
����������
�������

Citation: Rabiu Abubakar, A.;

Ahmad, R.; Rowaiye, A.B.; Rahman,

S.; Iskandar, K.; Dutta, S.; Oli, A.N.;

Dhingra, S.; Tor, M.A.; Etando, A.;

et al. Targeting Specific Checkpoints

in the Management of SARS-CoV-2

Induced Cytokine Storm. Life 2022,

12, 478. https://doi.org/10.3390/

life12040478

Academic Editors: Milan Kolar and

Nicola Smania

Received: 14 January 2022

Accepted: 21 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Review

Targeting Specific Checkpoints in the Management of
SARS-CoV-2 Induced Cytokine Storm
Abdullahi Rabiu Abubakar 1 , Rahnuma Ahmad 2 , Adekunle Babajide Rowaiye 3 , Sayeeda Rahman 4 ,
Katia Iskandar 5 , Siddhartha Dutta 6 , Angus Nnamdi Oli 7 , Sameer Dhingra 8 , Maryam Abba Tor 9 ,
Ayukafangha Etando 10 , Santosh Kumar 11 , Mohammed Irfan 12 , Marshall Gowere 13 ,
Kona Chowdhury 14 , Farhana Akter 15 , Dilshad Jahan 16 , Natalie Schellack 13 and Mainul Haque 17,*

1 Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University,
PMB 3452, Kano 700233, Nigeria; unisza7@gmail.com

2 Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
rahnuma.ahmad@gmail.com

3 National Biotechnology Development Agency, Abuja 09004, Nigeria; adekunlerowaiye@gmail.com
4 School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;

srahman@auis.edu
5 Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University,

Beirut P.O. Box 6573/14, Lebanon; katia_iskandar@hotmail.com
6 Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;

siddhartha.dutta87@gmail.com
7 Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences,

Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria; an.oli@unizik.edu.ng
8 Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER),

Hajipur 844102, Bihar, India; sameerdhingra78@gmail.com
9 Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;

u1862562@uel.ac.uk
10 Department of Medical Laboratory Sciences, Faculty of Health Sciences,

Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane,
Mbabane H101, Hhohho, Eswatini; etta5013@gmail.com

11 Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A,
Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India; santosh@ksd.ac.in

12 Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro,
Pelotas 96010-610, RS, Brazil; irfan_dentart@yahoo.com

13 Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus,
University of Pretoria, Arcadia 0083, South Africa; u18064397@tuks.co.za (M.G.);
natalie.schellack@up.ac.za (N.S.)

14 Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital,
Dhaka 1344, Bangladesh; konaonu96@gmail.com

15 Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
fakter36@gmail.com

16 Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola,
Dhaka 1204, Bangladesh; dilshad@asgaralihospital.com

17 Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional
Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000,
Malaysia

* Correspondence: runurono@gmail.com or mainul@upnm.edu.my

Abstract: COVID-19-infected patients require an intact immune system to suppress viral replication
and prevent complications. However, the complications of SARS-CoV-2 infection that led to death
were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome.
This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine
storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National
Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection
and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing
SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3)
inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and
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signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by
medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6
with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly
reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and
anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also
beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflam-
matory chemokines and cytokines and or blockade of their receptors. Consequently, the actions
of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio.
Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance
lung function and reduce mortality due to the COVID-19 pandemic.

Keywords: cytokine storm; SARS-CoV-2; COVID-19; pathogenesis; immune response; interleukins; hy-
perinflammation

1. Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to an
unprecedented global health crisis called COVID-19. In view of the severity and wide
spread of this condition, the World Health Organization (WHO) declared it a pandemic on
11 March 2020 [1]. As reported by WHO on 16 February 2022, there were 412,351,279 cases
and 5,821,004 deaths across the globe [2]. The presentation of the disease varies from
mild to severe forms of fever, cough, and myalgia. Moderate symptom presentation may
require hospitalization; for severe cases the prognosis is worse, and they mainly require
intensive care [3–5]. Patients with comorbid conditions usually had more complicated
scenarios associated with a worse prognosis. Complications of COVID-19 include acute
respiratory distress syndrome (ARDS), altered coagulation profile, and eventually mul-
tiorgan failure [3,6–8]. Other common symptoms of COVID-19 include running nose,
headache, diarrhea, conjunctivitis, and sore throat [9,10]. SARS-CoV-2 gets into the host
cell by attaching to the angiotensin-converting enzyme 2 (ACE2) receptors widely located
across various tissues and immune cells [11,12]. Evidence suggested that elevated levels
of pro-inflammatory cytokines such as interleukins (IL)-1, IL-2, IL-6, IL-7, tumor necrosis
factor-α (TNF-α), and interferon-gamma (INF-γ), as well as the activation of immune cells,
were associated with poor prognosis [13–17]. Consequently, the high levels of cytokines
culminated into a hyperinflammatory syndrome, also termed a cytokine storm [13,15,18].

The swift spread of COVID-19 infection coupled with associated morbidity and mor-
tality prompted the government to impose lockdowns that further escalated the financial
burden of the disease [19,20]. There was a dire need for therapeutic agents to contain
the pandemic. However, in the absence of definitive treatment, the existing medicines
and complementary and alternative therapies were being repurposed to prevent and treat
COVID-19 cases [13,21–23]. Unfortunately, most of the repurposed therapies failed to
benefit most of the clinical trials conducted across the globe [24–26]. Later, with the advent
of COVID-19 vaccines from various multinational pharmaceutical industries, there was a
mass vaccination to immunize people and contain the spread of the virus [27–29].

It is noteworthy that even after almost two years, the COVID-19 pandemic is yet to be
contained, and few countries are even experiencing a rising trend in the number of new
cases [30]. Cytokine storm is one of the critical complications of COVID-19 infection leading
to death. Therefore, we need therapeutic agents that can target the critical checkpoints
involved in the pathogenesis of the cytokine storm to minimize the morbidity and mortality
associated with this viral disease.

2. Objectives of the Study

This article reviews the most recent information about pathogenesis, molecular inter-
play, and various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm.
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3. Materials and Methods

Information was searched using electronic databases including PubMed, Embase,
MEDLINE, and China National Knowledge Infrastructure (CNKI) using Google Scholar as
the search engine. The databases were first searched individually for the relevant articles.
The search terms used include ‘Pathogenesis of SARS-CoV-2’, ‘Molecular Mechanism’,
‘Cytokine Storm’, ‘Hyperinflammatory Syndrome’, ‘COVID-19-Induced Thromboinflam-
mation’, ‘SARS-CoV-2 Oxidative Stress’, ‘Immune Response’, ‘Diagnosis of SARS-CoV-2-
Induced Hyperinflammation’. This review included pre-printed articles where necessary
because research on the COVID-19 pandemic is a new area of study. The quality of the
articles reviewed was not scrutinized using Newcastle Ottawa Scale. Journal articles that
discuss SARS-CoV-2 infection and cytokine storm and written in the English language were
finally selected and reviewed.

