0.
01

6)
0.

89
74

(±
0.

00
4)

0.
89

8
(±

0.
00

3)
1.

07
74

(±
0.

03
9)

fis
h

to
xi

ci
ty

0.
09

91
(±

0.
00

8)
0.

09
72

(±
0.

00
7)

0.
09

63
(±

0.
00

8)
0.

10
56

(±
0.

00
8)

0.
10

23
(±

0.
00

8)
0.

10
46

(±
0.

00
8)

0.
10

16
(±

0.
00

9)
0.

10
43

(±
0.

00
9)

0.
10

93
(±

0.
00

9)
0.

10
99

(±
0.

01
2)

0.
13

93
(±

0.
01

2)
0.

14
41

(±
0.

01
2)

0.
11

93
(±

0.
01

3)
fo

re
st

fir
es

0.
06

43
(±

0.
04

)
0.

05
27

(±
0.

03
9)

0.
06

26
(±

0.
03

9)
0.

05
86

(±
0.

03
4)

0.
05

92
(±

0.
03

2)
0.

08
1

(±
0.

06
9)

0.
04

88
(±

0.
03

2)
0.

06
21

(±
0.

03
8)

0.
05

26
(±

0.
02

6)
0.

06
92

(±
0.

04
7)

0.
18

06
(±

0.
00

8)
0.

18
85

(±
0.

01
)

0.
35

98
(±

0.
09

)
ho

us
in

g
0.

08
89

(±
0.

01
2)

0.
08

48
(±

0.
01

1)
0.

08
42

(±
0.

01
5)

0.
09

51
(±

0.
01

5)
0.

09
23

(±
0.

01
6)

0.
09

41
(±

0.
01

7)
0.

10
6

(±
0.

01
9)

0.
11

69
(±

0.
01

9)
0.

12
79

(±
0.

02
)

0.
14

52
(±

0.
03

)
0.

17
35

(±
0.

02
3)

0.
17

13
(±

0.
01

8)
0.

20
57

(±
0.

03
6)

ir
is

0.
21

61
(±

0.
05

9)
0.

12
03

(±
0.

09
8)

0.
07

53
(±

0.
04

6)
0.

37
29

(±
1.

11
9)

0.
08

5
(±

0.
04

2)
0.

24
11

(±
0.

29
5)

0.
42

6
(±

0.
07

2)
0.

18
09

(±
0.

16
4)

0.
28

95
(±

0.
11

7)
0.

89
65

(±
0.

84
4)

0.
46

94
(±

0.
08

8)
0.

50
28

(±
0.

07
2)

0.
80

27
(±

0.
68

4)
m

us
hr

oo
m

0.
00

26
(±

0.
00

1)
0.

00
13

(±
0.

00
5)

0.
00

01
(±

0)
0.

00
09

(±
0.

00
1)

0.
00

94
(±

0.
00

2)
0.

00
52

(±
0.

01
2)

0.
00

42
(±

0.
00

1)
0.

07
74

(±
0.

02
)

0.
48

92
(±

0.
02

5)
0.

06
11

(±
0.

06
)

0.
17

97
(±

0.
00

9)
0.

24
18

(±
0.

01
3)

0.
68

7
(±

0.
01

6)
pa

rk
in

so
ns

0.
05

63
(±

0.
00

1)
0.

05
45

(±
0.

00
2)

0.
05

4
(±

0.
00

2)
0.

05
87

(±
0.

00
3)

0.
06

55
(±

0.
00

2)
0.

05
87

(±
0.

00
3)

0.
05

97
(±

0.
00

2)
0.

06
58

(±
0.

00
3)

0.
06

69
(±

0.
00

3)
0.

06
71

(±
0.

00
5)

0.
09

23
(±

0.
00

8)
0.

09
54

(±
0.

00
9)

0.
08

43
(±

0.
00

9)
st

ud
en

t
pe

rf
or

m
an

ce
0.

16
56

(±
0.

01
1)

0.
49

29
(±

0.
10

5)
0.

57
24

(±
0.

05
4)

0.
24

54
(±

0.
13

4)
0.

16
97

(±
0.

01
1)

0.
23

59
(±

0.
10

2)
0.

17
08

(±
0.

01
)

0.
19

47
(±

0.
01

4)
0.

19
62

(±
0.

01
)

0.
45

65
(±

0.
04

9)
0.

19
3

(±
0.

01
1)

0.
19

25
(±

0.
01

1)
0.

20
14

(±
0.

01
2)

w
in

e
qu

al
it

y
1.

06
51

(±
0.

02
4)

1.
03

95
(±

0.
01

8)
1.

05
14

(±
0.

02
1)

1.
10

28
(±

0.
03

9)
1.

07
18

(±
0.

02
5)

1.
08

27
(±

0.
02

6)
1.

08
09

(±
0.

02
1)

1.
16

66
(±

0.
03

)
1.

25
16

(±
0.

04
6)

1.
30

46
(±

0.
11

4)
1.

16
48

(±
0.

02
3)

1.
17

74
(±

0.
01

9)
1.

48
96

(±
0.

09
3)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 144

T
ab

le
8.

2:
E

m
pi

ric
al

re
su

lts
sh

ow
in

g
no

rm
al

ise
d

av
er

ag
e

ra
nk

an
d

st
at

ist
ic

s
fo

r
di

ffe
re

nt
lo

w
-le

ve
lh

eu
ris

tic
s

co
m

pa
re

d
to

th
re

e
he

ur
ist

ic
po

ol
va

ria
nt

s
of

th
e

B
H

H
ba

se
lin

e
co

nfi
gu

ra
tio

n,
ac

ro
ss

m
ul

tip
le

da
ta

se
ts

,f
or

al
li

nd
ep

en
de

nt
ru

ns
an

d
ep

oc
hs

.

B
H

H
vs

.
L

ow
-L

ev
el

H
eu

ri
st

ic
s

-
A

ve
ra

ge
R

an
k

(B
as

ed
on

T
es

t
L

os
s)

da
ta

se
t

ad
ag

ra
d

ad
am

rm
sp

ro
p

bh
h_

gd
na

g
bh

h_
al

l
ad

ad
el

ta
bh

h_
m

h
ga

ps
o

sg
d

m
om

en
tu

m
de

ab
al

on
e

2.
22

15
(±

1.
59

1)
2.

39
89

(±
1.

88
7)

4.
61

72
(±

2.
65

)
4.

70
32

(±
2.

10
8)

4.
27

31
(±

1.
54

2)
5.

93
76

(±
2.

39
9)

5.
31

29
(±

1.
47

8)
8.

18
82

(±
1.

19
5)

11
.1

10
8

(±
1.

10
2)

11
.2

55
9

(±
1.

82
6)

8.
62

8
(±

1.
01

9)
9.

81
51

(±
1.

16
)

12
.5

37
6

(±
1.

32
9)

ai
r

qu
al

it
y

3.
64

09
(±

2.
25

9)
5.

43
12

(±
2.

62
)

3.
44

52
(±

2.
57

)
5.

08
17

(±
2.

76
2)

3.
81

94
(±

2.
22

9)
6.

68
6

(±
3.

06
1)

5.
24

41
(±

3.
16

2)
6.

35
7

(±
2.

30
3)

7.
82

04
(±

2.
26

5)
9.

91
51

(±
2.

28
8)

10
.6

61
3

(±
1.

60
6)

11
.7

55
9

(±
1.

47
3)

11
.1

41
9

(±
2.

23
6)

ba
nk

2.
54

95
(±

1.
59

8)
2.

07
96

(±
1.

58
7)

3.
46

45
(±

2.
20

9)
4.

88
28

(±
1.

70
2)

4.
28

71
(±

1.
73

2)
6.

24
19

(±
2.

15
7)

5.
67

2
(±

1.
24

1)
9.

74
95

(±
1.

04
8)

10
.9

81
7

(±
1.

21
6)

11
.8

37
6

(±
1.

46
4)

8.
27

74
(±

1.
03

)
8.

47
74

(±
1.

06
8)

12
.4

98
9

(±
1.

22
4)

bi
ke

1.
72

04
(±

1.
38

4)
3.

69
25

(±
4.

00
4)

6.
26

24
(±

4.
58

)
3.

84
41

(±
1.

39
8)

6.
45

16
(±

1.
02

)
4.

21
51

(±
1.

36
1)

5.
36

02
(±

1.
15

5)
7.

41
08

(±
1.

00
8)

9.
22

69
(±

1.
18

3)
9.

30
86

(±
1.

76
1)

10
.3

35
5

(±
1.

41
9)

10
.7

08
6

(±
1.

42
3)

12
.4

63
4

(±
1.

46
5)

ca
r

4.
76

34
(±

0.
93

8)
1.

62
26

(±
1.

40
5)

2.
32

69
(±

1.
40

9)
3.

34
73

(±
1.

35
)

6.
07

85
(±

0.
79

9)
3.

56
24

(±
1.

31
5)

7.
73

44
(±

1.
74

6)
8.

85
05

(±
1.

41
3)

10
.7

76
3

(±
1.

47
1)

8.
36

13
(±

1.
62

2)
10

.2
45

2
(±

1.
44

7)
10

.9
22

6
(±

1.
34

9)
12

.4
08

6
(±

1.
49

2)
di

ab
et

ic
2.

77
96

(±
1.

65
9)

7.
14

84
(±

2.
22

7)
6.

73
76

(±
2.

57
7)

5.
22

69
(±

2.
18

6)
1.

81
18

(±
1.

41
3)

9.
39

68
(±

3.
02

2)
2.

67
53

(±
1.

62
9)

8.
55

7
(±

1.
17

)
11

.2
01

1
(±

1.
41

3)
10

.7
02

2
(±

1.
06

7)
5.

92
15

(±
1.

54
2)

6.
33

55
(±

1.
61

2)
12

.5
06

5
(±

1.
24

2)
fis

h
to

xi
ci

ty
4.

26
45

(±
2.

61
4)

3.
60

22
(±

2.
44

5)
3.

59
46

(±
2.

32
9)

5.
41

18
(±

2.
66

5)
5.

89
14

(±
2.

62
9)

5.
82

9
(±

2.
85

6)
7.

91
4

(±
3.

42
9)

6.
38

49
(±

2.
94

4)
6.

70
43

(±
2.

82
)

7.
57

31
(±

2.
98

2)
11

.5
78

5
(±

1.
45

9)
12

.2
30

1
(±

1.
38

2)
10

.0
21

5
(±

2.
35

8)
fo

re
st

fir
es

5.
15

59
(±

2.
92

2)
4.

26
88

(±
2.

98
4)

5.
03

55
(±

3.
14

3)
4.

69
35

(±
2.

75
9)

5.
68

82
(±

2.
21

5)
5.

48
39

(±
3.

10
7)

6.
51

61
(±

3.
08

2)
5.

45
91

(±
2.

66
8)

7.
36

67
(±

2.
37

)
6.

47
96

(±
3.

35
4)

10
.8

12
9

(±
1.

20
7)

11
.7

06
5

(±
1.

32
5)

12
.3

33
3

(±
1.

92
3)

ho
us

in
g

3.
44

84
(±

2.
02

5)
3.

33
44

(±
1.

81
9)

3.
69

46
(±

2.
16

6)
4.

47
42

(±
2.

31
2)

4.
68

39
(±

2.
65

8)
4.

37
63

(±
2.

43
8)

7.
59

03
(±

2.
74

8)
7.

54
41

(±
1.

73
6)

7.
88

39
(±

2.
09

9)
9.

94
09

(±
2.

31
7)

11
.4

07
5

(±
1.

52
8)

11
.2

73
1

(±
1.

50
6)

11
.3

48
4

(±
2.

09
6)

ir
is

6.
39

46
(±

1.
6)

3.
58

39
(±

2.
51

1)
2.

69
68

(±
1.

91
2)

4.
74

73
(±

2.
27

5)
3.

55
48

(±
2.

12
5)

5.
22

04
(±

3.
04

1)
11

.3
52

7
(±

1.
77

9)
6.

60
75

(±
2.

55
5)

8.
24

73
(±

1.
76

5)
8.

27
31

(±
4.

38
4)

10
.3

79
6

(±
1.

29
4)

11
.0

54
8

(±
1.

40
9)

8.
88

71
(±

3.
25

1)
m

us
hr

oo
m

4.
46

56
(±

1.
05

3)
2.

13
44

(±
1.

88
3)

2.
46

56
(±

1.
35

9)
3.

44
84

(±
1.

60
2)

6.
33

23
(±

0.
89

1)
3.

66
88

(±
2.

46
9)

6.
55

38
(±

1.
07

1)
9.

04
52

(±
1.

09
3)

11
.5

73
1

(±
1.

19
3)

7.
87

2
(±

0.
92

)
9.

75
27

(±
1.

08
3)

10
.9

78
5

(±
1.

10
8)

12
.7

09
7

(±
1.

47
8)

pa
rk

in
so

ns
2.

46
77

(±
1.

49
7)

2.
23

33
(±

1.
74

2)
3.

56
56

(±
2.

49
2)

4.
57

2
(±

1.
93

4)
7.

53
55

(±
1.

44
)

4.
38

39
(±

1.
86

1)
6.

47
2

(±
2.

42
3)

8.
31

61
(±

1.
64

4)
7.

79
68

(±
1.

71
9)

8.
48

92
(±

1.
90

1)
11

.7
51

6
(±

1.
15

5)
12

.5
41

9
(±

1.
35

1)
10

.8
74

2
(±

1.
31

7)
st

ud
en

t
pe

rf
or

m
an

ce
2.

56
34

(±
1.

91
2)

11
.3

97
8

(±
2.

17
8)

12
.4

31
2

(±
1.

34
)

5.
66

24
(±

3.
57

)
3.

19
35

(±
2.

12
)

5.
86

34
(±

3.
15

9)
3.

41
94

(±
2.

00
6)

6.
93

33
(±

2.
44

)
7.

10
32

(±
1.

98
9)

11
.0

62
4

(±
1.

06
7)

6.
63

66
(±

2.
02

3)
6.

70
11

(±
2.

24
2)

8.
03

23
(±

1.
93

5)
w

in
e

qu
al

it
y

3.
28

06
(±

1.
93

1)
2.

11
18

(±
1.

66
6)

3.
63

01
(±

1.
73

1)
4.

78
82

(±
2.

10
5)

4.
15

05
(±

1.
91

6)
5.

19
25

(±
1.

95
1)

6.
00

11
(±

2.
40

4)
9.

59
35

(±
1.

49
4)

10
.3

38
7

(±
1.

62
)

11
.1

60
2

(±
1.

77
3)

8.
63

44
(±

1.
18

)
9.

52
69

(±
1.

34
1)

12
.5

90
3

(±
1.

35
2)

a v
g

ra
nk

3.
55

12
(±

2.
25

)
3.

93
14

(±
3.

42
3)

4.
56

91
(±

3.
51

7)
4.

63
46

(±
2.

36
4)

4.
83

94
(±

2.
38

4)
5.

43
27

(±
2.

9)
6.

27
27

(±
3.

00
4)

7.
78

55
(±

2.
27

1)
9.

15
22

(±
2.

48
)

9.
44

51
(±

2.
75

)
9.

64
45

(±
2.

21
4)

10
.2

87
7

(±
2.

34
6)

11
.4

53
8

(±
2.

35
4)

no
rm

al
is

ed
av

g
ra

nk
1

2
3

4
5

6
7

8
9

10
11

12
13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 145

achieved over all independent runs, for each heuristic, per dataset. The heuristics
are ordered according to the normalised ranks presented in Table 8.2.

0

2

4

6

8

10

12

14
ad

ag
ra

d

ad
am

rm
sp

ro
p

bh
h_

gd na
g

bh
h_

al
l

ad
ad

el
ta

bh
h_

m
h ga ps
o

sg
d

m
om

en
tu

m de

Av
er

ag
e

Ra
nk

Heuristic

Average Rank Per Dataset - BHH vs. Low Level Heuristics

abalone air_quality bank bike car
diabetic fish_toxicity forest_fires housing iris
mushroom parkinsons student_performance wine_quality

Figure 8.6: Descriptive plots for the average ranks of all low-level heuristics compared
to three heuristic pool variants of the BHH baseline configuration, per dataset, across all
independent runs and epochs.

From Figure 8.6 a few observations can be made. Firstly, both Adam and
RMSProp achieved radically different average ranks for the student performance
dataset, compared to the other datasets. This can also be seen in Table 8.2. Further
investigation into the reasons for this is required as both these heuristics perform
well on all other datasets, and the other heuristics perform well for the student
performance dataset. A suggestion is that an invalid learning rate or learning rate
schedule leads to a scenario where good solutions are overshot, causing Adam and
RMSProp to struggle to resolve back to good solutions. Furthermore, the bhh_gd
heuristic achieved the lowest variance in average rank across all datasets, compared
to the other heuristics. The aforementioned shows the generalisation capabilities of
the BHH to multiple problems.

Figure 8.7 provides an illustration of the overall critical difference plots that
illustrate the statistically significant differences in ranked performance for each
heuristic as it relates to all datasets, across all independent runs and epochs.

Although the outcomes of the bhh_all and bhh_mh configurations seem to
produce average performance results, it should be noted that the performance
difference between all heuristics is very small. Furthermore, the best configuration of
the BHH, namely the bhh_gd configuration, is statistically only outperformed overall

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 146

1 2 3 4 5 6 7 8 9 10 11 12 13

adagrad
adam

rmsprop
bhh_gd

nag
bhh_all

adadelta
bhh_mh
ga
pso
sgd
momentum
de

CD

BHH vs. Low-Level Heuristics - Critical Difference - Overall

Figure 8.7: Critical difference plots for the average ranks of all low-level heuristics
compared to three heuristic pool variants of the baseline BHH, across all datasets, runs
and epochs.

by Adagrad and Adam, yielding statistically comparable results to RMSProp and
NAG. It should be noted that the standalone low-level heuristics already produce
good results in general across all datasets. In this particular case, producing better
performance outcomes can be hard to achieve. However, as mentioned previously,
the BHH provides a generalisation capability across all datasets that is advantageous
to the BHH.

Another observation that can be made is that the gradient-based heuristics
generally performed much better than the meta-heuristics on all datasets. State of
the art methods for training FFNNs, such as Adam, utilise gradient-based approaches
that have been proven to work well on many occasions [94]. Exploration of the
heuristic space leads the BHH to consider other heuristics during the training process,
which could possibly result in worse performances at times. As previously mentioned,
a suggestion to improve on these results is to include a move-acceptance strategy,
where heuristic progressions are discarded if they fail to produce better results.

Figures 8.8 to 8.10 provide example illustrations of the train and test loss and
accuracy plots for each heuristic as it relates to a selection of classification datasets.
The train and test loss and accuracy plots provided are illustrated in log scale.
The other classification datasets are left out for brevity as they produce similar
illustrations.

Figures 8.11 to 8.12 provide example illustrations of the train and test loss plots
for each heuristic as it relates to a selection of regression datasets. The train and test
loss plots provided are illustrated in log scale. Similar to before, the other regression
datasets are left out for brevity as they produce similar illustrations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 147

0 5 10 15 20 25 30
Epoch

10 1

100

Tr
ai

n
Lo

g
Lo

ss

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Loss - Dataset: iris

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

100

Te
st

 L
og

 L
os

s heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Loss - Dataset: iris

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Accuracy - Dataset: iris

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Accuracy - Dataset: iris

(d) Test log accuracy

Figure 8.8: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level heuristics on
the iris dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 148

0 5 10 15 20 25 30
Epoch

10 1

100

Tr
ai

n
Lo

g
Lo

ss

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Loss - Dataset: car

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

100

Te
st

 L
og

 L
os

s heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Loss - Dataset: car

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Accuracy - Dataset: car

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Accuracy - Dataset: car

(d) Test log accuracy

Figure 8.9: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level heuristics on
the car dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 149

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Lo

ss

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Loss - Dataset: bank

(a) Train log loss

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 L
os

s

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Loss - Dataset: bank

(b) Test log loss

0 5 10 15 20 25 30
Epoch

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Accuracy - Dataset: bank

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Accuracy - Dataset: bank

(d) Test log accuracy

Figure 8.10: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH to individual, standalone, low-level heuristics on
the bank dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 150

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

Tr
ai

n
Lo

g
Lo

ss

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Loss - Dataset: fish_toxicity

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

Te
st

 L
og

 L
os

s

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Loss - Dataset: fish_toxicity

(b) Test log loss

Figure 8.11: The train and test loss plots for the experimental group comparing the
performance of the BHH to individual, standalone, low-level heuristics on the fish toxicity
dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

g
Lo

ss

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Train Log Loss - Dataset: parkinsons

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 L
og

 L
os

s

heuristic

adam
adadelta
adagrad
bhh_all
bhh_gd
bhh_mh
de
ga
momentum
nag
pso
rmsprop
sgd

BHH vs. Low-Level Heuristics - Test Log Loss - Dataset: parkinsons

(b) Test log loss

Figure 8.12: The train and test loss plots for the experimental group comparing the
performance of the BHH to individual, standalone, low-level heuristics on the parkinsons
dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 151

8.4 Heuristic Pool

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the heuristic pool
hyper-parameter. Brief discussions follow and illustrations are provided for visual
aid. This experimental group utilises the same three variants of the BHH as was
utilised in Section 8.3, but provides an opportunity to look at the BHH heuristic pool
hyper-parameter in more depth. These variants are denoted as follows: The BHH
baseline configuration with a heuristic pool that contains all the low-level heuristics
is denoted as all, the BHH configuration with a heuristic pool that contains only
gradient-based heuristics is denoted as gd, and finally, the BHH configuration with a
heuristics pool that contains only meta-heuristics is denoted as mh.

Table 8.3 presents the empirical results for this experimental group, showing the
average test loss and statistics for all the heuristic pool variants of the BHH that
was implemented. The test loss is measured at the last epoch for each dataset, over
all independent runs.

Table 8.3: Empirical results showing average test loss and statistics for all heuristic pool
configurations used by the BHH across multiple datasets, for all independent runs and is
measured at the last epoch.

Heuristic Pool - Average Test Loss

dataset all gd mh

abalone 2.0587 (±0.088) 2.0125 (±0.068) 2.2942 (±0.055)
air quality 0.2729 (±0.016) 0.2642 (±0.011) 0.2637 (±0.007)

bank 0.2456 (±0.065) 0.2164 (±0.005) 0.2562 (±0.011)
bike 0.0651 (±0.02) 0.0545 (±0.005) 0.1179 (±0.006)
car 0.1572 (±0.034) 0.169 (±0.025) 0.4891 (±0.077)

diabetic 1.2983 (±0.66) 0.8976 (±0.011) 0.9137 (±0.008)
fish toxicity 0.1046 (±0.008) 0.1056 (±0.008) 0.1043 (±0.009)

forest fires 0.081 (±0.069) 0.0586 (±0.034) 0.0621 (±0.038)
housing 0.0941 (±0.017) 0.0951 (±0.015) 0.1169 (±0.019)

iris 0.2411 (±0.295) 0.3729 (±1.119) 0.1809 (±0.164)
mushroom 0.0052 (±0.012) 0.0009 (±0.001) 0.0774 (±0.02)
parkinsons 0.0587 (±0.003) 0.0587 (±0.003) 0.0658 (±0.003)

student performance 0.2359 (±0.102) 0.2454 (±0.134) 0.1947 (±0.014)
wine quality 1.0827 (±0.026) 1.1028 (±0.039) 1.1666 (±0.03)

Similar to before, Table 8.4 provides the average ranked performance, per dataset,
of each of the BHH heuristic pool configurations. The performance rank is calculated
as the average rank produced by each heuristic pool configuration, for all datasets,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 152

over all independent runs and epochs.

Table 8.4: Empirical results showing average rank and statistics for all heuristic pool
configurations used by the BHH across multiple datasets, for all independent runs and
epochs.

Heuristic Pool - Average Rank

dataset all gd mh

abalone 1.7946 (±0.641) 1.3828 (±0.56) 2.8226 (±0.42)
air quality 2.1871 (±0.815) 1.6828 (±0.751) 2.1301 (±0.788)

bank 1.7731 (±0.562) 1.3215 (±0.492) 2.9054 (±0.334)
bike 1.6247 (±0.553) 1.4387 (±0.532) 2.9366 (±0.281)
car 1.5903 (±0.511) 1.4409 (±0.518) 2.9688 (±0.228)

diabetic 2.4516 (±0.735) 1.2806 (±0.576) 2.2677 (±0.58)
fish toxicity 1.9903 (±0.849) 1.8344 (±0.768) 2.1753 (±0.796)

forest fires 2.0667 (±0.834) 1.8269 (±0.781) 2.1065 (±0.807)
housing 1.6043 (±0.687) 1.6602 (±0.665) 2.7355 (±0.524)

iris 1.8581 (±0.8) 1.7806 (±0.727) 2.3613 (±0.796)
mushroom 1.5204 (±0.581) 1.5484 (±0.527) 2.9312 (±0.289)
parkinsons 1.557 (±0.624) 1.6011 (±0.591) 2.8419 (±0.445)

student performance 1.9828 (±0.822) 1.7903 (±0.848) 2.2269 (±0.715)
wine quality 1.5785 (±0.55) 1.4935 (±0.563) 2.928 (±0.294)

avg rank 1.8271 (±0.743) 1.5773 (±0.671) 2.5955 (±0.659)

normalised avg rank 2 1 3

Similar to the outcomes provided in Section 8.3, by ranked performance over all
epochs, it is found that the gd configuration yielded the best overall performance
compared to the all and mh configurations. However, when considering the test loss
measured at the last epoch, there is no clear difference in performance overall. This
illustrates the reasoning behind the use of the rank metric over all epochs to evaluate
the overall training process, as the test loss outcome differs at different epochs and
early stopping of the training process was not used.

Figure 8.13 provides an illustration of the descriptive plots for the different
BHH configurations as it relates to the performance of the different heuristic pool
configurations, per dataset. From this illustration it can clearly be seen that, by
ranked performance, the gd configuration produced better results overall, considering
the entire training process.

Figure 8.14 provides an illustration of the overall critical difference plots that
illustrate the statistically significant differences in ranked performance for each
heuristic pool configuration as it relates to all datasets, across all independent runs
and epochs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 153

Figure 8.13: Descriptive plots for the average ranks of the BHH with varying heuristic
pools per dataset, across all independent runs and epochs.

1 2 3

gd
all

mh

CD

BHH Heuristic Pool - Critical Difference - Overall

Figure 8.14: Critical difference plots for the average ranks of the BHH with varying
heuristic pools across all datasets, runs and epochs.

