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A B S T R A C T   

Precision medicine is the personalization of medicine to suit a specific group of people or even an individual patient, based on genetic or molecular profiling. This can 
be done using genomic, transcriptomic, epigenomic or proteomic information. Personalized medicine holds great promise, especially in cancer therapy and control, 
where precision oncology would allow medical practitioners to use this information to optimize the treatment of a patient. Personalized oncology for groups of 
individuals would also allow for the use of population group specific diagnostic or prognostic biomarkers. Additionally, this information can be used to track the 
progress of the disease or monitor the response of the patient to treatment. This can be used to establish the molecular basis for drug resistance and allow the 
targeting of the genes or pathways responsible for drug resistance. Personalized medicine requires the use of large data sets, which must be processed and analysed in 
order to identify the particular molecular patterns that can inform the decisions required for personalized care. However, the analysis of these large data sets is 
difficult and time consuming. This is further compounded by the increasing size of these datasets due to technologies such as next generation sequencing (NGS). 
These difficulties can be met through the use of artificial intelligence (AI) and machine learning (ML). These computational tools use specific neural networks, 
learning methods, decision making tools and algorithms to construct and improve on models for the analysis of different types of large data sets. These tools can also 
be used to answer specific questions. Artificial intelligence can also be used to predict the effects of genetic changes on protein structure and therefore function. This 
review will discuss the current state of the application of AI to omics data, specifically genomic data, and how this is applied to the development of personalized or 
precision medicine on the treatment of cancer.   

1. Introduction 

Precision medicine, otherwise known as personalized medicine, aims 
to treat patients through tailor-made therapies based upon the traits 
specific to the population group a patient belongs to or in ideal situations 

traits specific to that single patient. These specific traits often refer to the 
patient’s genome, transcriptome or proteome, but can include other 
factors such as lifestyle,environment, and socio-economic status. 
Frequently, this involves sequencing the patient’s genome, tran-
scriptome or analyzing their proteome. A digital twin is a virtual copy of 
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a real-world physical object. The more precise, detailed and recent the 
information describing an object is, would lead to a more detailed and 
accurate digital twin. In terms of precision medicine, this would mean a 
digital twin of a specific patient or a specific population group [1]. 
Artificial Intelligence (AI) can be defined as algorithms and computing 
frameworks that can be used to perform various tasks that would nor-
mally rely on human intelligence in the form of reasoning, 
decision-making, speech recognition, language understanding, and vi-
sual perception [2]. AI can simply be defined as software that attempts 
to emulate human thought processes to accomplish a task in the same 
manner as a human expert in the field [3]. Ultimately, the aim of AI in 
precision medicine is to identify patterns in data using models and al-
gorithms that can then be used to make predictions. These predictions 
are initially performed then perfected by machine learning through the 
software’s own learning algorithms [4]. 

AI relies on machines performing functions such as rule-based logic, 
machine learning (ML), deep learning (DL), natural language processing 
(NLP), and computer imaging [2]. The recent ability for technologies to 
generate large amounts of omics data, including genomic, tran-
scriptomic, proteomic (phenotypic) and epigenomic data has contrib-
uted to the necessity of AI in the analysis of medical information. With 
respect to genomic and transcriptomic data, this increase is due to next 
generation sequencing (NGS) and for proteominc data this is due to the 
generation of large amounts of proteomic data using mass spectrometric 
analysis [2]. 

Genome-wide association studies (GWAS) have been responsible for 
generating vast amounts of genomic data and associating this data with 
specific diseases such as cancer. The use of this patient specific data in 
precision medicine relies on the accurate integration, analysis, and 
interpretation of this data to provide a complete overview of changes in 

gene expression profiles in a particular cancer patient (Fig. 1) [5–7]. The 
resulting analysis can show changes in metabolic and signaling path-
ways specific to the patient. In this way it can be used to personalize the 
response of health care professionals to a single patient or group of 
patients. This multidimensional approach offers many advantages over 
traditional single-layer analysis (analysis undertaken on a single feature) 
[8,9]. In order to do this AI must be taught to recognize features in data. 
For this review these features will generally refer to patterns in the ge-
nomes and transcriptomes associated with a particular disease, 
outcome, or treatment response. These patterns are initially learned 
through the process of machine learning, through the initial analysis of 
large datasets, teaching datasets, and human guided feature identifica-
tion. Once the AI has learnt to sort and classify data depending on 
techniques it has learnt, it can then act independently to analyse other 
new large datasets. With the increase in computing power, machine 
learning (ML) has advanced to become deep learning (DL). This makes 
use of computers to construct neural networks, allowing for multiple 
tasks to be divided amongst the available computing power, resulting in 
more in depth analysis and greater automation [3]. Frameworks that 
integrate data analysis and network-based approaches are used to cap-
ture, analyse, and select important patterns and profiles present in vast 
amounts of omics data, using realistic assumptions. Generally, these 
networks accomplish predictions for various parameters using a 
prior-posterior Bayesian structure, which is a probability distribution 
made using expected outcomes or predictions [4]. 

2. Large data 

The generation of large amounts of omics data and the usefulness and 
availability of genetic information resulting NGS has led to the current 
big data era. The handling of large data has been assisted through the 
development of large capacity data storage, allowing for the storage and 
curation of large data sets. This was initially due to the development of 
large capacity hard drives and has been increased further by the 
development of cloud storage, cloud scaling and server networks. The 
integration of health records and patient genomic data would further 
expand the potential for the development of improved patient care [10]. 
Manual interpretation of genomics data becomes impossible if the data 
is too large (scalability) and different individuals may obtain different 
results analysing the same dataset (reproducibility). This is also time 
consuming, and this problem grows as technologies allowing for the 
faster and cheaper generation of larger datasets advance without the 
accompanying increase in people capable of analysing this data. AI can 
be used to search large datasets for specific patterns in the data. It can 
also then be used to divide data into discrete units based on specific 
parameters that make for easier, faster and more accurate analysis [2]. 