4. Pathogenesis of SARS-CoV-2 Infection

Coronaviruses are a large family of enveloped, positive-sense, and single-stranded
RNA viruses. They are divided into four genera: α, β, δ, and γ coronaviruses (Figure 1).
The α and β coronaviruses are known to infect humans [31]. The current SARS-CoV-
2 belongs to the β-coronaviruses in the same genus as the earlier SARS-CoV-1 [32–34]
and the Middle East respiratory syndrome (MERS) virus [35]. SARS-CoV-2 closely re-
sembles two bat coronaviruses, according to full-genome sequencing and phylogenetic
analyses [36,37]. SARS-CoV-2 has a genome size between 26.2 and 31.7 kb [38]. It consists
of Structural and Non-Structural Proteins (NSPs) that are necessary for propagation of its
pathophysiological (Figure 2) processes [35]. The incubation period for SARS-CoV-2 is
1–14 days, and when in close contact with infected persons, it is transmitted predominantly
through saliva and respiratory droplets from coughing, sneezing, or talking [39,40]. The
virus has also been found in COVID-19 patients' feces and urine, implying a fecal–oral
transmission route [41]. The primary predilection site of COVID-19 is the upper and lower
respiratory tracts. The most common symptoms include fever, cough, lethargy, anorexia,
dyspnea, sore throat, headache, conjunctivitis, sputum production, muscle, and joint
pains, smell and taste loss, diarrhea, nausea, vomiting, and gastrointestinal disturbances
(Figure 3) [39,42,43].
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5. Molecular Anonymity of SARS-CoV-2 Infection
5.1. Molecular Structure of SARS-CoV-2

SARS-CoV-2 is a spherical and enveloped virus with specific surface projections [44].
Through microscopic view, the structure of the SARS-CoV-2 virus appears (Figure 4) like a
crown due to its series of protein spikes on its surface that gives rise to its name corona, a
Latin word meaning ‘crown’. Corona viral particles are pleomorphic implying that they do
not have a defined structure [45]. This is revealed based on the outcome of Cryo-electron
tomography [45,46]. Coronaviruses generally contain non-segmented, single-stranded,
positive-sense ribonucleic acid (ssRNA+) as the genome, wrapped up in helical nucleocap-
sid [45]. Among the RNA viruses, coronaviruses have the largest genome size. The genome
size of SARS-CoV-2 is about 30 kb [47]. Two-thirds of the 5′ end of this genome encodes for
gene 1 proteins that control the synthesis of viral RNA, and one-third of the 3′ end is respon-
sible for encoding all the structural and accessory proteins [48]. Four structural proteins are
similar to all coronaviruses: S (spike), E (envelope), M (membrane), and N (nuclear capsid)
proteins (Figure 1). Two-thirds of the SARS-CoV-2 genome consists of replicase genes
processing polyproteins, pp1a and pp1ab, which are later converted into 16 nonstructural
proteins through proteolytic cleavage [49–51].
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The spike protein is critical for viral entry. It is the most abundant protein outside of
the viral particle used to invade the host’s cell membrane [52]. It contains a receptor-binding
domain that recognizes the angiotensin-converting enzyme receptor 2 (ACE2) expressed in
the lungs, heart, kidneys, and intestines [53]. The spike protein of SARS-CoV-2 binds to the
ACE2 receptor with 20 times greater affinity than other SARS viruses [54,55]. This could
be one of the explanations for spreading so quickly [56]. The penetration occurs through
the endocytosis process [57], and the binding to the ACE2 receptors provides a proteolytic
cleavage event, carried out by a cellular protease called TMPRSS2 [57]. The spike protein
is a class1 fusion protein [58]; it has two functional subunits, S1 that binds to the host cell
receptor, and S2, which mediates the fusion of the viral and cellular membranes. [59]. The
C-terminal domain contacts the nucleocapsid protein and is vital for the morphogenesis
phase of the viral life cycle when the virions are formed [60]. Depending on the virus,
either NTD or CTD can serve as the receptor-binding domain (RBD) [44]. Because of the
critical role of s-protein in binding to the host’s cells, it could be targeted in designing
vaccinations and medical treatments for COVID-19 [61]. Mutations of this spike protein
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are likely to increase viral infectivity and transmissibility and reduce the efficacy of drugs
and vaccines [62]. For instance, spike protein mutations in the RBD N501Y lead to the
emergence of the α variant (B.1.1.7) [63]. This mutation had increased the affinity of the
virus to the ACE2 receptors and has amplified the viral replication in the lungs [63].

Coronaviruses have another minor envelope protein called E necessary to form viral
particles at the end of the viral life cycle [64]. It is integral for the assembly and release
of the virus from host cells. It is localized to the site of intracellular trafficking during
viral replication, specifically at the endoplasmic reticulum and the Golgi apparatus [65].
The virus has an additional glycoprotein membrane on its layer called the matrix pro-
tein. This transmembrane protein has a significant C-terminal domain that contacts the
N protein [64,66].

The M protein is the most abundant on the viral surface and defines the shape of
the viral envelope. It is considered the central organizer for coronavirus assembly and
interactions with the other structural proteins [67]. The viruses’ outer layer is derived from
the hosts’ cell membrane. As viruses cannot make their lipids, they use the host’s lipids
for replication and morphogenesis [68]. This protein shell encloses the genetic material
of the virus. It has the helical nucleocapsid or N protein inside this capsid, carrying its
genetic information within the single-stranded viral RNA [69]. The N protein appears to be
multifunctional. In particular, it essentially inhibits many host cells' defense mechanisms
and assists the viral RNA replication, creating new viral particles [66]. The M and E proteins
play a critical role in turning the host cell apparatus into workshops where the virus and
host cells work together to make new viral particles [59].

5.2. Viral Replication of SARS-CoV-2

Once the coronavirus enters the host’s respiratory tract, it effectively binds, using its
spike protein, to ACE2 receptors present in the type II pneumocyte [68–71]. The virus
membrane fuses with the host cell membrane facilitating the entry of viral ssRNA into the
host cell cytoplasm [64]. Immediately, the host ribosome confuses viral RNA with the host’s
mRNA and starts translating the viral ssRNA into specific protein molecules [64]. The first
to be read from the 5′ region of the positive strand of viral RNA is the Leader Sequence,
enabling proper alignment with the host ribosome. This follows the 5′ untranslated region,
i.e., UTR Sequence, that regulates viral translation [72]. The first essential protein to
be produced is the RNA-dependent RNA polymerase, responsible for replicating viral
RNA. Three critical structural proteins are translated of which, first, is S-Protein in its
non-glycosylated form.