From Figures 8.13 and 8.14, it is clear that the gd configuration performs best
overall, with exceptions to the parkinsons and housing datasets, where the all and
gd configurations performed equally well with statistically insignificant differences in
their outcomes.

From the results shown in this section and Section 8.3, the gradient-based
heuristics outperformed the meta-heuristics in almost all cases. It can then logically
be concluded that the BHH baseline configuration with only gradient-based heuristics
in the heuristic pool yields the best performance. The inclusion of meta-heuristics
is done as an attempt to provide a mechanism that could provide even better
performance, as well as generalisation capabilities to other datasets. The benefits
of using meta-heuristics in the heuristic pool is not realised in this dissertation,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 154

since the gradient-based heuristics provided the best overall performance across all
datasets. Furthermore, the standalone gradient-based heuristics already produce good
performance results, and improvement on those results are hard. Faster convergence
is also difficult to achieve, since the BHH needs sufficient time to explore the heuristic
space. The benefit that the BHH then brings is that it provides a mechanism whereby
prior expert knowledge can be injected, before training starts. Since gradient-based
heuristics perform well, future research can exploit this knowledge and provide a
significant bias towards these gradient-based heuristics through the initialisation of
the concentration parameters related to these heuristics as mentioned previously.

Similar to before, Figure 8.15 provides an illustration of the train and test loss
and accuracy plots for an example classification dataset (abalone) as it relates to the
heuristic pool experimental group. As before, the illustrations are provided in log
scale and illustrations for the other classification datasets are left out for brevity as
they yield similar illustrations.

0 5 10 15 20 25 30
Epoch

2 × 100

3 × 100

Tr
ai

n
Lo

g
Lo

ss

heuristic_pool

all
gd
mh

BHH Heuristic Pool - Train Log Loss - Dataset: abalone

(a) Train log loss

0 5 10 15 20 25 30
Epoch

2 × 100

3 × 100

Te
st

 L
og

 L
os

s

heuristic_pool

all
gd
mh

BHH Heuristic Pool - Test Log Loss - Dataset: abalone

(b) Test log loss

0 5 10 15 20 25 30
Epoch

10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

heuristic_pool

all
gd
mh

BHH Heuristic Pool - Train Log Accuracy - Dataset: abalone

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

10 1

Te
st

 L
og

 A
cc

ur
ac

y

heuristic_pool

all
gd
mh

BHH Heuristic Pool - Test Log Accuracy - Dataset: abalone

(d) Test log accuracy

Figure 8.15: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the heuristic pool
hyper-parameter on the abalone dataset over 30 epochs, illustrated in log scale.

Figure 8.16 provides the train and test loss plots for an example regression
dataset (forest fires) as it relates to the heuristic pool experimental group. As before,
the illustrations are provided in log scale and illustrations for the other regression
datasets are left out for brevity.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 155

0 5 10 15 20 25 30
Epoch

10 1

Tr
ai

n
Lo

g
Lo

ss
heuristic_pool

all
gd
mh

BHH Heuristic Pool - Train Log Loss - Dataset: forest_fires

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

Te
st

 L
og

 L
os

s

heuristic_pool

all
gd
mh

BHH Heuristic Pool - Test Log Loss - Dataset: forest_fires

(b) Test log loss

Figure 8.16: The train and test loss plots for the experimental group comparing the
performance of the BHH with different configurations of the heuristic pool hyper-parameter
on the forest fires dataset over 30 epochs, illustrated in log scale.

8.5 Population Size

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the population size
hyper-parameter. Brief discussions follow and illustrations are provided for visual
aid. As a reminder, five different population sizes are considered. These include
population sizes of 5, 10, 15, 20, and 25, and experiments are denoted as such.

Table 8.5 presents the empirical results for this experimental group, showing the
average test loss and statistics for all the population size variants of the BHH that
was implemented. Similar to before, the test loss is measured at the last epoch for
each dataset, over all independent runs.

From Table 8.5 it can be seen that the lowest population size produced mostly
the best performance outcomes, yielding the best average test loss for eight of the
fourteen datasets. However, the lowest population size also produced the worst
performance outcomes for four of the fourteen datasets. From the empirical results
that show the average test loss, measured at the last epoch, it is not clear which
population size configuration produced the overall best results.

As before, the performance of the different BHH population size configurations
need to be considered for the entire training process. As such, Table 8.6 provides
the average ranked performance, per dataset, of each of the BHH population size
configurations. Similar to before, the performance rank is calculated as the average
rank produced by each population size configuration, for all datasets, over all
independent runs and epochs.

From Table 8.6 it can be seen that a lower population size of five, mostly produced
the best results, with exception to the bike and car datasets, for which the lowest
population size configuration produced the worst performance, yielding statistically

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 156

Table 8.5: Empirical results showing average test loss and statistics for all population
size configurations used by the BHH across multiple datasets, for all independent runs and
is measured at the last epoch.

Population - Average Test Loss

dataset 5 10 15 20 25

abalone 2.0587 (±0.088) 2.1592 (±0.278) 2.3321 (±0.446) 2.3345 (±0.357) 2.4188 (±0.473)
air quality 0.2729 (±0.016) 0.2701 (±0.011) 0.2736 (±0.014) 0.2808 (±0.026) 0.2715 (±0.011)

bank 0.2456 (±0.065) 0.2356 (±0.029) 0.2268 (±0.015) 0.2294 (±0.019) 0.2278 (±0.012)
bike 0.0651 (±0.02) 0.0527 (±0.002) 0.0535 (±0.003) 0.0541 (±0.003) 0.0535 (±0.003)
car 0.1572 (±0.034) 0.1595 (±0.035) 0.161 (±0.039) 0.1636 (±0.04) 0.17 (±0.048)

diabetic 1.2983 (±0.66) 0.9954 (±0.103) 1.0826 (±0.3) 0.9893 (±0.105) 0.9875 (±0.078)
fish toxicity 0.1046 (±0.008) 0.1077 (±0.009) 0.1071 (±0.011) 0.1104 (±0.017) 0.1079 (±0.008)

forest fires 0.081 (±0.069) 0.0694 (±0.059) 0.0761 (±0.056) 0.084 (±0.07) 0.0854 (±0.065)
housing 0.0941 (±0.017) 0.0985 (±0.026) 0.0943 (±0.016) 0.0987 (±0.017) 0.1038 (±0.017)

iris 0.2411 (±0.295) 0.4212 (±0.671) 0.5905 (±1.043) 0.2784 (±0.261) 0.327 (±0.381)
mushroom 0.0052 (±0.012) 1.9037 (±10.345) 0.3366 (±1.559) 0.1311 (±0.486) 0.2602 (±1.115)
parkinsons 0.0587 (±0.003) 0.0598 (±0.003) 0.0606 (±0.003) 0.0602 (±0.003) 0.0612 (±0.003)

student performance 0.2359 (±0.102) 0.2007 (±0.032) 0.2092 (±0.039) 0.2033 (±0.037) 0.2091 (±0.054)
wine quality 1.0827 (±0.026) 1.0864 (±0.034) 1.1083 (±0.054) 1.0961 (±0.027) 1.1071 (±0.039)

significant differences in outcomes from the other datasets. A larger population size
configuration is preferred for the bike and car datasets. Furthermore, a population
size configuration of ten, slightly higher than the default of five, is preferred for the
forest fires and housing datasets. Finally, the overall normalised average rank is
provided at the bottom of the table, showing that a population size of five produced
the best performance outcome across all datasets on average.

Figure 8.17 provides an illustration of the descriptive plots for the different
BHH configurations as it relates to the performance of the different population size
configurations, per dataset.

Figure 8.17 shows the correlation of performance with population size for each
dataset. From these illustrations, it can be seen that the correlation between the
population size configuration and performance is different for each dataset, suggesting
that the population size hyper-parameter is problem specific. However, the overall
performance related to each population configuration, across all datasets is not clear
from these illustrations.

Figure 8.18 provides an illustration of the overall critical difference plots for
ranked performance for each population size configuration as it relates to all datasets,
across all independent runs and epochs. It is shown that there is no overall statistical
significant difference between population sizes, and thus it can be concluded that
the population size hyper-parameter is problem specific.

Similar to before, Figure 8.19 provides the train and test loss and accuracy plots

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 157

Table 8.6: Empirical results showing average rank and statistics for different population
sizes used by the BHH across multiple datasets, for all independent runs and all epochs.

Population - Average Rank

dataset 5 10 15 20 25

abalone 2.4387 (±1.34) 2.7452 (±1.392) 3.0129 (±1.386) 3.4065 (±1.351) 3.3968 (±1.351)
air quality 2.7527 (±1.428) 2.9258 (±1.39) 2.9656 (±1.379) 3.314 (±1.379) 3.0419 (±1.437)

bank 2.8129 (±1.41) 3.1591 (±1.435) 2.9989 (±1.42) 3.0505 (±1.444) 2.9785 (±1.341)
bike 3.8957 (±1.335) 2.8688 (±1.285) 2.9645 (±1.345) 2.743 (±1.376) 2.528 (±1.328)
car 3.1892 (±1.391) 3.0409 (±1.394) 3.0398 (±1.452) 2.8559 (±1.394) 2.8742 (±1.415)

diabetic 2.7978 (±1.508) 2.9387 (±1.413) 3.2129 (±1.452) 2.9613 (±1.304) 3.0892 (±1.353)
fish toxicity 2.8151 (±1.425) 3.0409 (±1.429) 3.0925 (±1.323) 3.128 (±1.407) 2.9237 (±1.463)

forest fires 3.0172 (±1.403) 2.9215 (±1.38) 2.9806 (±1.383) 3.0968 (±1.412) 2.9839 (±1.488)
housing 2.8366 (±1.404) 2.8258 (±1.38) 2.9753 (±1.439) 2.9849 (±1.411) 3.3774 (±1.368)

iris 2.8301 (±1.304) 2.8731 (±1.397) 3.0505 (±1.413) 3.186 (±1.425) 3.0602 (±1.499)
mushroom 2.7989 (±1.205) 2.9441 (±1.325) 3.0462 (±1.452) 3.1366 (±1.494) 3.0538 (±1.566)
parkinsons 2.6645 (±1.441) 3.1065 (±1.327) 3.0247 (±1.427) 3.0495 (±1.442) 3.1548 (±1.381)

student performance 2.6376 (±1.436) 2.8645 (±1.411) 3.1548 (±1.404) 3.2387 (±1.397) 3.1043 (±1.34)
wine quality 2.5505 (±1.317) 2.7817 (±1.415) 3.1581 (±1.384) 3.1806 (±1.394) 3.329 (±1.414)

avg rank 2.8598 (±1.424) 2.9312 (±1.389) 3.0484 (±1.406) 3.0952 (±1.412) 3.064 (±1.428)

normalised avg rank 1 2 3 5 4

for an example classification dataset (mushroom) as it relates to the population
size experimental group. As before, the illustrations are provided in log scale and
illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

As a reminder, the experimental group for population sizes only varies the
population size hyper-parameter and all other hyper-parameters remain the same
between configurations. As such, all population size configurations make use of
the heuristic pool configuration that includes all the low-level heuristics, including
gradient-based heuristics and meta-heuristics.

Divergence of the training loss can be observed in Figure 8.19b. Note that,
despite the divergence of training loss, the accuracy is still almost 100% and that
these divergent behaviours are simply a result of an attempt to further improve
performance, by exploring the heuristic space more. For example, heuristics could
have momentum as a result of good training progression thus far, but then overshoot
good solutions after heuristic reselection. Overshooting good solutions then causes
the heuristics to struggle to converge back to good solutions, especially if many
different heuristics are selected in quick succession. A suggestion to this problem is
to implement a move-acceptance strategy as was mentioned before. At the ninth
epoch, the BHH fails to produce better solutions on the training set. Since there is
not much room for more improvement, the BHH is bound to try different heuristics

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 158

Figure 8.17: Descriptive plots for the average ranks of BHH with varying population
sizes per dataset, across all independent runs and epochs.

1 2 3 4 5

5
10
15

25
20

CD

BHH Population - Critical Difference - Overall

Figure 8.18: Critical difference plots for the average ranks of BHH with varying population
sizes across all datasets, runs and epochs.

that yield sub-optimal results. From this point onwards, the BHH finds slightly
better results on the train set, and as a result, produces volatile performance on the
test set.

Figure 8.20 provides the train and test loss plots for an example regression dataset
(student performance) as it relates to the population size experimental group. As
before, the illustrations are provided in log scale and illustrations of the train and
test loss plots for the other regression datasets are left out for brevity.

From Figure 8.20a it can be seen that the BHH with a low population size of five
starts to diverge away from optimal results as it explores different heuristics in an
attempt to provide better solutions. Divergence can be eliminated by means of an
early stopping strategy as well as a move-acceptance strategy as mentioned before.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 159

0 5 10 15 20 25 30
Epoch

10 5

10 3

10 1

Tr
ai

n
Lo

g
Lo

ss

population

5
10
15
20
25

BHH Population - Train Log Loss - Dataset: mushroom

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 2

100

102

Te
st

 L
og

 L
os

s

population

5
10
15
20
25

BHH Population - Test Log Loss - Dataset: mushroom

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

population

5
10
15
20
25

BHH Population - Train Log Accuracy - Dataset: mushroom

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
population

5
10
15
20
25

BHH Population - Test Log Accuracy - Dataset: mushroom

(d) Test log accuracy

Figure 8.19: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the population size
hyper-parameter on the mushroom dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

2 × 10 1

3 × 10 1

Tr
ai

n
Lo

g
Lo

ss

population

5
10
15
20
25

BHH Population - Train Log Loss - Dataset: student_performance

(a) Train log loss

0 5 10 15 20 25 30
Epoch

2 × 10 1

3 × 10 1

Te
st

 L
og

 L
os

s

population

5
10
15
20
25

BHH Population - Test Log Loss - Dataset: student_performance

(b) Test log loss

Figure 8.20: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the population
size hyper-parameter on the student performance dataset over 30 epochs, illustrated in log
scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 160

8.6 Credit Assignment Strategy

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the credit assignment
strategy hyper-parameter. Brief discussions follow and illustrations are provided for
visual aid. As a reminder, five different credit assignment strategies are considered.
These include the ibest, pbest, rbest, gbest, and symmetric credit assignment strategies
as presented in Chapter 6 and experiments are denoted as such.

Table 8.7 presents the empirical results for this experimental group, showing the
average test loss and statistics for all the credit assignment strategy variants of the
BHH that was implemented. As before, the test loss is measured at the last epoch
for each dataset, over all independent runs.

Table 8.7: Empirical results showing average test loss and statistics for different credit
assignment strategies used by the BHH across multiple datasets, for all independent runs
and is measured at the last epoch.

Credit - Average Test Loss

dataset ibest pbest rbest gbest symmetric

abalone 2.0587 (+-0.088) 2.0422 (+-0.094) 2.0922 (+-0.152) 2.0833 (+-0.136) 2.1177 (+-0.259)
air quality 0.2729 (+-0.016) 0.2678 (+-0.015) 0.2644 (+-0.015) 0.2684 (+-0.013) 0.2688 (+-0.017)

bank 0.2456 (+-0.065) 0.2645 (+-0.171) 0.238 (+-0.047) 0.2361 (+-0.031) 0.2498 (+-0.047)
bike 0.0651 (+-0.02) 0.0634 (+-0.023) 0.0633 (+-0.02) 0.063 (+-0.021) 0.0666 (+-0.021)
car 0.1572 (+-0.034) 0.1569 (+-0.029) 0.1665 (+-0.03) 0.1504 (+-0.03) 0.1564 (+-0.037)

diabetic 1.2983 (+-0.66) 1.4981 (+-2.41) 1.6172 (+-1.527) 1.0347 (+-0.231) 1.3627 (+-1.145)
fish toxicity 0.1046 (+-0.008) 0.1028 (+-0.008) 0.1024 (+-0.009) 0.1061 (+-0.009) 0.1026 (+-0.009)

forest fires 0.081 (+-0.069) 0.0819 (+-0.062) 0.0591 (+-0.046) 0.0845 (+-0.077) 0.0822 (+-0.07)
housing 0.0941 (+-0.017) 0.0974 (+-0.021) 0.0961 (+-0.018) 0.0995 (+-0.016) 0.0969 (+-0.018)

iris 0.2411 (+-0.295) 0.1441 (+-0.131) 0.1547 (+-0.111) 0.1616 (+-0.187) 0.1507 (+-0.142)
mushroom 0.0052 (+-0.012) 0.0289 (+-0.107) 0.0044 (+-0.011) 0.1835 (+-0.949) 5.3926 (+-29.503)
parkinsons 0.0587 (+-0.003) 0.0594 (+-0.002) 0.0602 (+-0.002) 0.0592 (+-0.002) 0.0593 (+-0.003)

student performance 0.2359 (+-0.102) 0.2303 (+-0.095) 0.2551 (+-0.109) 0.2251 (+-0.088) 0.2777 (+-0.116)
wine quality 1.0827 (+-0.026) 1.0799 (+-0.031) 1.0794 (+-0.021) 1.0757 (+-0.027) 1.0835 (+-0.029)

From Table 8.7, it is not clear which credit assignment strategy yields the best
performance for the entire training process. As such, Table 8.8 provides the average
ranked performance, per dataset, of each of the BHH credit assignment strategy
configurations. Similar to before, the performance rank is calculated as the average
rank produced by each credit assignment strategy configuration, for all datasets, over
all independent runs and epochs.

Table 8.8 shows that different credit assignment strategies perform best for
different datasets, from which it can be concluded that the credit assignment strategy
hyper-parameter is problem specific. Furthermore, the overall normalised average
rank across all datasets is provided at the bottom of the table. It should be noted

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 161

Table 8.8: Empirical results showing average rank and statistics for different credit
assignment strategies used by the BHH across multiple datasets, for all independent runs
and epochs.

Credit - Average Rank

dataset ibest pbest rbest gbest symmetric

abalone 3.1677 (±1.319) 2.8613 (±1.459) 2.9968 (±1.399) 2.9667 (±1.455) 3.0075 (±1.421)
air quality 3.1312 (±1.347) 3.0376 (±1.357) 2.5914 (±1.465) 3.128 (±1.336) 3.1118 (±1.487)

bank 2.8591 (±1.344) 2.9903 (±1.432) 2.8882 (±1.41) 3.0441 (±1.415) 3.2183 (±1.442)
bike 3.0527 (±1.34) 3.0086 (±1.393) 3.0667 (±1.483) 2.8742 (±1.339) 2.9978 (±1.503)
car 3.1151 (±1.356) 3.0312 (±1.483) 3.2516 (±1.402) 2.6892 (±1.354) 2.9129 (±1.411)

diabetic 2.8914 (±1.349) 2.6269 (±1.417) 3.4151 (±1.365) 2.8925 (±1.362) 3.1742 (±1.449)
fish toxicity 3.1516 (±1.436) 2.9903 (±1.452) 2.7581 (±1.475) 3.2043 (±1.299) 2.8957 (±1.358)

forest fires 3.0968 (±1.277) 3.1806 (±1.304) 2.8559 (±1.356) 3.1215 (±1.502) 2.7452 (±1.563)
housing 2.9011 (±1.494) 2.8527 (±1.317) 2.9022 (±1.397) 3.3108 (±1.324) 3.0333 (±1.483)

iris 3.1892 (±1.428) 3.0839 (±1.441) 3.0591 (±1.376) 2.8237 (±1.409) 2.8441 (±1.384)
mushroom 2.8075 (±1.459) 3.0183 (±1.411) 2.8957 (±1.398) 3.0839 (±1.418) 3.172 (±1.381)
parkinsons 2.5645 (±1.484) 2.8925 (±1.343) 3.5065 (±1.219) 3.0796 (±1.392) 2.957 (±1.455)

student performance 2.6624 (±1.312) 3.029 (±1.407) 3.1892 (±1.382) 2.7978 (±1.47) 3.3215 (±1.394)
wine quality 3.1871 (±1.308) 2.6366 (±1.471) 3.014 (±1.371) 2.9419 (±1.411) 3.2204 (±1.43)

avg rank 2.9841 (±1.39) 2.9457 (±1.415) 3.0279 (±1.414) 2.997 (±1.402) 3.0437 (±1.449)

normalised avg rank 2 1 4 3 5

that the symmetric credit assignment strategy yielded the best results for the forest
fires dataset. This does not necessarily suggest that random search in the heuristic
space yields the best performance for this dataset. As a reminder, the symmetric
credit assignment strategy does not bias towards performance, but rather uniformly
assigns credit to any heuristic that happens to be selected. For the particular case
where the symmetric credit assignment strategy yielded the best results, it could be
the case that the initial selection of heuristics is good enough and that it is difficult
to find a performance bias that results in better performance, as all heuristics in
the heuristic pool provide good results. For all other datasets, it is found that a
particular non-symmetric credit assignment strategy yields better results.

Figure 8.21 provides an illustration of the descriptive plots for the different BHH
configurations as it relates to the performance of the different credit assignment
strategy configurations, per dataset.

Figure 8.22 provides an illustration of the overall critical difference plots for
ranked performance for each credit assignment strategy configuration as it relates to
all datasets, across all independent runs and epochs. It is shown that there is no
overall statistical significant difference between credit assignment strategies and that
the credit assignment strategy hyper-parameter is problem specific. At this point
it should be mentioned that the credit assignment strategies implemented in this

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 162

Figure 8.21: Descriptive plots for the average ranks of the BHH with varying credit
assignment strategies per dataset, across all independent runs and epochs.

dissertation yield a discrete credit value and that future research should consider a
continuous credit value in an attempt to provide a more fine grained indicator of
performance, which should be easier to exploit.

1 2 3 4 5

pbest
ibest

gbest
rbest
symmetric

CD

BHH Credit - Critical Difference - Overall

Figure 8.22: Critical difference plots for the average ranks of the BHH with varying credit
assignment strategies across all datasets, runs and epochs.

Similar to before, Figure 8.23 provides the train and test loss and accuracy plots
for an example classification dataset (bank) as it relates to the credit assignment
strategy experimental group. As before, the illustrations are provided in log scale and
illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

From Figure 8.23 it can be seen that the pbest credit assignment strategy diverged
away from the current best solution, but was able to return to the current best solution.
Since the solution found by the BHH with the pbest credit assignment strategy was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 163

0 5 10 15 20 25 30
Epoch

100

Tr
ai

n
Lo

g
Lo

ss

credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Train Log Loss - Dataset: bank

(a) Train log loss

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 L
os

s

credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Test Log Loss - Dataset: bank

(b) Test log loss

0 5 10 15 20 25 30
Epoch

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Train Log Accuracy - Dataset: bank

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Test Log Accuracy - Dataset: bank

(d) Test log accuracy

Figure 8.23: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the credit assignment
strategy hyper-parameter on the bank dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

g
Lo

ss

credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Train Log Loss - Dataset: housing

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 L
og

 L
os

s

credit

ibest
pbest
rbest
gbest
symmetric

BHH Credit - Test Log Loss - Dataset: housing

(b) Test log loss

Figure 8.24: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the credit assignment
strategy hyper-parameter on the housing dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 164

already optimal before divergence, it stands to reason that this divergence is a result
of the BHH exploring other heuristics in the heuristic space that yield sub-optimal
solutions. As mentioned before, a move-acceptance strategy can be incorporated to
counteract this effect.

Figure 8.24 provides the train and test loss plots for an example regression dataset
(housing) as it relates to the credit assignment strategy experimental group. As
before, the illustrations are provided in log scale and illustrations of the train and
test loss plots for the other regression datasets are left out for brevity.

8.7 Reselection Interval

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the reselection
interval hyper-parameter. Detailed discussions follow and illustrations are provided
for visual aid. As a reminder, five different reselection intervals are considered. These
include reselection intervals of 1, 5, 10, 15, and 20. Experiments are denoted as such.

Table 8.9 presents the empirical results for this experimental group, showing the
average test loss and statistics for all the reselection interval variants of the BHH
that was implemented. The test loss is measured at the last epoch for each dataset,
over all independent runs.

Table 8.9: Empirical results showing average test loss and statistics for different reselection
intervals used by the BHH across multiple datasets, for all independent runs and is measured
at the last epoch.

Reselection - Average Test Loss

dataset 1 5 10 15 20

abalone 2.737 (±0.507) 2.0907 (±0.113) 2.0587 (±0.088) 2.0475 (±0.103) 2.1139 (±0.336)
air quality 0.3003 (±0.046) 0.2835 (±0.021) 0.2729 (±0.016) 0.2619 (±0.013) 0.2637 (±0.016)

bank 0.2933 (±0.033) 0.3198 (±0.18) 0.2456 (±0.065) 0.2299 (±0.032) 0.224 (±0.018)
bike 0.1524 (±0.023) 0.1084 (±0.025) 0.0651 (±0.02) 0.0566 (±0.01) 0.052 (±0.004)
car 0.2157 (±0.031) 0.1591 (±0.026) 0.1572 (±0.034) 0.1659 (±0.064) 0.1456 (±0.03)

diabetic 0.9624 (±0.043) 3.7821 (±4.993) 1.2983 (±0.66) 1.2541 (±0.868) 1.0085 (±0.251)
fish toxicity 0.1091 (±0.01) 0.1043 (±0.009) 0.1046 (±0.008) 0.1013 (±0.008) 0.1021 (±0.008)

forest fires 0.1253 (±0.087) 0.1002 (±0.064) 0.081 (±0.069) 0.0681 (±0.055) 0.0586 (±0.056)
housing 0.1268 (±0.025) 0.0974 (±0.017) 0.0941 (±0.017) 0.0961 (±0.026) 0.0952 (±0.02)

iris 0.1633 (±0.135) 0.1376 (±0.138) 0.2411 (±0.295) 0.2373 (±0.361) 0.1853 (±0.235)
mushroom 1.8461 (±5.829) 0.0283 (±0.099) 0.0052 (±0.012) 0.0388 (±0.111) 0.0335 (±0.158)
parkinsons 0.0872 (±0.018) 0.0609 (±0.004) 0.0587 (±0.003) 0.0584 (±0.002) 0.0585 (±0.003)

student performance 0.4376 (±0.108) 0.397 (±0.13) 0.2359 (±0.102) 0.223 (±0.098) 0.1991 (±0.064)
wine quality 1.1183 (±0.031) 1.081 (±0.023) 1.0827 (±0.026) 1.0711 (±0.028) 1.0729 (±0.022)

From Table 8.9, a clear pattern can be observed. The empirical results show

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 165

that, in general, a larger reselection interval is preferred, with the largest reselection
intervals yielding the best performance outcomes in the majority of cases, and the
lowest reselection interval of one, yielding the worst performance in the majority of
cases.

