
A DYNAMIC FLOTATION MODEL FOR REAL-TIME CONTROL AND OPTIMISATION

by

Daniël Jacobus Oosthuizen

Submitted in partial fulfillment of the requirements for the degree

Philosophiae Doctor (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

February 2023

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



SUMMARY

A DYNAMIC FLOTATION MODEL FOR REAL-TIME CONTROL AND OPTIMISATION

by

Daniël Jacobus Oosthuizen

Promoter: Prof. I.K. Craig

Co-promotor: Prof. J.D. le Roux

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Philosophiae Doctor (Electronic Engineering)

Keywords: Flotation, model predictive control, modelling, moving horizon estim-

ator, observability, optimisation, process control, process optimisation,

simulation, state and parameter estimation

Froth flotation models that are developed for circuit design applications are often not suitable for

model-based dynamic control and optimisation applications. For real-time control and optimisation

applications dynamic models of the key flotation mechanisms are required, as these use real-time

measurements to update internal model states and estimate model parameters in real-time.

The development of a dynamic froth flotation model is described, based on a combination of funda-

mental mass and volume balances, fundamental steady-state froth models and empirical models for

bubble size and air recovery. The model outputs are defined to correspond with real-time measurements

that are commonly available on industrial flotation circuits, including measurements from froth imaging

devices in combination with measurements of levels, flow rates, densities and grades.

The flotation model is analysed for state observability and controllability, and it is shown that the

model states and parameters can be estimated from real-time process measurements that are commonly

available on industrial flotation circuits. The ability to estimate process parameters in real-time opens

up opportunities for improved process control and optimisation by compensating for a specific flotation
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mechanism rather than the combined effect of multiple flotation mechanisms. The speed of response

can also be improved when more accurate models are maintained by continuously updating model

parameters.

The flotation model, a state and a parameter estimator and model predictive controller are combined to

simulate the potential benefits of using a non-linear model-based approach with state and parameter

estimation capabilities in a dynamic control and optimisation application on flotation circuits. The

strategy is shown to reject typical process disturbances effectively in the presence of process noise and

outperforms a linear non-model based control strategy by a significant margin.
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OPSOMMING

’N DINAMIESE FLOTTASIE MODEL VIR INTYDSE BEHEER EN OPTIMERING

deur

Daniël Jacobus Oosthuizen

Promotor: Prof. I.K. Craig

Medepromotor: Prof. J.D. le Roux

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Philosophiae Doctor (Elektroniese Ingenieurswese)

Sleutelwoorde: Flottasie, modelvoorspellende beheer, modellering, optimering, prosesop-

timering, prosesbeheer, simulasie, skuiwendehorisonberaming, toestand-

en parameterberaming, waarneembaarheid

Skuimflottasie modelle wat vir aanlegontwerpdoeleindes ontwikkel is, is dikwels nie geskik vir

dinamiese modelvoorspellende beheer- en optimeringstoepassings nie. Dinamiese modelle van die

belangrikste flottasie meganismes word benodig vir intydse beheer- en optimeringstoepassings, omdat

hulle intydse meting gebruik om interne modeltoestande en -parameters intyds by te werk.

Die ontwikkeling van ’n dinamiese skuimflottasie model word beskryf, gebaseer op ’n kombinasie van

fundamentele massa- en volumebalanse, fundamentele bestendigetoestand-skuimmodelle en empiriese

modelle om borrelgroottes en die behoud van lug te beskryf. Die modeluitsette is gedefinieer om

ooreen te stem met intydse metings wat algemeen beskikbaar is van flottasiekringe, insluitende metings

van skuimbeeldingsapparate, saam met metings van vlakke, vloeitempo’s, digthede en grade.

Die toestandwaarneembaarheid en -beheerbaarheid van die flottasie model is ondersoek, en daar is

aangedui dat die modeltoestande en -parameters beraam kan word op grond van intydse prosesmetings

wat algemeen beskikbaar is op industriële flottasiekringe. Die vermoë om prosesparameters intyds

te beraam, skep geleenthede om prosesbeheer en -optimering te verbeter deur te kompenseer vir ’n
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spesifieke flottasiemeganisme eerder as vir die oorkoepelende effek van veelvuldige flottasiemegan-

ismes. Die reaksietyd kan ook verbeter word wanneer meer akkurate modelle in stand gehou word

deur modelparameters deurlopend by te werk.

Die flottasie model, ’n toestand- en parameterberamer en ’n modelvoorspellende beheerder is gekom-

bineer om die potensiële voordele van ’n nie-lineêre modelgebaseerde benadering met toestand- en

parameterberamingsvermoëns te simuleer as ’n dinamiese toepassing vir skuimflottasiekringe. Daar is

aangetoon dat die strategie tipiese prosessteuringe effektief verwerp in die aanwesigheid van prosesruis,

en ’n lineêre nie-modelgebaseerde beheerstrategie beduidend oortref.
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Mineral processing plants typically include unit-processes for crushing, grinding, classification,

separation and refining the mined ore. The crushing and grinding units reduce the ore size, with the

aim of liberating valuable minerals from the bulk or gangue minerals. Crushing and grinding units

often operate in a closed-loop configuration with classification units, such as screens or hydrocyclones,

where coarse materials are recycled for further crushing or grinding, while fine materials are processed

in downstream separation processes, such as flotation or leaching. The ideal size distribution of the

ore sent to the separation process depends on the ore mineralogy and the separation process that is

used. For more complex ore types, multiple stages of separation and regrinding may be required, with

regrind mills between different flotation units (Wills and Napier-Munn, 2006). The flotation process

can be followed by leaching, smelting or refining unit processes, lumped together under the heading

refining in Figure 1.1.

Stockpile Crushing Grinding Classification Separation Refining

Figure 1.1. Unit processes in a mineral processing plant.

Froth flotation is a versatile mineral processing technique that utilises differences in surface properties

to separate valuable and undesired (gangue) minerals. These differences in surface properties can be
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enhanced using different reagents. Since the first froth flotation applications in the 1880s, flotation

machines have grown in size and efficiency to meet increasing production demands and process ores

with more complex mineralogy and declining feed grades. The range of froth flotation applications is

no longer limited to the original objective of treating hydrophobic sulphide ores of copper, lead and

zinc but now include platinum, nickel, coal and oxidised minerals. Without froth flotation, it would not

have been economically viable to process many of the low-grade and complex ore types that are mined

today (Wills and Napier-Munn, 2006; Gaudin, 1957).