The coronavirus (CoV) envelope (E) protein is a microscopic, essential membrane
protein. This E protein has an out-and-out requirement in multiple features of the virus’
life cycle; those include assembly, budding, envelope formation, and pathogenesis [64].
Thereby, this structural protein is translated as Membrane Protein (M), which determines the
circular-curved shape of the virus [64,73,74]. Consequently, these proteins are transcribed
and translated in the rough endoplasmic reticulum (RER) [75]. Here, all proteins attain their
partial maturity and then they are transported to the Golgi apparatus through vesicular
transport [75,76]. On maturation, these proteins assemble and polymerize to form a
nucleocapsid and stay inside the Golgi body until they receive the replicated viral RNA [77].
It is the only protein found inside the core of the viral structure. The ribosome now slides
to the 3′ untranslated region (UTR), which contains a pseudoknot structure essential for
viral genome replication [78].

The viral RNA replicates in the presence of enzyme replicase. As a rule, the poly-
merases read the template strand from the 3′ to 5′ position and synthesize the complemen-
tary strand in the antiparallel direction from 5′ to 3′ [75]. For the illustration depicted here,
the first cycle of positive RNA strand replication will yield its complementary strand, a
negative RNA strand. The negative RNA strand is used as a template to produce more
positive strands [75]. The positive strands formed after replication will bind with the nucle-
ocapsid protein and are condensed, then transported to the Golgi apparatus and packed
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into the viral particle [51]. The matured viral particles escape from the Golgi apparatus
entrapped inside vesicles. The vesicles containing the viral particles travel to the periphery
of the host cell, facilitating the exocytosis of the viral particles [77,78]. These viral particles
can now be transmitted to other human hosts [75].

5.3. Molecular Components of Cytokine Storm (CS)

Cytokines are small soluble molecules that serve as messengers for the immune
system; they are signaling molecules that consist of various proteins and glycoproteins [79].
Cytokines regulate the host’s immune responses to infection, inflammation, and trauma [80].
They are produced by various immune cells, such as neutrophils, basophils, eosinophils,
mast cells, dendritic cells, monocytes, macrophages, B-cells, and T-cells. The cytokines
serve as intercellular mediators by binding to specific receptors called cytokine receptors on
the surface of cells. Cytokines have a very high affinity for the cytokine receptors making
them effective even at low concentrations [81]. They usually have a short half-life and act
over short distances [82,83].

As the cytokines enter the bloodstream, they provide a systemic effect. These change
cell activities by altering the functions of cellular proteins or by changing the expression of
specific genes [84]. Cytokines play important roles ranging from boosting immunity to sup-
porting the growth, development, maturation, activation, and lifespan of immune cells [84].
Another set of molecules is chemokines, which coordinate white blood cells' movements
in the body. Chemokines mobilize both granulocytes (neutrophils) and agranulocytes
(monocytes, macrophages, and lymphocytes) to the site of infection [85].

The structural groups of cytokines comprise IL, Tumor Necrosis Factor (TNF), inter-
ferons (INF), and Colony Stimulating Factors (CSF). Leukocytes produce interleukins that
also action other leukocytes [86]. They play a vital role in the body’s immune response. In-
terleukins may be pro-inflammatory markers whose release worsens the disease conditions
(e.g., IL-1, IL-1β, IL-6, IL-8) or anti-inflammatory markers that reduce inflammation and
promote healing (e.g., IL-4, IL-10, IL-13). Cytokine storm may also result from decreased
neutrophil and monocyte function within the systemic circulation [87–89].

Mast cells, macrophages, and T-cells produce the tumor necrosis factor (TNF), which
plays a significant role in immune cell activation, differentiation, growth, and death [90].
TNF is the major pro-inflammatory cytokine that activates cytotoxic T-cells during infec-
tion and inflammation. Therefore, the blockage of the TNF-α can be targeted to treat
autoimmune diseases and inflammatory disorders [90].

The two most crucial interferons (IFNs) are produced by virtually all cells; nevertheless;
fibroblast and monocytes remain as a significant contributor, and often interfere with viral
replication [91]. Twenty different interferons have been identified in humans so far. The
main interferons are type 1 and type 2. Type 1 (IFN-α and IFN-β) are produced by fibroblast
and monocytes. The type 2 interferon plays a role in many immune responses and increases
the phagocytic activity of macrophages [92]. The anti-viral function is generated when a
viral infection attacks a cell. The infected cell usually releases interferons. The interferons
then bind with the uninfected neighboring cells and produce antiviral proteins, degrading
viral RNA and inhibiting protein synthesis [93]. Type 1 interferons can treat viral infections
such as hepatitis C [94].

One more cause of cytokine storms is Colony Stimulating Factors (CSF). These es-
sentially act on stem cells in the bone marrow to stimulate growth and differentiation
into specific cells [95–97]. Types of CSF include: the Monocyte Colony-Stimulating Factor
(M-CSF), which influences the growth of monocytes; Granulocyte-Macrophage Colony-
Stimulating Factor (GM-CSF), which helps with the growth and differentiation of dendritic
cells; Granulocyte Colony-Stimulating Factor (G-CSF), which supports the differentiation
and development of neutrophils [95]. Overall, the CSF plays a significant role in the growth
of immune cells, alveolar macrophages homeostasis, lung inflammation, and autoimmune
diseases. It also activates T-cells and indirectly causes the release of inflammatory mediators
leading to cytokine syndrome [95].
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5.4. Cytokine Storm Molecular Mechanism in SARS-CoV-2

Cytokine storm (CS) is an exaggerated immune response [98]. In any infection, an
immune response is necessary to combat the pathogen. There is a rise in immune response,
which lowers over time and eventually resolves. However, in the case of COVID-19,
the immune response is dysregulated [88,99]. Fourteen days after the SARS-CoV-2 infec-
tion, the immune system gets to ramp up more than it should [98]. This is associated
with severe morbidity and mortality [98]. It occurs as a result of the release of many
pro-inflammatory cytokines.

Generally, viral cells are replicating rapidly, making thousands of copies that even-
tually burst out of the host cell. Due to the damage caused to these cells, cytokines and
inflammatory markers are released. Subsequently, the virus as an antigen comes in contact
with the host’s antibody-containing cells which stimulates B- and T-cell receptors with
viral antigens, leading to Ig production [100,101]. Consequently, a series of things happen
here. (i) Firstly, production of IgM and IgG antibodies, (ii) this is followed by stimulation
of the humoral and cellular immunity mediated by the virus-specific B-cell and T-cells,
(iii) release of antibodies and later pro-inflammatory markers that produce the cytokine
storm (CS) [98,102]. The CS leads to a powerful attack by the immune system on the body.
This typically begins in the lungs and then spreads to the rest of the body [98,102].