To illustrate the effects of the reselection interval hyper-parameter on the entire
training, process, Table 8.10 provides the average ranked performance, per dataset, of
each of the BHH reselection interval configurations. Similar to before, the performance
rank is calculated as the average rank produced by reselection interval configuration,
for all datasets, over all independent runs and epochs.

Table 8.10: Empirical results showing average rank and statistics for different reselection
intervals used by the BHH across multiple datasets, for all independent runs and epochs.

Reselection - Average Rank

dataset 1 5 10 15 20

abalone 4.3548 (±0.976) 2.8473 (±1.288) 2.7505 (±1.262) 2.5602 (±1.299) 2.4871 (±1.318)
air quality 3.7355 (±1.405) 3.4075 (±1.379) 2.9688 (±1.278) 2.4237 (±1.228) 2.4645 (±1.291)

bank 4.5677 (±0.704) 3.6323 (±1.127) 2.4237 (±1.133) 2.2462 (±1.114) 2.1301 (±1.096)
bike 4.7935 (±0.612) 3.9204 (±0.648) 2.5161 (±0.863) 2.0763 (±0.901) 1.6935 (±0.891)
car 4.6409 (±0.785) 2.9527 (±1.158) 2.6548 (±1.175) 2.5312 (±1.244) 2.2204 (±1.217)

diabetic 3.0129 (±1.048) 4.4624 (±0.869) 2.7957 (±1.175) 2.6065 (±1.439) 2.1226 (±1.264)
fish toxicity 3.7484 (±1.238) 3.1376 (±1.317) 3.0344 (±1.406) 2.4656 (±1.304) 2.614 (±1.432)

forest fires 3.8194 (±1.433) 3.272 (±1.248) 2.8656 (±1.346) 2.8194 (±1.305) 2.2237 (±1.219)
housing 4.1892 (±1.099) 3.0172 (±1.288) 2.5871 (±1.354) 2.5312 (±1.265) 2.6753 (±1.34)

iris 2.9839 (±1.424) 2.971 (±1.317) 3.3462 (±1.418) 3.014 (±1.405) 2.6849 (±1.429)
mushroom 4.2065 (±1.236) 2.9688 (±1.299) 2.586 (±1.234) 2.7882 (±1.34) 2.4505 (±1.226)
parkinsons 4.7645 (±0.756) 3.1882 (±1.021) 2.2957 (±1.209) 2.4968 (±1.128) 2.2548 (±1.097)

student performance 3.971 (±1.094) 4.0226 (±1.12) 2.4774 (±1.221) 2.2495 (±1.2) 2.2796 (±1.132)
wine quality 4.0688 (±1.122) 2.9204 (±1.293) 2.9559 (±1.383) 2.4032 (±1.378) 2.6516 (±1.28)

avg rank 4.0612 (±1.229) 3.3372 (±1.277) 2.7327 (±1.283) 2.5151 (±1.282) 2.3538 (±1.266)

normalised avg rank 5 4 3 2 1

Table 8.10 shows that larger reselection intervals are mostly preferred. The
overall normalised average rank is given at the bottom of the table and supports this
finding. This outcome can be explained as follows. A larger reselection interval gives
the low-level heuristics more time to execute, resulting in smoother update steps
and provides an opportunity for the BHH to gather more evidence of the current
selection of heuristics’ performance in the performance log. Both of these effects
allow the BHH to select better heuristics during training. This is further supported
by the findings from Sections 8.3 and 8.4, that show that gradient-based heuristics
generally yield the best performance. Most of the gradient-based heuristics that are
included in the heuristic pool implement exponentially averaged state parameters
in order to produce smooth update steps. If reselection occurs too frequently, these

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 166

exponentially averaged state parameters do not yield smooth update steps. This is
further supported by the inclusion of MHs such as GAs and DE, which recombine
state parameters.

Finally, it should be noted that the default reanalysis interval is 10 and the default
replay window size is also ten. At every reanalysis interval, the concentrations for
low-level heuristics are reset to the default, symmetrical value of 1.0. The replay
window size then determines the number of samples in the performance log from
which the reanalysis can be done. As such, BHH configurations with reselection
intervals that are larger than the replay window size, will only consider performance
samples from the last replay window, which should contain less entries than the
reselection interval. The reselection interval then directly influences what goes
into the performance log. Since it is found that reselection intervals larger than
the default reanalysis interval and replay window size yield better performance, it
can be suggested that exploitation of low-level heuristics yields better results than
exploration of low-level heuristics.

Furthermore, early in the training process, a low reselection interval yields the
highest variance of heuristic selection. Since the default population size is five and
the default number of heuristics in the heuristic pool is thirteen, not all heuristics are
represented at every training step, causing an unwanted bias towards the heuristics
that happen to be selected.

Figure 8.21 provides an illustration of the descriptive plots for the different
BHH configurations as it relates to the performance of different reselection interval
configurations, per dataset. It can be seen that a general pattern occurs for almost
all datasets that show an inverse correlation between performance and the reselection
interval. Some exceptions to this relationship can be observed for the iris and diabetic
datasets where an average reselection interval yielded the best results.

Figure 8.26 provides an illustration of the overall critical difference plots for
ranked performance for each reselection interval configuration as it relates to all
datasets, across all independent runs and epochs.

Figure 8.26 shows the statistically significant difference in overall results for the
various reselection intervals across all datasets. It can be seen that larger reselection
intervals statistically perform better than smaller reselection intervals. The largest
reselection intervals (15 and 20) yielded the best overall results with statistically
insignificant differences between them.

Similar to before, Figure 8.27 provides the train and test loss and accuracy plots
for an example classification dataset (car) as it relates to the reselection interval
experimental group. As before, the illustrations are provided in log scale and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 167

Figure 8.25: Descriptive plots for the average ranks of the BHH with varying reselection
interval values per dataset, across all independent runs and epochs.

1 2 3 4 5

20
15
10

5
1

CD

BHH Reselection - Critical Difference - Overall

Figure 8.26: Critical difference plots for the average ranks of the BHH with varying
reselection interval values across all datasets, runs and epochs.

illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

Figure 8.28 provides the train and test loss plots for an example regression dataset
(bike) as it relates to the reselection interval experimental group. As before, the
illustrations are provided in log scale and illustrations of the train and test loss plots
for the other regression datasets are left out for brevity.

Figures 8.27a and 8.28a both show a smooth decline in training loss for all reselec-
tion interval configurations of the BHH, but larger reselection interval configurations
are able to provide better results than lower reselection intervals. This further
supports the suggestion that exploitation of low-level heuristics is more important
than exploration of low-level heuristics in this particular case.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 168

0 5 10 15 20 25 30
Epoch

10 1

100

Tr
ai

n
Lo

g
Lo

ss

reselection

1
5
10
15
20

BHH Reselection - Train Log Loss - Dataset: car

(a) Train log loss

0 5 10 15 20 25 30
Epoch

100

Te
st

 L
og

 L
os

s

reselection

1
5
10
15
20

BHH Reselection - Test Log Loss - Dataset: car

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

reselection

1
5
10
15
20

BHH Reselection - Train Log Accuracy - Dataset: car

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
reselection

1
5
10
15
20

BHH Reselection - Test Log Accuracy - Dataset: car

(d) Test log accuracy

Figure 8.27: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the reselection
interval hyper-parameter on the car dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

Tr
ai

n
Lo

g
Lo

ss

reselection

1
5
10
15
20

BHH Reselection - Train Log Loss - Dataset: bike

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1Te
st

 L
og

 L
os

s

reselection

1
5
10
15
20

BHH Reselection - Test Log Loss - Dataset: bike

(b) Test log loss

Figure 8.28: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the reselection
interval hyper-parameter on the bike dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 169

8.8 Replay Window Size

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the replay window
size hyper-parameter. Brief discussions follow and illustrations are provided for
visual aid. As a reminder, five different replay window sizes are considered. These
include replay window sizes of 1, 5, 10, 15, and 20. Experiments are denoted as such.

As before, Table 8.11 presents the empirical results for this experimental group,
showing the average test loss and statistics for all the replay window size variants of
the BHH that was implemented. The test loss is measured at the last epoch for each
dataset, over all independent runs.

Table 8.11: Empirical results showing average test loss and statistics for different replay
window sizes used by the BHH across multiple datasets, for all independent runs and is
measured at the last epoch.

Replay - Average Test Loss

dataset 1 5 10 15 20

abalone 2.136 (±0.088) 2.0424 (±0.47) 2.0587 (±0.135) 2.0551 (±0.159) 2.1299 (±0.292)
air quality 0.2676 (±0.016) 0.2687 (±0.014) 0.2729 (±0.016) 0.2703 (±0.015) 0.2673 (±0.011)

bank 0.2358 (±0.065) 0.2347 (±0.022) 0.2456 (±0.019) 0.2374 (±0.037) 0.2358 (±0.025)
bike 0.0568 (±0.02) 0.0552 (±0.007) 0.0651 (±0.004) 0.0625 (±0.019) 0.065 (±0.018)
car 0.1605 (±0.034) 0.1537 (±0.05) 0.1572 (±0.026) 0.1671 (±0.056) 0.1599 (±0.028)

diabetic 1.3315 (±0.66) 1.2672 (±0.691) 1.2983 (±0.534) 1.0647 (±0.22) 1.4342 (±1.399)
fish toxicity 0.1028 (±0.008) 0.1055 (±0.008) 0.1046 (±0.012) 0.1034 (±0.011) 0.1074 (±0.012)

forest fires 0.0935 (±0.069) 0.0814 (±0.078) 0.081 (±0.073) 0.0794 (±0.063) 0.105 (±0.068)
housing 0.0979 (±0.017) 0.0944 (±0.015) 0.0941 (±0.015) 0.0967 (±0.022) 0.1002 (±0.024)

iris 0.1577 (±0.295) 0.295 (±0.16) 0.2411 (±0.546) 0.1514 (±0.192) 0.2208 (±0.349)
mushroom 0.0504 (±0.012) 0.0881 (±0.239) 0.0052 (±0.336) 0.4733 (±2.385) 0.139 (±0.62)
parkinsons 0.0596 (±0.003) 0.0589 (±0.003) 0.0587 (±0.003) 0.0596 (±0.003) 0.0594 (±0.003)

student performance 0.2529 (±0.102) 0.2456 (±0.103) 0.2359 (±0.093) 0.2354 (±0.083) 0.2739 (±0.126)
wine quality 1.0876 (±0.026) 1.0756 (±0.035) 1.0827 (±0.022) 1.0866 (±0.039) 1.0767 (±0.022)

Table 8.12 provides the average ranked performance, per dataset, for each of the
BHH replay window size configurations. Similar to before, the performance rank is
calculated as the average rank produced by the replay window size configurations, for
all datasets, over all independent runs and epochs. The overall normalised average
rank is provided at the end of the table.

Tables 8.11 and 8.12 show that there is no clear overall best performing replay
window size configuration of the BHH for all datasets. In some cases, a replay window
size of one yielded the best results. A replay window of one simply considers the last
step in the training process. This means that memory of past performance actually
had a negative impact on the training process for those particular cases. It should

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 170

Table 8.12: Empirical results showing average rank and statistics for different replay
window sizes used by the BHH across multiple datasets, for all independent runs and
epochs.

Replay - Average Rank

dataset 1 5 10 15 20

abalone 3.0258 (±1.382) 2.6785 (±1.455) 3.1968 (±1.346) 3.0903 (±1.385) 3.0086 (±1.45)
air quality 2.8742 (±1.385) 3.0151 (±1.497) 2.9978 (±1.429) 2.9505 (±1.297) 3.1624 (±1.443)

bank 2.9484 (±1.46) 3.057 (±1.473) 2.8602 (±1.344) 3.0172 (±1.42) 3.1172 (±1.359)
bike 2.9602 (±1.274) 2.7366 (±1.34) 3.1452 (±1.448) 2.9226 (±1.417) 3.2355 (±1.527)
car 2.7054 (±1.357) 2.8376 (±1.39) 3.0763 (±1.372) 3.3269 (±1.463) 3.0538 (±1.409)

diabetic 3.2473 (±1.369) 3.3247 (±1.406) 2.5935 (±1.372) 2.8075 (±1.384) 3.0269 (±1.411)
fish toxicity 2.7269 (±1.419) 3.0785 (±1.49) 3.1774 (±1.398) 2.9892 (±1.386) 3.028 (±1.337)

forest fires 2.8054 (±1.493) 2.9151 (±1.381) 2.9914 (±1.408) 3.0591 (±1.411) 3.229 (±1.342)
housing 3.1548 (±1.301) 2.9774 (±1.407) 2.8548 (±1.45) 3.0355 (±1.49) 2.9774 (±1.404)

iris 3.072 (±1.376) 3.1581 (±1.419) 3.2204 (±1.392) 2.6183 (±1.396) 2.9312 (±1.41)
mushroom 3.0538 (±1.324) 3.143 (±1.437) 3.0419 (±1.414) 2.8613 (±1.382) 2.8957 (±1.497)
parkinsons 3.172 (±1.372) 2.843 (±1.244) 2.6731 (±1.453) 3.1172 (±1.419) 3.1946 (±1.498)

student performance 3.0398 (±1.368) 2.9226 (±1.411) 2.6548 (±1.403) 3.0935 (±1.323) 3.2892 (±1.487)
wine quality 3.1742 (±1.43) 2.7323 (±1.456) 3.1581 (±1.418) 3.0419 (±1.356) 2.8935 (±1.362)

avg rank 2.9972 (±1.389) 2.9585 (±1.426) 2.9744 (±1.418) 2.9951 (±1.404) 3.0745 (±1.43)

normalised avg rank 4 1 2 3 5

also be observed that the largest replay window size yielded the worst performance
overall and also for the most datasets. This suggests that heuristic selection is
more likely to benefit from short, recent observations in the training process. From
these observations it can be concluded that past performances of the heuristics are
not always beneficial to the training process, and that the replay window size is
problem specific. Furthermore, it can be concluded that some problems require more
exploration of the heuristic space, while other problem sets require more exploitation
of low-level heuristics.

Figure 8.29 provides an illustration of the descriptive plots for the different
BHH configurations as it relates to the performance of different replay window size
configurations per dataset.

Figure 8.30 provides an illustration of the overall critical difference plots for
ranked performance for each replay window size configuration as it relates to all
datasets, across all independent runs and epochs.

Figure 8.30 shows no overall statistically significant difference in results for the
various replay window size configurations as it relates to all datasets.

Similar to before, Figure 8.31 provides the train and test loss and accuracy plots
for an example classification dataset (diabetic) as it relates to the replay window
size experimental group. As before, the illustrations are provided in log scale and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 171

Figure 8.29: Descriptive plots for the average ranks of the BHH with varying replay
window sizes per dataset, across all independent runs and epochs.

1 2 3 4 5

5
10
15

1
20

CD

BHH Replay - Critical Difference - Overall

Figure 8.30: Critical difference plots for the average ranks of the BHH with varying
replay window sizes across all datasets, runs and epochs.

illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

Figure 8.32 provides the train and test loss plots for an example regression dataset
(fish toxicity) as it relates to the replay window size experimental group. As before,
the illustrations are provided in log scale and illustrations of the train and test loss
plots for the other regression datasets are left out for brevity.

The divergence that can be seen in Figure 8.31a and 8.31b is explained in previous
sections and is simply a result of the BHH considering new heuristics that yield
sub-optimal results, when an optimal solution has already been found. As mentioned
before, an early stopping strategy as well as a move-acceptance strategy can be
incorporated to avoid this effect.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 172

0 5 10 15 20 25 30
Epoch

100

2 × 100

3 × 100

Tr
ai

n
Lo

g
Lo

ss

replay

1
5
10
15
20

BHH Replay - Train Log Loss - Dataset: diabetic

(a) Train log loss

0 5 10 15 20 25 30
Epoch

100

2 × 100

3 × 100

4 × 100

6 × 100

Te
st

 L
og

 L
os

s

replay

1
5
10
15
20

BHH Replay - Test Log Loss - Dataset: diabetic

(b) Test log loss

0 5 10 15 20 25 30
Epoch

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

replay

1
5
10
15
20

BHH Replay - Train Log Accuracy - Dataset: diabetic

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
replay

1
5
10
15
20

BHH Replay - Test Log Accuracy - Dataset: diabetic

(d) Test log accuracy

Figure 8.31: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the replay window
size hyper-parameter on the diabetic dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

Tr
ai

n
Lo

g
Lo

ss

replay

1
5
10
15
20

BHH Replay - Train Log Loss - Dataset: fish_toxicity

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

Te
st

 L
og

 L
os

s

replay

1
5
10
15
20

BHH Replay - Test Log Loss - Dataset: fish_toxicity

(b) Test log loss

Figure 8.32: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations of the replay window
size hyper-parameter on the fish toxicity dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 173

8.9 Reanalysis Interval

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the reanalysis interval
hyper-parameter. Brief discussions follow and illustrations are provided for visual
aid. As a reminder, five different reanalysis intervals are considered. These include
reanalysis intervals of 1, 5, 10, 15, and 20. Experiments are denoted as such.

As before, Table 8.13 presents the empirical results for this experimental group,
showing the average test loss and statistics for all the reanalysis interval variants of
the BHH that was implemented. The test loss is measured at the last epoch for each
dataset, over all independent runs.

Table 8.13: Empirical results showing average test loss and statistics for different reanalysis
intervals used by the BHH across multiple datasets, for all independent runs and is measured
at the last epoch.

Reanalysis - Average Test Loss

dataset 1 5 10 15 20

abalone 2.0571 (±0.102) 2.0424 (±0.071) 2.0587 (±0.088) 2.0879 (±0.226) 2.0456 (±0.079)
air quality 0.2682 (±0.014) 0.2637 (±0.012) 0.2729 (±0.016) 0.2718 (±0.019) 0.2651 (±0.012)

bank 0.2599 (±0.114) 0.2406 (±0.023) 0.2456 (±0.065) 0.254 (±0.047) 0.2353 (±0.025)
bike 0.0621 (±0.016) 0.0627 (±0.021) 0.0651 (±0.02) 0.0663 (±0.023) 0.0625 (±0.02)
car 0.1597 (±0.042) 0.1535 (±0.038) 0.1572 (±0.034) 0.1667 (±0.036) 0.1644 (±0.04)

diabetic 1.482 (±1.563) 1.4074 (±1.558) 1.2983 (±0.66) 1.222 (±0.6) 1.2944 (±0.832)
fish toxicity 0.1031 (±0.01) 0.1033 (±0.008) 0.1046 (±0.008) 0.1062 (±0.009) 0.1004 (±0.009)

forest fires 0.1083 (±0.1) 0.1003 (±0.069) 0.081 (±0.069) 0.0927 (±0.069) 0.0822 (±0.059)
housing 0.0998 (±0.017) 0.0953 (±0.017) 0.0941 (±0.017) 0.0963 (±0.029) 0.0962 (±0.011)

iris 0.582 (±2.084) 0.164 (±0.154) 0.2411 (±0.295) 0.1218 (±0.11) 0.2674 (±0.545)
mushroom 0.0548 (±0.241) 0.1165 (±0.597) 0.0052 (±0.012) 0.0344 (±0.102) 0.0181 (±0.059)
parkinsons 0.0597 (±0.003) 0.0593 (±0.002) 0.0587 (±0.003) 0.06 (±0.004) 0.0597 (±0.003)

student performance 0.2331 (±0.083) 0.2297 (±0.09) 0.2359 (±0.102) 0.2315 (±0.063) 0.2274 (±0.098)
wine quality 1.0728 (±0.026) 1.0818 (±0.028) 1.0827 (±0.026) 1.0747 (±0.026) 1.0909 (±0.042)

Table 8.14 provides the average ranked performance, per dataset, for each of the
BHH reanalysis interval configurations. Similar to before, the performance rank is
calculated as the average rank produced by the reanalysis interval configurations, for
all datasets, over all independent runs and epochs. The overall normalised average
ranks are provided at the bottom of the table.

Tables 8.13 and 8.14 show that there is no clear overall best performing reanalysis
interval configuration of the BHH for all datasets.

It should be noted that the configuration and results for the reanalysis interval
configurations should be considered along with the reselection interval configurations
as reselection is based on the outcome of the reanalysis step. Furthermore, the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 174

Table 8.14: Empirical results showing average rank and statistics for different reanalysis
intervals used by the BHH across multiple datasets, for all independent runs and epochs.

Reanalysis - Average Rank

dataset 1 5 10 15 20

abalone 2.9849 (±1.397) 3.0699 (±1.442) 3.171 (±1.32) 2.9441 (±1.445) 2.8301 (±1.443)
air quality 2.9613 (±1.344) 2.8387 (±1.438) 3.2559 (±1.402) 3.0538 (±1.42) 2.8903 (±1.43)

bank 3.1161 (±1.432) 3.0452 (±1.383) 2.7355 (±1.398) 2.928 (±1.403) 3.1753 (±1.415)
bike 3.1409 (±1.258) 2.7581 (±1.391) 3.1946 (±1.365) 3.0978 (±1.498) 2.8086 (±1.491)
car 3.1237 (±1.423) 2.7237 (±1.358) 2.8763 (±1.299) 3.1538 (±1.385) 3.1226 (±1.547)

diabetic 3.2452 (±1.305) 3.072 (±1.391) 2.7785 (±1.407) 3.029 (±1.425) 2.8753 (±1.494)
fish toxicity 3.1452 (±1.362) 3.0032 (±1.445) 3.2172 (±1.364) 3.1 (±1.409) 2.5344 (±1.388)

forest fires 2.8398 (±1.369) 3.1215 (±1.471) 3.0043 (±1.318) 2.886 (±1.354) 3.1484 (±1.526)
housing 3.3129 (±1.311) 2.9892 (±1.393) 2.6871 (±1.483) 2.6968 (±1.496) 3.314 (±1.236)

iris 3.1204 (±1.301) 3.0968 (±1.391) 3.1269 (±1.432) 2.6366 (±1.449) 3.0194 (±1.435)
mushroom 2.9312 (±1.379) 3.1538 (±1.403) 2.8473 (±1.384) 3.1215 (±1.453) 2.9032 (±1.471)
parkinsons 2.9688 (±1.385) 3.0086 (±1.356) 2.6129 (±1.481) 3.1032 (±1.38) 3.3065 (±1.378)

student performance 2.9409 (±1.412) 3.1849 (±1.38) 2.771 (±1.41) 3.1258 (±1.366) 2.9774 (±1.467)
wine quality 2.8032 (±1.444) 2.9204 (±1.304) 3.2022 (±1.41) 2.9247 (±1.349) 3.1495 (±1.517)

avg rank 3.0453 (±1.374) 2.999 (±1.403) 2.9629 (±1.409) 2.9858 (±1.425) 3.0039 (±1.462)

normalised avg rank 5 3 1 2 4

reanalysis interval configurations should also be considered along with the replay
window size, as the replay window size determines the number of performance
log samples to reanalyse. For the BHH baseline configuration, the reselection and
reanalysis interval hyper-parameters have default values of 10, and the replay window
size also has a default value of 10. These values are deliberately chosen so that there
is a balance between the different hyper-parameters from which empirical conclusions
can be made.

Furthermore, the smaller the reanalysis interval, the more frequently the BHH
resets concentration parameters. The smaller the replay window size, the less
performance samples in the performance log are considered for reanalysis. A replay
window size of one yields a case where only the last executed step is considered for
reanalysis and thus provides a short-sighted view on the relevance of past performance.
As such, reselection is based only on the most recent performance of each selected
heuristic. However, if the reanalysis interval is larger than the replay window size, the
BHH does not update its beliefs fast enough, and as a result, heuristic performance
evidence is lost.

Figure 8.33 provides an illustration of the descriptive plots for the different
BHH configurations as it relates to the performance of different reanalysis interval
configurations, per dataset.

Figure 8.34 provides an illustration of the overall critical difference plots for

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 175

Figure 8.33: Descriptive plots for the average ranks of the BHH with varying reanalysis
intervals per dataset, across all independent runs and epochs.

ranked performance for each reanalysis interval configuration as it relates to all
datasets, across all independent runs and epochs. From Figure 8.34, it can be
concluded that the best reanalysis interval is problem specific.

1 2 3 4 5

10
15
5

20
1

CD

BHH Reanalysis - Critical Difference - Overall

Figure 8.34: Critical difference plots for the average ranks of the BHH with varying
reanalysis intervals across all datasets, runs and epochs.

Figure 8.34 shows no overall statistically significant difference in results for the
various reanalysis interval configurations as it relates to all datasets.

Similar to before, Figure 8.35 provides the train and test loss and accuracy plots
for an example classification dataset (mushroom) as it relates to the reanalysis
interval experimental group. As before, the illustrations are provided in log scale and
illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 176

0 5 10 15 20 25 30
Epoch

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

g
Lo

ss

reanalysis

1
5
10
15
20

BHH Reanalysis - Train Log Loss - Dataset: mushroom

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 2

100

102

Te
st

 L
og

 L
os

s

reanalysis

1
5
10
15
20

BHH Reanalysis - Test Log Loss - Dataset: mushroom

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

reanalysis

1
5
10
15
20

BHH Reanalysis - Train Log Accuracy - Dataset: mushroom

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y

reanalysis

1
5
10
15
20

BHH Reanalysis - Test Log Accuracy - Dataset: mushroom

(d) Test log accuracy

Figure 8.35: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for the reanalysis
interval hyper-parameter on the mushroom dataset over 30 epochs, illustrated in log scale.

Figure 8.36 provides the train and test loss plots for an example regression dataset
(parkinsons) as it relates to the reanalysis interval experimental group. As before,
the illustrations are provided in log scale and illustrations of the train and test loss
plots for the other regression datasets are left out for brevity.

The divergence that can be seen in Figure 8.35a and 8.35b is explained in previous
sections and is simply a result of the BHH considering new heuristics that yield
sub-optimal results when an optimal solution has already been found. As mentioned
before, an early stopping strategy as well as a move-acceptance strategy can be
incorporated to avoid this effect.

8.10 Burn In

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the burn in window
size hyper-parameter. Brief discussions follow and illustrations are provided for
visual aid. Five different burn in window sizes are considered. These include burn in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 177

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

g
Lo

ss
reanalysis

1
5
10
15
20

BHH Reanalysis - Train Log Loss - Dataset: parkinsons

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 L
og

 L
os

s

reanalysis

1
5
10
15
20

BHH Reanalysis - Test Log Loss - Dataset: parkinsons

(b) Test log loss

Figure 8.36: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for the reanalysis
interval hyper-parameter on the parkinsons dataset over 30 epochs, illustrated in log scale.

window sizes of 0, 5, 10, 15, and 20. Experiments are denoted as such.
As a reminder, the burn in window size is a hyper-parameter that is borrowed from

the MCMC algorithm, and provides a window whereby exploration is encouraged in
order to obtain sufficient samples of heuristic performance evidence for statistical
inference.