A schematic diagram of a froth flotation cell is shown in Figure 1.2. A pulp containing liberated

minerals is mixed with reagents and transferred to a flotation cell, where it is brought in contact with

air bubbles that are injected at the bottom of the flotation cell. The surface properties of hydrophobic

minerals result in these minerals attaching to the air bubbles that rise to the top of the flotation cell

through the mechanism of ‘true flotation’, and a layer of froth forms at the top of the flotation cell with

a higher concentration of the desired hydrophobic minerals than the pulp. Through the mechanism of

‘entrainment’, the rising stream of bubbles entrains pulp (containing the desired and gangue minerals)

as part of the liquid trapped between the bubbles. Froth characteristics—such as froth stability, bubble

size distribution, froth depth and, in some cases, wash water—can be manipulated to reduce the

contamination due to entrainment in the froth. ‘Entrapment’ of unwanted gangue minerals still occurs,

where mineral particles that are not attached to a bubble remain trapped within the froth structure

and report to the concentrate stream. Weakly floatable gangue minerals could also report to the

froth layer through the mechanism of ‘true flotation’, and imperfect liberation results in individual

particles—containing both desired and undesired minerals—reporting to the froth layer. The froth layer

overflows into a concentrate launder, from where it can either report to the final concentrate stream

or be processed further in other flotation units. The stability of the froth layer as described by the air

recovery (the fraction of air injected into the flotation cell that overflows as part of the concentrate

stream) plays an important role in optimising the operation of individual flotation cells (Wills and

Napier-Munn, 2006; Gaudin, 1957; Hadler, Smith and Cilliers, 2010a).

The objectives of the flotation process are to produce a concentrate of a desired grade (with an

acceptable level of impurities) and minimise the amount of valuable minerals lost to the tailings stream.

A single flotation cell can usually not meet both these requirements. Banks of multiple flotation cells,

with concentrate flows and recycle streams in different configurations, are required to provide adequate

cleaning of the concentrate and scavenge any remaining valuable minerals from the pulp before the
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CHAPTER 1 INTRODUCTION

Figure 1.2. Schematic diagram of a flotation cell.

final tailings stream is disposed of in a tailings storage facility. The design of the flotation circuit and

the operation of the individual units are complex processes, which require an understanding of flotation

mechanisms, interactions between units, the effect of different manipulated variables on the process,

and the economic impact of the control actions that are taken (Wills and Napier-Munn, 2006; le Roux,

Steinboeck, Kugi and Craig, 2017).

Figure 1.3 illustrates the concept of different grade-recovery curves for a single flotation cell, with

grades plotted on the x-axis and recovery plotted on the y-axis. The ore mineralogy and degree of

liberation dictate the maximum concentrate grade that can be achieved. For example, the maximum

copper concentrate grade that can be achieved for chalcopyrite (CuFeS2) as an ore mineral is approxim-

ately 34.5% (Wills and Napier-Munn, 2006), assuming perfect liberation. The feed grade determines

the lower boundary on the concentrate grade, which would be reached when the feed bypasses the

concentrator and reports directly to the concentrate stream. Recovery refers to the fraction of the total

desired mineral or element contained in the ore that is recovered to the concentrate. Theoretically,

given infinite time, perfect liberation, an ideal size distribution and a suitable reagent mixture, 100% of

the desired element can be recovered in the concentrate at the maximum grade as dictated by the ore

mineralogy. The dotted line in Figure 1.3 can thus be considered a ‘theoretical optimum grade-recovery

curve’. On an industrial flotation cell, a ‘practical grade-recovery curve’ will always achieve a lower

recovery at the same grade as the ‘theoretical optimum grade-recovery curve’, as the pulp residence

time in the flotation cell (largely determined by the feed flow rate) will be finite and some slow floating
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or non-liberated minerals will not be recovered. The ‘practical grade-recovery curve’ that is achieved

is not only a function of the feed rate and size distribution but also of other operating parameters that

include reagents, froth depth, air addition rate and pH of the pulp. Therefore, the aim of a flotation

control and optimisation strategy should be to stabilise the process at a grade that will produce the most

economical return for the throughput and select operating parameters that will result in a ‘practical

grade-recovery curve’ with the highest mineralogical efficiency (Wills and Napier-Munn, 2006). Where

the pulp or concentrate from one flotation cell flows to another cell, the grade and recovery ranges of

the downstream cell would be a function of the feed from the upstream cell and hence, the operating

parameters of the upstream cell.

Feed Grade Max Grade
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1.0

Curves of increasing metallurgical efficiency

Grade

R
ec
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Theoretical optimum curve (infinite time and perfect liberation)
Practical optimum curve for a given feed rate and operating parameters
Curve of higher metallurgical efficiency
Curve of lower metallurgical efficiency

Figure 1.3. Grade-recovery curves for a flotation cell.

1.2 PROBLEM STATEMENT

Flotation optimisation strategies have been applied successfully on industrial sites. In most cases,

the optimisation strategies focused on optimising a limited set of variables—often a single variable—

without taking interactions between variables and non-linearities into account. Maldonado, Sbarbaro

and Lizama (2007) calculated the optimum flotation cell level profile down a bank of flotation cells,

but modelled the concentrate flow rates as a linear function of froth depth. In other studies, Shean,

Hadler and Cilliers (2017) and Hadler and Cilliers (2009) optimised the air recoveries of individual

flotation cells by finding the peak in air recovery from the non-linear response of each flotation cell,

but did not manipulate the levels of flotation cells. Saffy, Mashakane and Hopstadius (2019) described
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CHAPTER 1 INTRODUCTION

a dynamic grade optimisation strategy that used linear controllers to manipulate both flotation cell level

and air setpoints without explicitly considering non-linearities in air recovery. While these strategies

(Maldonado et al., 2007; Shean et al., 2017; Hadler and Cilliers, 2009; Saffy et al., 2019) can drive the

flotation process closer to an optimum operating point for a given set of operating conditions, a model-

based approach that combines the effect of multiple manipulated variables and takes non-linearities

into account is likely to outperform each strategy when it is used in isolation.