The body’s T-cells and natural killer (NK) cells trigger release of cytokines, leading
to the inflammatory response. In addition, they cause vasodilation and edema, which
ultimately (a) increase the extravascular pressure, (b) decrease tissue perfusion, (c) en-
dothelial dysfunction, and (d) compromise the integrity of endothelial cells [103]. The
CS in the alveoli can lead to acute lung injury (Figure 5), which can progress into ARDS.
Eventually, fibrosis still leaves some progressive dysfunction [98,102]. Therefore, some of
these long-term effects may be experienced by the patients over an extended period. The
CS can happen systemically and may affect other organ systems in the body leading to
systemic clinical presentations known as multi-organ failures. The CS may affect the renal
system, hepatic system, GI, cardiovascular, and CNS [104–107].
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6. SARS-CoV-2 Viral Load and Cytokine Storm

Among the human coronaviruses, MERS-CoV, SARS-CoV-1, and SARS-CoV-2 replicate
in the lower respiratory tract and result in lethal pneumonia in many instances. Once the
SARS-CoV-2 virus invades the human body, the viral load attains a peak value in 5–6 days.
Consequently, the signs and symptoms of COVID-19 develop within 14 days of infection in
about 97.5% of individuals [108–113]. A study that compared the behavior of SARS-CoV-1
and SARS-CoV-2 in pulmonary tissue revealed a rapid viral replication by both viruses.
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An ex vivo experiment in human lung tissue reported an efficient invasion and replication
by the SARS-CoV-2 virus in pulmonary tissues. Notably, the SARS-CoV-2 virus caused
upregulation of all five inflammation factors, including IL6, CCL2, CXCL 10, CXCL5,
and CXCL1 [114]. Another ex vivo study was conducted to compare virus replication
and tropism among SARS-CoV-1, SARS-CoV-2, MERS, and H1N1 viruses using human
bronchus and lung samples. During the experiment, samples of these viruses were obtained
from the human conjunctival epithelium and human colorectal adenocarcinoma cell lines
to observe extra pulmonary infection's viability [115]. The result showed that SARS-CoV-2
virus infected the ciliated and mucus-secreting cells of the epithelium of bronchi, type 1
pneumocytes of the lung, and mucosa of the conjunctiva. There was a higher SARS-CoV-2
replication in the bronchi than SARS and MERS [116].

One more study concluded that the relationship between SARS-CoV-2 viral load and
COVID-19 disease progression. The viral load was quantified from COVID-19 patients
with mild, moderate, and severe cases [117]. This study revealed that of patients diagnosed
with COVID-19 who had SARS-CoV-2 plasma RNA, 27% were hospitalized, and 13% of
those were treated as outpatients. Hospitalized patients had high levels of lymphocyte
counts, inflammatory biomarkers, poor respiratory-related clinical outcomes, and increased
mortality risk [117]. In SARS-CoV-2 infection, a higher viral load and amplified immune
response results in a cytokine storm. The appearance of a cytokine storm provokes ARDS
and multiple organ failure leading to death [118–121]. In COVID-19-infected patients, there
was an activation of alveolar epithelial cells, macrophages, and monocytes by toll-like
receptors with the production of a large number of cytokines and attraction of immune
cells, causing extensive pulmonary hyperinflammation [7,106,122–127]. The IL 6 is re-
sponsible for the aggravation of intravascular coagulation leading to injury and multiple
organ damage [128–132].

7. Genetic and Molecular Susceptibility to SARS-CoV-2 Infection

Genetic epidemiology has provided valid proof that variations/mutations in the
human genomes (Figure 6) play some roles in susceptibility to infectious disease [133]. The
dominant view opines that rare, ‘conventional’, monogenic primary immune compromise
makes humans prone to a myriad of diseases that result from pathogen invasion, growth,
and survival [133,134].
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Common communicable diseases involve polygenic inheritance [133,134]. Studies
have highlighted relevant genes predisposing a family or a population to some communi-
cable diseases through family-based and population-based approaches [134–139].

Several methods and approaches have been utilized to identify and map out some
genes designated as susceptible or resistant loci for infectious diseases. Such strategies
include genome scanning of multi-case families, mouse genetics, screening of likely candi-
date genes, and genome-wide association studies [140–143]. In humans, six genes linked to
infectious disease susceptibility have been identified [132,144]. Broad knowledge of the
impact of human genetics on susceptibility to infections will explain infectious disease
pathogenesis, revealing possible drug therapy and vaccination [145].

7.1. The Major Genetic Risk Factors for SARS-CoV-2 Infection

The challenge of emerging and re-emerging infections, global antimicrobial resistance,
the length of time needed to bring a new drug product into the market, the growing need
for personalized medicine, and the genetic differences within and between populations
necessitate the inquiry into the relationship between human genetics and infections [145].

Five essential genes (IFNAR2, TYK2, OAS1, DPP9, and CCR2) (Table 1) have been
linked to the most severe forms of COVID-19 disease, suggesting possible drug targets
and vaccine epitopes. These genes are involved in lung inflammation and antiviral immu-
nity [146–148]. Augmentation of the INFAR2 gene activity was found to induce protection
against COVID-19 [149,150].

7.2. Genetic Fingerprints for Critical Illness in COVID-19

The containment of COVID-19 involves gaining insight into the genetics of SARS-
CoV-2 and the range of the diseases brought about by the infection. The genetic makeup
contributes to the progression and prognosis of viral infections [151]. The Major His-
tocompatibility Complex (MHC) Class I molecules play critical functions in initiating,
developing, and expressing specific immune responses against viral infections and can-
cers [151]. Other genes commonly implicated in coronavirus disease 2019 include ACE2,
IL6, DPP9, TYK2, TMPRSS2, FOXP4, and TNF, while the emerging genes consist of FURIN,
CXCL10, OAS1, OAS2, OAS3, and ISG15 (Table 1) [152]. Inhibiting some of these genes
could be a potential treatment strategy for COVID-19 [153]. Additionally, the differences in
the genes’ allele affinities for SARS-CoV-2 peptides are associated with infection severity
and mortality [154,155].

Table 1. Genes, their polymorphism, and specific role in the pathogenesis of COVID-19 infection.