Next-generation sequencing (NGS) is capable of generating large 
datasets concerning the genomic, transcriptomic or epigenomic profiles 
of tumor cells [11]. Targeted sequencing has been extensively used for 
the detection of mutations or expression changes in multiple genes that 
are used as biomarkers in various cancers. Targeted sequencing is 
currently the preferred method of detecting changes in these genes due 
to its lower cost, high sensitivity, and higher coverage. However, NGS 
offers the promise of the identification or examination of large genomic 
rearrangements and mutations in tumors. This allows for the detection 
of changes in other non-targeted genes which may play an equally 
important role in cancer development and progression [12]. NGS has 
diverse applications including whole-genome sequencing, whole-exome 
sequencing, whole RNA sequencing, poly-A-minus RNA sequencing, 
target sequencing, and methylation sequencing [13]. Before the devel-
opment of NGS, gene expression profiling was achieved using micro-
arrays. Both of these technologies allow for the identification of 
upregulated or downregulated gene transcripts and these can be used to 
infer what signaling pathways are up or down regulated [14]. Gene and 
gene expression profiles obtained via NGS have already been used for 
risk prediction, disease diagnosis, and for the development of targeted 

Fig. 1. General application of Artificial intelligence to genomics data: The 
purpose of the study dictates the type of data used. Problem definition and data 
selection is followed by data pre-processing and feature selection. The model is 
then built using this data, machine, and deep learning approaches. This model 
then uses learning methods. The model is tested to evaluate it. This is then used 
to fine tune and improve the model until it is satisfactory. The model is then 
implemented to analyse new data. 
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therapies. The gene expression profile data can also be combined with 
outcome data in order to establish the relationship between gene 
expression profiles and the outcomes of disease or treatment, although 
this can only benefit future patients. In a similar manner the expression 
patterns can be combined with cancer staging and subtype data to allow 
for future diagnostics and staging using gene expression profiles [15, 
16]. The first step in the use of NGS to generate omics data for cancer 
studies or diagnostics, is to ensure that data generation and reporting are 
performed at high enough standards to allow for proper analysis and 
subsequent application of the results [17]. This includes the use of the 
correct reference controls for proper validation and calibration. 
Genomic DNA reference material for NGS has been prepared by the 
Centres for Disease Control (CDC) and Prevention’s Genetic Testing 
Reference Material Coordination Program (GeT-RM) [18]. However, 
since the analysis of NGS results relies on AI and machine learning, these 
standards need to be constantly updated as computer software and 
hardware change. These standards will also help to standardise the 
procedures across newly developed NGS platforms and different labo-
ratories [18]. 

2.1. Reduction of data complexity 

The combination of various omics data is very complex and in order 
to deal with these large data sets they are often simplified which may 
result in the loss of information. Data complexity can be defined as the 
number of input features or variables in a given dataset. These factors 
are known as dimensions and data complexity can be called data 
dimensionality [19], as such the most prevalent of these simplification 
techniques is known as dimensional reduction [20]. Dimensions refer to 
the attributes that describe a specific data point. Data reduction is 
important as dimensionality complicates predictive modelling. Dimen-
sionality reduction converts higher dimension data into a dataset with 
less dimensions. Simplifying the data in this way reduces the amount of 
storage space needed, lowers training times, increases the speed of 
analysis, and removes redundant data. Dimensional reduction can be 
achieved through feature selection and feature extraction. Feature se-
lection involves the selection of only relevant features while discarding 
those features deemed to be irrelevant [21]. Filter methods use various 
tests to filter data based on whether data sets are significantly different 
from each other, these include tests such as Correlation, Chi-Square Test 
and ANOVA. Wrapping methods use machine learning algorithms to 
evaluate the performance of this data. The performance of the data 
dictates whether these features are used or rejected. Finally embedded 
methods use model training methods to test the importance of each 
feature in the training process [21]. Feature extraction involves trans-
forming the space containing many dimensions into a space with fewer 
dimensions. This method results in less data loss. Some common feature 
extraction techniques include principal component analysis (PCA), 
linear discriminant analysis, kernel PCA and quadratic discriminant 
analysis. PCA involves the selection of highly variant data. This data will 
be present in more classes and decreases the dimensionality of the data 
[21]. Techniques such as multiple co-inertia analysis and multiple factor 
analysis attempt to decrease data loss due to simplification by mapping 
the data to lower dimensional space. This can be done by removing data 
attributes so that the data can be plotted in fewer dimensions [20]. 
Neural networks can be organised into a framework that can be used to 
group and analyse this simplified data. This is achieved through the use 
of algorithms to analyse graphed data and multi-level Bayesian models 
(using probabilities to replace uncertainties). These can organise and 
interpret changes in the molecular composition in these samples and the 
level of these molecules and in some cases the modification of molecules 
and molecular interactions. These molecular changes can be detected 
using various omics approaches, using realistic estimations of one or 
more parameters to analyse this omics data [4]. Many new artificial 
intelligence networks and software have been developed to help inte-
grate patient health records and data from analysis such as whole 

genome sequencing or transcriptome sequencing. One such tool named 
MEDomics, has the capacity to continuously learn based on multimodal 
health data inputs. It organises the data and assesses its quality, with the 
final aim of providing a more accurate prognosis for an individual pa-
tient. This AI was tested using records consisting of large amounts of 
collected data from many decades of patient care. Since this was old data 
the patient outcome was already known. It was able to use the data in 
these records to accurately provide prognoses for these patients [22] 
thereby proving the usefulness of this AI as a tool for patient diagnosis. 