An aspect that negatively impacts the performance of controllers and optimisers is the long-term

reliability of the models that are used. Phillpotts, Whitehead and Ramatsoma (2021) highlighted

that flotation characteristics change rapidly over time and that a slow optimum-seeking algorithm

may not be able to optimise air recovery. Gradual changes in process characteristics over time could

partially explain why flotation control and optimisation strategies based on froth image-processing often

show promise during a trial period but fail to deliver long-term benefits (Aldrich, Marais, Shean and

Cilliers, 2010). Flotation models used in design and optimisation strategies (Bascur and Herbst, 1985)

usually have parameters that need to be fitted to empirical models, which require extensive sampling

campaigns beyond the scope of the routine sampling that is performed on flotation circuits. With

rapid changes in process and feed characteristics, any strategy that depends on empirical parameters

runs the risk of a degradation in performance until another sampling campaign is performed to update

parameters. It is thus important that a flotation model used for dynamic optimisation does not depend

on infrequent sampling campaigns to update the model parameters but has the ability to adapt its

parameters based on measurements that are available in real time.

The definition of the objective function as part of an optimisation strategy is a critical component of the

optimisation strategy. Examples are available in the literature where subtle variations in the objective

function—for example, maximising concentrate grade vs. minimising tailings grade—can have a

major impact on the resulting performance (Maldonado et al., 2007; Seguel, Soto, Krommenacker,

Maldonado and Becerra Yoma, 2015). Rather than defining optimisation objectives in terms of

derived measurements, a model directly modelling the physical quantities that need to be optimised is

preferable and needs to be developed.
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1.2.1 Context of the problem

It is accepted in industry that a flotation circuit needs to be stabilised before optimisation can be

attempted. Several examples of industrial applications where a model-based approach to level sta-

bilisation was implemented have been documented. Simple models can be used to compensate for

interactions between interconnected flotation cells to avoid the effect of a disturbance in an upstream

cell from propagating to downstream cells. Industrial applications where aeration rates to flotation

cells, pulp level setpoints and reagent addition rates are manipulated to obtain a desired concentrate

mass pull or grade in a concentrate or tailings stream are well documented. In most cases, models used

in grade or mass pull applications are empirical due to complex, non-linear and often time-varying

relationships (Jämsä-Jounela, Dietrich, Halmevaara and Tiili, 2003; Schubert, Henning, Hulbert and

Craig, 1995; Saffy et al., 2019).

Air recovery provides a mechanism to optimise individual flotation cells by taking non-linearities in

froth characteristics into account. For concentration processes, an inverse relationship exists between

mineral grades and recoveries. This relationship is often exploited by grade and recovery control

strategies, by trading off grade for recovery to achieve a desired product specification. However,

multiple combinations of aeration rates, pulp levels and reagent addition rates exist that will result

in the same grade but at different recoveries. Higher recoveries at the same grade are equivalent

to shifting the operating point to a more efficient grade-recovery curve rather than moving along a

sub-optimal grade-recovery curve. Industrial experiments have proven that operation at the peak air

recovery point maximises recovery for a given grade and, hence, optimises flotation performance

in a flotation cell. The peak air recovery point has been shown to vary over time, and peak-seeking

strategies to identify the peak air recovery point and operate at that point has only been applied in

experimental environments (Hadler et al., 2010a; Wills and Napier-Munn, 2006; Oosthuizen, le Roux

and Craig, 2021; Hadler and Cilliers, 2009; Phillpotts et al., 2021; Shean et al., 2017).

Different approaches have been taken to optimise sections of flotation circuits. Maldonado et al. (2007)

and Seguel et al. (2015) used a model-based approach to optimise the flotation cell level profile down a

flotation bank. Different circuit configurations and operating points can be compared using simulation

packages such as the JK Sim Float (Schwarz, Alexander, Whiten, Franzidis and Harris, 2006), which

is based on steady state models and relies on data that are collected from sampling campaigns. Bascur

and Herbst (1985) modelled the transfer of particles between the pulp and froth phases based on

empirical and phenomenological models and applied the models in industrial implementations. Image
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processing has been used in experimental trials to classify and control froth characteristics but has not

delivered long-term benefits (Aldrich et al., 2010). Flotation plants would often have well-defined

targets on grade and recovery that can be automated, as described by Saffy et al. (2019). However, the

targets are typically fixed based on design specifications and are often not adjusted automatically when

the feed composition changes or other operating conditions change.

The mineral concentration in flotation cells and froth characteristics vary dynamically due to variations

in feed rates and compositions, selective flotation and the transfer of pulp between flotation cells.

Froth stability has been shown to change dynamically over a short time span (Phillpotts et al., 2021)

and depends on the mineral content in the froth. None of the techniques described above uses a

comprehensive flotation model covering non-linear aspects, such as air recovery, to dynamically

optimise the flotation operation. In addition, most of the methods that have been described above

rely on extensive sampling campaigns to fit model parameters before the model can be used for

optimisation. Previously developed optimisation models are potentially only valid over a limited

operating range and require frequent refitting of model parameters to ensure that they remain

representative of the actual flotation process.

1.2.2 Research gap

No dynamic froth flotation model for dynamic control and optimisation applications is currently

available, that:

• include interactions between the froth and pulp phases in a flotation cell

• include interactions between different flotation cells in a flotation circuit

• include non-linear froth dynamics related to air recovery

• adapt to variations in ore characteristics rather than rely on sampling campaigns for model fitting.

1.3 RESEARCH OBJECTIVE AND QUESTIONS

The objective of this study is to develop a dynamic froth flotation model that can be used in dynamic

control and optimisation applications of flotation circuits. To meet this objective, the flotation model

must meet the following criteria:

• A dynamic model is required that takes interactions between flotation cells and between different

phases inside the flotation cell into account.
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• The flotation model must not rely on extensive modelling campaigns to fit model parameters

but adapt its model parameters based on real-time measurements that are typically available on

industrial flotation installations.

• The model must include non-linearities in froth characteristics and include these non-linearities

in the optimisation problem.

Four research questions need to be answered to meet this objective:

• Which key dynamics in the froth flotation process need to be included in a simple dynamic

flotation model for real-time process control and optimisation purposes?

• What instrumentation, which is commonly available, or can readily be obtained, on industrial

flotation circuits can provide continuous real-time measurements?

• Which process states and model parameters can be estimated from such a dynamic model, using

commonly available real-time measurements or measurements that can readily be obtained in

real time?