GENES Full Name Polymorphism Specific Role Reference

IFNAR2 Interferon alpha and
beta receptor 2 NM_000874:exon9:c.C966A:p.Y322X Severe COVID-19-risk Schmiedel et al., 2021

[156]

IFITM3
Interferon-induced

transmembrane protein
3

rs12252-C/C
It is a risk factor for
developing severe

influenza

Kaidashev et al., 2021.
[157]

OAS1 Oligoadenylate
synthase 1 rs2057778 Increased risk of

infection
Schmiedel et al., 2021

[156]

CCR2 Chemokine receptor rs11385942-GA Respiratory failure Anastassopoulou et al.,
2020 [158]

ACE2 Angiotensin
Converting Enzyme 2 p.Arg514-Gly

Increase in pulmonary
and cardiovascular

complications in the
African American

population

Anastassopoulou et al.,
2020 [158]
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Table 1. Cont.

GENES Full Name Polymorphism Specific Role Reference

IL6 Interleukin-6 rs180079

Associated with the
increase in

susceptibility and
severity

Kaidashev et al., 2021.
[157]

TMPRSS2 Transmembrane serine
protease 2 rs12329760 Increased susceptibility

to disease
Anastassopoulou et al.,

2020 [158]

HLA Human leukocyte
antigen (HLA) system HLA-B*46:01 Exhibit the lowest

binding cap Pollitt et al., 2020. [159]

TNF Tumor necrosis factor rs1800629 Increase in pulmonary
complications

Fishchuk et al., 2021.
[160]

FURIN Furin rs16944971 Promotes entry of the
virus into the cell Kucher et al., 2021 [161]

CXCL10 Chemokine ligand 10 rs11385942-GA Respiratory failure Anastassopoulou et al.,
2020 [158]

7.3. The Neanderthal Gene Variant and Coronavirus Disease-19

Zeberg and Pääbo (2021), in their recent study, showed the presence of a protective
Neandertal haplotype [162]. This is a set of genetic determinants located on a region at
chromosome number 12 and is not associated with patients that require intensive care when
infected with SARS-CoV-2. This region was inherited from Homo sapiens Neanderthalensis.
Typically, this region is responsible for producing proteins capable of activating the receptor
needed for infections with RNA viruses [162]. The protective Neanderthal haplotype is
different from the risk haplotype (Neanderthal gene variation on chromosome number 3,
which substantially heightens the likelihood of fatal COVID-19) because the former confers
a highly reduced effect of the SARS-CoV-2 infection and has prevalence in all regions of the
globe but is low in Africa [163–165].

7.4. Resistance to Coronavirus Disease-19

SARS-CoV-2 infections have shown variable prognoses among patients. The prog-
nosis varies from symptomless infections to potentially fatal diseases. The proportions
of the human population inherently resistant to SARS-CoV-2 infection, together with the
genetic and immunological determinants of resistance, are largely unclear. However, some
candidate genes have been suggested to be possibly linked to natural human resistance to
SARS-CoV-2 infection [166–168].

Inherited errors of Type I interferons-self-immunoglobulins contribute up to 20% of
severe COVID-19 cases seen among SARS-CoV-2 infection. It is necessary to identify, recruit,
and genetically analyze individuals with inborn resistance to SARS-CoV-2 infection [154].
This group of individuals is likely to become an antigenic source to provide more reliable
vaccines and other immunotherapies for the global containment of COVID-19 [154].

8. SARS-COV-2 Induced Thromboinflammation

SARS-CoV-2 infection results in a more incredible release of cytokines that promote
inflammation, which subsequently exacerbates chronic lung disease affecting the interstitial
tissue of the lungs and progresses to viral sepsis with a notable prothrombotic state [7,8,169].
In general, viral sepsis is detected in less than 1% of all cases of viral infection [170].
According to the Sepsis-3 criteria, 20% of SARS-CoV-2-infected individuals have a severe
illness, and several others may be classified as septic [171,172]. Micro thrombosis occlusions
of smaller veins were found in many autopsy samples from the lungs and identified ARDS
with interstitial pneumonia. Immuno-histochemical assays have also shown the presence of
immune cells such as (CD (cluster of differentiation)) CD3, CD4, CD8, and other classes of
CD cells in this group [173]. Patients with COVID-19 who also have comorbidities such as
diabetes, obesity, and advanced age have a higher risk of venous thromboembolism, arterial
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thrombosis, and thrombotic microangiopathy, all of which contribute to the increased
mortality reported in these patients [174].

The immunological response triggered by SARS-CoV-2 can be said to be exacerbated
in the condition of “inflammageing.” This is persistent, isolated, and relatively high in-
flammation that occurs at old age and is characterized by a higher baseline concentration
of cytokines (along with T-cell depletion, which might lead to increased mortality) [170].
Early immunosuppressant treatment should begin as soon as possible. Notably, treating
the hyperinflammatory condition early will prevent the pathophysiology processes de-
fined by immune system dysregulation [173]. Conclusively, during SARS-CoV-2 infection,
early immunomodulator therapy helps avert cytokine release syndrome (CRS), sepsis-
induced coagulopathy (SIC), and disseminated intravascular coagulation (DIC). [175]. The
SARS-CoV-2 induced thromboinflammation is illustrated in the diagram below (Figure 7).

Life 2022, 12, x FOR PEER REVIEW 13 of 27 
 

 

the hyperinflammatory condition early will prevent the pathophysiology processes de-
fined by immune system dysregulation [172]. Conclusively, during SARS-CoV-2 infec-
tion, early immunomodulator therapy helps avert cytokine release syndrome (CRS), sep-
sis-induced coagulopathy (SIC), and disseminated intravascular coagulation (DIC). [174]. 
The SARS-CoV-2 induced thromboinflammation is illustrated in the diagram below (Fig-
ure 7). 

 
Figure 7. SARS-CoV-2 induced thromboinflammation. 

9. SARS-CoV-2 Oxidative Stress  
Oxidative stress (OS) is a physiological phenomenon in the human body caused by 

the imbalance between prooxidants and antioxidants, leading to an increase in the pro-
duction of oxygen-reactive species (ROS) and reactive nitrogen species (RNS) [175–177]. 
The predominant ROS sources are mitochondria, NADPH oxidases (NOXs), and ROS and 
RNS are by-products of cellular activity [169,170,178,179]. Under normal physiological 
conditions, RONS are essential in various biological functions such as protein phosphor-
ylation, activation of several transcriptional factors, apoptosis, cell signaling, thiol 
switches, growth factors, and regulation in inflammatory cytokines [176,179,180]. RONS' 
overproduction and accumulation are harmful to the essential cell structures and func-
tions, leading to oxidative stress [168,169]. No OS is produced in isolation during RONS 
production induced by viral infection [128,179,181,182].  