2.2. Workflow for germline variant discovery 

The process of identifying differences in sequencing data obtained 
from NGS is known as variant calling (Fig. 2). These genomic variations 
that impact the phenotype, and may arise due to changes affecting 
expression, splicing, and amino acid sequence. These changes may result 
from single base changes, insertions, or deletions. This is done by 
aligning the raw sequencing data to a reference genome. The quality of 
the data is then improved by removing duplicates, insertions, and de-
letions (indels), re-alignment (through frame shifting one of the se-
quences) and base recalibration. These editing steps are followed by the 
removal of false positives. Often this needs to be done using speculation 
[23]. This time-consuming process is also prone to bias and errors. 
However, AI can be used to increase speed and accuracy using neural 
networks. For example, CNNs have been successfully used to pre analyse 
data and perform variant calling. This resulted in improved diagnosis in 
lung cancer [24]. The Cerebro analysis tool uses random forest-based ML 
to incorporate data pre-processing and variation calling into an analysis 
pipeline that results in the improved identification of tumor associated 
mutations [25]. Successful pre-analysis has also been achieved using 
Google’s Deep Variant tool, which analyses the data as though it were an 
image and functions as image recognition software. Additionally, stan-
dardized workflow software has been developed. One of these, the 
open-source software, Variant calling workflow (OVarFlow) aims to 
automate the process while optimizing its reproducibility, as well as 
reducing the need for massive computing power [26]. Once variants 
have been identified they need to be classified and then annotated. 
Although functional studies performed in vivo or in vitro are the most 
desirable to determine the role a mutation plays in disease development 
and progression, AI is being investigated as a partial replacement for 
these studies. Some of these in silico tools include PolyPhen and SIFT 
[27,28], while more advanced ML based techniques are being developed 
that predict the effect of mutations on the secondary structures of pro-
teins and compare this to native proteins using homology modelling [29, 
30]. These approaches have included the use of neural networks, such as 
deep neural networks (DNNs) [31–37]. Alternately, changes in protein 
sequence can be compared and plotted on a decision tree based on 
sequence differences [38,39]. This method can be further improved by 
constructing multiple decision trees using the random forest technique 
[40–42]. Some of these in-silico methods attempt to determine if a mu-
tation can cause cancer by determining the distribution of these muta-
tions within the coding region of a protein. Non-random distributions 
are more likely to be associated with the development and progression 
of cancer [30]. However, despite these tools assisting the selection and 
classification of variants, it is important to validate these computational 
tools. This validation is performed using a set of guidelines known as the 
critical assessment of genome interpretation (CAGI). These guidelines 
consist of challenges that were formulated through the comparison of 
variants that are predicted to cause diseases with experimentally vali-
dated results [43]. As of 2021, the fifth edition of CAGI is the latest 
edition and consists of fourteen challenges. The variant selection made 
through the use of AI must meet these challenges by matching pre-
dictions outlined by CAGI [43]. The fifth edition places a major focus on 
challenges arising due to splicing, clinical genomics, complex disease 
datasets and missense variants [43]. 

One of the main challenges to any AI using ML or DL is the use of 
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variances to classify cancer according to its pathogenicity and clinical 
relevance. Humans do this through a complex process. AI emulates this 
by using a custom set of rules. Ideally any AI would be able to learn these 
from a trained expert, following which it can apply and adapt these rules 
on its own. This set of rules must be comprised in such a way that it is 
able to adapt to a multitude of various scenarios. It has been reported 
that a logistic regression model is able to model a variable with a binary 
outcome using logarithmic functions to analyse probabilities. Using 
these models, AI was able to accurately predict patient situations and 
outcomes as well as treatment recommendations with a 1% false nega-
tivity and 2% false positivity rate. This is comparable to the predictions 
made by molecular pathologists [44]. 

A study was performed by Corti et al. (2019) in order to assess the 
ability of AI to provide prognostic and predictive information using NGS 
data of genes involved in colorectal cancer (CRC) [45]. Traditionally 
diagnosis and treatment decisions for CRC is performed by histopa-
thology and Tumor Node Metastasis (TNM) classification. The AI they 
developed makes use of a worflow designed and executed using the 
IDEA® Data Analysis Software which uses NGS assays to detect and 
analyse CRC specific genomic target sequences. These sequences were 
600 kb to 30 Mb in length. This workflow used decision making and 
learning algorithms to assess single nucleotide variants as described 
above. Clinically relevant molecular alterations were successfully 
identified and characterised [45]. These algorithms have also been used 
to analyse sequencing data obtained from circulating tumor DNA. This 
was successfully used to monitor changes in the progression of the dis-
ease, as well as to follow the response to treatment and establish if 
resistance to these treatments is developing [45]. This demonstrates the 
usefulness of developing and applying a variant calling worflow to be 
executed by AI in the treatment and monitoring of various cancers. 