As before, Table 8.15 presents the empirical results for this experimental group,
showing the average test loss and statistics for all the burn in window size variants
of the BHH that was implemented. The test loss is measured at the last epoch for
each dataset, over all independent runs.

Table 8.15: Empirical results showing average test loss and statistics for different burn in
window sizes used by the BHH across multiple datasets, for all independent runs and is
measured at the last epoch.

Burn In - Average Test Loss

dataset 0 5 10 15 20

abalone 2.0587 (+-0.088) 2.0583 (+-0.181) 2.0961 (+-0.168) 2.1454 (+-0.365) 2.6753 (+-2.18)
air quality 0.2729 (+-0.016) 0.2719 (+-0.02) 0.2688 (+-0.014) 0.2784 (+-0.017) 0.2851 (+-0.029)

bank 0.2456 (+-0.065) 0.2373 (+-0.033) 0.2514 (+-0.109) 0.2427 (+-0.033) 0.2703 (+-0.056)
bike 0.0651 (+-0.02) 0.0678 (+-0.024) 0.0929 (+-0.047) 0.1109 (+-0.043) 0.1383 (+-0.034)
car 0.1572 (+-0.034) 0.164 (+-0.039) 0.1745 (+-0.037) 0.1883 (+-0.067) 0.1803 (+-0.039)

diabetic 1.2983 (+-0.66) 1.1216 (+-0.582) 1.4701 (+-1.161) 1.9918 (+-3.645) 2.2996 (+-3.589)
fish toxicity 0.1046 (+-0.008) 0.1026 (+-0.009) 0.1009 (+-0.01) 0.1043 (+-0.007) 0.1052 (+-0.009)

forest fires 0.081 (+-0.069) 0.0772 (+-0.057) 0.0714 (+-0.045) 0.1136 (+-0.059) 0.1044 (+-0.093)
housing 0.0941 (+-0.017) 0.096 (+-0.015) 0.1036 (+-0.037) 0.0997 (+-0.021) 0.1116 (+-0.034)

iris 0.2411 (+-0.295) 0.1472 (+-0.134) 0.2717 (+-0.462) 0.2291 (+-0.376) 0.1842 (+-0.189)
mushroom 0.0052 (+-0.012) 0.1068 (+-0.3) 0.0262 (+-0.057) 0.1075 (+-0.256) 0.0612 (+-0.108)
parkinsons 0.0587 (+-0.003) 0.0599 (+-0.003) 0.0594 (+-0.003) 0.0644 (+-0.013) 0.0676 (+-0.015)

student performance 0.2359 (+-0.102) 0.2801 (+-0.127) 0.314 (+-0.137) 0.3623 (+-0.139) 0.3988 (+-0.133)
wine quality 1.0827 (+-0.026) 1.0791 (+-0.021) 1.079 (+-0.03) 1.086 (+-0.029) 1.0897 (+-0.034)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 178

From Table 8.15 a noticeable pattern can be observed. Generally, it is found that
a small burn in window size produces better results than larger burn in window sizes.
The largest burn in window size of 20 produced the worst results in nine out of thirteen
datasets. Some exceptions include the mushroom and the iris datasets. Notice that
burn in window sizes smaller than the default reanalysis interval, reselection interval
and replay window size of 10, generally produced the best results. However, Table
8.15 does not provide a clear view of the overall performance produced by different
burn in window size configurations for the entire training process.

In order to obtain a better view of the overall performance produced by differ-
ent burn in window size configurations for the entire training process, Table 8.16
provides the average ranked performance, per dataset, for each of the BHH burn in
configurations. Similar to before, the performance rank is calculated as the average
rank produced by the burn in window size configurations, for all datasets, over all
independent runs and epochs. The overall normalised average rank is provided at
the bottom of the table.

Table 8.16: Empirical results showing average rank and statistics for different burn in
window sizes used by the BHH across multiple datasets, for all independent runs and
epochs.

Burn In - Average Rank

dataset 0 5 10 15 20

abalone 2.9151 (±1.395) 2.6935 (±1.393) 2.9172 (±1.384) 2.8398 (±1.352) 3.6344 (±1.357)
air quality 2.9097 (±1.441) 2.6817 (±1.427) 2.7699 (±1.344) 3.372 (±1.314) 3.2667 (±1.412)

bank 2.7301 (±1.321) 2.8194 (±1.335) 2.857 (±1.485) 2.9312 (±1.384) 3.6624 (±1.339)
bike 1.9237 (±0.981) 2.1806 (±1.024) 2.9237 (±1.274) 3.5054 (±1.186) 4.4667 (±0.851)
car 2.3624 (±1.231) 2.5882 (±1.425) 3.2978 (±1.392) 3.3796 (±1.271) 3.372 (±1.401)

diabetic 2.4054 (±1.358) 2.7011 (±1.358) 3.2398 (±1.372) 3.2323 (±1.326) 3.4215 (±1.396)
fish toxicity 3.0634 (±1.459) 2.7935 (±1.402) 2.8204 (±1.513) 3.1022 (±1.346) 3.2204 (±1.295)

forest fires 2.8161 (±1.33) 2.8495 (±1.383) 2.8645 (±1.409) 3.3774 (±1.398) 3.0925 (±1.471)
housing 2.6903 (±1.384) 2.9516 (±1.318) 2.9968 (±1.442) 3.0581 (±1.344) 3.3032 (±1.51)

iris 2.9473 (±1.461) 2.972 (±1.367) 3.1903 (±1.449) 2.771 (±1.369) 3.1194 (±1.387)
mushroom 2.2065 (±1.249) 2.9376 (±1.298) 3.1613 (±1.297) 3.1441 (±1.401) 3.5226 (±1.501)
parkinsons 2.2796 (±1.282) 2.8892 (±1.247) 2.7065 (±1.314) 3.3968 (±1.417) 3.728 (±1.33)

student performance 2.1452 (±1.205) 2.6946 (±1.403) 3.0968 (±1.352) 3.4581 (±1.354) 3.6054 (±1.231)
wine quality 2.9699 (±1.437) 3.0108 (±1.304) 2.6634 (±1.419) 3.1247 (±1.398) 3.2312 (±1.447)

avg rank 2.5975 (±1.376) 2.7688 (±1.353) 2.9647 (±1.404) 3.1923 (±1.367) 3.4747 (±1.402)

normalised avg rank 1 2 3 4 5

Table 8.16 shows that, in general, a configuration where there is no burn in
produces the overall best ranked performance across all datasets. Furthermore, it
can be observed that performance degrades with larger burn in window sizes. This
can be explained from the fact that most of the training progress that is made, is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 179

done early in the training process. The faster the BHH is able to start learning and
exploiting heuristics and solutions, the better.

Note that the BHH is configured with a reselection interval of one, until the
burn in window has been exhausted, after which the actual reselection interval
applies. This means that reselection occurs at each step during the burn in window,
but the reanalysis interval and replay window size remain intact. This observation
agrees with previous results, where the BHH prefers to start exploiting heuristics and
solutions as soon as possible. Furthermore, this agrees with previous results, where
large reselection intervals are found to produce the best results, giving heuristics
sufficient time to progress and smooth out training steps.

Recall that the gradient-based heuristics generally produce the best results overall.
Most of the gradient-based heuristics included in the heuristic pool implement some
form of momentum and exponentially average state parameters. When reselection
occurs frequently in succession, these gradient-based heuristics struggle to produce
smooth update steps. As a result, the BHH can produce delayed convergence and
thus leads to worse performance when considering the entire training process.

Figure 8.37 provides an illustration of the descriptive plots for the different BHH
configurations as it relates to the burn in window size configurations, per dataset.
Figure 8.37 shows that there is mostly a linear correlation between performance
results and burn in window sizes, with minor exceptions to some datasets.

Figure 8.38 provides an illustration of the overall critical difference plots for
ranked performance for each burn in window size configuration as it relates to all
datasets, across all independent runs and epochs.

Figure 8.38 shows with statistical certainty that a small burn in configuration of
the BHH generally produce overall better results than larger burn in configurations,
as it relates to all datasets.

Similar to before, Figure 8.39 provides the train and test loss and accuracy plots
for an example classification dataset (mushroom) as it relates to the burn in window
size experimental group. As before, the illustrations are provided in log scale and
illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

Figure 8.40 provides the train and test loss plots for an example regression dataset
(parkinsons) as it relates to the burn in window size experimental group. As before,
the illustrations are provided in log scale and illustrations of the train and test loss
plots for the other regression datasets are left out for brevity.

The divergence that can be seen in Figures 8.39a and 8.39b is explained in
previous sections and is simply a result of the BHH considering new heuristics that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 180

Figure 8.37: Descriptive plots for the average ranks of the BHH with varying burn in
values per dataset, across all independent runs and epochs.

1 2 3 4 5

0
5

10
15
20

CD

BHH Burn In - Critical Difference - Overall

Figure 8.38: Critical difference plots for the average ranks of the BHH with varying burn
in values across all datasets, runs and epochs.

yield sub-optimal results, when an optimal solution has already been found. As
mentioned before, an early stopping strategy as well as a move-acceptance strategy
can be incorporated to avoid this effect.

8.11 Normalisation

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the normalisation
hyper-parameter. Brief discussions follow and illustrations are provided for visual
aid. As a reminder, the normalisation hyper-parameter is a flag that enables or
disables normalisation of the concentration parameters in an attempt to provide

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 181

0 5 10 15 20 25 30
Epoch

10 4

10 3

10 2

10 1

100
Tr

ai
n

Lo
g

Lo
ss

burn_in

0
5
10
15
20

BHH Burn In - Train Log Loss - Dataset: mushroom

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 3

10 2

10 1

100

101

Te
st

 L
og

 L
os

s

burn_in

0
5
10
15
20

BHH Burn In - Test Log Loss - Dataset: mushroom

(b) Test log loss

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

burn_in

0
5
10
15
20

BHH Burn In - Train Log Accuracy - Dataset: mushroom

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
burn_in

0
5
10
15
20

BHH Burn In - Test Log Accuracy - Dataset: mushroom

(d) Test log accuracy

Figure 8.39: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for the burn in
window size hyper-parameter on the mushroom dataset over 30 epochs, illustrated in log
scale.

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

g
Lo

ss

burn_in

0
5
10
15
20

BHH Burn In - Train Log Loss - Dataset: parkinsons

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 L
og

 L
os

s

burn_in

0
5
10
15
20

BHH Burn In - Test Log Loss - Dataset: parkinsons

(b) Test log loss

Figure 8.40: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with different configurations for the burn in
window size hyper-parameter on the parkinsons dataset over 30 epochs, illustrated in log
scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 182

more exploration in the heuristic space. The experiments are denoted as true where
normalisation is enabled, and false where normalisation is disabled.

As before, Table 8.17 presents the empirical results for this experimental group,
showing the average test loss and statistics for variants of the BHH that was imple-
mented where normalisation is enabled and disabled. The test loss is measured at
the last epoch for each dataset, over all independent runs.

Table 8.17: Empirical results showing average test loss and statistics for normalisation
toggled by the BHH across multiple datasets, for all independent runs and is measured at
the last epoch.

Normalisation - Average Test Loss

dataset false true

abalone 2.0587 (±0.088) 2.0936 (±0.231)
air quality 0.2729 (±0.016) 0.2704 (±0.017)

bank 0.2456 (±0.065) 0.2374 (±0.042)
bike 0.0651 (±0.02) 0.0689 (±0.03)
car 0.1572 (±0.034) 0.1721 (±0.038)

diabetic 1.2983 (±0.66) 1.5051 (±1.93)
fish toxicity 0.1046 (±0.008) 0.1021 (±0.009)

forest fires 0.081 (±0.069) 0.0868 (±0.069)
housing 0.0941 (±0.017) 0.0931 (±0.019)

iris 0.2411 (±0.295) 0.2358 (±0.333)
mushroom 0.0052 (±0.012) 0.0455 (±0.216)
parkinsons 0.0587 (±0.003) 0.0598 (±0.004)

student performance 0.2359 (±0.102) 0.2522 (±0.098)
wine quality 1.0827 (±0.026) 1.0831 (±0.045)

Table 8.18 provides the average ranked performance, per dataset, with normalisa-
tion enabled and disabled. Similar to before, the performance rank is calculated as
the average rank produced by the normalisation configurations, for all datasets, over
all independent runs and epochs. The overall normalised average ranks are provided
at the bottom of the table.

Table 8.18 shows that, in general, there is no obvious difference in the outcomes
of the BHH when normalisation is enabled or disabled. This suggests that the
normalisation flag is problem specific. Since the normalisation hyper-parameter
provides a mechanism for the BHH to explore more in the heuristic space, with the
intent of finding better solutions, it can be concluded that some datasets require more
exploration, while others require more exploitation. However, a better suggestion
can be made from the observation of previous results. The BHH has a default
replay window size of 10, yielding a small window of memory to maintain heuristic
performance evidence in the performance log. Normalisation of the concentration

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 183

Table 8.18: Empirical results showing average rank and statistics for normalisation toggled
by the BHH across multiple datasets, for all independent runs and epochs.

Normalisation - Average Rank

dataset false true

abalone 1.4935 (±0.5) 1.5065 (±0.5)
air quality 1.4892 (±0.5) 1.5108 (±0.5)

bank 1.5484 (±0.498) 1.4516 (±0.498)
bike 1.4978 (±0.5) 1.5022 (±0.5)
car 1.4258 (±0.495) 1.5742 (±0.495)

diabetic 1.4753 (±0.5) 1.5247 (±0.5)
fish toxicity 1.5505 (±0.498) 1.4495 (±0.498)

forest fires 1.5054 (±0.5) 1.4946 (±0.5)
housing 1.472 (±0.499) 1.528 (±0.499)

iris 1.5645 (±0.496) 1.4355 (±0.496)
mushroom 1.4323 (±0.496) 1.5667 (±0.496)
parkinsons 1.4 (±0.49) 1.6 (±0.49)

student performance 1.3892 (±0.488) 1.6108 (±0.488)
wine quality 1.5473 (±0.498) 1.4527 (±0.498)

avg rank 1.4851 (±0.5) 1.5148 (±0.5)

normalised avg rank 1 2

parameters then yield an insignificant difference in the outcome as the concentration
parameters never reach high values. Furthermore, previous results have shown
that the best results are obtained from exploitation of heuristics and solutions, in
comparison to exploration.

Figure 8.41 provides an illustration of the descriptive plots for the BHH configu-
rations with the normalisation hyper-parameter enabled and disabled, per dataset.

Figure 8.42 provides an illustration of the overall critical difference plots for
ranked performance for normalisation configurations that are enabled and disabled,
as it relates to all datasets, across all independent runs and epochs.

Figure 8.42 shows no statistical difference in the outcomes of the normalisation
configurations of the BHH. This further supports the suggestion that the use of
the normalisation hyper-parameter is problem specific or that the effects of the
normalisation hyper-parameter is not realised for small replay window sizes.

Similar to before, Figure 8.43 provides the train and test loss and accuracy plots
for an example classification dataset (abalone) as it relates to the normalisation
experimental group. As before, the illustrations are provided in log scale and
illustrations of the train and test loss and accuracy plots for the other classification
datasets are left out for brevity as they yield similar illustrations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 184

Figure 8.41: Descriptive plots for the average ranks of the BHH with normalisation
toggled per dataset, across all independent runs and epochs.

1 2

False True

CD

BHH Normalisation - Critical Difference - Overall

Figure 8.42: Critical difference plots for the average ranks of the BHH with normalisation
toggled across all datasets, runs and epochs.

Figure 8.44 provides the train and test loss plots for an example regression
dataset (bike) as it relates to the normalisation experimental group. As before, the
illustrations are provided in log scale and illustrations of the train and test loss plots
for the other regression datasets are left out for brevity.

8.12 Discounted Rewards

This section provides the empirical results for the experimental group that compares
the performance of different variants of the BHH as it relates to the discounted
rewards hyper-parameter. Brief discussions follow and illustrations are provided
for visual aid. As a reminder, the discounted rewards hyper-parameter is a flag

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 185

0 5 10 15 20 25 30
Epoch

2 × 100

3 × 100

Tr
ai

n
Lo

g
Lo

ss

normalisation

True
False

BHH Normalisation - Train Log Loss - Dataset: abalone

(a) Train log loss

0 5 10 15 20 25 30
Epoch

2 × 100

3 × 100

Te
st

 L
og

 L
os

s

normalisation

True
False

BHH Normalisation - Test Log Loss - Dataset: abalone

(b) Test log loss

0 5 10 15 20 25 30
Epoch

10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

normalisation

True
False

BHH Normalisation - Train Log Accuracy - Dataset: abalone

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

10 1

Te
st

 L
og

 A
cc

ur
ac

y
normalisation

True
False

BHH Normalisation - Test Log Accuracy - Dataset: abalone

(d) Test log accuracy

Figure 8.43: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the normalisation hyper-parameter toggled
on the abalone dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

Tr
ai

n
Lo

g
Lo

ss

normalisation

True
False

BHH Normalisation - Train Log Loss - Dataset: bike

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

6 × 10 2

2 × 10 1

3 × 10 1
4 × 10 1

Te
st

 L
og

 L
os

s

normalisation

True
False

BHH Normalisation - Test Log Loss - Dataset: bike

(b) Test log loss

Figure 8.44: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the normalisation hyper-parameter toggled
on the bike dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 186

that enables or disables discounted rewards of the pseudo counts that are added to
concentration parameters in an attempt to provide control over the effects of past
performances of the low-level heuristics.

As a reminder, the discounted rewards mechanism is implemented such that
pseudo counts for past performances that achieved successful credit allocations are
exponentially decayed into the past. The default discounted rewards decay rate is
set to 0.5.

As before, Table 8.19 presents the empirical results for this experimental group,
showing the average test loss and statistics for variants of the BHH that was imple-
mented where discounted rewards is enabled and disabled. The test loss is measured
at the last epoch for each dataset, over all independent runs.

Table 8.19: Empirical results showing average test loss and statistics for discounted
rewards toggled by the BHH across multiple datasets, for all independent runs and is
measured at the last epoch.

Discounted Rewards - Average Test Loss

dataset false true

abalone 2.0587 (±0.088) 2.0789 (±0.102)
air quality 0.2729 (±0.016) 0.2693 (±0.011)

bank 0.2456 (±0.065) 0.2349 (±0.041)
bike 0.0651 (±0.02) 0.0676 (±0.027)
car 0.1572 (±0.034) 0.1672 (±0.037)

diabetic 1.2983 (±0.66) 1.3457 (±1.419)
fish toxicity 0.1046 (±0.008) 0.1053 (±0.008)

forest fires 0.081 (±0.069) 0.0928 (±0.079)
housing 0.0941 (±0.017) 0.0972 (±0.017)

iris 0.2411 (±0.295) 0.1833 (±0.259)
mushroom 0.0052 (±0.012) 0.0479 (±0.203)
parkinsons 0.0587 (±0.003) 0.06 (±0.002)

student performance 0.2359 (±0.102) 0.2408 (±0.086)
wine quality 1.0827 (±0.026) 1.0792 (±0.039)

Table 8.20 provides the average ranked performance, per dataset, with discounted
rewards enabled and disabled. Similar to before, the performance rank is calculated as
the average rank produced by the discounted rewards configurations, for all datasets,
over all independent runs and epochs.

Table 8.20 shows that, in general, there is no obvious difference in the outcomes
of the BHH when discounted rewards is enabled or disabled. Although this could
suggest that the discounted rewards hyper-parameter is problem specific, a better
suggestion supports the findings from Section 8.11. These findings suggest that
manipulation of the concentration parameters yield insignificant differences in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 187

Table 8.20: Empirical results showing average rank and statistics for discounted rewards
toggled by the BHH across multiple datasets, for all independent runs and epochs.

Discounted Rewards - Average Rank

dataset false true

abalone 1.4914 (±0.5) 1.5086 (±0.5)
air quality 1.4613 (±0.499) 1.5387 (±0.499)

bank 1.5161 (±0.5) 1.4839 (±0.5)
bike 1.5011 (±0.5) 1.4989 (±0.5)
car 1.428 (±0.495) 1.572 (±0.495)

diabetic 1.4699 (±0.499) 1.5301 (±0.499)
fish toxicity 1.5011 (±0.5) 1.4989 (±0.5)

forest fires 1.4742 (±0.5) 1.5258 (±0.5)
housing 1.4237 (±0.494) 1.5763 (±0.494)

iris 1.5903 (±0.492) 1.4097 (±0.492)
mushroom 1.3946 (±0.489) 1.5806 (±0.494)
parkinsons 1.371 (±0.483) 1.629 (±0.483)

student performance 1.4398 (±0.497) 1.5602 (±0.497)
wine quality 1.557 (±0.497) 1.443 (±0.497)

avg rank 1.4728 (±0.499) 1.5254 (±0.499)

normalised avg rank 1 2

outcomes of performance, as a small replay window size of 10 is used by default.
In general, it is found that the online learning approach, followed by the BHH

yields very little room to learn from. This is supported by the fact that most of the
significant performance gains are made in the early stages of training after which
exploitation of heuristics and solutions later in the training process is shown to
produce the best results.

Figure 8.45 provides an illustration of the descriptive plots for the BHH config-
urations with the discounted rewards hyper-parameter enabled and disabled, per
dataset.

Figure 8.46 provides an illustration of the overall critical difference plots for
ranked performance for discounted rewards configurations that are enabled and
disabled, as it relates to all datasets, across all independent runs and epochs.

Figure 8.46 shows no statistically significant difference in the outcomes of the
discounted rewards configurations of the BHH. This further supports the suggestion
that the effects of discounted rewards is not realised for small replay window sizes.

Similar to before, Figure 8.47 provides the train and test loss and accuracy plots
for an example classification dataset (wine quality) as it relates to the discounted
rewards experimental group. As before, the illustrations are provided in log scale

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 188

Figure 8.45: Descriptive plots for the average ranks of the BHH with discounted rewards
toggled per datasets, across all independent runs and epochs.

1 2

False True

CD

BHH Discounted Rewards - Critical Difference - Overall

Figure 8.46: Critical difference plots for the average ranks of the BHH with discounted
rewards toggled across all datasets, runs and epochs.

and illustrations of the train and test loss and accuracy plots for other datasets are
left out for brevity as they yield similar illustrations.

Figure 8.48 provides the train and test loss plots for an example regression dataset
(housing) as it relates to the discounted rewards experimental group. As before, the
illustrations are provided in log scale and illustrations of the train and test loss plots
for other regression datasets are left out for brevity.

8.13 Summary

This section provided the results of the empirical process that was described in
Chapter 7. Three experimental groups were designed. These experimental groups
include a case study on the behaviour of the BHH as it relates to an example dataset

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 189

0 5 10 15 20 25 30
Epoch

100

1.2 × 100

1.4 × 100
1.6 × 100
1.8 × 100

2 × 100
2.2 × 100
2.4 × 100
2.6 × 100

Tr
ai

n
Lo

g
Lo

ss

discounted_rewards

True
False

BHH Discounted Rewards - Train Log Loss - Dataset: wine_quality

(a) Train log loss

0 5 10 15 20 25 30
Epoch

1.2 × 100

1.4 × 100
1.6 × 100
1.8 × 100

2 × 100
2.2 × 100
2.4 × 100
2.6 × 100

Te
st

 L
og

 L
os

s

discounted_rewards

True
False

BHH Discounted Rewards - Test Log Loss - Dataset: wine_quality

(b) Test log loss

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

Tr
ai

n
Lo

g
Ac

cu
ra

cy

discounted_rewards

True
False

BHH Discounted Rewards - Train Log Accuracy - Dataset: wine_quality

(c) Train log accuracy

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

Te
st

 L
og

 A
cc

ur
ac

y
discounted_rewards

True
False

BHH Discounted Rewards - Test Log Accuracy - Dataset: wine_quality

(d) Test log accuracy

Figure 8.47: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the discounted rewards hyper-parameter
toggled on the wine quality dataset over 30 epochs, illustrated in log scale.

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

g
Lo

ss

discounted_rewards

True
False

BHH Discounted Rewards - Train Log Loss - Dataset: housing

(a) Train log loss

0 5 10 15 20 25 30
Epoch

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 L
og

 L
os

s

discounted_rewards

True
False

BHH Discounted Rewards - Test Log Loss - Dataset: housing

(b) Test log loss

Figure 8.48: The train and test loss and accuracy plots for the experimental group
comparing the performance of the BHH with the discounted rewards hyper-parameter
toggled on the housing dataset over 30 epochs, illustrated in log scale.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Results 190

(iris). Furthermore, an experimental group that compares the performance of the
BHH to standalone, low-level heuristics was included, and finally, an experimental
group that compares the effects of various hyper-parameters on the outcomes of the
BHH was also included. The empirical results for each of these experimental groups
were presented in detail.

In general, it was found that the BHH is able to successfully train the underlying
FFNNs. Detailed analysis and discussions of the empirical results were provided along
with illustrations for visual aid. Where possible, detailed discussions were presented
that explain the reasons behind the outcomes that were produced. Throughout,
various suggestions were made to improve on the implementations made in this
dissertation.

Finally, all results that were presented were retrieved from statistical analysis
which yield statistical certainty in the results and outcomes observed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9

Conclusion

“I am sorry to have made such a long speech, but I did not have time
to make a shorter one.”

- Winston Churchill

This chapter provides a summary of the research that was done in this dissertation.
The research objectives were set out in Chapter 1 and are concluded in this chapter.
Furthermore, this chapter provides a summary of the results and findings from the
empirical process and provides future research opportunities. The remainder of the
chapter is structured as follows:

• Section 9.1 provides a summary of the research intent and provides a review
of the problem statement, objectives, and motivations behind the research.

• Section 9.2 summarises the background information that was covered.

• Section 9.3 provides a brief summary of the BHH and its implementation.

• Section 9.4 provides a brief summary of the methodology and the empirical
process that was followed.

• Section 9.5 summarises the research findings. This section is broken down
into the various experimental groups that were executed.

• Section 9.6 provides suggestions for future research opportunities.

• Section 9.7 provides a brief discussion on supporting material related to the
research, as made available by the authors.

• Section 9.8 provides a brief summary of the chapter.

191

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 192

9.1 Summary of Research Intent

This section briefly reviews the problem statement, motivations, and research objec-
tives that was set out in Chapter 1 of this dissertation.