• What potential benefit can be derived by implementing a dynamic flotation model in a dynamic

control and optimisation application?

1.4 APPROACH

A literature study is conducted to identify:

• the key flotation variables and interactions that need to be included in a dynamic flotation model,

• flotation models that are available in the literature, that can potentially be included in a dynamic

froth flotation model, and

• real-time measurements that are commonly available on industrial flotation circuits.

A dynamic flotation model is developed by combining existing models available in the literature.

Where suitable models are not available, new models are derived. The objectives of developing a

dynamic model that does not depend on sampling campaigns to estimate model parameters form an

integral part of the selection of a model structure and sub-models.

The model development is followed by a state observability and controllability analysis. The state

observability analysis also includes the identifiability of model parameters to confirm that model
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parameters can be estimated from real-time measurements that are commonly available on industrial

flotation circuits. The state controllability analysis determines if the model inputs can be used to drive

the model states to desired setpoints.

Once the model has been developed, model parameters are fitted to ensure that model outputs cor-

respond with measurements that have been obtained on an industrial flotation plant. Non-linear

characteristics of the model outputs are highlighted to indicate potential areas where the use of the

model could be beneficial. The flotation model with parameters fitted on industrial data is used as a

simulator of the plant in subsequent work.

Finally, a model predictive controller (MPC) is designed to evaluate the benefit of using a non-linear

flotation model as part of a model-based control strategy, compared to a linear classical control

strategy, as is often used in industry.

1.5 HYPOTHESES

The focus of this work is summarised in two hypotheses:

• Key parameters that characterise different flotation mechanisms can be estimated in real-time,

using only measurements from instrumentation that are commonly available on industrial

flotation circuits.

• A model-based automatic control strategy with real-time estimates of key flotation parameters

would outperform a non-model-based control strategy with fixed parameters, by consistently

achieving a higher recovery at the same grade.

1.6 RESEARCH GOALS

This work has two main goals:

• to develop a dynamic froth flotation model that can be used in control and real-time optimisation

applications

• to demonstrate the benefits of using a model-based approach to flotation optimisation by

comparing it to classical control techniques.
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1.7 RESEARCH CONTRIBUTION

Many froth flotation models available in the literature have been applied successfully in laboratory,

pilot plant or industrial applications. Comprehensive flotation models covering interactions between

different phases in the flotation process and between interacting cells are often aimed at plant design

and thus use steady-state models. Other models only focus on a single aspect of froth flotation (e.g.,

froth characteristics or the floatability of hydrophobic particles through the mechanism of true flotation)

without taking variability in other phases of froth flotation into account. The third limitation of existing

models is that the models often rely on data obtained from extensive sampling campaigns, and these

data may not be readily available on a real-time basis. As process conditions and feed materials change

over time, model accuracy tends to deteriorate, until such time that a follow-up sampling campaign is

conducted that allows models to be updated.

The contribution of this thesis is to develop a dynamic froth flotation model that includes key flotation

mechanisms in the pulp and froth phases. The model will only use real-time measurements that are

commonly available on industrial flotation circuits to update its modelled parameters to ensure that the

model is representative of actual plant characteristics at all times.

1.8 RESEARCH OUTPUTS

The result of a literature survey on froth flotation models, measurements that are available on industrial

flotation plants, and the use of model-based control in froth flotation has been published in the

following:

• Oosthuizen, D. J., Craig, I. K., Jämsä-Jounela, S. L. and Sun, B. (2017). On the current state of

flotation modelling for process control, IFAC-PapersOnLine, 50(2): 19–24.

As part of the model development, simulation studies were done to compare different approaches

to include floatability characteristics in a flotation model and show the potential benefits of using a

non-linear flotation model in optimisation applications. The results of these simulation studies have

been published in:

• Oosthuizen, D. J. and Craig, I. K. (2018). Flotation modelling based on floatability distributions

regressed from routine data, IFAC-PapersOnLine, 51(21): 105–110.
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• Oosthuizen, D. J. and Craig, I. K. (2019). Predicting optimal operating points by modelling

different flotation mechanisms, IFAC-PapersOnLine, 52(14): 60–65.

A description of the flotation model that was developed for this thesis, including state observability

and state controllability analyses, has been published in:

• Oosthuizen, D. J., le Roux, J. D. and Craig, I. K. (2021). A dynamic flotation model to infer

process characteristics from online measurements, Minerals Engineering, 167: Article 106878.

The design of an MPC controller that uses the model described in Oosthuizen et al. (2021) and a study

of the potential benefits of the non-linear MPC over classical control strategies has been submitted

as:

• Oosthuizen, D. J., le Roux, J. D. and Craig, I. K. A model predictive control strategy to

maximise flotation recovery by dynamically adapting to variability in air recovery (submitted to

Minerals Engineering).

1.9 OVERVIEW OF THE STUDY

Chapter 2 covers a literature review on flotation modelling and control applications and types of

instrumentation that are commonly available on industrial flotation plants. In Chapter 3, the flotation

model is developed using existing sub-models from the literature where available and by deriving

new models where required. Chapter 4 shows the state observability and controllability analyses of

the flotation model to confirm that model parameters and states can be estimated from measurements

commonly available on industrial flotation plants. An MPC design using the flotation model described

in Chapter 3 is shown in Chapter 5. Chapter 5 also shows simulation results to compare the performance

of the MPC controller to a classical controller implementation. In Chapter 6, the results are summarised

and discussed, and concluding remarks are given.
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CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

The origins of froth flotation can be traced back to the 1880s (Gaudin, 1957). Froth flotation was

patented in 1906 and column flotation was patented in the early 1960s (Finch and Dobby, 1990; Wills

and Napier-Munn, 2006). Froth flotation has been modelled extensively to include factors such as the

chemical reactions (King, 1982), how different size classes participate in the process (Lynch, Johnson,

Manlapig and Thorne, 1981) and the physical processes, such as particle-bubble collision (Finch and

Dobby, 1990). Collaboration between industry and academia—in programs such as AMIRA P9—has

enabled efforts to be focussed on the topic, and significant progress has been made during the past 25

years in understanding the intricacies of the froth flotation process. As a result, many of the principles

described earlier have been integrated into comprehensive simulators, such as the simulators described

by Schwarz et al. (2006) and Bouchard, Desbiens and Del Villar (2014).