2.3. Other sources of large data 

New sequencing related technologies are constantly being devel-
oped. Some of these new technologies include single cell sequencing and 
long read sequencing. Single cell sequencing allows for the genome or 
transcriptome of a single cell to be sequenced. This allows the sequence 
data to be context specific, by being associated with a single cell type, 
allowing for easier association between the changes in expression pro-
files and phenotypes and cellular functions. This method makes use of 
computational fluorescence microscopy and multiplex probe design to 
establish the expression of multiple genes in a single cell, and can also 

localise gene expression within the cell [46]. Long read sequencing is 
also known as third generation sequencing. It involves the sequencing of 
longer DNA sequences by focussing on a single molecule. This direct 
sequencing of a single molecule can be done in real time. This tech-
nology requires dedicated sequencing platforms such as the Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies (Nanopore) 
platforms [47]. Long read sequences are also easier to assemble and can 
more accurately identify variants than short sequences and therefore 
would require less complex sequence assembly and analysis algorithms 
[47]. The usefulness of this technique in analysing single molecules or a 
single group of related molecules has been demonstrated in recent 
studies. The RAS family of proteins are well known for their role in 
carcinogenesis, being responsible for altered signalling pathways in a 
multitude of cancers, where they are commonly mutated or overex-
pressed. An examination of the splicing variants and multiple isoforms 
generated from the KRAS, NRAS and HRAS genes using long read 
sequencing, was able to analyse the splicing events that occurred. This 
gave information such as the exon/intron boundaries and 39 novel RAS 
mRNA transcript variants as well as the expression profile of these 
variants [48]. These splicing profiles could then be used as biomarkers 
for diagnosis, prognosis, the monitoring of the tumor response to 
treatment as well as identifying new targets for treatment. 

The rapid evolution of cancer genomics has led to multiple mean-
ingful evidence-based recommendations. In order to come to the right 
conclusion or recommendation it is important to make sense of vast 
amounts of available data sets. This includes the massive amounts of 
published literature relating to cancer genomics. Natural language 
processing (NLP) can be used by AI to select and extract specific genes, 
genetic variants, treatments, and conditions relating to cancer from the 
literature. These are named entities and the process of labelling indi-
vidual entities is called Biomedical Named Entity Recognition (Bio-NER) 
[49]. The association of genetic alterations with recognized entities from 
the biomedical literature is necessary for the linking of data and an 
associated condition. One technique to do this involves the use of 
co-occurrence analysis. This involves two linked terms being assessed 
for the number of times they occur together, if this occurs more 
frequently than chance would dictate then it can be assumed that these 
terms are related to each other. This technique can give many false re-
sults (high recall and low precision) [50]. An example of the use of this 
technique is the study performed by de Ridder et al. 2007. Here the 
authors associated the terms “mutations related to insertions” and those 
mutations that are statistically more prevalent in cancers. These 

Fig. 2. Workflow for variant discovery. Data is 
first pre-processed by aligning it to a reference 
genome, removing duplicate sequences and correct-
ing errors arising from insertions or deletions by fra-
meshifting. Variants are then identified and classified 
and compared to known variants in the raw variant 
step. The resulting variants are sorted based on 
certain selection criteria. The accuracy of this data is 
improved in the refinement step before the variants 
are fully annotated and evaluated.   
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co-occurring terms were used to search the Retroviral Tagged Cancer 
Gene Database (RTCGD), This led to the identification of 86 mutations 
affecting cooperating oncogenes that function in tumorigenesist [51]. 
Another more accurate approach involves a role-based association, as 
performed by Hakenberg et al. 2012 who associated genetic variants 
with drug resistance and disease occuremce. These associations were 
used to mine abstracts in PubMed to identify SNPs (single nucleotide 
polymorphisms) involved in the drug resistant phenotype. The literature 
search identified 93% of the drug gene interactions found in the 
PharmGKB database. However, it is important to be specific indefining 
the search terms and roles to use to conduct this analysis. These can be 
difficult to choose and prone to bias [52]. The MEDscape algorithm uses 
NLP to analyses medical notes to update patient records and improve the 
accuracy of prognosis [22]. The final aim of any AI attempting to use 
large datasets to aid in the identification of biomarkers, is the associa-
tion of these biomarkers with clinical endpoints. AI using NLP have been 
used to identify these association in patient medical records. Kehl et al. 
(2021) used AI performing NLP on 305 151 imaging reports and 233 517 
oncologist notes from thousands of patients with multiple different 
tumor types. Their AI model extracted treatment outcomes from this 
data. These outcomes included cancer progression, treatment response 
and metastasis. Since these records were all old data the AI predictions 
correlated well with actual patient survival [53]. 

3. Neural networks, learning algorithms and decision-making 
tools 

Machine learning (ML) is the term used to describe the ability of 
computers to learn to recognizes patterns in a large volume of data being 
used as training data [52]. This training process is used to create a 
mathematical model. Techniques used in ML include support vector 
machines, decision trees, factorization machines, logistic regression 
analysis and neural networks [54]. One of the most important factors 
when it comes to the use of ML is the scale and quality of training data 
[55]. Analysis performed by ML must be reproducible. This becomes 
difficult as the algorithms consist of many variables that can be set or 
tuned by the user [55]. The difference between ML and DL is that DL 
uses both supervised and unsupervised learning by integrating them 
using multi-layer non-linear analysis and classification. Deep learning is 
useful in automatically detecting image features and is therefore used in 
image classification [55], object detection and semantic segmentation. It 
is also used in AI applications such as natural language processing, and 
reinforcement learning [56,57]. 

The performance of a machine learning model must be validated. 
This must be done in an unbiased way using proper validation tech-
niques. The choice of technique used depends on the situation [58]. The 
splitting of training data forms the basis of most validation techniques. 
Splitting the data and only showing the model one half of the training 
data allows the second set to be used as new data the model has never 
seen before. Its response to this data can then be assessed for model 
validation. The random split is normally performed in such a way that 
70% is used for training while the remaining 30% is used as the test data 
[59]. The problem with this method arises due to different categories of 
data being present in a dataset. For example, if the data is age or sex 
specific. If the data split leads to one of these categories being 
over-represented, it can give rise to a sampling bias. Another problem 
may arise due to overfitting. This describes the situation where the test 
and training data result in the model being optimised for that dataset 
only and is “fixated” on the identification of parameters in a new dataset 
that were specific to the training dataset. To solve this a second split in 
the data can be made to create a holdout set, which is typically a 10% 
split. This data is then used to test the model a second time to ensure that 
overfitting has not occurred [59]. 