9.1.1 Review of Problem Statement

The main area of focus for the research done in this dissertation stems from the
problem statement, which identified the difficult and tedious problem of selecting
the best heuristic for training FFNNs. This process is often non-trivial and time-
consuming. There is no easy way to know which heuristic to select to train FFNNs.
Traditionally, an iterative approach of trial-and-error was followed. This process
involves a tedious process of carefully considering and selecting candidate heuristics,
whereby each candidate heuristic is then empirically tested and evaluated. This
process is often executed at the expense of the researcher’s resources.

9.1.2 Review of Research Motivation

The research presented in this dissertation identified the possibility of using a different
approach, referred to as HHs, to automate the heuristic selection process. HHs are
high-level search algorithms that search in the heuristic space, whereby low-level
heuristics search in the solution space. HHs have been shown to provide a general
solution to the heuristic selection process. The benefit that such an approach provides
is that it automates the heuristic selection process. This approach saves researchers
time and potentially produce a solution that could generalise to multiple problems.

Investigation was done into the landscapes of existing solutions to train FFNNs
as well as HHs. Though there exists many applications where HHs are used for
optimisation, there are little to no published work on using HHs to train FFNNs.
The only work that was found include the work by Nel [115].

9.1.3 Review of Research Objectives

Existing techniques from other problem domains were considered. RL, meta-learning
and probabilistic learning approached were considered. Bayesian probability theory
showed promise. This research then set out to develop a novel high-level heuristic
that utilises probability theory in an online learning setting to drive the automatic
heuristic selection process. As such, the BHH was conceptualised. The research
objectives were defined and were addressed as follows:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 193

• A literature study was conducted on all related topics that are relevant to the
development of the BHH and is provided in Chapters 2 to 5. The literature study
included background information on ANN, existing low-level heuristics, meta-
learning, HHs, probability theory, and Bayesian statistics. Detailed discussions
were provided on every topic and was supported by visual illustrations and
mathematical derivations.

• A novel BHH that can be used to automate the heuristic selection process
was proposed in detail and was implemented. The BHH follows an approach
that includes a selective and perturbative element in an online learning setting.
Bayesian statistics and MAP is used as the optimisation technique and detailed
mathematical derivations of the optimisation process was provided. Detailed
discussions were provided on the mapping of proxied heuristic state update
operations. Finally, a BHH baseline configuration was defined as a cornerstone
reference for empirical analysis.

• An empirical process was designed and the detail of the implementation for
the empirical process and the BHH was provided.

• An empirical study was conducted to show that the BHH is able to train
FFNNs effectively on a number of different datasets.

• An empirical study was conducted to study the behavioural characteristics of
the BHH.

• An empirical study was conducted to critically evaluate the performance of the
BHH compared to traditional, low-level, standalone heuristic when training
FFNNs on a number of different datasets.

• An empirical study was conducted to evaluate variants of the BHH to study
the impact of various hyper-parameters on the outcomes of the BHH.

• Results from the empirical process were statistically analysed over multiple
runs and provided statistical significance. These results were discussed in detail
and was supported through visual illustrations.

The research objectives set out in this dissertation were extensive. Each of these
research objectives has been successfully executed as indicated in the list above.
From the findings made in this dissertation, many different opportunities for future
research were identified.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 194

9.2 Summary of Background Information

Chapters 2 to 5 provided the reader with the relevant background information that
is necessary to develop the novel BHH. Chapter 2 provided background informa-
tion on ANNs. All the components that make up the AN were provided and is
followed by discussions on FFNNs. Chapter 3 provided background information
on various low-level heuristics that are designed to train FFNNs. A number of
gradient-based heuristics and MHs were presented in detail. Chapter 4 provided
background information and literature reviews on HHs. Meta-learning is discussed
and a HH classification scheme, developed by Burke et al. [19], was discussed in
detail. Chapter 5 provided background information and mathematical derivations
on probability theory and Bayesian statistics. Various probability distributions were
provided along with their conjugate priors. MLE and MAP were presented in detail
along with mathematical breakdowns.

From the aforementioned chapters, it can be concluded that the necessary back-
ground information was provided as set out in the research objectives of this disser-
tation.

9.3 Summary of The Bayesian Hyper-Heuristic

The main contribution from this dissertation is the development of a novel Bayesian
hyper-heuristic (BHH). Chapter 6 provided the details on the concept and imple-
mentation of the BHH. Various design decisions and hyper-parameters that could
affect the outcomes of the BHH were presented.

It was shown that the BHH is a population-based, meta-hyper-heuristic that
utilises selection and perturbation of low-level heuristics in an online learning fashion.
Heuristics are selected for each entity in a population of entities that each implement
a candidate solution to the underlying FFNN. The BHH uses a Bayesian probabilistic
model to drive the heuristic selection process. MAP was derived for the probabilistic
model and is used as the mechanism by which the BHH is optimised, yielding the
learning capability of the BHH.

Furthermore, it is shown that heuristic selection alone is not sufficient and that a
mechanism of transition between heuristics is needed as they are selected for each
entity in the population. Entity and heuristic state and state-manipulation formed
the cornerstone of this topic. Perturbation of heuristics and solutions are achieved
through a technique that deconstructs heuristics into their initialisation and update
steps. The update operations for each heuristic were derived as movement equations

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 195

borrowed from the field of physics. This technique allows for the proxying of update
step operations as they are required by different heuristics.

Detailed discussions were provided on a number of hyper-parameters that each
contribute to the trade-off between heuristic and solution exploration and exploitation.
These hyper-parameters include the heuristic pool configuration, the population size,
the credit assignment strategy used, the reselection interval, the replay window size,
the reanalysis interval, the burn in window size, normalisation of concentration
parameters and discounted rewards as assigned by the credit assignment strategy.
A BHH baseline configuration was identified with default values for each of the
hyper-parameters.

It was mentioned that the BHH, implemented in this dissertation, does not
implement a move-acceptance strategy that rejects heuristic progressions if they do
not improve on the current best solution. Throughout the presentation of empirical
results, it is recommended that this technique be investigated and implemented in
further research.

9.4 Summary of Methodology

The research objectives defined a number of empirical tests to be executed. Each one
of the empirical tests is referred to as an experimental group. Various experimental
groups have been identified and are listed below:

• An experimental group that provides a case-study on the behaviour of the
BHH as it relates to training of a FFNN on an example dataset (iris), in
order to understand the workings of the BHH, and to determine if the BHH
is able to successfully train FFNNs. Three different configurations of the
BHH configuration were implemented. This includes the default BHH baseline
configuration, the BHH baseline configuration where the replay window size is
set to 250, and the BHH baseline configuration which utilises the symmetric
credit assignment strategy.

• An experimental group that provides a comparative analysis between the
performance of the BHH baseline configuration and low-level, standalone
heuristics when training FFNNs on a number of datasets.

• An experimental group that provides a comparative analysis between variants
of the BHH that investigate the effects of various hyper-parameters on the
outcomes of the BHH. These variants include:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 196

– The BHH baseline configuration with different heuristic pool configura-
tions. Three different heuristic pool configurations were implemented.
These configurations include a configuration with all the low-level heuris-
tics included in the heuristic pool, a configuration with only gradient-based
heuristics in the heuristic pool, and a configuration with only MHs in the
heuristic pool.

– The BHH baseline configuration with different population sizes. Five
different population sizes were implemented including 5, 10, 15, 20, and
25.

– The BHH baseline configuration with different credit assignment strategies.
Five different credit assignment strategies were implemented including
the ibest, pbest, rbest, gbest, and symmetric credit assignment strategies.

– The BHH baseline configuration with different reselection intervals. Five
different reselection intervals were implemented including 1, 5, 10, 15, and
20.

– The BHH baseline configuration with different reanalysis window sizes.
Five different reanalysis intervals were implemented including 1, 5, 10, 15,
and 20.

– The BHH baseline configuration with different replay window sizes. Five
different replay window sizes were implemented including 1, 5, 10, 15, and
20.

– The BHH baseline configuration with different burn in window sizes. Five
different burn in window sizes were implemented including 0, 5, 10, 15,
and 20.

– The BHH baseline configuration where normalisation of pseudo counts
for concentration parameters, as derived from credit allocations in the
performance log, are enabled and disabled.

– The BHH baseline configuration where discounted rewards of pseudo
counts for concentration parameters, as derived from credit allocations in
the performance log, are enabled and disabled.

Each experimental group was executed against a set of fourteen datasets, con-
sisting of regression and classification problems, split between uni- and multimodal
problems. Each experimental group was repeated over 30 runs for statistical certainty.
The statistical analysis process was discussed and the ANOVA, post hoc Tukey,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 197

independent T-test and Kruskal-Wallis statistical tests formed part of the statistical
tests that were conducted.

All experimental groups were run for a maximum of 30 epochs in order to allow
for the studying of the BHH even after training has converged and overfitting has
occurred. The maximum epoch strategy yielded a training process that is longer
than what was empirically found to be necessary. This also meant that no early
stopping strategy was used. Future research opportunities should incorporate an
early stopping strategy of the training process.

9.5 Summary of Results

This section provides a summary of the results obtained from each of the experimental
groups that were executed. This section is structured as follows:

• Section 9.5.1 provides a summary of the results for the experimental group
that executed a case study on the behaviour of the BHH on an example dataset.

• Section 9.5.2 provides a summary of the results for the experimental group
that compares the performance of the BHH baseline configuration with low-level,
standalone heuristics, across all datasets.

• Section 9.5.3 provides a summary of the results for the experimental group
that investigates the effects of the heuristic pool hyper-parameter on the BHH,
across all datasets.

• Section 9.5.4 provides a summary of the results for the experimental group
that investigates the effects of the population size hyper-parameter on the BHH,
across all datasets.

• Section 9.5.5 provides a summary of the results for the experimental group
that investigates the effects of the credit assignment strategy hyper-parameter
on the BHH, across all datasets.

• Section 9.5.6 provides a summary of the results for the experimental group
that investigates the effects of the reselection interval hyper-parameter on the
BHH, across all datasets.

• Section 9.5.7 provides a summary of the results for the experimental group
that investigates the effects of the replay window size hyper-parameter on the
BHH, across all datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 198

• Section 9.5.8 provides a summary of the results for the experimental group
that investigates the effects of the reanalysis interval hyper-parameter on the
BHH, across all datasets.

• Section 9.5.9 provides a summary of the results for the experimental group
that investigates the effects of the burn in window size hyper-parameter on the
BHH, across all datasets.

• Section 9.5.10 provides a summary of the results for the experimental group
that investigates the effects of the normalisation hyper-parameter on the BHH,
across all datasets.

• Section 9.5.11 provides a summary of the results for the experimental group
that investigates the effects of the discounted rewards hyper-parameter on the
BHH, across all datasets.

9.5.1 Behavioural Case Study

For this experimental group it was found that the BHH is able to train a feedfor-
ward neural network (FFNN) relatively well. Detailed analysis was provided for
various state parameters maintained by the BHH. These include the concentration
parameters for different heuristics, the probability distribution of heuristic selection
probabilities, prior heuristic selection probabilities and posterior heuristic selection
probabilities. It was shown that the BHH is able to learn and that the BHH is able
to exploit small performance biases as it relates to heuristic selection. This enables
the BHH to select the correct heuristics to apply to the correct entities at the correct
time in the training process.

Various illustrations of the train and test loss plots, as it relates to training of a
FFNN on the iris dataset, have been provided. Furthermore, various illustrations on
the changes of the BHH state parameters were provided for visual aid.

The main findings that were made for this experimental group are given as
follows: Most of the training progression is made in the early stages of the training
process. That leads to the conclusion that the BHH has a small window from which it
should learn and gain the most in the training process. After training has converged,
the BHH resets its concentration parameters and heuristic selection returns to the
symmetric heuristic selection case. As such, the BHH explores other heuristics in an
attempt to further improve on the current best solution found. The test set was used
as a validation set during training. Some overfitting can be observed as the BHH
tried finding better solutions on the train set, but at the cost of generalisation on the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 199

test set. Minor divergence of the training loss is observed as the BHH explores other
heuristics in an attempt to improve performance. Since no move-acceptance strategy,
and no early stopping strategy was used, the BHH could select heuristics that are
sub-optimal. Future research opportunities should incorporate these aforementioned
strategies.

9.5.2 BHH Baseline vs. Low-Level Heuristics

For this experimental group, three different configurations of the BHH baseline
configuration were implemented. These configurations vary in the type of heuristics
in the heuristic pool. The bhh_all configuration included all low-level heuristics in the
heuristic pool. The bhh_gd configuration included only gradient-based heuristics in
the heuristic pool, and the bhh_mh configuration included only MHs in the heuristic
pool.

Overall, the bhh_gd configuration performed the best out of the BHH variants,
achieving an overall rank of fourth amongst thirteen heuristics that were implemented
and executed on fourteen datasets. The bhh_gd configuration produced performance
results close to that of the best low-level heuristics and was only statistically outper-
formed by the top two low-level heuristics. The bhh_all configuration achieved an
overall rank of sixth and the bhh_mh achieved an overall rank of eighth.

Although the bhh_gd configuration produced performance results comparable
to the best low-level heuristics, the bhh_all and bhh_mh configurations produced
average results. It was found that, in general, gradient-based heuristics produced
the best results, as such, it is understandable that the bhh_gd yielded the best
performance outcomes between the different BHH variants that were implemented.
Although the BHH variants were not able to produce better results than the top
low-level heuristics, the BHH variants still effectively trained the underlying FFNNs
and produced good training outcomes overall.

It was shown that the bhh_gd configuration produced the lowest variance in rank
between datasets out of all of the heuristics implemented, giving the BHH the ability
to generalise well to other problems.

Furthermore, it was shown that the BHH provides a mechanism whereby prior
expert knowledge can be injected, before training starts. Future research can exploit
this knowledge and provide a significant bias towards heuristics that are known to
perform well on particular problem types.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 200

9.5.3 Heuristic pool

For this experimental group, the same three heuristic pool variants as outlined for
the BHH behavioural case study, was implemented. These variants are denoted as
all, gd, and mh. This experimental group then provided an opportunity to look at
the effects of the heuristic pool hyper-parameter in more detail.

As with the experimental group that compares the performance of the BHH
baseline configuration with low-level, standalone heuristics, it was found that the
gd configuration performed significantly better than the all and mh configurations
overall, across all datasets.

The benefits of using meta-heuristics in the heuristic pool was not realised in
this dissertation, since the gradient-based low-level heuristics, as well as the gd
configuration produced the best overall performance, across all datasets.

9.5.4 Population Size

For this experimental group, five different population sizes were evaluated. These
included population sizes of 5, 10, 15, 20, and 25. It was found that lower population
sizes yielded better results on the majority of datasets, while only some datasets
prefer larger population sizes. However, overall it was shown that the population
size hyper-parameter is problem specific. Illustrations of the train and test loss
and accuracy plots for some example datasets were provided. Some divergence in
training loss was observed and was attributed to selection of heuristics that yield
sub-optimal results after an optimal solution has already been found. As before, a
move-acceptance strategy and an early stopping strategy can be incorporated to
avoid this effect.

9.5.5 Credit Assignment Strategy

For this experimental group, five different credit assignment strategies were evalu-
ated. These included the ibest, pbest, rbest, gbest, and symmetric credit assignment
strategies. No clear overall difference in performance was observed for the various
credit assignment strategies. For the majority of cases, a particular non-symmetric
credit assignment strategy yielded the best performance, while the symmetric credit
assignment strategy yielded the best performance results in one case. It can therefore
be concluded that the credit assignment strategy is problem specific. As before,
illustrations of the train and test loss and accuracy plots for some example datasets
were provided.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 201

9.5.6 Reselection Interval

For this experimental group, five different reselection intervals were evaluated. These
included reselection intervals of 1, 5, 10, 15, and 20. Overall, with statistical
significance, it was found that a larger reselection interval is generally preferred. It
was found that larger reselection intervals lead to longer time frames for the low-level
heuristics to progress, smoothing out update steps. Larger reselection intervals also
allow the BHH to collect more samples of heuristic performance evidence from which
it can learn. Therefore, a conclusion that can be made is that heuristic and solution
exploitation is preferred over exploration. As before, illustrations of the train and
test loss and accuracy plots for some example datasets were provided.

9.5.7 Replay

For this experimental group, five different replay windows sizes were evaluated. These
included replay window sizes of 1, 5, 10, 15, and 20. Overall, no statistically significant
difference was found for the performance of the replay window size configurations,
and thus, it was concluded that the replay window size is problem specific, with
some datasets preferring short memory and other preferring long memory. The
relationship between the reselection interval, replay window size and reanalysis
interval was discussed, and it was shown that these hyper-parameters should be
considered together. As before, illustrations of the train and test loss and accuracy
plots for some example datasets were provided.

9.5.8 Reanalysis Interval

For this experimental group, five different reanalysis intervals were evaluated. These
included reanalysis intervals of 1, 5, 10, 15, and 20. Overall, no statistically significant
difference was found for the performance of the reanalysis intervals across all datasets,
and thus, it was concluded that the reanalysis interval is problem specific. As before,
illustrations of the train and test loss and accuracy plots for some example datasets
were provided.

9.5.9 Burn In

For this experimental group, five different burn in window sizes were evaluated.
These included burn in window sizes of 1, 5, 10, 15, and 20. Overall, it was found
with statistical significance, that lower burn in window sizes are generally preferred.
The lower burn in window sizes generally produced the best results in the majority

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 202

of cases, with some exceptions that prefer average burn in window sizes. As before,
illustrations of the train and test loss and accuracy plots for some example datasets
were provided.

9.5.10 Normalisation

For this experimental group an empirical test was conducted to determine the effects
of normalisation of pseudo counts allocated by the credit assignment strategy in
the performance log. A configuration is included with normalisation enabled and
a configuration is included with normalisation disabled. It was concluded that
the default replay window size of 10 is too small to yield a significant difference
in performance outcome for when normalisation is enabled compared to when
normalisation is disabled. As before, illustrations of the train and test loss and
accuracy plots for some example datasets were provided.

9.5.11 Discounted Rewards

For this experimental group an empirical test was conducted to determine the effects
of discounted rewards of pseudo counts allocated by the credit assignment strategy
in the performance log. A configuration is included with discounted rewards enabled
and a configuration is included with discounted rewards disabled. Similar to the
findings for the experimental group investigating the effects of the normalisation
hyper-parameter, it was concluded that the default replay window size of 10 is too
small to yield a significant difference in performance outcome for when discounted
rewards is enabled compared to when discounted rewards is disabled. As before,
illustrations of the train and test loss and accuracy plots for some example datasets
were provided.

9.6 Future Research Opportunities

Throughout this dissertation, many different opportunities have been identified for
future research. This section contains a summary of each of these topics.

A Priori Biases

By default, the BHH initialises the values for the concentration parameters, related
to each heuristic in the heuristic pool, symmetrically with an initial value of 1.0.
This yields an initial probability distribution of the heuristic selection probabilities
that is uniform. Symmetric initialisation contains no a priori heuristic selection bias

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 203

and assumes uniform sampling at first. It has been identified that expert knowledge
can be incorporated into the BHH by carefully providing the initial concentrations
for the each heuristic in the heuristic pool. Such research would then evaluate if such
prior heuristic selection biases have a positive impact on the outcomes of the BHH.

Move-Acceptance Strategies

Throughout the presentation of the empirical results, it is mentioned that a move-
acceptance strategy can be incorporated to reject heuristic progressions that do not
improve on the current best solution found. This would eliminate any divergence in
the training process as a result of selecting sub-optimal heuristics. Various different
move-acceptance strategies can be developed and empirically tested.

Early Stopping Strategies

Similar to the move-acceptance strategy, throughout the presentation of the empirical
results, it is mentioned that an early stopping strategy can be used to halt the training
process if the performance does not improve for a number of steps. In this dissertation,
a number of examples were presented where divergence of training loss occurred.
Furthermore, a number of examples were presented where overfitting occurred. An
early stopping strategy can help prevent such outcomes.

Entity Search

For this dissertation, even though the predictive model implemented by the BHH
includes entity consideration, it does not sample from an entity pool. The BHH
keeps the entire entity pool fixed, and just reselects heuristics for each entity. The
BHH, as is, can be used to learn which entities to select as well. The hypothesis is
that this would result in better combinations of entities and heuristics, which should
have a positive effect on the outcomes of the BHH.

Continuous-Valued Credit Allocation

Credit assignment in the context of this dissertation yields a discrete credit allocation
value. More specifically, the credit allocation is binary, yielding a zero or a one. Future
research can investigate different credit allocation strategies that yield continuous
valued outcomes. This should provide more fine-grained indicators of heuristic
performance which the BHH can exploit easier.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 204

Credit Search

Similar to entity search, the BHH, as is, can be used to learn which credit assignment
strategies to use. This can then be combined with heuristic and entity selection so
that the correct heuristic is selected for the correct entity, by means of the correct
credit allocation strategy that is applicable, at the correct time in the training process.
For example, a particular heuristic-entity combination might benefit from a pbest
credit allocation, while another heuristic-entity combination might benefit from a
ibest credit allocation at the same time in the training process.

Models

For this dissertation, focus was put on training FFNNs. However, in theory, other
models can also be used. Suggestions include deep neural networks (DNNs) and
recurrent neural networks (RNNs). Furthermore, future research can attempt to use
the BHH for dynamic optimisation problems.

Dynamic Hyper-Parameter Values

It was shown that larger reselection intervals are generally preferred. It was shown
that there is a relationship between the reselection interval, the replay window size
and the reanalysis interval. These hyper-parameters provide a mechanism for trade-
off between exploration and exploitation and therefore, investigation into dynamic
selection of hyper-parameter values can be considered in future research.

Heuristic Pools

This dissertation only considered three different types of heuristic pool configurations.
The following alternative configurations could be considered. A heuristic pool could
be considered where multiple instances of the same heuristic is included, but with
different hyper-parameter values, effectively implementing dynamic hyper-parameter
optimisation. Empirical testing can be done to determine the effects of various
heuristic pool sizes. Different types of heuristics can be considered for inclusion in
the heuristic pool. A suggestion is to include black-box optimisers such as CMA-ES.
Finally, heuristic ensemble pools could be considered, where the heuristic selection is
a selection of an ensemble of heuristics.

Parameter Pools

A suggestion for future research is to apply the BHH to a multitude of parameter
types. These could be hyper-parameters of the low-level heuristics, the parameters

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Conclusion 205

for the topology and architecture of models (similar to neural architecture search) or
the hyper-parameters of the BHH itself.

9.7 Documentation and Data

All the source code, data, logs and analyses that were used in this dissertation, as well
as the dissertation source itself, can be found at https://github.com/arneschreuder/
masters. The raw empirical data is made available on Google Cloud’s BigQuery
platform, under the project id masters-363209.

9.8 Summary

This chapter concludes the research that is done in this dissertation. This chapter
provided a summary of the research intent, providing a brief review of the research
problem, motivations and objectives defined for this dissertation. A brief summary
of the background information that was covered in this dissertation was provided. A
brief summary on the concept and implementation of the novel BHH was provided,
followed by a brief summary of the methodology that was used for the empirical
process. This chapter also provided brief summaries of the results and findings for
each of the experimental groups that were executed in the empirical process. Future
research opportunities were identified and reference was made to materials and assets
used in this dissertation that was made available online.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/arneschreuder/masters
https://github.com/arneschreuder/masters

Bibliography

[1] Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. “Data mining: A
preprocessing engine”. In: Journal of Computer Science 2.9 (2006), pp. 735–
739.

[2] David M Allen. “The relationship between variable selection and data
augmentation and a method for prediction”. In: technometrics 16.1 (1974),
pp. 125–127.

[3] John A Allen and Steven Minton. “Selecting the right heuristic algorithm:
Runtime performance predictors”. In: Conference of the Canadian Society
for Computational Studies of Intelligence. Springer. 1996, pp. 41–53.

[4] Deborah Ashby. “Bayesian statistics in medicine: a 25 year review”. In:
Statistics in medicine 25.21 (2006), pp. 3589–3631.

[5] Thomas Back. “Selective pressure in evolutionary algorithms: A characteri-
zation of selection mechanisms”. In: Proceedings of the first IEEE conference
on evolutionary computation. IEEE World Congress on Computational
Intelligence. IEEE. 1994, pp. 57–62.

[6] Thomas Bayes. “LII. An essay towards solving a problem in the doctrine
of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price,
in a letter to John Canton, AMFR S”. In: Philosophical transactions of
the Royal Society of London 53 (1763), pp. 370–418.

[7] Yoshua Bengio. “Gradient-based optimization of hyperparameters”. In:
Neural computation 12.8 (2000), pp. 1889–1900.

[8] Yoshua Bengio. “Practical recommendations for gradient-based training
of deep architectures”. In: Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[9] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu.
“Advances in optimizing recurrent networks”. In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013, pp. 8624–
8628.

206

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 207

[10] José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. “Are artificial
neural networks black boxes?” In: IEEE Transactions on neural networks
8.5 (1997), pp. 1156–1164.

[11] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J
Gutjahr. “A survey on metaheuristics for stochastic combinatorial opti-
mization”. In: Natural Computing 8.2 (2009), pp. 239–287.

[12] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning. Vol. 4. Springer, 2006.

[13] Christian Blum and Andrea Roli. “Metaheuristics in combinatorial op-
timization: Overview and conceptual comparison”. In: ACM computing
surveys (CSUR) 35.3 (2003), pp. 268–308.

[14] Marko Bohanec and Vladislav Rajkovic. “Knowledge acquisition and ex-
planation for multi-attribute decision making”. In: 8th Intl Workshop on
Expert Systems and their Applications. Citeseer. 1988, pp. 59–78.

[15] Hans J Bremermann et al. “Optimization through evolution and recombi-
nation”. In: Self-organizing systems 93 (1962), p. 106.

[16] Jason Brownlee. “Supervised and unsupervised machine learning algo-
rithms”. In: Machine Learning Mastery 16.03 (2016).

[17] Jason Brownlee. “How to one hot encode sequence data in python”. In:
Machine Learning Mastery 12 (2017).

[18] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and
Sonia Schulenburg. “Hyper-heuristics: An emerging direction in modern
search technology”. In: Handbook of metaheuristics. Springer, 2003, pp. 457–
474.

[19] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and John R Woodward. “A classification of hyper-heuristic
approaches”. In: Handbook of metaheuristics. Springer, 2010, pp. 449–468.

[20] Edmund K Burke et al. “Hyper-heuristics: A survey of the state of the art”.
In: Journal of the Operational Research Society 64.12 (2013), pp. 1695–
1724.