Despite the rich modelling framework available, the number of successful industrial implementations

of model-based control and optimisation strategies (other than basic level control, as described by

Schubert et al. (1995)) remains scarce (Shean and Cilliers, 2011). Reasons for the limited number of

industrial implementations include a lack of instrumentation, a lack of reliable dynamic models and

inadequate regulatory control (Bergh and Yianatos, 2011). The issues of the lack of suitable dynamic

models and insufficient instrumentation to interface with the models cannot be separated and need to

be addressed simultaneously.

Model-based controller implementations often fall into disuse after some time due to the models not

being robust over a large range of operating conditions (Shean and Cilliers, 2011). The use of empirical

models that have been fitted over a limited operating range has similar limitations and requires frequent

recalibration when the operating points shift (Bouchard, Desbiens, del Villar and Nunez, 2009). In
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the absence of real-time measurements to update these models automatically, or at least to alert the

operator of the need for recalibration, the accuracy of the models would deteriorate to a point where

control strategies based on the inaccurate models would fail.

The aim of this chapter is to identify the key variables required in flotation control applications,

identify existing models that take these key variables into account and consider to what extent real-time

measurements required by these models are commonly available on froth flotation plants or are being

developed and can potentially be made available on industrial sites in future. The focus is on long-term

continuous control of industrial processes rather than short-term pilot plant campaigns.

Section 2.2 discusses the key variables that need to be included in a froth flotation model. Section 2.3

investigates the instrumentation that is commonly available on industrial flotation circuits and

considers instrumentation that has been developed but that is not commonly available in industry.

Section 2.4 discusses different froth flotation models that are available in the literature and their use in

model based controller implementations. Concluding remarks are made in Section 2.5.

2.2 KEY VARIABLES IN FLOTATION MODELLING

A number of authors have listed the key variables that are required in the control of froth flotation

processes for example, Finch and Dobby (1990), Lynch et al. (1981), Bergh and Yianatos (2011) and

Laurila, Karesvuori and Tiili (2002). There is, to a large extent, agreement on the set of variables that

needs to be considered. As inputs, or manipulated variables, the following variables can be used to

drive the process in a desired direction:

• reagent additions

• pulp level setpoints

• air flow rate setpoints

• froth wash water rate (most common in columns).

Lynch et al. (1981) also included reagent addition valve locations and the selection of concentrate

streams to combine in concentrate hoppers, but these form part of circuit design parameters rather than

real-time control parameters. This highlights how the model structure, and input and output variables

are determined by the intended purpose of the model and that a model suitable for flotation circuit

design may not be suitable for dynamic control applications.
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Depending on the circuit configuration, feed characteristics are either considered disturbances or

manipulated variables, as indicated by Lynch et al. (1981). Bergh and Yianatos (2011) considered

pulp flow a manipulated variable rather than a disturbance, which would also be the case in integrated

grinding and flotation control applications (Conradie, Bascur, Aldrich and Nieuwoudt, 2003; le

Roux et al., 2017). The following feed properties can be classified as manipulated variables or

disturbances:

• pulp density

• volumetric feed flowrate

• fineness of grind.

The main outputs of the flotation process that capture the economic performance are grade and

recovery. Lynch et al. (1981) also included concentrate density and concentrate flow rate in the outputs

that are referred to as performance variables, as the total concentrate mass that is produced affects

profitability.

Process states have a direct influence on the economic outputs of the process. Process states can be

manipulated by changing one or more of the manipulated variables and are also affected by disturbances

and states in other flotation cells. The following states, also referred to as intermediate variables by

Lynch et al. (1981), need to be considered:

• froth depth

• gas holdup

• bias superficial velocity (mostly columns)

• superficial air velocity

• feed, tailings and concentrate flow rates

• mineral concentrations in all intermediate streams (grades)

• densities of all streams.

The largest discrepancy between the variables described by Bergh and Yianatos (2011) and Laurila et

al. (2002) is in the variables that are considered disturbances. Bergh and Yianatos (2011) only included

the first three disturbances listed below (including two of the feed properties listed one the previous

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE REVIEW

page, that could either be considered disturbances or manipulated variables (Lynch et al., 1981), while

Laurila et al. (2002) included all the variables in the list:

• feed size distribution

• feed grade (minerals concentration in feed)

• feed density

• feed mineralogy (fineness of crystallisation, minerals)

• electrochemical potentials (Eh, pH)

• particle properties (size distribution, shape and degree of liberation)

• froth properties (speed, bubble size distribution and stability).

A possible reason for Bergh and Yianatos (2011) not mentioning e.g. mineralogy and liberation is that

their focus is on dynamic process control compared to the more general approach adopted by Laurila et

al. (2002) that includes circuit design. The importance of electrochemical potential is also dependent

on the minerals being processed and whether multiple minerals that are sensitive to variations in pH

are selectively being floated. The importance of froth properties in flotation optimisation has been

confirmed in experimental trials conducted by Hadler and Cilliers (2009), Hadler et al. (2010a), Smith,

Hadler and Cilliers (2010) and Phillpotts et al. (2021).

The dimensions and complexity of a flotation model need to be considered for real-time control and

optimisation applications. Bergh and Yianatos (2011) managed to explain 92% of the variance in

a flotation process with a reduced parameter set model, by using only six latent variables obtained

through principle component analysis. This confirms that a model with a small parameter set could

still provide sufficient accuracy for control purposes, but the model complexity that is required

to capture process dynamics with sufficient accuracy is likely to be process dependent (Laurila et

al., 2002). Shean and Cilliers (2011) confirmed that all the variables that have been listed in this

section are not necessarily required to obtain good control performance but that their impact needs to

be considered. Simplifying assumptions have been proposed—for example, that the feed distribution

and density would not vary significantly if the grinding circuit control was effective (Wills and

Napier-Munn, 2006). Such simplifying assumptions can potentially be used to simplify models

without degrading controller performance, provided that upstream processes do not invalidate the

simplifying assumptions.
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2.3 INSTRUMENTATION ON INDUSTRIAL FLOTATION CIRCUITS

Reliable real-time measurements are an essential aspect of model based control strategies to ensure

their long-term use (Hodouin, Jämsä-Jounela, Carvalho and Bergh, 2001). Instrumentation that is

commonly found on industrial flotation circuits is described in Section 2.3.1, while other types of

instrumentation referred to in the literature, which have been used in experimental or laboratory

environments, are listed in Section 2.3.2.