Patients with severe and moderate COVID-19 infection develop respiratory distress 
that requires oxygen therapy that may be the leading cause of oxidative stress and ARDS. 
Hyperoxia leads to the production of mt-ROS that inhibits oxidative phosphorylation and 
lowers ATP levels causing lung tissue damage [183]. To date, it is not clear whether SARS-
CoV-2 infections trigger oxidative stress in the airway epithelium [181]. The cytokine 
storm can also lead to cardiac oxidative stress and myocardial damage. These cardiac 
manifestations in infected patients occur predominantly through IL-6, TNF, and IL-1β that 
generate oxidative stress leading to an increase in local hypoxia, tissue injury, and redox 

Figure 7. SARS-CoV-2 induced thromboinflammation.

9. SARS-CoV-2 Oxidative Stress

Oxidative stress (OS) is a physiological phenomenon in the human body caused by
the imbalance between prooxidants and antioxidants, leading to an increase in the produc-
tion of oxygen-reactive species (ROS) and reactive nitrogen species (RNS) [176–178]. The
predominant ROS sources are mitochondria, NADPH oxidases (NOXs), and ROS and RNS
are by-products of cellular activity [170,171,179,180]. Under normal physiological condi-
tions, RONS are essential in various biological functions such as protein phosphorylation,
activation of several transcriptional factors, apoptosis, cell signaling, thiol switches, growth
factors, and regulation in inflammatory cytokines [177,180,181]. RONS’ overproduction
and accumulation are harmful to the essential cell structures and functions, leading to
oxidative stress [169,170]. No OS is produced in isolation during RONS production induced
by viral infection [128,180,182,183].

Patients with severe and moderate COVID-19 infection develop respiratory distress
that requires oxygen therapy that may be the leading cause of oxidative stress and ARDS.
Hyperoxia leads to the production of mt-ROS that inhibits oxidative phosphorylation
and lowers ATP levels causing lung tissue damage [184]. To date, it is not clear whether
SARS-CoV-2 infections trigger oxidative stress in the airway epithelium [182]. The cytokine
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storm can also lead to cardiac oxidative stress and myocardial damage. These cardiac
manifestations in infected patients occur predominantly through IL-6, TNF, and IL-1β
that generate oxidative stress leading to an increase in local hypoxia, tissue injury, and
redox imbalance [185]. Under oxidative stress, the resulting cytokine shock is a state
of hyperinflammation accompanied by cytopenias and hyperferritinemia generated by
the Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO− + HO−) and increased production of
ROS [182,186]. Aging [182,186,187], male gender, black and south Asian ethnicity, low
socioeconomic status, hyperglycemia, and obesity are conditions associated with enhanced
oxidative stress postulated to aggravate the severity of COVID-19 infection caused by
SARS-CoV-2 [182,187].

10. SARS-CoV-2 and Defective Immune Response
10.1. Innate Immune Response

In SARS-CoV-2, similarly to any other viral infection, the innate immune system
serves as the first line of host defense against pathogens, limiting viral entry, translation,
cell division, and assembly, assisting in the identification and removal of infected cells, and
accelerating the occurrence of adaptive immunity [188,189].

This occurs through human pattern recognition receptors (PRRs), which are vital
components of the innate immune system [190–192], recognizing the SARS-CoV-2 virus
after it enters the host’s cells [187,193], triggering inflammatory responses and programmed
cell death. These receptors are also known as cytoplasmic Nod-Like Receptors 3 (NLR3),
bound to and stimulated by inflammasomes [194–201]. The inflammasomes are multi-
intracellular proteins that detect pathogenic microorganisms. They are secreted by the
pathogen-associated molecular patterns (PAMP), damage-associated molecular patterns
(DAMP), and other signaling proteins [194–201]. The circulating inflammasomes trigger
the release of an active form of cytokines such as interleukin 1 beta (IL-1β) and IL-18. The
process is catalyzed by the caspase-1 enzyme leading to the inflammatory response. Notably,
activation of NLRP3 receptors by inflammasome may result in pyroptosis, a programmed
cell death associated with hyperinflammation in macrophages and dendritic cells [194–201].
In addition, it stimulates gasdermin D, a protein cleaved by the caspase-1 enzyme leading
to the worsening of hyperinflammation and eventually septic shock [194–201].

SARS-CoV-2 virus pathogenesis begins by attaching itself to the angiotensin-converting
enzyme type 2 (ACE2) receptors on pneumocytes of the lung epithelium. Immediately after
the virus breaches the physical barriers of pneumocytes, it will be recognized by the intracel-
lular toll-like receptors (TLRs), which stimulate an interferon regulatory factor (IRF) (NF-kB)
signaling that results in activation of NF-kβ [196,198,200–203]. Subsequently, the activated
NF-kB, mitogen-activated protein kinases (MAPKs), and interferon (IFN) signal through
nuclear translocation [187] stimulates cytokine production, leading to the hyperinflamma-
tory syndrome [196,198,200–203]. Natural Killer (NK) cells are large granular lymphocytes
that kill SARS-CoV-2 virus-infected cells. NK cells interact with dendritic cells, and it is
hypothesized that they can directly kill virus-infected cells through degranulation, receptor-
mediated apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC) [204].
They play a significant role in lung damage among patients who have developed hyperin-
flammatory syndrome due to severe SARS-CoV-2 infection [196,199–201]. Although NK
cells are not found within the lungs tissues, nevertheless, they can penetrate the lungs
from the peripheral blood through the chemokine receptor-3 (CXCR3). Reports showed a
considerable increase in the number of NK cells in the peripheral blood mononuclear cells
detected in patients with severe COVID-19 infection compared to mild cases [196,199–201].

10.2. Adaptive Immune Response

The adaptive immune response begins with activating SARS-CoV-2-specific B-cell
maturation and synthesis of antibodies, CD4+ T-cells, and CD8+ T-cells in response to
SARS-CoV-2 infection. The role of the antibodies includes restraining the spread of the
virus, suppressing the viral replication, blocking the occurrence of hyperinflammation, and
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cleaning the infected cells that underwent pyroptosis [196–201]. In addition, the adaptive
immune system responds by inhibiting ACE2 receptors to which the SARS-CoV-2 virus
attaches and invades the host’s cells. It also reacts with the virus via an autoimmune
reaction following the tissue destruction [196–201]. Notably, the SARS-CoV-2 virus’ spike
protein is associated with CD26 and CD147 molecules, which trigger the activation of T-
cells. As a result, T-cells prevent further cellular invasion and subsequent viral replication.
Overall, the activities of T-cells provoke the release of chemokines and cytokines, leading
to hyperinflammatory syndrome [196–201]. The infiltration of T-cells into the tissues
and cells is facilitated by the upregulation of the lung endothelial adhesion molecules
causing severe lung damage and respiratory distress. The speed with which the respiratory
physiology damages occur during SARS-CoV-2 infection made the mechanism by which
T-cells produce hyperinflammatory syndrome unclear [196–201]. This is because several
COVID-19 patients develop lymphopenia rapidly within a few days after the appearance
of SARS-CoV-2 disease symptoms. However, the role of T-cells in cytokine storm is linked
to tissue infiltration and cell damage at the site of infection [196–206].