[21] James Cannady. “Artificial neural networks for misuse detection”. In:
National information systems security conference. Vol. 26. Baltimore. 1998.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 208

[22] Marcio Carvalho and Teresa B Ludermir. “An analysis of PSO hybrid
algorithms for feed-forward neural networks training”. In: 2006 Ninth
Brazilian Symposium on Neural Networks (SBRN’06). IEEE. 2006, pp. 6–
11.

[23] M Cassotti, D Ballabio, R Todeschini, and V Consonni. “A similarity-based
QSAR model for predicting acute toxicity towards the fathead minnow
(Pimephales promelas)”. In: SAR and QSAR in Environmental Research
26.3 (2015), pp. 217–243.

[24] P. Cortez and A. Morais. “A Data Mining Approach to Predict Forest
Fires using Meteorological Data”. In: New Trends in Artificial Intelligence,
Proceedings of the 13th EPIA. Guimarães, Portugal: APPIA, Dec. 2007,
pp. 512–523.

[25] P. Cortez and A. M. G. Silva. “Using data mining to predict secondary
school student performance”. In: Proceedings of 5th Future Business Tech-
nology Conference (FUBUTEC). EUROSIS-ETI, Jan. 2008, pp. 5–12.

[26] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José
Reis. “Modeling wine preferences by data mining from physicochemical
properties”. In: Decision support systems 47.4 (2009), pp. 547–553.

[27] Peter Cowling, Graham Kendall, and Eric Soubeiga. “A hyperheuristic
approach to scheduling a sales summit”. In: International conference on the
practice and theory of automated timetabling. Springer. 2000, pp. 176–190.

[28] Christian Darken, Joseph Chang, and John Moody. “Learning rate sched-
ules for faster stochastic gradient search”. In: Neural Networks for Signal
Processing [1992] II., Proceedings of the 1992 IEEE-SP Workshop. IEEE.
1992, pp. 3–12.

[29] C. Darwin. On the Origin of the Species and The Voyage of the Beagle.
West Margin Press, 2012. isbn: 9780882408767.

[30] Charles Darwin. Charles Darwin’s natural selection: being the second part
of his big species book written from 1856 to 1858. Cambridge University
Press, 1987.

[31] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. “Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization”. In: Advances
in neural information processing systems 27 (2014).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 209

[32] Judith E Dayhoff and James M DeLeo. “Artificial neural networks: opening
the black box”. In: Cancer: Interdisciplinary International Journal of the
American Cancer Society 91.S8 (2001), pp. 1615–1635.

[33] Abraham De Moivre. The doctrine of chances: or, A method of calculating
the probability of events in play. W. Pearson, 1718.

[34] Saverio De Vito, Ettore Massera, Marco Piga, Luca Martinotto, and
Girolamo Di Francia. “On field calibration of an electronic nose for benzene
estimation in an urban pollution monitoring scenario”. In: Sensors and
Actuators B: Chemical 129.2 (2008), pp. 750–757.

[35] John S Denker and Yann LeCun. “Transforming neural-net output levels
to probability distributions”. In: Advances in neural information processing
systems. 1991, pp. 853–859.

[36] Pedro Domingos and Michael Pazzani. “On the optimality of the simple
Bayesian classifier under zero-one loss”. In: Machine learning 29.2 (1997),
pp. 103–130.

[37] Kathryn A Dowsland, Eric Soubeiga, and Edmund Burke. “A simulated
annealing based hyperheuristic for determining shipper sizes for storage
and transportation”. In: European Journal of Operational Research 179.3
(2007), pp. 759–774.

[38] John H Drake, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. “Recent
advances in selection hyper-heuristics”. In: European Journal of Operational
Research 285.2 (2020), pp. 405–428.

[39] Juan Du. “The frontier of SGD and its variants in machine learning”. In:
Journal of Physics: Conference Series. Vol. 1229. 1. IOP Publishing. 2019,
p. 012046.

[40] Dheeru Dua and Casey. Graff. UCI Machine Learning Repository. 2017.
url: http://archive.ics.uci.edu/ml.

[41] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization.” In: Journal of machine
learning research 12.7 (2011).

[42] Russ Eberhart, Pat Simpson, and Roy Dobbins. Computational intelligence
PC tools. Academic Press Professional, Inc., 1996.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml

Bibliography 210

[43] Russ C Eberhart and Yuhui Shi. “Comparing inertia weights and con-
striction factors in particle swarm optimization”. In: Proceedings of the
2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512).
Vol. 1. IEEE. 2000, pp. 84–88.

[44] Russell Eberhart and James Kennedy. “A new optimizer using particle
swarm theory”. In: MHS’95. Proceedings of the Sixth International Sympo-
sium on Micro Machine and Human Science. Ieee. 1995, pp. 39–43.

[45] A.P. Engelbrecht. Computational Intelligence: An Introduction. Wiley,
2007. isbn: 9780470512500.

[46] Deniz Erdogmus, Oscar Fontenla-Romero, Jose C Principe, Amparo Alonso-
Betanzos, Enrique Castillo, and Robert Jenssen. “Accurate initialization
of neural network weights by backpropagation of the desired response”.
In: Proceedings of the International Joint Conference on Neural Networks,
2003. Vol. 3. IEEE. 2003, pp. 2005–2010.

[47] Andres Espinal et al. “Comparison of PSO and DE for training neural
networks”. In: 2011 10th Mexican International Conference on Artificial
Intelligence. IEEE. 2011, pp. 83–87.

[48] Hadi Fanaee-T and Joao Gama. “Event labeling combining ensemble
detectors and background knowledge”. In: Progress in Artificial Intelligence
2.2 (2014), pp. 113–127.

[49] Mercedes Fernández-Redondo and Carlos Hernández-Espinosa. “Weight ini-
tialization methods for multilayer feedforward.” In: ESANN. 2001, pp. 119–
124.

[50] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In:
Automated machine learning. Springer, Cham, 2019, pp. 3–33.

[51] Ronald A Fisher. “The use of multiple measurements in taxonomic prob-
lems”. In: Annals of eugenics 7.2 (1936), pp. 179–188.

[52] Ronald Aylmer Fisher et al. “014: On the “Probable Error” of a Coefficient
of Correlation Deduced from a Small Sample”. In: Metron 1 (1921), pp. 3–
32.

[53] Ronald Aylmer Fisher et al. “The design of experiments.” In: The design
of experiments. 2nd Ed (1937).

[54] Louise Francis. “Neural networks demystified”. In: Casualty Actuarial
Society Forum. 2001, pp. 253–320.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 211

[55] Alex S Fraser. “Simulation of genetic systems by automatic digital com-
puters I. Introduction”. In: Australian journal of biological sciences 10.4
(1957), pp. 484–491.

[56] Aurélien Géron. Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, Inc., 2017.

[57] Christophe Giraud-Carrier, Ricardo Vilalta, and Pavel Brazdil. “Intro-
duction to the special issue on meta-learning”. In: Machine learning 54.3
(2004), pp. 187–193.

[58] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics. 2010, pp. 249–
256.

[59] Fred Glover. “Future paths for integer programming and links to artificial
intelligence”. In: Computers & operations research 13.5 (1986), pp. 533–
549.

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[61] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[62] Jochen Görtler, Rebecca Kehlbeck, and Oliver Deussen. “A visual explo-
ration of Gaussian processes”. In: Distill 4.4 (2019), e17.

[63] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.
American Mathematical Soc., 1997.

[64] Jacomine Grobler. “The heterogeneous meta-hyper-heuristic: from low level
heuristics to low level metaheuristics”. PhD thesis. University of Pretoria.

[65] Jacomine Grobler, Andries P Engelbrecht, Graham Kendall, and VSS
Yadavalli. “Investigating the use of local search for improving meta-hyper-
heuristic performance”. In: Evolutionary Computation (CEC), 2012 IEEE
Congress on. IEEE. 2012, pp. 1–8.

[66] Venu G Gudise and Ganesh K Venayagamoorthy. “Comparison of parti-
cle swarm optimization and backpropagation as training algorithms for
neural networks”. In: Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS’03 (Cat. No. 03EX706). IEEE. 2003, pp. 110–117.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 212

[67] Jatinder ND Gupta and Randall S Sexton. “Comparing backpropagation
with a genetic algorithm for neural network training”. In: Omega 27.6
(1999), pp. 679–684.

[68] Branimir K Hackenberger. “Bayes or not Bayes, is this the question?” In:
Croatian medical journal 60.1 (2019), p. 50.

[69] Jacques Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre
des plaques élastiques encastrées. Vol. 33. Imprimerie nationale, 1908.

[70] Boris Hanin. “Which neural net architectures give rise to exploding and van-
ishing gradients?” In: Advances in Neural Information Processing Systems.
2018, pp. 582–591.

[71] D. Harris and S.L. Harris. Digital Design and Computer Architecture.
Computer organization bundle, VHDL Bundle. Elsevier Science, 2010.
isbn: 9780080547060.

[72] David Harrison Jr and Daniel L Rubinfeld. “Hedonic housing prices and
the demand for clean air”. In: Journal of environmental economics and
management 5.1 (1978), pp. 81–102.

[73] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. “Gans trained by a two time-scale update rule
converge to a local nash equilibrium”. In: Advances in neural information
processing systems 30 (2017).

[74] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent”.
In: Cited on 14.8 (2012), p. 2.

[75] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of
membrane current and its application to conduction and excitation in
nerve”. In: The Journal of physiology 117.4 (1952), pp. 500–544.

[76] John H Holland. Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelligence.
MIT press, 1992.

[77] Horas. Wikimedia Commons: Beta distribution. 2014. url: https://en.
wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_
pdf.svg.

[78] Horas. Wikimedia Commons: Cumulative Beta distribution. 2014. url:
https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_
distribution_cdf.svg.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_pdf.svg
https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_pdf.svg
https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_pdf.svg
https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_cdf.svg
https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_cdf.svg

Bibliography 213

[79] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-
forward networks are universal approximators”. In: Neural networks 2.5
(1989), pp. 359–366.

[80] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. “Meta-Learning
in Neural Networks: A Survey”. In: IEEE Transactions on Pattern Analysis
& Machine Intelligence 44.09 (Sept. 2022), pp. 5149–5169. issn: 1939-3539.

[81] Peter R Huttenlocher and Arun S Dabholkar. “Regional differences in
synaptogenesis in human cerebral cortex”. In: Journal of comparative
Neurology 387.2 (1997), pp. 167–178.

[82] Jarmo Ilonen, Joni-Kristian Kamarainen, and Jouni Lampinen. “Differ-
ential evolution training algorithm for feed-forward neural networks”. In:
Neural Processing Letters 17.1 (2003), pp. 93–105.

[83] Kenneth E Iverson. “A programming language”. In: Proceedings of the
May 1-3, 1962, spring joint computer conference. 1962, pp. 345–351.

[84] Anil Jain, Karthik Nandakumar, and Arun Ross. “Score normalization
in multimodal biometric systems”. In: Pattern recognition 38.12 (2005),
pp. 2270–2285.

[85] Anil K Jain, Jianchang Mao, and KM Mohiuddin. “Artificial neural net-
works: A tutorial”. In: Computer 3 (1996), pp. 31–44.

[86] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning. Vol. 112. Springer, 2013.

[87] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann
LeCun. “What is the best multi-stage architecture for object recognition?”
In: 2009 IEEE 12th international conference on computer vision. IEEE.
2009, pp. 2146–2153.

[88] Bekir Karlik and A Vehbi Olgac. “Performance analysis of various acti-
vation functions in generalized MLP architectures of neural networks”.
In: International Journal of Artificial Intelligence and Expert Systems 1.4
(2011), pp. 111–122.

[89] James Kennedy. “The particle swarm: social adaptation of knowledge”.
In: Proceedings of 1997 IEEE International Conference on Evolutionary
Computation (ICEC’97). IEEE. 1997, pp. 303–308.

[90] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In:
Proceedings of ICNN’95-international conference on neural networks. Vol. 4.
IEEE. 1995, pp. 1942–1948.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 214

[91] Mary B Kennedy. “Synaptic signaling in learning and memory”. In: Cold
Spring Harbor perspectives in biology 8.2 (2016), a016824.

[92] Javed Khan et al. “Classification and diagnostic prediction of cancers
using gene expression profiling and artificial neural networks”. In: Nature
medicine 7.6 (2001), p. 673.

[93] Ahmed Kheiri and Ed Keedwell. “A hidden markov model approach to the
problem of heuristic selection in hyper-heuristics with a case study in high
school timetabling problems”. In: Evolutionary computation 25.3 (2017),
pp. 473–501.

[94] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: International Conference on Learning Representations (Dec.
2014).

[95] William H Kruskal and W Allen Wallis. “Use of ranks in one-criterion
variance analysis”. In: Journal of the American statistical Association
47.260 (1952), pp. 583–621.

[96] Sandeep Kumar and Eugene H Spafford. “A pattern matching model for
misuse intrusion detection”. In: Proceedings of the 17th National Computer
Security Conference. Vol. 10. Baltimore, MD. 1994, pp. 11–21.

[97] Krystyna Kuzniar and Maciej Zajac. “Some methods of pre-processing input
data for neural networks”. In: Computer Assisted Methods in Engineering
and Science 22.2 (2017), pp. 141–151.

[98] Annu Lambora, Kunal Gupta, and Kriti Chopra. “Genetic Algorithm
- A Literature Review”. In: 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon). 2019,
pp. 380–384.

[99] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
nature 521.7553 (2015), p. 436.

[100] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. “A theoretical
framework for back-propagation”. In: Proceedings of the 1988 connectionist
models summer school. Vol. 1. CMU, Pittsburgh, Pa: Morgan Kaufmann.
1988, pp. 21–28.

[101] Claude Lemaréchal. “Cauchy and the gradient method”. In: Doc Math
Extra 251.254 (2012), p. 10.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 215

[102] Howard Levene. “Robust tests for equality of variances”. In: Contributions
to probability and statistics. Essays in honor of Harold Hotelling (1961),
pp. 279–292.

[103] Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra.
“Deal or No Deal? End-to-End Learning of Negotiation Dialogues”. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP-17). Jan. 2017, pp. 2443–2453.

[104] Che-Wei Lin and Jeen-Shing Wang. “A digital circuit design of hyperbolic
tangent sigmoid function for neural networks”. In: 2008 IEEE International
Symposium on Circuits and Systems. IEEE. 2008, pp. 856–859.

[105] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinear-
ities improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1.
2013, p. 3.

[106] Henry B Mann and Donald R Whitney. “On a test of whether one of two
random variables is stochastically larger than the other”. In: The annals
of mathematical statistics (1947), pp. 50–60.

[107] Efrñn Mezura-Montes, Jesús Velázquez-Reyes, and Carlos A Coello Coello.
“A comparative study of differential evolution variants for global opti-
mization”. In: Proceedings of the 8th annual conference on Genetic and
evolutionary computation. 2006, pp. 485–492.

[108] Risto Miikkulainen. “Topology of a Neural Network”. In: Encyclopedia of
Machine Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston,
MA: Springer US, 2010, pp. 988–989. isbn: 978-0-387-30164-8.

[109] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. “Designing Neural
Networks Using Genetic Algorithms.” In: ICGA. Vol. 89. 1989, pp. 379–384.

[110] Liu Mingguang and Li Gaoyang. “Artificial neural network co-optimization
algorithm based on differential evolution”. In: 2009 Second International
Symposium on Computational Intelligence and Design. Vol. 1. IEEE. 2009,
pp. 256–259.

[111] David J Montana and Lawrence Davis. “Training Feedforward Neural
Networks Using Genetic Algorithms.” In: IJCAI. Vol. 89. 1989, pp. 762–
767.

[112] Sérgio Moro, Paulo Cortez, and Paulo Rita. “A data-driven approach to
predict the success of bank telemarketing”. In: Decision Support Systems
62 (2014), pp. 22–31.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 216

[113] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted boltzmann machines”. In: ICML. 2010.

[114] Radford M Neal. “Bayesian learning via stochastic dynamics”. In: Advances
in neural information processing systems. 1993, pp. 475–482.

[115] Gerrit Stephanus Nel. “A hyperheuristic approach towards the training of
artificial neural networks.” PhD thesis. University of Stellenbosch, 2021.

[116] Filipe V Nepomuceno and Andries P Engelbrecht. “A self-adaptive hetero-
geneous pso for real-parameter optimization”. In: 2013 IEEE congress on
evolutionary computation. IEEE. 2013, pp. 361–368.

[117] Nerebur. Wikimedia Commons: Dirichlet distribution. 2014. url: https:
//en.wikipedia.org/wiki/File:Dirichlet.pdf.

[118] Yurii Nesterov. “A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2)”. In: Doklady an ussr. Vol. 269.
1983, pp. 543–547.

[119] Derrick Nguyen and Bernard Widrow. “Improving the learning speed of
2-layer neural networks by choosing initial values of the adaptive weights”.
In: 1990 IJCNN International Joint Conference on Neural Networks. IEEE.
1990, pp. 21–26.

[120] Elre Talea Oldewage. “The Perils of Particle Swarm Optimization in
High Dimensional Problem Spaces”. MA thesis. South Africa: Department
of Computer Science, School of Information Technology, EBIT Faculty,
University of Pretoria, 2003.

[121] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. “Hill climbers
and mutational heuristics in hyperheuristics”. In: Parallel Problem Solving
from Nature-PPSN IX. Springer, 2006, pp. 202–211.

[122] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. “A comprehensive
analysis of hyper-heuristics”. In: Intelligent data analysis 12.1 (2008),
pp. 3–23.

[123] Gisele L Pappa, Gabriela Ochoa, Matthew R Hyde, Alex A Freitas,
John Woodward, and Jerry Swan. “Contrasting meta-learning and hyper-
heuristic research: the role of evolutionary algorithms”. In: Genetic Pro-
gramming and Evolvable Machines 15.1 (2014), pp. 3–35.

[124] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. The Addison-Wesley Series in Artificial Intelligence. Addison-
Wesley, 1984. isbn: 9780201055948.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://en.wikipedia.org/wiki/File:Dirichlet.pdf
https://en.wikipedia.org/wiki/File:Dirichlet.pdf

Bibliography 217

[125] Joe Pharos. Wikimedia Commons: Stochastic Gradient Descent. 2006. url:
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#/media/
File:Stogra.png.

[126] N. Pillay and R. Qu. Hyper-Heuristics: Theory and Applications. Nat-
ural Computing Series. Springer International Publishing, 2018. isbn:
9783319965147.

[127] Nelishia Pillay. “Intelligent system design using hyper-heuristics”. In: South
African Computer Journal 56.1 (2015), pp. 107–119.

[128] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential
evolution: a practical approach to global optimization. Springer Science &
Business Media, 2006.

[129] Ning Qian. “On the momentum term in gradient descent learning algo-
rithms”. In: Neural networks 12.1 (1999), pp. 145–151.

[130] Lawrence Rabiner and Biinghwang Juang. “An introduction to hidden
Markov models”. In: ieee assp magazine 3.1 (1986), pp. 4–16.

[131] Anastassia S Rakitianskaia and Andries P Engelbrecht. “Training feed-
forward neural networks with dynamic particle swarm optimisation”. In:
Swarm Intelligence 6.3 (2012), pp. 233–270.

[132] Jon Reed, Robert Toombs, and Nils Aall Barricelli. “Simulation of bio-
logical evolution and machine learning: I. Selection of self-reproducing
numeric patterns by data processing machines, effects of hereditary control,
mutation type and crossing”. In: Journal of theoretical biology 17.3 (1967),
pp. 319–342.

[133] R. Reed and R.J. MarksII. Neural Smithing: Supervised Learning in Feed-
forward Artificial Neural Networks. A Bradford Book. MIT Press, 1999.
isbn: 9780262181907.

[134] CR Reeves. “Modern heuristic techniques for combinatorial problems
Blackwell Scientific Press”. In: Oxford, UK 1.99 (1993), p. 2.

[135] Herbert Robbins and Sutton Monro. “A stochastic approximation method”.
In: The annals of mathematical statistics (1951), pp. 400–407.

[136] Paolo Rocca, Giacomo Oliveri, and Andrea Massa. “Differential evolution
as applied to electromagnetics”. In: IEEE Antennas and Propagation
Magazine 53.1 (2011), pp. 38–49.

[137] Marc HJ Romanycia and Francis Jeffry Pelletier. “What is a heuristic?”
In: Computational Intelligence 1.1 (1985), pp. 47–58.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#/media/File:Stogra.png
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#/media/File:Stogra.png

Bibliography 218

[138] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[139] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[140] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[141] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088 (1986),
pp. 533–536.

[142] A. Sandberg and N. Bostrom. Whole Brain Emulation: A Roadmap. Tech.
rep. 3. Future of Humanity Institute, Oxford University, 2008.

[143] Jeffrey Curtis Schlimmer. “Concept acquisition through representational
adjustment”. PhD thesis. University of California, Irvine, 1987.

[144] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural networks 61 (2015), pp. 85–117.

[145] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of variance test
for normality (complete samples)”. In: Biometrika 52.3/4 (1965), pp. 591–
611.

[146] Yuhui Shi and Russell Eberhart. “A modified particle swarm optimizer”.
In: 1998 IEEE international conference on evolutionary computation pro-
ceedings. IEEE world congress on computational intelligence (Cat. No.
98TH8360). IEEE. 1998, pp. 69–73.

[147] MNH Siddique and MO Tokhi. “Training neural networks: backpropagation
vs. genetic algorithms”. In: IJCNN’01. International Joint Conference on
Neural Networks. Proceedings (Cat. No. 01CH37222). Vol. 4. IEEE. 2001,
pp. 2673–2678.

[148] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529 (2016), pp. 484–503. url: http://www.
nature.com/nature/journal/v529/n7587/full/nature16961.html.

[149] David Silver et al. “Mastering the game of go without human knowledge”.
In: nature 550.7676 (2017), pp. 354–359.

[150] Yashpal Singh and Alok Singh Chauhan. “NEURAL NETWORKS IN
DATA MINING.” In: Journal of Theoretical & Applied Information Tech-
nology 5.1 (2009).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Bibliography 219

[151] Adam Slowik and Michal Bialko. “Training of artificial neural networks
using differential evolution algorithm”. In: 2008 conference on human
system interactions. IEEE. 2008, pp. 60–65.

[152] Celso AR de Sousa. “An overview on weight initialization methods for
feedforward neural networks”. In: 2016 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2016, pp. 52–59.

[153] Donald F Specht. “A general regression neural network”. In: IEEE trans-
actions on neural networks 2.6 (1991), pp. 568–576.

[154] Rainer Storn. “On the usage of differential evolution for function optimiza-
tion”. In: Proceedings of North American Fuzzy Information Processing.
IEEE. 1996, pp. 519–523.

[155] Rainer Storn and Kenneth Price. “Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces”. In:
Journal of global optimization 11.4 (1997), pp. 341–359.

[156] Beata Strack et al. “Impact of HbA1c measurement on hospital readmission
rates: analysis of 70,000 clinical database patient records”. In: BioMed
research international 2014 (2014).

[157] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On
the importance of initialization and momentum in deep learning”. In:
International conference on machine learning. PMLR. 2013, pp. 1139–
1147.

[158] Richard Sutton. “Two problems with back propagation and other steepest
descent learning procedures for networks”. In: Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, 1986. 1986, pp. 823–
832.

[159] Gilbert Syswerda et al. “Uniform crossover in genetic algorithms.” In:
ICGA. Vol. 3. 1989, pp. 2–9.

[160] Igor V Tetko, David J Livingstone, and Alexander I Luik. “Neural network
studies. 1. Comparison of overfitting and overtraining”. In: Journal of
chemical information and computer sciences 35.5 (1995), pp. 826–833.

[161] Dirk Thierens, Johan Suykens, Joos Vandewalle, and Bart De Moor. “Ge-
netic weight optimization of a feedforward neural network controller”. In:
Artificial Neural Nets and Genetic Algorithms. Springer. 1993, pp. 658–663.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 220

[162] Georg Thimm and Emile Fiesler. “Neural network initialization”. In: Inter-
national Workshop on Artificial Neural Networks. Springer. 1995, pp. 535–
542.

[163] Ronald A Thisted. “What is a P-value”. In: Departments of Statistics and
Health Studies (1998).

[164] Sebastian Thrun and Lorien Pratt. “Learning to learn: Introduction and
overview”. In: Learning to learn. Springer, 1998, pp. 3–17.

[165] Ludovic Trottier, Philippe Giguere, and Brahim Chaib-Draa. “Parametric
exponential linear unit for deep convolutional neural networks”. In: 2017
16th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE. 2017, pp. 207–214.

[166] Athanasios Tsanas, Max Little, Patrick McSharry, and Lorraine Ramig.
“Accurate telemonitoring of Parkinson’s disease progression by non-invasive
speech tests”. In: Nature Precedings (2009), pp. 1–1.

[167] John W Tukey. “Comparing individual means in the analysis of variance”.
In: Biometrics (1949), pp. 99–114.

[168] Frans Van Den Bergh et al. “An analysis of particle swarm optimizers”.
PhD thesis. University of Pretoria, 2007.

[169] Frans Van den Bergh and Andries Petrus Engelbrecht. “A study of particle
swarm optimization particle trajectories”. In: Information sciences 176.8
(2006), pp. 937–971.

[170] Frans Van den Bergh and Andries Petrus Engelbrecht. “A convergence
proof for the particle swarm optimiser”. In: Fundamenta Informaticae
105.4 (2010), pp. 341–374.

[171] Stefan AG Van der Stockt and Andries P Engelbrecht. “Analysis of selection
hyper-heuristics for population-based metaheuristics in real-valued dynamic
optimization”. In: Swarm and Evolutionary Computation (2018).

[172] Andrich Benjamin Van Wyk. “An Analysis of Overfitting in Particle Swarm
Optimised Neural Networks”. MA thesis. University of Pretoria, 2014.

[173] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[174] Ricardo Vilalta and Youssef Drissi. “A perspective view and survey of
meta-learning”. In: Artificial intelligence review 18.2 (2002), pp. 77–95.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 221

[175] Dennis Wackerly, William Mendenhall, and Richard L Scheaffer. Mathe-
matical statistics with applications. Cengage Learning, 2014.

[176] Samuel George Waugh. “Extending and benchmarking Cascade-Correlation:
extensions to the Cascade-Correlation architecture and benchmarking of
feed-forward supervised artificial neural networks”. PhD thesis. University
of Tasmania, 1995.

[177] Paul John Werbos. The roots of backpropagation: from ordered derivatives
to neural networks and political forecasting. Vol. 1. John Wiley & Sons,
1994.

[178] David H Wolpert and William G Macready. “No free lunch theorems
for optimization”. In: IEEE transactions on evolutionary computation 1.1
(1997), pp. 67–82.