2.3.1 Commonly available instrumentation

Laurila et al. (2002) provide a list of measurements that may be available on a flotation plant and

highlight their limitations.

2.3.1.1 Pulp levels

Pulp levels in flotation cells or banks are commonly measured using a float with a target plate and

ultrasonic level transmitter. Level measurements based on hydrostatic pressure or direct ultrasonic

measurements are also available but are often troublesome or sensitive to variations in density.

2.3.1.2 Volumetric pulp flow rate

Pulp flow rates are typically measured using magnetic flow meters. The presence of suspended air

bubbles cause inaccuracies, and the location and orientation of a flow meter are critical in obtaining

reliable and accurate measurements. The volumetric feed flow rate from a conditioning tank to the first

flotation cell in a section is often measured, but pulp flow rates between interconnected flotation cells

are usually not measured due to mechanical constraints.

2.3.1.3 Pulp density

Density can be measured using X-ray fluorescence (XRF) devices or, alternatively, nuclear density

meters. The installation of a density measurement device is critical to prevent the inaccuracies caused

by bubbles. Density measurements are common in the feed to a flotation circuit, but not between

flotation cells.

2.3.1.4 Concentrate flow rate

The direct measurement of concentrate flow rates in open channels are often not viable, and flow rates

inferred from ultrasonic level transmitters in open channels with known dimensions are not accurate.

Where the concentrate is pumped from a concentrate hopper, magnetic flow meters can be used to
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CHAPTER 2 LITERATURE REVIEW

measure the flow rate but any water addition to flotation cells or the concentrate hopper needs to be

accounted for.

2.3.1.5 Concentrate density

The accuracy of concentrate density measurements is often problematic due to the presence of bubbles.

Density measurements on the outflow from concentrate hoppers have been successfully used in mass

pull-based control strategies, as reported by Singh, Louw and Hulbert (2003) and Gomes-Sebastiaõ,

Hearne, Lam, Van der Spuy, Thompson and Vines (2018).

2.3.1.6 Air flow rate

A number of air flow measurement techniques are available that are generally considered accurate. A

limitation is that the combined air flow rate to a bank of cells is often measured but not the flow to

each cell, as described by Hadler et al. (2010a).

2.3.1.7 pH

pH measurements are often problematic due to contamination of the electrode. In some cases,

conductivity probes can be used as a substitute.

2.3.1.8 Chemical or mineralogical analysis

Wills and Napier-Munn (2006) stated that the key to effective flotation control is real-time chemical

analysis. Real-time XRF analysers can provide assays on several elements and the solids content,

but the sampling delay varies between 15 seconds and one minute and, depending on the number of

samples analysed, the cycle time can vary between five and 15 minutes (Laurila et al., 2002). Visual

and near-infra-red reflectance spectroscopic analysis can complement XRF devices and provide grade

analyses at a much higher frequency (Shean and Cilliers, 2011).

2.3.1.9 Particle size analysis

The particle size distribution in pulp streams is commonly measured on industrial plants using laser

scattering and diffraction, ultrasonics or distance measurement techniques (Coghill, Millen and

Sowerby, 2002). An industrial particle size analyser is described by Kongas (2003), and a proto-

type using ultrasonic spectrometry combined with a gamma-ray gauge is described by Coghill et al.

(2002). Laser scattering and diffraction techniques can be sensitive to air bubbles, particle shapes and

particle reflectivity.
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2.3.1.10 Froth image analysis

Flotation cameras differ in complexity and in the number of features that are extracted from the froth

images. Aldrich et al. (2010) list features such as bubble size, shape, colour, velocity, burst rate, and

mineral loading, while the froth height above the lip can also be included, as described by Phillpotts et

al. (2021). Air recovery, α , has been defined by Hadler, Smith and Cilliers (2010b) as a function of

froth velocity, v f , froth height above the lip, h, the width of the lip where the froth overflows, w, and

the inlet air flow rate, Qa, as

α =
v f ·h ·w

Qa
. (2.1)

The measurements required to calculate α can be obtained reliably on industrial flotation circuits.

It is important to note that flotation circuits are often sparsely instrumented. The fact that measurement

devices are available does not imply that every process stream would be instrumented. Flow rates and

on-stream analyses are often only available on critical streams such as the final concentrate and final

tailings streams, and pH measurements are often only available in the conditioning tank (Laurila et

al., 2002). The aim of Section 2.3 is to provide an indication of the types of instrumentation that are

available and can be installed, should it be justified.

2.3.2 Other instrumentation

2.3.2.1 Bubble size in pulp

The McGill bubble sizer (Hernandez-Aguilar, Gomez and Finch, 2002) and the Anglo bubble sizer

(Naik and Drunick, 2007) are used to characterise the operation of froth flotation cells and to detect

faults on cells that are not performing as expected (Malinga, Turrer, Nascimento, Russo, Gonzaga,

Silva, Machado and Sweet, 2018). Both devices use a submerged tube in the pulp, which is connected

to a sloped viewing chamber, to view bubbles inside the pulp phase. The bubbles are photographed,

and the images are processed to calculate the bubble size distribution. There is also room to use

other measurements in soft-sensor applications. Vinnett, Yianatos and Alvarez (2014) showed a linear

relationship between Jg and bubble size over typical operating ranges for Jg, which allows for simple

models to be derived to estimate the bubble size in the pulp.
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2.3.2.2 Superficial gas velocity

Superficial gas velocity, Jgk into cell k can be calculated from the volumetric air flow rate into cell k,

Qairk and the surface area of the flotation cell k, Ak as

Jgk =
Qairk

Ak
. (2.2)

Where Qairk is not measured, manual sampling devices have been used to calculate Jgk based on

the displacement of water by air in a tube suspended in the pulp (Savassi, Alexander and Johnson,

1997).

2.3.2.3 Gas hold-up

Gas hold-up is commonly measured using a differential pressure sensor (Finch and Dobby, 1990;

Yianatos, Moys, Contreras and Villanueva, 2008) or using differential conductivity between an aerated

and de-aerated chamber, as shown by Nesset, Hernandez-Aguilar, Acuna, Gomez and Finch (2006). In

addition, Vinnett, Ledezma, Alvarez-Silva and Waters (2016) listed radioactive tracers and electrical

resistance tomography as alternative approaches to estimate gas hold-up—each technique with its

limitations. Vinnett et al. (2016) developed a soft sensor for gas hold-up based on Jg and the measured

pulp bubble size distribution. The linear relationship between Jg and gas hold-up (Finch and Dobby,

1990) can also be used to develop soft sensors for gas hold-up.