10.3. Antibody Response

Patients infected with the SARS-CoV-2 virus expressed a humoral response by de-
veloping antibodies to tackle viral S protein used for attachment and invasion of the
host’s cells. Antibodies expressed include immunoglobulin M (IgM), immunoglobulin
G (IgG), and immunoglobulin A (IgA). The IgM and IgA appear within seven days of
SARS-CoV-2 infection, while another antibody, immunoglobulin G (IgG), surfaced within
14 days [201–207]. The role of IgA as a neutralizing antibody is known, and it was detected
in the bronchoalveolar lavages of people who took the COVID-19 vaccine [193–198]. As
SARS-CoV-2 infection progresses, another secretory immunoglobulin A (sIgA) antibody
is released. The primary function of sIgA is mucosal defense in the patient’s lungs. The
SARS-CoV-2 virus attacks individuals via respiratory mucosa [199–205]. Despite the role
of antibodies in preventing further cell invasion by the SARS-CoV-2 virus, antibodies
binding to IgG Fc receptor-II positive (FcgRII+) cells, such as B-cells and macrophages,
promote viral access the respiratory airways via an alternative method called canonical
viral-receptor pathways [201–206,208]. Consequently, activating these receptors provokes
proinflammatory cytokines leading to hyperinflammatory syndrome. This concept is called
Antibody-Dependent Enhancement (ADE), another indicator of the severity of COVID-19
disease and poor treatment prognosis [201–206].

11. SARS-CoV-2 Hyperinflammation

Patients infected with the SARS-CoV-2 virus (COVID-19) require an intact immune
response to suppress the viral replication, prevent complications, and eventually survive.
However, the severity and complications of COVID-19 infection that led to death are linked
to the overproduction of proinflammatory cytokines known as a hyperinflammatory syn-
drome [17,193,195,197,202]. In a patient with severe COVID-19 disease, hyperinflammatory
syndrome causes lung tissue damage similar to the features of macrophage activation
syndrome (MAS) or secondary hemophagocytic lymphohistiocytosis (sHLH). However,
SARS-CoV-2 associated hyperinflammatory syndrome usually produced a lesser increase
in serum levels of CD25, alterations in fibrinogen, and hepatosplenomegaly making it a dis-
tinct syndrome [17,194,195,197,202]. Patients with this condition may develop respiratory
collapse, thrombotic disease, and cardiac failure as the signs of disease progression and
poor treatment prognosis. Hyperinflammation generally results from the active immune
response to the rapidly multiplying SARS-CoV-2 virus. The immune reactions preceded
this subsection, including innate immune response, adaptive immune response, and the
antibody response [17,194,195,197,202].
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11.1. SARS-CoV-2-Induced Hyperinflammation in Children

Children infected with SARS-CoV-2 usually exhibit mild symptoms and, in some
cases, remain asymptomatic. However, hyperinflammatory syndrome also occurs in some
pediatric patients. A report indicated that about 30% of the children hospitalized due to
COVID-19 might require intensive care; nonetheless, they rarely die due to severe COVID-
19 infection [194,202,209]. The ability of many children to survive SARS-CoV-2 infection
could be linked to the presence of a solid innate immune mechanism at the early stage of
infection, which suppressed the viral replication. Additionally, children quickly acquire
partial protective immunity from previous exposure to the SARS-CoV-2 virus.

Furthermore, there is reduced expression of ACE2 receptors among children, and
they have less comorbidity that could weaken the quality of the lungs’ vascular endothe-
lium and natural body immunity [194,202,209]. Despite these, a late hyperinflammatory
syndrome similar to macrophage activation syndrome (MAS), toxic shock syndrome, and
Kawasaki disease occurs in children. This condition is also known as a multisystem in-
flammatory syndrome in children (MIS-C). During this inflammatory process, there is
a significant increase in serum levels of procalcitonin, C-reactive protein (CRP), ferritin,
D-dimer, IL-10, and IL-6. This is also accompanied by thrombocytopenia, lymphocy-
topenia, and neutrophilia [183,196,202]. Ironically, children infected with COVID-19 who
developed MIS-C may produce negative results in the reverse-transcriptase polymerase
chain reaction (RT-PCR) COVID-19 test. However, it often reacts positively to SARS-
CoV-2 serology. In general, children who developed MIS-C may be seriously ill and may
need mechanical ventilation, inotropic and vasopressor support, as well as extracorporeal
membrane oxygenation [194,201,209].

11.2. Diagnosis of SARS-CoV-2-Induced Hyperinflammation

Laboratory investigations of SARS-CoV-2-induced hyperinflammation revealed gross
and microscopic pathologic parameters in a patient with severe COVID-19 infection who
developed the hyperinflammatory syndrome. This revealed dysregulation of T-cells, neu-
trophils, macrophages/monocytes ratio, and natural killer cells [17,194,195,197,202]. In ad-
dition, other factors detected include elevated levels of systemic inflammatory biomarkers
such as C-reactive protein (CRP), D-dimer, lactate dehydrogenase, and ferritin. Addition-
ally, elevated plasma fibrinogen levels, especially in severe COVID-19-infected cases, had
been a common finding [210,211]. Additionally, there is an increase in the amount of circu-
lating proinflammatory chemokines and cytokines and a rise in the level of neutrophil-to-
lymphocyte ratio [17,194,195,197,202,212]. Furthermore, SARS-CoV-2 causes a significant
increase in the release of interleukins, IFN-γ, monocyte chemotactic peptide-1 (MCP)-1,
macrophage inflammatory protein 1A (MIP)-1A, MIP-1B, GM-CSF, granulocyte-colony stim-
ulating factor (G-CSF), TNF-α, and chemokine ligand-2 (CCL)-2 [135,137,138,140–143,149].
IL1 may be released in large quantities during hyperinflammatory syndrome and provokes
cellular pyroptosis, a programmed cell death triggered by the SARS-CoV-2 virus in the
epithelial cells. Overall, the presence of the above parameters in a patient with severe
SARS-CoV-2 infection signifies the development of a dysregulated immune reaction known
as a hyperinflammatory syndrome [17,194,196,197,199–202,212].