3.1. Neural networks 

Neural networks attempt to imitate the way humans think, make 
decision and come to logical conclusions [60]. Neural networks use 
multiple neurons (in the form of fundamental computing units) to 
convert data from raw input data to classified, annotated, and analysed 
output data. Each neuron or node of the network applies weight to the 
input data and as such adds bias to the data. The node analyses the input 
data using the activation function, which is the functions performed by 
the neuron. This leads to the output data (Fig. 3A). The nodes are con-
nected in series or in parallel to form a network. This network contains 
one input layer, several hidden layers, and one output layer (Fig. 3B) 
[61]. Over recent years, deep learning methods like CNNs [62] and 
recurrent neural networks (RNNs) [63] have been applied into the 
relation extraction field and have led to promising results. 

Artificial Neural Networks (ANNs) are comprised of numerous 
interconnected computational neurons. These work in an entwined 
manner to distribute data analysis tasks. This allows ANNs to collec-
tively act together in order to analyse data. Initially the ANN uses the 
provided data to learn and optimize the analysis process. The basic 
structure of an ANN can be modelled as shown in Fig. 3B [64]. There are 
many variables involved in the ANN approach, these include the input, 
which is normally in the form of a multidimensional vector. This input is 
distributed to the hidden layers, where decisions are made based on the 
initial analysis performed in the input layer it then decides based on 
learned skills whether any of these changes made to the data worsens or 
improves the final output [65]. 

Convolutional neural networks (CNNs) are a type of ANN that con-
sists of self-optimizing neurons that accomplish this optimization 
through learning. Additionally, like ANNs each neuron receives input 
and performs one or multiple operations. However, they differ from 
ANNs as they are more commonly used in pattern recognition in images. 
CNNs are comprised of neurons organised into three layers, the con-
volutional, pooling and connected layers. CNNs also function in three 
dimensions-this is due to these networks being focused on image anal-
ysis, so the input contains information for height, width, and depth. 
Each layer of the network contains smaller numbers of neurons that 
were in the previous layer, however, all of the neurons in preceding 
layer are connected to the neurons in the next layer. The neurons in the 
next layer are only connected to a small fraction of neurons within the 
previous layer [64]. Networks such as CNN which have multiple layers 
are classed as Deep Neural Networks (DNNs). DNNS are commonly used 
to analyse transcriptional response datasets. Since these networks 
consist of multiple layers including many hidden layers, it allows them 
to be flexible (reviewed in Ref. [66]). DNNs have been used to assist in 
the creation of a causal gene prediction method based on multiple omics 
data for ovarian cancer. This model proved to be accurate and effective 
[67]. Recurrent neural network (RNN) are normally used for NLP. These 
networks treat inputs and outputs as they are dependent on each other 
by remembering previous functions, and the results of previous inputs 
which it then applies to the data analysis. For instance, in language 
prediction RNNs would try and predict the nest word based on the 
previous words learned from past experiences [68]. 

3.2. Learning models and decision tools 

There are multiple learning models and methods that can be used to 
teach an AI. These include supervised, unsupervised, semi-supervised, 
hybrid and kernel-based learning approaches [69–73]. Supervised ap-
proaches require training of AI using labelled training data while un-
supervised learning approaches learn by the inherent structure within 
the data and include methods such as association mining [74]. A method 
that relies on discovering correlations, or causal structures among sets of 
attributes in data sets. Semi-supervised learning uses weakly labelled 
data and includes methods such as the distant supervision approach 
[75]. Distant supervision relies on the application of a set of rules that 
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cover the association between different items. Hybrid learning in-
tegrates multiple approaches for an AI to learn from data [76]. 

Decision tools are used in AI to make a decision based on the data 
analysed. Additionally, they are used as learning models. Decision trees 
are flowchart like representations of a decision-making process. Each 
node represents a test performed on the data and each branch is a result 
of that test, with the terminal node normally represents a classification 
or label. Tools such as decision trees, random forest and neighbour 
joining tools are all methods of decision making. A test is then performed 
on this decision, resulting in another outcome branch. This continues 
until an end node is reached (Fig. 4 A). This end node is user-defined. 
Alternately, some nodes are chance nodes, where decisions cannot be 
made. The decision on where to split a node is normally made using 
algorithms and results in similar data being grouped together (Fig. 4B) 
[77]. Random decision forests create multiple decision trees at the same 

time as it is learning from the data. The output data is the result, or 
decision, produced by most of the trees. These trees are commonly 
described as black boxes due to their ability to generate predictions with 
little user input (Fig. 4C). Therefore, it is not always clear what the al-
gorithm has done to the data or how it reached its conclusions [78]. 

In a regression analysis one variable is denoted as the independent 
variable and another as the dependent variable. Additionally, the 
dependent variable is continuous and terminal nodes represent the mean 
of the results of the preceding nodes and branch [77]. Neighbour joining 
is a method used to construct trees where those outputs that are most 
similar are grouped together as a way of organizing the decision tree into 
an organized structure. While not a decision tree or method, this looks 
very similar to the neighbour joining method of constructing phyloge-
netic trees. This method is a bottom up method as these multiple input 
nodes then work backwards and are linked by branches to a node most 

Fig. 3. Neural networks. (A) A single node of a neural network showing the input data has a different weight, which introduces a bias. The activation function is the 
algorithm acting on the input data and is followed by the generation of output data. (B) Is a representation of an Artificial Neural Network showing the different 
layers present in the network. 
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similar to the nodes following it (Fig. 4D) [79]. 