[179] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical Evaluation of
Rectified Activations in Convolutional Network. 2015. url: https://arxiv.
org/abs/1505.00853.

[180] Jim YF Yam and Tommy WS Chow. “A weight initialization method for im-
proving training speed in feedforward neural network”. In: Neurocomputing
30.1-4 (2000), pp. 219–232.

[181] Edward N Zalta. “Metaphysics Research Lab”. In: Center for the Study of
Language and Information, Stanford University, Stanford, CA (2015).

[182] Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701 (2012).

[183] Andreas Zell. Simulation neuronaler netze. Vol. 1. 5.3. Addison-Wesley
Bonn, 1994.

[184] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. “Ensembling neural networks:
many could be better than all”. In: Artificial intelligence 137.1-2 (2002),
pp. 239–263.

[185] Israel Ziv, Douglas A Baxter, and John H Byrne. “Simulator for neural
networks and action potentials: description and application”. In: Journal
of neurophysiology 71.1 (1994), pp. 294–308.

[186] Barret Zoph and Quoc Le. “Neural Architecture Search with Reinforcement
Learning”. In: International Conference on Learning Representations. 2017.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853

Appendix A

Acronyms

This appendix lists all the acronyms that were used throughout the thesis. Acronyms
are typeset in bold, with the corresponding meaning alongside. The list of acronyms
is ordered alphabetically.

Adadelta adaptive learning rate

Adagrad adaptive gradients

Adam adaptive moment estimation

AI artificial intelligence

AN artificial neuron

ANN artificial neural network

ANOVA analysis of variance

BHH Bayesian hyper-heuristic

BinXE binary cross entropy

BN biological neuron

BP backpropagation

CatEX categorical cross entropy

CLT central limit theorem

CMA-ES covariance matrix adaptation evolution strategy

CSP constraint satisfaction problem

222

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Acronyms 223

DE differential evolution

DNN deep neural network

DoE Design of Experiments

EA evolutionary algorithm

EC evolutionary computation

FFNN feedforward neural network

GA genetic algorithm

GD gradient descent

HH hyper-heuristic

HMM hidden Markov model

LReLU leaky rectified linear unit

MAE mean absolute error

MAP maximum a posteriori estimation

MCMC Markov Chain Monte Carlo

MH meta-heuristic

ML machine learning

MLE maximum likelihood estimation

Momentum momentum

MSE mean squared error

NAG Nesterov accelerated gradients

NFL no free lunch theorem

NN neural network

NN Bayesian neural network

PDF probability density function

PMF probability mass function

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Acronyms 224

PSO particle swarm optimisation

ReLU rectified linear unit

RL reinforcement learning

RMS root mean squared

RMSE root mean squared error

RMSProp root mean squared error propagation

RNN recurrent neural network

SGD stochastic gradient descent

SparseCatXE sparse categorical cross entropy

SSE sum squared error

SU summation unit

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B

Symbols

This appendix summarises the important symbols used throughout the dissertation.
A short description is provided for each symbol. Symbols are divided according to
the chapter in which they were introduced and are ordered alphabetically.

B.1 Chapter 2: Artificial Neural Networks

α Scaling parameter used by the LReLU activation function.

β Mini-batch size.

v The weight vector.

xp The p-th input vector/pattern.

x The input pattern/vector.

yp The output vector for pattern p.

y The output vector.

y
′ The softmax form of the output vector.

ϵ The cost/loss produced by the loss function.

ŷk,p

The target output for the ANN at the k-th dimension for the p-th
pattern.

λ
Scaling/control parameter used by the sigmoid and tanh activation
functions.

RI The real-number space in I dimensions.

RK The real-number space in K dimensions.

225

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 226

RT The real-number space in T dimensions.

R The real-number space.

1 The indicator function.

µi The mean of the input at dimension i.

ωi The general weight vector used for normalisation at dimension i.

ωmax
The upper bound of the uniform distribution used for weights initiali-
sation.

ωmin
The lower bound of the uniform distribution used for weights initiali-
sation.

ω The general weight vector used for normalisation.

σ2
i The unit variance of the input at dimension i.

σ
The standard deviation of the truncated normal distribution used for
weight initialisation.

τ Phase shift threshold parameter.

θ The bias unit.

c Index used for c-th class.

C Total number of classes.

fAN The mapping function realised by the AN.

f(net) The activation function over net input signal.

f(x) The function used to describe the LReLU activation function.

f A shortened form of the activation function.

fanin The number of input neurons to the weight vector.

fanout The number of output neurons from the weight vector.

hj The j-th dimension of the hidden layer.

i Index for the input vector.

I The input pattern’s dimension size.

j Index used for the hidden layer.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 227

k Index for the output vector.

K Number of output units.

neth,y The net input signal at the output layer.

neti,h The net input signal at the hidden layer.

net
′ The augmented net input signal that includes the bias term.

net The net input signal to the AN.

p Index for the input data patterns.

P Total number of input data patterns.

T The target pattern’s dimension size.

vi,j The weight associated with input node xi and the hidden node hj.

vi The i-th dimension of the weight vector.

vi+1 The i+ 1-th dimension of the weight vector.

wj,k The weight associated with hidden node hj and the output node yk.

ximax The input’s maximum value at dimension i.

ximin The input’s minimum value at dimension i.

x
′
i,p The normalised form of the input at dimension i, pattern p.

xi,p The original input at dimension i, pattern p.

xi The i-th dimension of the input pattern/vector.

xi+1 The i+ 1-th dimension of the input pattern/vector.

xmax The input’s maximum value used by the min-max scaler.

xmin The input’s minimum value used by the min-max scaler.

x+ The positive part of the input parameter’s domain.

yk,p
The output produced by the ANN at the k-th dimension for the p-th
pattern.

yk The k-th dimension of the output vector.

y
′
k The softmax value of the output at dimension k.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 228

B.2 Chapter 3: Heuristics

α The momentum hyper-parameter.

β1 First decay rate parameter for Adam.

β2 Second decay rate parameter for Adam.

βt
1 First decay rate parameter for Adam at time step t.

βt
2 Second decay rate parameter for Adam at time step t.

β Scale factor as implemented by DE.

ŷi(t) The i-th particle’s global best position vector as implemented by PSO.

ŷ Short form of the global best position vector.

Gt The sum of the squares of the gradients.

gt The gradient vector at time step t.

g2
t The squared gradient vector at time step t.

g
General symbol used to represent the gradient vector, retrieved from
the error function relative to the weight vector.

mt The estimate of the first moment at time step t.

mt+1 The estimate of the first moment at time step t+ 1.

r1
The vector for the first stochastic scaling parameter as implemented
by PSO.

r2
The vector for the second stochastic scaling parameter as implemented
by PSO.

ui(t) The i-th entity’s trial vector at time step t implemented by DE.

vi(t)
The i-th particle’s velocity vector at time step t as implemented by
PSO.

V max The upper bound of the velocity clamping vector.

vt The estimate of the second moment at time step t.

vt+1 The estimate of the second moment at time step t+ 1.

v The velocity vector resulting from Momentum.

w2
t The squared weight vector at time step t.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 229

wt+1 The weight vector at time step t+ 1.

w General symbol used to represent the weight vector.

w The weight vector.

xi1(t) The i-th entity’s target vector at time step t implemented by DE.

xi2(t)
The i-th entity’s first selected individual’s position vector at time step
t implemented by DE.

xi3(t)
The i-th entity’s second selected individual’s position vector at time
step t implemented by DE.

xi(0) The i-th particle’s position vector at time step 0 as implemented by
PSO.

xi(t)
The i-th particle’s position vector at time step t as implemented by
PSO. Also represents the i-th parent’s position vector at time step t

as implemented by DE.

xi

The i-th particle’s position vector as implemented by PSO. Also
represents the i-th parent’s position vector as implemented by DE.

xi The i-th particle’s position vector as implemented by PSO.

xmax The upper bound constraint vector of the position vector’s values.

xmin The lower bound constraint vector of the position vector’s values.

x′
i(t)

The i-th offspring’s position vector at time step t as implemented by
DE.

yi(0)
The i-th particle’s personal best position vector at time step 0 as
implemented by PSO.

yi(t)
The i-th particle’s personal best position vector at time step t as
implemented by PSO.

∆w2
t The delta of the squared weight vector at time step t.

∆wi(t) The change in the i-th dimension of the weight vector at time step t.

∅ The empty set.

ϵTp The error produced for pattern p at time step T .

ϵT The error at time step T .

ϵ

The error between the output of the FFNN and the target pattern,
produced by the loss function. Also used as a small error value used
by heuristics to avoid division by 0.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 230

η Learning rate.

m̂t The bias-corrected first moment at time step t.

v̂t The bias-corrected second moment at time step t.

ŷij(t)
The i-th particle’s j-th dimension of the global best position vector at
time step t.

ŷij The i-th particle’s j-th dimension of the global best position vector.

C(0) The set of entities in the population at time step 0.

C(t) The set of entities in the population at time step t.

C(t+ 1) The set of entities in the population at time step t+ 1.

C The set of entities in the population.

E The error function.

J The set of crossover points.

⊙ The matrix-vector product.

c1 The cognitive control parameter as implemented by PSO.

c2 The social control parameter as implemented by PSO.

E[g2]t−1 The expected value of the squared gradients at time step t− 1.

E[g2]t The expected value of the squared gradients at time step t.

E[∆w2]t−1
The expected value of the delta of the squared weight vector at time
step t− 1.

E[∆w2]t
The expected value of the delta of the squared weight vector at time
step t.

f(ŷ) The evaluation of the global best position.

f(xi(t)) The evaluation of the i-th entity’s candidate solution at time step t.

f(x′
i(t)) The evaluation of the i-th offspring’s candidate solution at time step t.

f(yi) The evaluation of the i-th particle’s personal best position.

f(ŷ) The evaluation of the global best position.

f(xi)
The evaluation of the i-th particle’s solution with respect to the objec-
tive function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 231

f(x) The objective function over x.

f A shortened form of the objective function being optimised.

gt,i The i-th dimension of the gradient vector at time step t.

Gt,i

The sum of the squared gradients with regards to the i-th dimension
of the weight vector.

Gt,ii

Diagonal matrix containing the sum of the squared gradients with
regards to the i-th dimension of the weight vector.

i1 Index for the target vector in DE.

i2 Index for the first selected individual in DE.

i3 Index for the second selected individual in DE.

i
Index used for the weight vector. Also used as the index for the i-th
particle in the population, implemented by PSO.

I The total number of particles in the swarm (particle swarm size).

j∗ Randomly selected crossover point.

j Index used for the dimensions of candidate solutions.

J
The total number of dimensions in the position vector for particles in
PSO.

k Index used for the output layer.

K Total number of output units.

mj(t) The j-th dimension of the crossover mask, m, at time step t.

Nt Tournament selection size.

N An alternative to the particle swarm size.

netp The net input signal for pattern p.

oi,p The i-th dimension of the output for pattern p.

ok,p The k-th dimension of the output for pattern p.

pc Probability of producing offspring.

pm The mutation probability.

pr The crossover probability i.e. recombination probability.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 232

px Bitswapping probability.

p Index used for input data patterns.

r1j
(t)

The j-th dimension of the first stochastic scaling parameter at time
step t as implemented by PSO.

r2j
(t)

The j-th dimension of the second stochastic scaling parameter at time
step t as implemented by PSO.

RMS[g]t The root mean squared gradient vector at time step t.

RMS The root mean squared error criterion.

ti,p The i-th dimension of the target for pattern p.

tk,p The k-th dimension of the target for pattern p.

t Time step.

T Time step.

uij(t)
The j-th dimension of the i-th entity’s trial vector at time step t

implemented by DE.

U The uniform distribution.

vij(t)
The i-th particle’s j-th dimension of the velocity vector at time step t.
Also used in the mutation operator for GAs to represent some sampled
mutation update value.

vij(t+ 1)
The i-th particle’s j-th dimension of the velocity vector at time step
t+ 1.

Vmax,j The j-th dimension of the upper bound of the velocity clamping vector.

v′
ij(t+ 1)

The i-th particle’s j-th dimension of the clamped velocity vector at
time step t+ 1.

wi(t− 1) The i-th dimension of the weight vector at time step t− 1.

wi(t) The i-th dimension of the weight vector at time step t.

wi The i-th dimension of the weight vector.

wt,i The i-th dimension of the weight vector at time step t.

wt+1,i The i-th dimension of the weight vector at time step t+ 1.

w The inertia weight hyper-parameter as implemented by PSO.

W Window size of previous squared gradients.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 233

xij(t)
The i-th particle’s/entity’s j-th dimension of the position vector at
time step t.

xij(t+ 1)
The i-th particle’s j-th dimension of the position vector at time step
t+ 1.

xij The i-th particle’s/entity’s j-th dimension of the position vector.

xmax,j
The j-th dimension of the upper bound constraint for an entity’s
position.

xmin,j
The j-th dimension of the lower bound constraint for an entity’s
position.

x′
ij(t)

The i-th offspring’s j-th dimension of the position vector at time step
t.

x
The independent variables to the objective function. Also used in DE
notation to denote the selection mechanism for the trial vector.

yij(t)
The i-th particle’s j-th dimension of the personal best position vector
at time step t.

yij The i-th particle’s j-th dimension of the personal best position vector.

y
Used in DE notation to denote the number of difference vectors to
include.

zi,p The input value at index i for pattern p.

z Used in DE notation to denote the type of crossover operator to use.

B.3 Chapter 4: Hyper-Heuristics

K The number of folds to execute for K-fold crossover validation.

B.4 Chapter 5: Probability

α0
The sum of all the values in each dimension of the concentration
parameter α.

α1 The first dimension of the concentration parameter α.

αk The k-th dimension of the concentration parameter α.

αK The last dimension of the concentration parameter α.

α′ The update form of the prior parameter, α, for a Beta probability
distribution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 234

α
Shape parameter for the Beta probability distribution. Also used for
confidence levels for the statistical tests.

Ā Not observing random event A.

β′ The update form of the prior parameter, β, for a Beta probability
distribution.

β Shape parameter for the Beta probability distribution.

α′ Update form of the prior parameter, α, for a Dirichlet probability
distribution.

α
The concentration parameter vector that parameterises the Dirichlet
probability distribution.

D All the prior data of X

θ
The probability vector in multiple dimensions used by multiple proba-
bility distributions.

N
The counts for each occurrence of a category k over I independent,
identical (iid) events.

x1
The outcomes of the first random event in I independent, identical
(iid) events for k categories.

xi
The outcomes of the i-th random event in I independent, identical
(iid) events for k categories.

xI
The outcomes of the last random event in I independent, identical (iid)
events for k categories.

X
Matrix of Bernoulli probability distributions. Also used to represent
the outcomes of I independent, identical (iid) random events.

x
The random variable for various probability distributions in multiple
dimensions.

Y A vector of random events.

∅ The empty set.

Γ′(n) The first derivative of the Gamma function over input n.

Γ(n) The Gamma function over input n.

Γ The Gamma function.

R Real-number space.

R The real-number space.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 235

1 Indicator function.

A(v) Functional form of priors.

L The likelihood function.

iid∼ Independent, identical (iid) random events.

ψ
The logarithmic derivative of the Gamma function, called the Digamma
Function.

θ1 The first dimension of the probability vector θ.

θk The k-th dimension of the probability vector θ.

θK The last dimension of the probability vector θ.

θ Success probability for the Bernoulli probability distribution.

A Random event.

B1 The first set in the partition S.

B2 The second set in the partition S.

Bi The i-th set in the partition S.

Bj The j-th set in the partition S.

BK The last set in the partition S.

B(α, β) The normalising constant used in the PDF of the Beta probability
distribution.

B(α) The normalising constant used in the PDF of the Dirichlet probability
distribution.

B Random event.

Ber The Bernoulli probability distribution.

Beta The Beta probability distribution.

Bin The Binomial probability distribution.

c Symmetric distribution constant.

Cat The Categorical probability distribution.

Dir The Dirichlet probability distribution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 236

E[ln(xk)] The expected value of the natural logarithm of the k-th dimension of
the random variable.

E[ln(x)] The expected value of the natural logarithm of x.

E[xk] The expected value of the k-th dimension of the random variable.

E[x] The expected value of the distribution of x.

fBer The PMF for the Bernoulli probability distribution.

fBeta The PDF of the Beta probability distribution.

fBin The PMF for the Binomial probability distribution.

fCat The PMF for the Categorical probability distribution.

fDir The PDF of the Dirichlet probability distribution.

fMul The PMF for the Multinomial probability distribution.

f
General symbol used for functions. Used for likelihood functions, PMFs
and PDFs.

F The symbol used for a female outcome in the mice experiment.

g∗ Posterior density.

g Prior density.

i
Index to track sets in partition S. Also used as a general index in
random variables in I dimensions.

I The total number of independent, identical (iid) random events.

j
Index to track sets in partition S. Also used as a general index in
random variables in J dimensions.

k
Index used to denote class k in K classes. Also used as a general index
in random variables in K dimensions.

K
The total number of sets in the partition S. Also used to denote the
number of classes in the Dirichlet probability distribution.

M [xk] The mode of the k-th dimension of the random variable.

M [x] The mode of the distribution of x.

m The marginal density function.

M The symbol used for a male outcome in the mice experiment.

Mul The Multinomial probability distribution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 237

N0
Summary variable tracking the number of unsuccessful Boolean out-
comes.

N1 Summary variable tracking the number of successful Boolean outcomes.

Nk

Summary variable, denoting the number of times a category k occurs
over all trials in N .

NK Summary variable denoting the number of times category k occurs.

n Input parameter to the Gamma function.

N The total number of events observed.

P The probability of some event.

p The statistical p-value.

S
The union of mutually exclusive subsets. Also referred to as the
probability simplex.

x1
The first dimension of the random variable. Also used as the first
random event.

xi,k The k-th dimension of the i-th random event vector x.

xi
The i-th dimension of the random variable. Also used as the i-th
random event.

xI
The last dimension of the random variable with I dimensions. Also
used as the last random event in I random events.

xj
The j-th dimension of the random variable. Also used as the j-th
random event.

xk
The k-th dimension of the random variable. Also used as the k-th
random event.

xK
The last dimension of the random variable with K dimensions. Also
used as the last random event in K random events.

x

Random variable used by various probability distributions. Also re-
ferred to as a realisation of an event that occurred as a results of a
random process X.

Y1 The first random event in Y .

y1 The realisation of the first random event in Y .

y2 The realisation of the second random event in Y .

Y2 The second random event in Y .

Yi The i-th random event in Y .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 238

yi The realisation of the i-th random event in Y .

YN The last random event in Y with N events.

yn The realisation of the n-th random event in Y with N events.

B.5 Chapter 6: Bayesian Hyper-Heuristic

α1 The first dimension of the concentration parameter, α.

αK The k-th dimension of the concentration parameter, α.

αk The dimension of α associated with class k.

α Concentration parameter for the Beta probability distribution.

β1 The first dimension of the concentration parameter, β.

β2 The second dimension of the concentration parameter, β.

βj,k The j-th entity’s concentration parameter associated with heuristic k.

β Concentration parameter for the Beta probability distribution.

α The concentration parameters for the heuristic probability distribution.

β
The concentration parameters for the entity-heuristic probability dis-
tributions.

γ
The concentration parameters for the credit-heuristic probability dis-
tribution.

ϕ̂ The expected value of the entity-heuristic probabilities.

ψ̂ The expected value of the heuristic-credit-assignment probabilities.

θ̂ The expected value of the heuristic selection probabilities.

λ Error vector.

ϕ The entity-heuristic probability distribution.

ψ The credit-heuristic probability distribution.

θ The heuristic probability distribution.

C
The event of observing credit assignments upon meeting credit assign-
ment criteria.

E The event of observing entities.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 239

H The event of observing heuristics.

ϵ Error factor.

η Learning rate.

γ0 The zeroth dimension of the concentration parameter, γ.

γ1,k
The first dimension of the concentration parameter, γ associated with
heuristic k.

γ1 The first dimension of the concentration parameter, γ.

γ2,k
The second dimension of the concentration parameter, γ associated
with heuristic k.

γK The k-th dimension of the concentration parameter, γ.

ϕ̂j,k

The expected value of the probability of selecting heuristic k for entity
j.

ψ̂k

The expected value of the probability of selecting heuristic k and
observing credit assignments.

θ̂k The expected value of the probability of selecting heuristic k.

λj The j-th dimension of the error vector, λ.

λJ The last dimension of the error vector, λ in J dimensions.

10 The indicator function yielding a failure/non-occurrence.

11 The indicator function yielding a success/occurrence.

A(v) Functional form of priors.

L The likelihood function.

ϕj,k The entity-heuristic selection probability for entity j and heuristic k.

ψk The successful credit assignment probability for heuristic k.

θk The heuristic selection probability for heuristic k.

A A random event.

B A random event.

Beta The Beta probability distribution.

Bin The Binomial probability distribution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 240

c1 Successful credit allocation.

ci,k
The realisation of the i-th event of observing a credit assignment i to
heuristic k.

ci The i-th event of observing credit assignments.

Dir The Dirichlet probability distribution.

ei,j,k
The realisation of the i-th event of observing heuristic k for selected
for entity j.

ei The i-th event of observing entities.

ej The j-th entity.

E[ϕj,k]
The expected value of the probability of selecting heuristic k for entity
j.

E[ψk]
The expected value of the probability of selecting heuristic k and
observing credit assignments.

E[θk] The expected value of the probability of selecting heuristic k.

hi,k The realisation of the i-th event of observing heuristic k.

hi The i-th event of observing heuristics.

hk The k-th heuristic.

i Index generally associated with event/run i.

I The maximum number of instances in the replay window.

j Index generally associated to entity j.

J The entity pool (population) size.

k Index generally associated to heuristic k.

K The heuristic pool size.

L The number of credit assignment output classes.

LSE The log-sum-exp trick/function.

Mult The Multinomial probability distribution.

N0,k The count of occurrences of the events ci taking on a failure.

N1,k The count of occurrences of the events ci taking on a success.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 241

Nj,k

A summary variable denoting the count of occurrences of the events ei

taking on class j and hi taking on class k in I independent, identical
runs.

Nj The count of the occurrences of observing entity j.

Nk

A summary variable denoting the count of occurrences of the event hi

taking on class k in I independent, identical runs.

N The maximum number of random events observed.

S The probability simplex.

t Time step.

λ1 The first dimension of the error vector, λ.

B.6 Chapter 7: Methodology

α
Used as a scaling parameter for the LReLU activation function. Also
used as a threshold parameter for the statistical significance tests.

η Learning rate.

R Real-number space.

vij
The j-th dimension of the velocity vector of the i-th particle in the
population implemented by PSO.

xij
The j-th dimension of the position vector of the i-th particle in the
population implemented by PSO.

B.7 Chapter 8: Results

α0
The zeroth dimension of the concentration parameter α and is associ-
ated to heuristic 0 (SGD).

α6
The sixth dimension of the concentration parameter α and is associated
to heuristic 6 (Adam).

α7
The seventh dimension of the concentration parameter α and is associ-
ated to heuristic 7 (PSO).

α8
The eight dimension of the concentration parameter α and is associated
to heuristic 8 (GA).

αi
The i-th dimension of the concentration parameter α and is associated
to heuristic i.

α The concentration parameters for the heuristic probability distribution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 242

ϕ The entity-heuristic probability distribution.

ψ The credit-heuristic probability distribution.

θ The heuristic probability distribution.

C
The event of observing credit assignments upon meeting credit assign-
ment criteria.

E The event of observing entities.

H The event of observing heuristics.

θ0
The zeroth dimension of the heuristic selection probabilities θ and is
associated to heuristic 0 (SGD).

θ6
The sixth dimension of the heuristic selection probabilities θ and is
associated to heuristic 6 (Adam).

θ7
The seventh dimension of the heuristic selection probabilities θ and is
associated to heuristic 7 (PSO).

θ8
The eight dimension of the heuristic selection probabilities θ and is
associated to heuristic 8 (GA).

c1 Successful credit allocation.

Cat The Categorical probability distribution.

Dir The Dirichlet probability distribution.

e0 Entity 0.

h0 Heuristic 0 (SGD).

h6 Heuristic 6 (Adam).

h7 Heuristic 7 (PSO).

h8 Heuristic 8 (GA).

i General index associated with event/run number.

K Heuristic pool size.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C

Datasets

This appendix provides insight into the preparation and usage of datasets that were
used as part of the empirical process. The data processing tasks included:

• Exploratory analysis and visualisation off data distribution.

• Dropping of rows that contain missing data in and standardisation of data
types.

• Normalising all numerical features using the standard score scaler and one-hot
encoding of all categorical features.

• Splitting the datasets into a training set (80%) and a testing set (20%) and
then shuffling and batching of data.

243

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D

Statistical Analysis

This appendix provides the output of the various statistical tests that were executed
for the empirical process. The appendix is structured as follows:

• Section D.1 provides the output for the statistical analysis of the experimental
group concerned with comparing the performance of BHH with individual,
standalone, low-level heuristics.

• Section D.2 provides the output for the statistical analysis of the experimental
group that analyses the effects of the heuristic pool hyper-parameter on the
outcomes of the BHH.

• Section D.3 provides the output for the statistical analysis of the experimental
group that analyses the effects of the population size hyper-parameter on the
outcomes of the BHH.

• Section D.4 provides the output for the statistical analysis of the experimental
group that analyses the effects of the credit assignment strategy hyper-parameter
on the outcomes of the BHH.

• Section D.5 provides the output for the statistical analysis of the experimental
group that analyses the effects of the reselection interval hyper-parameter on
the outcomes of the BHH.

• Section D.6 provides the output for the statistical analysis of the experimental
group that analyses the effects of the replay window size hyper-parameter on
the outcomes of the BHH.

• Section D.7 provides the output for the statistical analysis of the experimental
group that analyses the effects of the reanalysis interval hyper-parameter on
the outcomes of the BHH.

244

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 245

• Section D.8 provides the output for the statistical analysis of the experimental
group that analyses the effects of the burn in window size hyper-parameter on
the outcomes of the BHH.

• Section D.9 provides the output for the statistical analysis of the experimental
group that analyses the effects of the normalisation hyper-parameter on the
outcomes of the BHH.

• Section D.10 provides the output for the statistical analysis of the experimen-
tal group that analyses the effects of the discounted rewards hyper-parameter
on the outcomes of the BHH.