Histologic and microscopic examination of lung tissues revealed diffuse alveolar hem-
orrhage with edema. Interstitial and interalveolar exudates collapsed alveoli and dilated
alveolar ducts, capillary congestion, desquamation of pneumocytes, and hyaline membrane
formation [196,198–201]. Furthermore, large macrophages and lymphocytes were detected
within the inflamed bronchioles of COVID-19 patients [128]. The macrophages above
comprised infiltrated CD68+NP +. Additionally, CD4+ and CD8 T-cells were found in
lymphocytes extracted from the lung’s alveoli and bronchioles [128,198,200–203,213–217].
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12. Therapeutic Options for SARS-CoV-2-Induced Hyperinflammation
12.1. Corticosteroids

Dexamethasone and methylprednisolone are glucocorticoids used for anti-inflammatory
and anti-allergy purposes. Administration of these two drugs in patients with severe
COVID-19 (especially during the cytokine storm) infection may relieve endothelial injury
and inflammation [17,26,199,202,203,209,212,218]. Their mechanism of action involves a
decrease in the release of proinflammatory biomarkers such as soluble receptors for ad-
vanced glycation end-products (sRAGE), interleukin-6, endocan, and syndecan-1 release a
decrease in endothelial injury [17,26,194,196,198,200,212,218].

12.2. Interleukin-6 (IL-6) Antagonists

Tocilizumab, siltuximab, and sarilumab are recombinant humanized monoclonal antibod-
ies with potential in treating idiopathic multicentric Castleman’s disease and cytokine-like re-
lease syndrome [198–200,202,212–218]. Their mechanism of action involves blockade of IL-6 re-
ceptors and JAK/STAT signaling pathways in the patient who developed the hyperinflamma-
tory syndrome. They also significantly reduce the release of other proinflammatory biomarkers
such as C-reactive protein, D-dimer, and ferritin [26,196–198,200,206,207]. These actions im-
prove respiration and substantially raise lymphocyte count and PaO2/FiO2 ratio. They also
decrease the oxygen demand and the need for mechanical ventilators, especially among the
COVID-19 positive patients admitted to the intensive care unit (ICU) [26,198–200,202,212–218].

12.3. Interleuckin-1 (IL-1) Inhibitors
12.3.1. Canakinumab

Canakinumab is an interleukin-1beta (IL-1β) neutralizing antibody. It can reduce
hyperinflammation by binding and antagonizing inflammatory mediators such as IL-1β
and IL-1α, and IL-1 decoy receptors [187,190]. Although canakinumab has proven to be
helpful in COVID-19 patients suffering hyperinflammatory syndrome, targeting NLRP3
inflammasome is more effective in curbing cytokine storm [195,198].

12.3.2. Anakinra

Anakinra is a recombinant human IL-1 blocker. It also inhibits the activity of the
circulating inflammasome signaling pathway in patients with severe COVID-19. Initially,
it was indicated to treat rheumatoid arthritis and other autoinflammatory diseases. How-
ever, it shows promise in treating COVID-19-infected patients with hyperinflammatory
syndrome [17,26,197,202]. The mechanism of action of anakinra also involves inhibition of
Nod-Like Receptor 3 (NLRP3), responsible for the activity of the inflammasome signaling
pathway. In severe COVID-19, anakinra produced a rapid decrease in C-reactive protein
and improved oxygen supply (i.e., PaO2/FiO2 ratio) [17,26,197,202].

12.4. Janus Kinase (JAK) Inhibitors

Baricitinib, ruxolitinib, and tofacitinib are JAK inhibitors that can suppress COVID-
19-induced cytokine storm. Janus kinases are a family of enzymes, including JAK1, JAK2,
JAK3, and TYK2. They are known to provoke the activity of several proinflammatory
biomarkers such as interleukins, interferon, erythropoietin, and thrombopoietin growth
factors [17,197,198,202]. Inhibition of these pathways may significantly relieve respiratory
distress associated with hyperinflation. In addition, zanubrutinib, ibrutinib, acalabrutinib,
and acalabrutinib are Bruton tyrosine kinase (BTK) inhibitors with potential in suppressing
cytokine storm. BTK transmits proinflammatory biomarkers during hyperinflammation,
including TLR/IL-1R, a significant signaling pathway in monocytes [17,197,198,202]. The
mechanism of action of BTK inhibitors involves a decrease in the amount of circulating
proinflammatory chemokines and cytokines such as IL-6, TNF-a, GM-CSF, IP-10/CXCL10,
MCP-1/CCL2, MIP-1a/CCL3, and MIP-1b/CCL4. Using these drugs in a patient with
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severe COVID-19 who develops hyperinflammatory syndrome is associated with reduced
inflammation and significant improvement in lung function [17,197,198,202].

12.5. Quercetin

Quercetin is a carbohydrate-free flavonoid, and it is the most abundant flavonoid
found in vegetables and fruits. It decreases the level of NLRP3 inflammasome and adapter
protein ASC, amplifies the expression of SIRT1, and activates caspase-1 [195,198]. Quercetin
reduces the expression of proinflammatory cytokines, such as IL-1β, IL-18, and TNFα. It
also inhibits the Janus kinase-2 and signal transducer and activator of transcription-1
(JAK2/STAT1) signaling pathway in IFN-γ-primed leukocytes. In addition, quercetin has
an anti-inflammatory, analgesic, and antioxidant function, hence is suggested to be helpful
in hyperinflammation caused by COVID-19 infection [195,198].

13. Conclusions

The COVID-19 pandemic has caused unprecedented damage to the global effort to
provide adequate healthcare delivery services. It has continued from the first, second, and
third waves, and still counting. The causative agent SARS-CoV-2 keeps evolving from
α to β, gamma, and γ variants to the current Omicron and IHU, the variant of concern.
With the death toll currently above five million, the devastation caused by the COVID-19
pandemic is beyond healthcare workers’ and the scientific community’s imagination. At
present, no definitive cure for COVID-19 has been identified yet. Consequently, preventive
measures and symptomatic treatment remain the current treatment options. Because
hyperinflammatory syndrome is the major complication leading to death, targeting and
managing its pathogenesis through specific cytokine storm checkpoints will go a long way
in reducing mortality due to the COVID-19 pandemic.

14. Recommendation

The outcome of this review suggested that more drugs from both orthodox and herbal
origins that can inhibit pro-inflammatory cytokines and chemokines and prevent and treat
SARS-CoV-2-induced cytokine storm should be repurposed. The medicines that showed
promise against cytokine storm should be experimented with using randomized, double-
blind, placebo-controlled clinical trials to generate more evidence in reducing mortality
associated with COVID-19.
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