2.3.2.4 Bubble loading

Devices to directly measure bubble loading and techniques to estimate bubble loading are discussed by

Moys, Yianatos and Larenas (2010). All the devices that are discussed rely on manual intervention to

obtain a measurement. The measurement devices capture bubbles that are loaded with hydrophobic

particles. After a period of time, the solid particles that were previously attached to the bubbles, and

the bubble volume are measured to calculate the bubble loading.

2.3.2.5 Froth Recovery

Rahman, Ata and Jameson (2013) described a device to measure froth recovery by collecting both

particles that are dropped from the froth layer and particles that remain attached to the bubbles in

the froth layer. Froth recovery is calculated periodically by manually measuring the weights of the

collected samples.

2.3.2.6 Froth bubble size

In addition to the use of froth cameras to measure the top-of-froth bubble size, an instrument to measure

the bubble size distribution inside the froth layer is described by Bhondayi and Moys (2014). An
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additional outcome of the experiments conducted by Bhondayi and Moys (2014) is that the linear

relationship between froth depth and bubble size has been confirmed.

2.3.2.7 Turbulence

Meng, Tabosa, Xie, Runge, Bradshaw and Manlapig (2016) listed various techniques that have been

trialled to measure turbulence in flotation cells. None of the techniques that are listed is suitable to be

used in a three phase systems. Impeller speed, impeller design, tank size, baffling, impeller size and

aeration rate have been shown to affect turbulence.

2.4 MODELS AND MODEL-BASED CONTROLLERS

The flotation process involves a combination of physical and chemical reactions, with various interac-

tions and disturbances. Generally, flotation modelling approaches can be divided into two categories:

kinetic (first-principle) modelling and data-driven modelling. Kinetic modelling studies mainly in-

clude:

• flotation rate modelling—the influence of operational parameters, such as pulp density, chemical

reagents, aeration rate and froth depth on the flotation rate

• mass balance modelling—mass and volume conservation in a flotation cell

• probability modelling—the probability of collision/adhesion/detachment between particles and

bubbles, and the merging/bursting of bubbles.

Data-driven modelling mainly involves:

• performance evaluation—the relationship between flotation performance and froth features

• grade/recovery prediction—predicting the concentrate grade/recovery using feed characteristics

and operational variables

• soft sensing—estimating key process variables (e.g. pH or pulp level) when the default

instrument is not available or out of order.

A number of relevant model developments, their use in controllers and some key findings are described

in the next section.
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2.4.1 Fundamental models for pulp level control

Fundamental models are commonly used in froth flotation control to stabilise pulp levels down a

bank of interacting cells in the presence of variations in feed rate. Despite their simplicity, flotation

level control systems, such as Mintek’s FloatStar (Schubert et al., 1995), can significantly improve

the economic performance of a flotation plant (Craig and Henning, 2000; Craig and Koch, 2003).

Jämsä-Jounela (1992) described a simplified flotation model based on mass and volume balances

to control a rougher flotation bank. The model parameters were obtained through an experimental

industrial campaign. The level (Lk) response of a flotation cell (k) can be calculated from the difference

between the pulp inflow from an upstream (QTk−1) cell and the pulp outflow from the cell (QTk ) as

dLk

dt
=

QTi−1−QTi

Ak
, (2.3)

assuming a constant cross-section area (Ak) over the range that the flotation cell level (Lk) is expected

to vary.

Jämsä-Jounela et al. (2003) improved the model shown in (2.3) by taking the structure of flotation cells

and valve sizing into account. Various control strategies for pulp level control, including proportional

integral (PI) control, feed-forward control, decoupling control and multivariable control, have been

tested and compared using this model (Kämpjärvi and Jämsä-Jounela, 2003).

2.4.2 Models considering the pulp and froth phases

Grade or mass pull-based control strategies, as described by Singh et al. (2003), require that the froth

phase be considered in addition to pulp levels. To model the froth phase as part of a froth flotation

model, a mass balance forms the core of the model to track mass flows between the feed, tailings and

concentrate streams. Depending on the complexity of the model and the data that is available to fit

model parameters, the mass balance may be performed on specific species in a stream—for example

platinum group minerals (PGMs), chromite and gangue (Du Preez, Crundwell and Knights, 2013)—or

further divided into floatability classes per species based on granulometry (typically, size classes) (Putz

and Cipriano, 2015). Oosthuizen and Craig (2018) investigated how different floatability profiles affect

the accuracy with which grades and recoveries can be estimated in a bank of flotation cells.

Bascur (2005) developed a detailed phenomenological flotation model. The model links the

particle/bubble and water transport mechanisms and the hydrodynamic characteristic of a flotation cell,

and describes the behaviour of particles with different mineralogical composition and particle sizes
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under a wide range of steady-state and dynamic operating conditions. This model provides a detailed

understanding of flotation operations at the expense of increasing complexity.

Deglon, Sawyerr and O’Connor (1999) used a flotation model with attachment and detachment rate

constants in combination with a bubble population balance model to explain inconsistencies in flotation

behaviour. While the focus was the effect of energy input (agitation) on flotation kinetics—mainly for

scale-up—an optimum in the resultant flotation rate constant was illustrated as a function of specific

energy and bubble surface area flux (Sb). In related research Safari and Deglon (2018) describes how

flotation kinetics is affected by the counteracting effects of increased particle-bubble collisions versus

decreased stability, as specific energy input (and potentially Sb) increases.