4. Modelling the effect of genomic mutations on protein 
structure 

All the changes in the genome and transcriptome that occur in can-
cers, result in changes in the expression of proteins. The proteome is the 
endpoint of all gene expression, and the proteome can be said to give rise 
to the observable phenotype of a patient. The proteome of an individual 
changes as gene expression changes [80]. Changes in gene expression, 
and mutations in the protein coding regions of genes can change the 
proteome and therefore the phenotype of cancer cells. These mutations 
can result in changes in the amino acid sequence resulting in changes in 
the shape and function of proteins. The effect of these functional changes 
on the shape of the protein can be predicted by AI using ML and DL to 
interpret genomic sequence data. Some of the in silico modelling pro-
grams used to achieve this include SIFT, PANTHER-PSEP and PolyPhen2 

[81]. Neural networks are trained to model the changes caused by amino 
acid changes resulting from genomic mutations. To do this, the network 
must be able to calculate the changes in secondary structure caused by 
these amino acid changes and calculate the distances between pairs of 
residues. The neural network then arranges these secondary structural 
elements into a three-dimensional structure using specific algorithms, e. 
g., the Monte Carlo Metropolis algorithm [82]. One of the major barriers 
to the creation of protein models is the positioning of unstructured loops 
between secondary structural elements. This process is improved using 
automated modelling by determining the positions of all non-hydrogen 
atoms within the loop. The energy of the interactions created by the 
position of these atoms is estimated through the energy constraints 
arising from spatial restraints, bond length, bond angle, and improper 
dihedral angle terms [83]. The final stage of protein modelling is the use 
of molecular dynamic modelling where the algorithms determine the 
possible protein conformational changes and this allows the precise 
shape of the protein (Fig. 5) [84]. One of the DNNs used to assist protein 

Fig. 4. Schematics representing different decision 
trees. (A) A basic decision tree (B) Representation of 
branch splitting techniques (C) Random Forest deci-
sion tree (D) a Neighbour joining tree. In (A) each 
node represents as specific test while the branch splits 
the data based on the result of the test. (B) demon-
strates how the decisions are made to split the data 
based on how the data is associated. The random 
forest test (C) increases the accuracy of the decision 
process by producing many trees and selecting the 
most common outcomes as the final decision. The 
neighbour joining tree uses a different method to 
group the outcomes of any analysis performed on the 
data based on how similar the outcomes are to each 
other.   
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modelling is known as AlphaFold which functions by analysing neigh-
boring amino acid distances and the angles of the peptide bonds between 
these amino acids [85]. 

However, the variability in the models that can be generated in this 
method is large with many slightly to quite different models being 
generated by the same AI tool. The quality of these models is assessed 
using assessment programs (MQAPs). Some of these analysis tools are 
shown in Table 1. Consensus quality assessment involves ranking 
models in a variety of ways. For instance, the 3D-Jury software examines 
the generated models and groups them pairwise based on how similar 
they are. All pairs are assigned a score based on how similar they are. 
These scores are added together for all pairs generated, and the model 
with the highest score is accepted as the final model as it is the most 
consistently similar to other models [86]. Another approach used by 
software such as QMEANclust, is to use reference models that are 

selected based on their quality score – QMEAN. The models generated 
are then compared to the reference models and assigned a global quality 
score based on the average of its similarity score [87]. Single model 
quality assessment produces a quality score based on only the single 
model without comparison to other models. Some of these models are 
purely statistical analyses while others make use of physical parameters 
[88]. The PROVE analysis tool uses atom and residue volumes from 
protein data bank (PDB) structures. Three dimensional structures are 
inferred from deviations in these traits compared to the expected or 
normal values. Interacting residues are also identified and placed into 
one of five separate classes The likelihood of these different classes being 
correct is established via statistical analysis [89]. Verify3D uses neural 
networks to predict the probability of finding a specific amino acid in the 
position predicted by the model [90]. The ProQ assessment tool uses 
neural networks to assess a model based on multiple physical features of 

Fig. 5. Typical protein structure prediction pipe-
line. The gene sequence is translated into an amino 
acid sequence. Machine learning algorithms are used 
to predict the secondary structure elements (SSEs) of 
the protein. These are then arranged in the three- 
dimensional space using different algorithms. Loop 
construction is then performed using special algo-
rithms. Molecular dynamics simulations lead to the 
generation of a three-dimensional protein model 
(tertiary structure) with predictions on how this 
structure can change shape during interactions (qua-
ternary structure).   
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the model. These include the interactions between atoms and residues, 
solvent accessibility and the secondary structure prediction created in 
the process of building the model [91]. 

The braf gene encodes the B-RAF protein, a member of the RAF ki-
nase family. Members of this family are responsible for transducing 
growth signals and is the target of RAF monomer inhibitors and RAF 
dimer (type II) inhibitors. However, tumor cells resistant to these drugs 
have shown mutations in the braf gene that give rise to structurally 
altered forms of the protein. An analysis of these mutants was performed 
using AI to identify mutations that play a role in this drug resistance. It 
was found that these mutations were found in the kinase domain, and 
the 3D modelling of the BRAF protein led to the development of new 
inhibitors [96]. The B-RAF inhibitor PLX4032 (RG7204) was designed 
using structural information and structural predictions made by AI. The 
structure-guided discovery of this inhibitor of the B-RAF kinase activity 
was done using the known 3D structure of B-RAF as determined by x-ray 
crystallography [97]. Protein modelling algorithms were then used to 
predict how the specific mutations that give rise to drug resistance, 
would alter the 3D structure of this protein. These models were then 
used to design PLX4032 [96]. 