D.1 BHH vs. Low-Level Heuristics

Table D.1: ANOVA - Rank - BHH vs. Low-Level Heuristics

Cases Sum of Squares df Mean Square F p

dataset 7.680× 10−5 13 5.908× 10−6 1.422× 10−6 1.000
heuristic 1.163× 10+6 12 96928.657 23323.376 < .001
dataset * heuristic 503842.812 156 3229.762 777.159 < .001
Residuals 702664.298 169078 4.156

Table D.2: Kruskal-Wallis - BHH vs. Low-Level Heuristics

Factor Statistic df p

heuristic 83080.880 12 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 246

Table D.3: Post Hoc Comparisons - BHH vs. Low-Level Heuristics - Part A

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

adadelta adagrad 2.722 2.638 2.805 0.025 107.716 < .001
adam 2.341 2.258 2.425 0.025 92.666 < .001

de −5.181 −5.265 −5.097 0.025 −205.061 < .001
ga −2.879 −2.963 −2.796 0.025 −113.966 < .001

momentum −4.015 −4.099 −3.931 0.025 −158.907 < .001
nag 1.433 1.350 1.517 0.025 56.729 < .001
pso −3.172 −3.256 −3.089 0.025 −125.557 < .001

rmsprop 1.704 1.620 1.787 0.025 67.426 < .001
sgd −3.372 −3.455 −3.288 0.025 −133.448 < .001

bhh_all 0.840 0.756 0.924 0.025 33.247 < .001
bhh_gd 1.638 1.554 1.722 0.025 64.837 < .001

bhh_mh −1.513 −1.596 −1.429 0.025 −59.872 < .001
adagrad adam −0.380 −0.464 −0.297 0.025 −15.050 < .001

de −7.903 −7.986 −7.819 0.025 −312.777 < .001
ga −5.601 −5.685 −5.517 0.025 −221.683 < .001

momentum −6.737 −6.820 −6.653 0.025 −266.623 < .001
nag −1.288 −1.372 −1.205 0.025 −50.987 < .001
pso −5.894 −5.978 −5.810 0.025 −233.273 < .001

rmsprop −1.018 −1.102 −0.934 0.025 −40.290 < .001
sgd −6.093 −6.177 −6.010 0.025 −241.165 < .001

bhh_all −1.882 −1.965 −1.798 0.025 −74.470 < .001
bhh_gd −1.083 −1.167 −1.000 0.025 −42.880 < .001

bhh_mh −4.234 −4.318 −4.151 0.025 −167.589 < .001
adam de −7.522 −7.606 −7.439 0.025 −297.727 < .001

ga −5.221 −5.305 −5.137 0.025 −206.632 < .001
momentum −6.356 −6.440 −6.273 0.025 −251.573 < .001

nag −0.908 −0.992 −0.824 0.025 −35.937 < .001
pso −5.514 −5.597 −5.430 0.025 −218.223 < .001

rmsprop −0.638 −0.721 −0.554 0.025 −25.240 < .001
sgd −5.713 −5.797 −5.629 0.025 −226.115 < .001

bhh_all −1.501 −1.585 −1.418 0.025 −59.420 < .001
bhh_gd −0.703 −0.787 −0.619 0.025 −27.830 < .001

bhh_mh −3.854 −3.938 −3.770 0.025 −152.539 < .001
de ga 2.302 2.218 2.385 0.025 91.095 < .001

momentum 1.166 1.082 1.250 0.025 46.154 < .001
nag 6.614 6.531 6.698 0.025 261.790 < .001
pso 2.009 1.925 2.092 0.025 79.504 < .001

rmsprop 6.885 6.801 6.968 0.025 272.487 < .001
sgd 1.809 1.726 1.893 0.025 71.612 < .001

bhh_all 6.021 5.937 6.105 0.025 238.307 < .001
bhh_gd 6.819 6.736 6.903 0.025 269.897 < .001

bhh_mh 3.668 3.585 3.752 0.025 145.188 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 247

Table D.4: Post Hoc Comparisons - BHH vs. Low-Level Heuristics - Part B

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

ga momentum −1.135 −1.219 −1.052 0.025 −44.941 < .001
nag 4.313 4.229 4.397 0.025 170.696 < .001
pso −0.293 −0.377 −0.209 0.025 −11.591 < .001

rmsprop 4.583 4.499 4.667 0.025 181.393 < .001
sgd −0.492 −0.576 −0.409 0.025 −19.482 < .001

bhh_all 3.720 3.636 3.803 0.025 147.213 < .001
bhh_gd 4.518 4.434 4.601 0.025 178.803 < .001

bhh_mh 1.367 1.283 1.450 0.025 54.094 < .001
momentum nag 5.448 5.365 5.532 0.025 215.636 < .001

pso 0.843 0.759 0.926 0.025 33.350 < .001
rmsprop 5.719 5.635 5.802 0.025 226.333 < .001

sgd 0.643 0.560 0.727 0.025 25.459 < .001
bhh_all 4.855 4.771 4.939 0.025 192.154 < .001
bhh_gd 5.653 5.569 5.737 0.025 223.744 < .001

bhh_mh 2.502 2.419 2.586 0.025 99.035 < .001
nag pso −4.606 −4.689 −4.522 0.025 −182.286 < .001

rmsprop 0.270 0.187 0.354 0.025 10.697 < .001
sgd −4.805 −4.889 −4.721 0.025 −190.178 < .001

bhh_all −0.593 −0.677 −0.510 0.025 −23.483 < .001
bhh_gd 0.205 0.121 0.289 0.025 8.107 < .001

bhh_mh −2.946 −3.030 −2.862 0.025 −116.602 < .001
pso rmsprop 4.876 4.792 4.960 0.025 192.984 < .001

sgd −0.199 −0.283 −0.116 0.025 −7.891 < .001
bhh_all 4.012 3.929 4.096 0.025 158.804 < .001
bhh_gd 4.811 4.727 4.894 0.025 190.394 < .001

bhh_mh 1.660 1.576 1.743 0.025 65.685 < .001
rmsprop sgd −5.075 −5.159 −4.992 0.025 −200.875 < .001

bhh_all −0.864 −0.947 −0.780 0.025 −34.180 < .001
bhh_gd −0.065 −0.149 0.018 0.025 −2.590 0.316

bhh_mh −3.216 −3.300 −3.133 0.025 −127.299 < .001
sgd bhh_all 4.212 4.128 4.295 0.025 166.695 < .001

bhh_gd 5.010 4.926 5.094 0.025 198.285 < .001
bhh_mh 1.859 1.775 1.943 0.025 73.576 < .001

bhh_all bhh_gd 0.798 0.714 0.882 0.025 31.590 < .001
bhh_mh −2.353 −2.436 −2.269 0.025 −93.119 < .001

bhh_gd bhh_mh −3.151 −3.235 −3.067 0.025 −124.709 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 248

D.2 Heuristic Pool

Table D.5: ANOVA - Rank - BHH Variant: Heuristic Pool

Cases Sum of Squares df Mean Square F p

dataset 0.000 13 0.000 0.000 1.000
heuristic_pool 7332.913 2 3666.456 9049.146 < .001
dataset * heuristic_pool 2898.104 26 111.466 275.107 < .001
Residuals 15808.983 39018 0.405

Table D.6: Post Hoc Comparisons - BHH Variant: Heuristic Pool

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

all gd 0.250 0.231 0.268 0.008 31.660 < .001
mh −0.768 −0.787 −0.750 0.008 −97.404 < .001

gd mh −1.018 −1.037 −1.000 0.008 −129.064 < .001

Table D.7: Kruskal-Wallis - BHH Variant: Heuristic Pool

Factor Statistic df p

heuristic_pool 10999.088 2 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 249

D.3 Population Size

Table D.8: ANOVA - Rank - BHH Variant: Population Size

Cases Sum of Squares df Mean Square F p

dataset 0.072 13 0.006 0.003 1.000
population 519.146 4 129.786 66.439 < .001
dataset * population 2701.713 52 51.956 26.597 < .001
Residuals 127034.063 65030 1.953

Table D.9: Post Hoc Comparisons - BHH Variant: Population Size

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

5 10 −0.071 −0.119 −0.024 0.017 −4.119 < .001
15 −0.189 −0.236 −0.141 0.017 −10.885 < .001
20 −0.235 −0.283 −0.188 0.017 −13.585 < .001
25 −0.204 −0.251 −0.157 0.017 −11.785 < .001

10 15 −0.117 −0.164 −0.070 0.017 −6.766 < .001
20 −0.164 −0.211 −0.117 0.017 −9.466 < .001
25 −0.133 −0.180 −0.086 0.017 −7.666 < .001

15 20 −0.047 −0.094 4.779× 10−4 0.017 −2.700 0.054
25 −0.016 −0.063 0.032 0.017 −0.900 0.897

20 25 0.031 −0.016 0.078 0.017 1.800 0.373

Table D.10: Kruskal-Wallis - BHH Variant: Population Size

Factor Statistic df p

population 259.454 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 250

D.4 Credit Assignment Strategy

Table D.11: ANOVA - Rank - BHH Variant: Credit Assignment Strategy

Cases Sum of Squares df Mean Square F p

dataset 0.088 13 0.007 0.003 1.000
credit 76.779 4 19.195 9.756 < .001
dataset * credit 2245.456 52 43.182 21.949 < .001
Residuals 127940.670 65030 1.967

Table D.12: Post Hoc Comparisons - BHH Variant: Credit Assignment Strategy

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

gbest ibest 0.013 −0.035 0.060 0.017 0.742 0.947
pbest 0.051 0.004 0.099 0.017 2.951 0.026
rbest −0.031 −0.078 0.017 0.017 −1.776 0.388

symmetric −0.047 −0.094 7.230× 10−4 0.017 −2.686 0.056
ibest pbest 0.038 −0.009 0.086 0.017 2.209 0.176

rbest −0.044 −0.091 0.004 0.017 −2.518 0.087
symmetric −0.060 −0.107 −0.012 0.017 −3.428 0.005

pbest rbest −0.082 −0.130 −0.035 0.017 −4.727 < .001
symmetric −0.098 −0.145 −0.051 0.017 −5.637 < .001

rbest symmetric −0.016 −0.063 0.032 0.017 −0.910 0.893

Table D.13: Kruskal-Wallis - BHH Variant: Credit Assignment Strategy

Factor Statistic df p

credit 38.373 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 251

D.5 Reselection Interval

Table D.14: ANOVA - Rank - BHH Variant: Reselection Interval

Cases Sum of Squares df Mean Square F p

dataset 0.000 13 0.000 0.000 1.000
reselection 25571.533 4 6392.883 4372.618 < .001
dataset * reselection 9552.887 52 183.709 125.654 < .001
Residuals 95075.581 65030 1.462

Table D.15: Post Hoc Comparisons - BHH Variant: Reselection Interval

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

1 5 0.724 0.683 0.765 0.015 48.314 < .001
10 1.328 1.288 1.369 0.015 88.649 < .001
15 1.546 1.505 1.587 0.015 103.168 < .001
20 1.707 1.667 1.748 0.015 113.936 < .001

5 10 0.604 0.564 0.645 0.015 40.334 < .001
15 0.822 0.781 0.863 0.015 54.854 < .001
20 0.983 0.943 1.024 0.015 65.622 < .001

10 15 0.218 0.177 0.258 0.015 14.519 < .001
20 0.379 0.338 0.420 0.015 25.287 < .001

15 20 0.161 0.120 0.202 0.015 10.768 < .001

Table D.16: Kruskal-Wallis - BHH Variant: Reselection Interval

Factor Statistic df p

reselection 12785.570 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 252

D.6 Replay Window Size

Table D.17: ANOVA - Rank - BHH Variant: Replay Window Size

Cases Sum of Squares df Mean Square F p

dataset 0.003 13 2.458× 10−4 1.246× 10−4 1.000
replay 103.598 4 25.900 13.132 < .001
dataset * replay 1854.151 52 35.657 18.079 < .001
Residuals 128254.247 65030 1.972

Table D.18: Post Hoc Comparisons - BHH Variant: Replay Window Size

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

1 5 0.039 −0.009 0.086 0.017 2.220 0.172
10 0.023 −0.025 0.070 0.017 1.306 0.687
15 0.002 −0.045 0.050 0.017 0.119 1.000
20 −0.077 −0.125 −0.030 0.017 −4.444 < .001

5 10 −0.016 −0.063 0.032 0.017 −0.913 0.892
15 −0.037 −0.084 0.011 0.017 −2.100 0.220
20 −0.116 −0.163 −0.068 0.017 −6.663 < .001

10 15 −0.021 −0.068 0.027 0.017 −1.187 0.759
20 −0.100 −0.148 −0.053 0.017 −5.750 < .001

15 20 −0.079 −0.127 −0.032 0.017 −4.563 < .001

Table D.19: Kruskal-Wallis - BHH Variant: Replay Window Size

Factor Statistic df p

replay 51.795 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 253

D.7 Reanalysis Internal

Table D.20: ANOVA - Rank - BHH Variant: Reanalysis Interval

Cases Sum of Squares df Mean Square F p

dataset 0.320 13 0.025 0.012 1.000
reanalysis 47.470 4 11.868 6.017 < .001
dataset * reanalysis 2012.676 52 38.705 19.625 < .001
Residuals 128257.510 65030 1.972

Table D.21: Post Hoc Comparisons - BHH Variant: Reanalysis Interval

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

1 5 0.046 −0.001 0.094 0.017 2.661 0.060
10 0.082 0.035 0.130 0.017 4.735 < .001
15 0.060 0.012 0.107 0.017 3.420 0.006
20 0.041 −0.006 0.089 0.017 2.378 0.121

5 10 0.036 −0.011 0.084 0.017 2.074 0.231
15 0.013 −0.034 0.061 0.017 0.759 0.942
20 −0.005 −0.052 0.043 0.017 −0.282 0.999

10 15 −0.023 −0.070 0.025 0.017 −1.315 0.682
20 −0.041 −0.088 0.006 0.017 −2.356 0.128

15 20 −0.018 −0.066 0.029 0.017 −1.041 0.836

Table D.22: Kruskal-Wallis - BHH Variant: Reanalysis Interval

Factor Statistic df p

reanalysis 23.713 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 254

D.8 Burn In

Table D.23: ANOVA - Rank - BHH Variant: Burn In

Cases Sum of Squares df Mean Square F p

dataset 0.135 13 0.010 0.006 1.000
burn_in 6237.667 4 1559.417 850.761 < .001
dataset * burn_in 4842.323 52 93.122 50.804 < .001
Residuals 119197.865 65030 1.833

Table D.24: Post Hoc Comparisons - BHH Variant: Burn In

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

0 5 −0.171 −0.217 −0.126 0.017 −10.212 < .001
10 −0.367 −0.413 −0.321 0.017 −21.884 < .001
15 −0.595 −0.641 −0.549 0.017 −35.451 < .001
20 −0.877 −0.923 −0.831 0.017 −52.281 < .001

5 10 −0.196 −0.242 −0.150 0.017 −11.672 < .001
15 −0.424 −0.469 −0.378 0.017 −25.239 < .001
20 −0.706 −0.752 −0.660 0.017 −42.069 < .001

10 15 −0.228 −0.273 −0.182 0.017 −13.567 < .001
20 −0.510 −0.556 −0.464 0.017 −30.397 < .001

15 20 −0.282 −0.328 −0.237 0.017 −16.830 < .001

Table D.25: Kruskal-Wallis - BHH Variant: Burn In

Factor Statistic df p

burn_in 3117.030 4 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 255

D.9 Normalisation

Table D.26: ANOVA - Rank - BHH Variant: Normalisation

Cases Sum of Squares df Mean Square F p

dataset 4.992× 10−4 13 3.840× 10−5 1.555× 10−4 1.000
normalisation 5.751 1 5.751 23.282 < .001
dataset * normalisation 78.260 13 6.020 24.369 < .001
Residuals 6425.988 26012 0.247

Table D.27: Post Hoc Comparisons - BHH Variant: Normalisation

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

False True −0.030 −0.042 −0.018 0.006 −4.825 < .001

Table D.28: Kruskal-Wallis - BHH Variant: Normalisation

Factor Statistic df p

normalisation 23.005 1 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D. Statistical Analysis 256

D.10 Discounted Rewards

Table D.29: ANOVA - Rank - BHH Variant: Discounted Rewards

Cases Sum of Squares df Mean Square F p

dataset 0.264 13 0.020 0.082 1.000
discounted_rewards 18.019 1 18.019 73.148 < .001
dataset * discounted_rewards 83.831 13 6.449 26.177 < .001
Residuals 6407.866 26012 0.246

Table D.30: Post Hoc Comparisons - BHH Variant: Discounted Rewards

95% CI for Mean Difference
Mean Difference Lower Upper SE t ptukey

False True −0.053 −0.065 −0.041 0.006 −8.553 < .001

Table D.31: Kruskal-Wallis - BHH Variant: Discounted Rewards

Factor Statistic df p

discounted_rewards 72.075 1 < .001

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix E

Derived Publications

The following publications were derived from this dissertation.

• A.N. Schreuder, A.P. Engelbrecht, A.S. Bosman, C.W. Cleghorn. “Bayesian
Hyper-Heuristics”. Submitted to Information Sciences journal.

257

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Index

activation function, 10, 13–23, 28, 34
argmax, 21, 22
artificial neuron, 11, 12
axon, 11

batch training, 26
Bayes’ theorem, 66, 67, 69, 70, 79–81,

84, 98–100
Bayesian analysis, 6, 8, 67, 108
Bernoulli probability distribution,

74–79, 84
Beta probability distribution, 71–73,

78, 79, 82, 114
biases, 10
Binomial probability distribution,

75–77, 100, 109
biological neuron, 10, 11

Categorical probability distribution,
76–79, 140

chromosomes, 52
crossover, 47–49, 51–57

dendrites, 11
Dirichlet probability distribution,

72–74, 79–81, 100, 108, 134
discounted rewards, 113
dying ReLU problem, 18

elitism, 57
encoding, 13

ensemble networks, 5
entity pool, 88, 93, 99, 100, 111
error function, 10

features, 13
feedforward neural network, 24
fully connected topology, 23

Glorot normal sampling, 15, 16
Glorot uniform sampling, 15, 55, 120

heterogeneous meta-hyper-heuristic, 5,
62

heuristic, 2, 25, 29–32, 42, 57–61, 63,
64, 86–88, 90–97, 110, 111,
117, 118, 120–122, 124–134,
136–151, 153, 154, 157, 158,
161, 164–167, 170, 171, 174,
176, 177, 179, 182, 183, 186,
187, 190, 192–204, 244

heuristic pool, 86–88, 90–92, 94, 95,
99, 100, 110, 111, 114, 121,
126, 127, 130, 132, 134, 136,
142–146, 151–155, 157, 161,
179, 195–197, 199, 200,
202–204, 244

heuristic pool , 165
hyper-parameters, 3, 59, 87
hyperbolic tangent, 14, 17, 19, 20

independent variables, 13

258

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Index 259

Kruskal-Wallis, 127

Levene, 127
loss function, 32

Mann-Whitney U, 127
maximum a posteriori estimation, 108
maximum likelihood estimation, 105
meta-heuristic, 4, 31, 42, 91, 124, 142,

146, 151, 153, 157
meta-learning, 3, 5, 6, 8, 59–61, 64
min-max scaler, 14
multi-method, 4
multi-method populated-based

meta-heuristic, 4
Multinomial probability distribution,

77–80, 100, 101
mutation, 47, 49, 53–57

Naïve Bayes classifier, 8
Naïve Bayes, 101
net input signal, 10, 12, 16–18, 28, 34
normalisation, 14
normalised exponential function, 21

offline learning, 26, 58, 63
one-hot encoding, 13
online learning, 26, 63, 64, 131

optimisation algorithm, 31
overfitting, 26

query by committees, 5

random uniform sampling, 15

Shapiro-Wilk, 127
sigmoid, 14, 17, 19, 21, 22, 34
simulated annealing, 5, 62
softargmax, 21
softmax, 21, 22, 120
standard score scaler, 14, 243
stochastic training, 26
supervised learning, 1, 10, 25, 26, 28,

32
synapse, 11, 12
synaptic plasticity, 11
synaptogenesis, 11

tabu-search, 5, 62

unity-based normalisation, 14

vanishing gradients problem, 17, 18

weights, 10

z-score scaler, 14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Summary of Research Domain
	1.2 Problem Statement
	1.3 Motivation
	1.4 Objectives
	1.5 Contributions
	1.6 Dissertation Outline

	2 Artificial Neural Networks
	2.1 Biological Neuron
	2.2 Artificial Neuron
	2.2.1 Input
	2.2.2 Weights
	2.2.3 Net Input Signal
	2.2.4 Biases
	2.2.5 Activation Functions
	2.2.6 Output

	2.3 Artificial Neural Network
	2.3.1 Applications
	2.3.2 Architecture
	2.3.3 Topology
	2.3.4 Feedforward Neural Networks

	2.4 Training
	2.4.1 Supervised Learning
	2.4.2 Error Functions

	2.5 Summary

	3 Heuristics
	3.1 Optimisation
	3.2 What is a heuristic?
	3.3 Gradient-Based Heuristics
	3.3.1 Backpropagation
	3.3.2 Stochastic vs. Batch Training
	3.3.3 Momentum
	3.3.4 Nesterov Accelerated Gradients
	3.3.5 Adaptive Gradients
	3.3.6 Adaptive Learning Rate
	3.3.7 Root Mean Squared Error Propagation
	3.3.8 Adaptive Moments Estimation

	3.4 Meta-Heuristics
	3.4.1 Particle Swarm Optimisation
	3.4.2 Differential Evolution
	3.4.3 Genetic Algorithms

	3.5 Summary

	4 Hyper-Heuristics
	4.1 Meta-Learning
	4.2 What are Hyper-Heuristics?
	4.3 Classification of Hyper-Heuristics
	4.3.1 Source of Feedback
	4.3.2 Heuristic Search Space

	4.4 Summary

	5 Probability
	5.1 Overview of Probability
	5.2 Conditional Probability and Independence
	5.3 Two Laws of Probability for Multiple Events
	5.4 Bayes' Theorem
	5.5 Probability Distributions
	5.5.1 Beta Probability Distribution
	5.5.2 Dirichlet Probability Distribution
	5.5.3 Bernoulli Probability Distribution
	5.5.4 Binomial Probability Distribution
	5.5.5 Categorical Probability Distribution
	5.5.6 Multinomial Probability Distribution

	5.6 Conjugate Priors
	5.6.1 Binomial Likelihood
	5.6.2 Categorical and Multinomial Likelihood

	5.7 Bayesian Statistics
	5.7.1 Frequentist vs. Bayesian Statistics
	5.7.2 Bayesian Analysis

	5.8 Summary

	6 Bayesian Hyper-Heuristic
	6.1 Overview
	6.2 Architecture
	6.3 Heuristic Pool
	6.3.1 Heuristic Diversity
	6.3.2 Heuristic Pool Size
	6.3.3 Proxies

	6.4 Entity Pool
	6.4.1 Entity State
	6.4.2 Population State

	6.5 Performance Log
	6.6 Credit Assignment Strategy
	6.7 Selection Mechanism
	6.7.1 Random Events
	6.7.2 Independence
	6.7.3 Bayes' Theorem
	6.7.4 Predictive Model
	6.7.5 Naïve Bayes
	6.7.6 Numerical Stability
	6.7.7 Mode Collapse

	6.8 Optimisation Step
	6.8.1 Concentration Parameters and Pseudo Counts
	6.8.2 Maximum Likelihood Estimation
	6.8.3 Maximum A Posteriori Estimation

	6.9 Hyper-Parameters
	6.9.1 Heuristic Pool
	6.9.2 Population Size
	6.9.3 Credit Assignment Strategy
	6.9.4 Reselection Interval
	6.9.5 Replay Window Size
	6.9.6 Reanalysis Interval
	6.9.7 Burn In
	6.9.8 Discounted Rewards
	6.9.9 Normalisation
	6.9.10 Defaults

	6.10 The BHH Algorithm
	6.11 Summary

	7 Methodology
	7.1 Overview of Empirical Process
	7.2 Datasets
	7.2.1 Class Balancing

	7.3 Models
	7.4 Heuristics
	7.5 BHH Baseline
	7.6 Performance Measures
	7.7 Stopping Conditions
	7.8 Experiments
	7.8.1 Behavioural Case Study
	7.8.2 Standalone Heuristics
	7.8.3 BHH Variants

	7.9 Statistical Analysis
	7.10 Implementation and Execution
	7.11 Summary

	8 Results
	8.1 Overview
	8.2 Behavioural Case Study
	8.2.1 Performance Metrics
	8.2.2 Concentration Parameters
	8.2.3 Probability Distribution of Heuristic Selection Probabilities
	8.2.4 Prior Heuristic Selection Probabilities
	8.2.5 Posterior Heuristic Selection Probabilities

	8.3 BHH vs. Low-Level Heuristics
	8.4 Heuristic Pool
	8.5 Population Size
	8.6 Credit Assignment Strategy
	8.7 Reselection Interval
	8.8 Replay Window Size
	8.9 Reanalysis Interval
	8.10 Burn In
	8.11 Normalisation
	8.12 Discounted Rewards
	8.13 Summary

	9 Conclusion
	9.1 Summary of Research Intent
	9.1.1 Review of Problem Statement
	9.1.2 Review of Research Motivation
	9.1.3 Review of Research Objectives

	9.2 Summary of Background Information
	9.3 Summary of The Bayesian Hyper-Heuristic
	9.4 Summary of Methodology
	9.5 Summary of Results
	9.5.1 Behavioural Case Study
	9.5.2 BHH Baseline vs. Low-Level Heuristics
	9.5.3 Heuristic pool
	9.5.4 Population Size
	9.5.5 Credit Assignment Strategy
	9.5.6 Reselection Interval
	9.5.7 Replay
	9.5.8 Reanalysis Interval
	9.5.9 Burn In
	9.5.10 Normalisation
	9.5.11 Discounted Rewards

	9.6 Future Research Opportunities
	9.7 Documentation and Data
	9.8 Summary

	Bibliography
	A Acronyms
	B Symbols
	B.1 Chapter 2: Artificial Neural Networks
	B.2 Chapter 3: Heuristics
	B.3 Chapter 4: Hyper-Heuristics
	B.4 Chapter 5: Probability
	B.5 Chapter 6: Bayesian Hyper-Heuristic
	B.6 Chapter 7: Methodology
	B.7 Chapter 8: Results

	C Datasets
	D Statistical Analysis
	D.1 BHH vs. Low-Level Heuristics
	D.2 Heuristic Pool
	D.3 Population Size
	D.4 Credit Assignment Strategy
	D.5 Reselection Interval
	D.6 Replay Window Size
	D.7 Reanalysis Internal
	D.8 Burn In
	D.9 Normalisation
	D.10 Discounted Rewards

	E Derived Publications
	Index