5. Imaging genomics (Radiomics/Radiogenomics) 

The term ‘Imaging genomics’ also known as radiomics or radio-
genomics describes the association of features of a tumor identified 
through tumor imaging with genomic data such as mutations, copy 
number variation and gene expression profiles [98]. These features 
identified in an image include details such as structures, shapes, lines, 
points, colours, boundaries or even the area of the image closely asso-
ciated with one of these features. In medical imaging, these features are 
used to distinguish tumor tissue and normal tissue. The ability to make 
these distinctions has traditionally only been able to be performed by a 
human operator meaning it is subject to bias and interpretation and 
different individuals analyzing the same image commonly obtain 
different results [99]. 

However, as AI has advanced it has become able to analyse medical 
images without the need for human interference. AI and deep learning 
have led to medical imaging becoming automated and consistent. It is 
now generally thought that AI can outperform experienced pathologists 
in the use of medical imaging to diagnose cancer or make prognostic 
predictions [100]. Imaging genomics relies on the use of AI to extract 

features identified on an image and link these features with phenotypes. 
This phenotype reflects protein expression which can then be associated 
with genomic, transcriptomic and epigenomic changes. This association 
can then be used to improve diagnostic and prognostic approaches 
[101]. Therefore, medical imaging can be used to infer that these genetic 
changes are present within the tumor being imaged. Therefore, these 
image features can also be used as predictors of survival or indicators of 
the effects of treatment and even as a more accurate diagnostic tool than 
conventional medical imaging. As previously stated, CNNs were shown 
to be especially useful in image analysis and as such have now been 
specifically applied to medical imaging. CNNs can also perform feature 
extraction, selection, and classification across different layers [102]. 

An example of the use of radiogenomics/radiomics is given by the 
work of Yin et al. (2022). They used an AI brain metastasis detection 
system. This system used a multi-scale cascaded convolutional network 
to analyse 3D-enhanced T1-weighted magnetic resonance images. The 
results produced by this system were compared to those generated by 
three experienced and three junior radiologists. The system was able to 
detect brain tumor metastasis with a higher sensitivity and accuracy 
rates than the six radiologists were [103]. The model was also able to 
incorporate new data to assist in making predictions on the outcome of 
treatment. This study therefore demonstrates the valuable role that 
radiogenomics can play as a diagnostic tool, a treatment monitor and 
prognostic tool. This highlights the non-invasive nature of radio-
genomics, and its low cost, and shows that the field of radiogenomics 
deserves further investigation [103]. Radiomics/radiogenomics has also 
been used to stratify the risk of mantle cell lymphoma (MCL) using 
CT-derived 3D images. Features such as uniformity, entropy, skewness, 
and difference in entropy were selected and used to detect high risk 
MCL. Using these features the AI was more reliable in predicting if the 
MCL patient would have a poor outcome, compared to the use of 
traditional size measurements of the tumor as a prognstic tool [104]. 

Currently, one of the major problems with radiogenomics is the lack 
of any standard AI system, with each team using a different feature se-
lection process. Despite this, a comparison of various radiogenomic 
processes, different AI or feature selection, reveals that they come to the 
same or similar conclusions [105]. 

6. AI in the diagnosis and treatment of cancer 

Cancer is a complex disease and conservative estimates put the 
number of parameters that need to be considered for correct and accu-
rate medical decision-making at approximately 10 000 parameters 
[106]. This is obviously too large a number for any physician to fully 
apply to even a single patient. AI is the obvious solution to this problem, 
helping to provide faster and more accurate interpretations of patient 
genomic and transcriptomic data [107]. 

6.1. Biomarker discovery 

One of the most promising techniques for cancer detection is the use 
of molecular biomarkers. These biomarkers can be used for diagnosis, 
prognosis and the estimation of patient survival. Biomarkers can also be 
used to improve cancer treatment and management. Biomarkers can also 
be used to classify cancers into types or subgroups. Additionally, they 
can be used to stratify cancers based on the stage of disease. This is 
important because different types, subgroups, or stages, require 
different treatments [108]. This involves determining if the presence of 
these biomarkers is associated with specific cancers, different stages of 
these cancers or with different patient outcomes. In these cases, relevant 
biomarkers have been identified through different omics technologies 
and the analysis of this data using AI [108]. Additionally, drug resis-
tance is a major obstacle for the successful treatment of cancer. The 
identification of genes, epigenetic changes, and the pathways respon-
sible for the development of drug resistance would assist in solving this 
problem. Once identified, these changes can be targeted, and new drugs 

Table 1 
Various consencus and specific model tools for the assesment of protein model 
quality.  

Tool Basis for assessment Ref 

Consensus Methods 
3D Judge Pairwise similarity [86] 
Mod-FOLDclust Pairwise similarity and superimposing of paired 

models to estimate local accuracy 
[86] 

Pcons Pairwise similarity and superimposing of paired 
models to estimate local accuracy 

[92] 

QMEANclust Compare models against a list of reference sequences 
and assign score based on average similarity score 

[87] 

Single model methods 
PROVE Uses atom and residue volumes to infer structure [89] 
ConQuass Statistical analysis based on evolutionary 

conservation 
[93] 

Verify3D Evaluates model based on solvent accessible area and 
polarity of residues 

[90] 

TUNEn Evaluates structure verus sequence based on local 
environment 

[94] 

Verify3D probability of finding a given amino acid in certain 
position in a specified environment 

[90] 

ProQ Neural network assessment of physical features of the 
model 

[91] 

Protein structure 
function 

Structural similarity combined with the structure of 
proteins that have similar function to vakidate 
models 

[95]  
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can be developed to counteract these changes. For example, analysis of 
the genomic data revealed that mutations in the estrogen receptor 
(ESR1) are responsible for secondary resistance in breast cancer [109]. 

Physical biopsies require tissue to be removed and examined histo-
logically, whereas the examination of molecular biomarkers via NGS can 
be non-invasive and performed through blood tests. A good example of a 
molecular biomarker is the circulating cancer antigen 125, which is used 
for the detection of ovarian cancer [110]. Liquid biopsies are a way to 
carry out non-invasive diagnosis for cancers. They can also improve 
prognostics and assist in drug-response monitoring [111]. This requires 
the identification and characterization of novel biomarkers. NGS can 
assist in this process by detecting the presence of mRNAs or miRNAs 
specific to a particular cancer, but also by detecting mutation signatures 
and tumor mutational burden (TMB). Advanced statistical and data 
analysis needs to be applied to all these changes detected by the analysis 
of NGS data using AI [111]. 

RNA sequencing provides information on changing gene expression 
signatures in cancer as well as to detect mutations in RNA which can 
affect gene expression through changes in the final protein sequence. 
Both these changes are related to the underlying molecular mechanisms 
of cancer and both changes can be used as biomarkers for not only the 
detection of different types of cancer, but also the staging of the tumor. 
These changes can also act as biomarkers for the patient’s prognosis or 
response to treatment [13]. 

6.2. Problems facing the application of AI to cancer diagnosis, prognosis 
and treatment 

Multiple studies have demonstrated how AI can outperform humans 
in the interpretation of the vast quantities of data pertaining to a com-
plex disease such as cancer. However, it is important to remember that 
AI should always be used to augment human intelligence and not replace 
it. This means the outcomes of any analysis performed by AI should be 
assessed by qualified experts in their respective fields. Machine and deep 
learning by AI must also be assessed or supervised by experts in bioin-
formatics and programming [112]. One of the biggest problems facing 
the application of AI and DL to cancer diagnosis, prognosis and treat-
ment is the aforementioned black box problem. Essentially this concerns 
a lack of knowledge concerning what the AI system is actually doing and 
how it comes to its final conclusion. Once an AI is fully automated and 
requires no human intervention, it may become uncertain how an AI is 
selecting features or making decisions. This may create doubt as to the 
accuracy of the predictions made and force clinicians and researchers to 
accept these results on “blind faith” [113]. Researchers have also tried to 
develop AI systems whose actions can be understood by the physicians 
and clinicians that are using it. Kweng et al. (2022) developed an AI 
using ML to predict if prostate cancer patients could effectively be 
treated using nerve-sparing radical prostatectomy. The AI did this by 
predicting whether a tumor could extend beyond the prostate. All de-
cisions and analyses produced by the AI could be analysed and explained 
in layperson terms using a publicly available web application, Shapley 
Additive exPlanations [114]. 

Deep learning also requires a large amount of data to learn enough to 
generate algorithms that it can be applied to new data. In order to get 
this learning data, cancer research studies require multiple samples to 
act as training data [115]. Additionally, the use of big data and AI poses 
ethical problems since it uses the patients data, in some cases to 
accomplish tasks not directly related to the care of the patient and the 
use of this data may not always occur with the consent of the patient 
[116]. 

7. Conclusions 

Precision medicine promises to offer unprecedented levels of patient 
care and cancer treatment. It would allow not only for precise treatment 
based on the patient’s lifestyle, mutation profile and protein expression 

patterns but would also provide the most accurate information 
regarding the patient’s ethnicity and family history when it comes to risk 
factors and treatment response (Fig. 6). Currently a patient’s ethnicity is 
judged on their self-reporting or their appearance and may disregard the 
actual genetic background of a patient. In order to do this with the 
highest accuracy a “digital twin” of the patient would be required. This 
in turn requires that large amounts of data describing the patient’s 
lifestyle and biology be captured and curated. The management and 
application of the increasingly large sets of data required to make a 
digital twin for the purpose of assisting in the control of cancer, cannot 
be performed timeously and accurately without the aid of AI. The ability 
of AI to assist in monitoring this response of a patient to a specific 
treatment, monitor the recovery of the patient and finally predict 
treatment outcomes, means that these treatments can be fine-tuned to 
suit the situation (Fig. 6). 

The problems facing the implementation of AI and the use of big data 
are not insurmountable. Ethical problems with the use of big data can be 
solved through policy makers and the implementation of simple rules 
and guidelines governing its use. The problem of AI being a mysterious 
black box that clinicians and oncologists would be uncomfortable using 
or trusting is being solved with the development and implementation of 
methods to test the accuracy of the predictions made by the system as 

Fig. 6. The application of AI to precision medicine: Genomic data can be 
combined with multiple types of associated data such as published literature, 
medical images, wild type protein models and gene expression data. AI algo-
rithms use neural networks and learning algorithms to create, test and improve 
models to achieve accurate predictions. The end result will be the association of 
features or patterns in this data with markers for diagnosis, prognosis, treat-
ment outcome prediction and patient survival. Additionally, the genotype can 
be associated with specific phenotypic features or used to search literature on 
specific genomic profiles or genes. Finally, mutations present in the gene se-
quences can be used to predict changes in protein structure. 
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well as revealing some of the decision-making processes made by the AI 
system. The problem of the availability of training data will solve itself 
as more studies are performed and data collected. This data can be used 
retrospectively to train the AI and as such this problem will be solved by 
the passage of time. Lastly the enormous amounts of data storage 
capability required to keep the genomic, transcriptomic, proteomic, and 
medical record data for every patient should not represent a problem, as 
computer hardware development continue to advance. In summary the 
constant development of AI and computational algorithms promises to 
provide a far better outlook for cancer patients. Using personalized, 
clinically obtained genomics data from the patient, analysed by AI, 
cancer screening and diagnosis can be improved leading to the pre-
vention of serious disease. At the same time analysis of this data by AI 
systems can result in more targeted treatments and the improved 
monitoring of treatment results leading to better patient care, which is 
the aim of precision oncology. 
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