Bergh and Yianatos (2013) developed a simulator for rougher flotation banks and calibrated it using

experimental data. The simulator was initially used in parallel to the existing control system to evaluate

the effect of changes in operating conditions. It was later redesigned to act as an expert system, but

this functionality has only been tested in a simulated environment. Other industrial implementations

of expert systems (Kewe, Moffat and Schaffer, 2014) and optimisation strategies (Baas, Hille and

Karageorgos, 2007) are often rule-based, with limited detail provided on the underlying models. Bergh

and Yianatos (2013) modelled the mass transfer between the pulp and froth phase by defining a global

cell recovery (RG) based on collection zone recovery (RC) and froth recovery (R f ), as defined in

RG =
RC ·R f

1−RC(1−R f )
. (2.4)

Yianatos et al. (2008) used a similar approach. Although (2.4) can be simplified by lumping the

froth (R f ) and collection zone (RC) recoveries together, Du Preez et al. (2013) noted that a more

detailed model is likely to improve their results, which were based on a single-parameter model. The

complexity of the equations describing the collection zone and froth recoveries shows some variation

between the models by Bergh and Yianatos (2013) and Yianatos et al. (2008). Bergh and Yianatos

(2013) modelled RC as a function of the pulp residence time, flotation rate constants and the maximum

achievable recovery. R f was modelled using two equations. The first is a function of bubble load,

superficial gas rate, concentrate mass flow, cell dimensions, and concentrate and bubble load grades.

The other is a function of a froth stability parameter, froth depth, gas hold-up, superficial gas velocity

and maximum froth recovery. Empirical models were fitted for both RC and R f to model the reduction

in the flotation rate distribution and the reduction of froth stability when moving down a bank of

flotation cells. Gangue recovery was modelled by Bergh and Yianatos (2013) and Yianatos et al. (2008)
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based on water recovery, which is a function of superficial gas rate, froth depth and froth stability. The

model fit used by Yianatos et al. (2008) required an extensive sampling campaign, including grade and

mass data per size class on all streams, density (per stream), and air hold-up, bubble loading and grade,

and aeration rates for each cell.

The compartment model described by Savassi (2005) included similar elements as (2.4) but with the

contributions from true flotation and entrainment to overall recovery explicitly included in a single

equation. Savassi (2005) defined RG as

RG =
kcz · τcz ·R f · (1−Rw)+ENT ·Rw

(1+ kcz · τcz ·RF) · (1−Rw)+ENT ·Rw
, (2.5)

where kcz is the collection zone recovery (flotation rate for the collection zone) and τcz is the residence

time in the collection zone. Similar to (2.4), R f refers to froth recovery, and ENT and Rw refer to the

degree of entrainment and water recovery to the concentrate stream, respectively. Alves Dos Santos,

Savassi, Peres and Martins (2014) showed how phenomenological models could be used as part of

(2.5) to model entrainment, water recovery and froth recovery.

2.4.3 Froth depth profiling

Maldonado et al. (2007) used phenomenological models in a dynamic programming application

to optimise the froth level profile for a bank of flotation cells. Seguel et al. (2015) used the

same model but with a different cost function (maximising overall Cu recovery compared to

minimising the sum of the squared Cu grades in the tailings flows). In both cases, the model

used a single flotation rate constant per species. The flotation rate constant was modelled as a

function of froth depth, residence time and pulp grade and was fitted using industrial data. The

concentrate flow rate was calculated as a function of froth depth, and the rest of the model was

based on mass balances. Although the model was not used in a real-time control application, it

could potentially be used as a simulator running parallel to the plant. The importance of how the

objective function is defined was highlighted in the work by Maldonado et al. (2007) and Seguel et

al. (2015), where subtle changes in the objective function had a major effect on the system performance.

2.4.4 Model based controller implementations

Maldonado, Desbiens and del Villar (2009) implemented an MPC strategy to control a flotation column

pilot plant. A conductivity probe was installed inside the pilot plant column, and gas hold-up in the

collection zone and the wash water bias rate was calculated from conductivity measurements. A
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2x2 model was implemented using an MPC controller, with the outputs defined as the gas hold-up

and bias rate and the inputs as the wash water feed rate and aeration rate. Empirical models (fitted

from operational data) were defined in the MPC controller. Upper and lower limits for both the gas

hold-up and bias rate were included in the controller, based on a desired operating range and expected

constraints within which the process needs to operate.

Putz and Cipriano (2015) used a hybrid MPC (HMPC) strategy on a simulator to control the final

tailings grade of a flotation circuit subject to level constraints. The hybrid functionality was used

to include scenarios where the pulp overflows and when the froth flow rate is zero, in addition to

normal operation. The core of the model was a mass balance performed on a number of defined

granulometries (size classes) for each species considered. The pulp levels in cells were calculated

using a similar approach as described in (2.3), including valve dynamics and the effect of the relative

heights of interacting cells. Collection rates (per granulometry class) define the mass transfer between

the pulp and froth phases, while a drainage rate determines the mass transfer between the froth and

pulp phases. Although the model included parameters such as air hold-up (in the level calculation)

and reagent addition, no attempt was made to manipulate aeration rate or reagent addition for control

purposes.

An example of an industrial MPC controller implementation on a copper rougher circuit was

described by Brooks and Munalula (2017). Froth velocities (calculated from camera images) were

controlled as part of the control strategy by manipulating air addition, cell pulp level setpoints

and the frother dosage rate. The controller had limits configured on the concentrate and tailings

grades. The MPC controller’s objective function was configured to maximise recovery by maxim-

ising froth velocities. Empirical linear models were configured for the controller based on step-test data.

2.4.5 Peak air recovery

It has been shown that both grade and recovery are maximised when flotation cells are operated at

their peak air recoveries (Smith et al., 2010). A fundamental model has been developed to calculate air

recovery based on froth film characteristics (Neethling and Cilliers, 2008). However, a controller that

was implemented to operate a pilot scale flotation cell at its peak air recovery point used a peak-seeking

strategy without including any models (Shean et al., 2017).
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2.4.6 Observations from modelling and controller implementations

Remes, Kongas, Saloheimo and Jämsä-Jounela (2005) came to an important conclusion regarding

the role of stabilisation in the presence of measurement accuracies and sampling delays. Remes et

al. (2005) developed a dynamic flotation model to study the influence of measurement accuracy and

sampling frequency of real-time XRF analysers on the economical performance of the flotation process.

It was shown that, to reduce the error caused by the measurement delay, fast basic measurement and

control are necessary to complement process analysers and keep the process stable until the next assay

arrives.

The benefit of a fundamental model over empirical models was demonstrated in a study by Zheng,

Franzidis and Johnson (2006), who compared various empirical water recovery models to the

fundamental water recovery model by Neethling, Lee and Cilliers (2003). Although the empirical

models managed to model specific circuits reliably, only the fundamental model was able to model

various circuits over a wide range of operating conditions. For this reason, fundamental models are

preferred over empirical models, subject to constraints on model complexity and the ability to measure

a sufficient number of the variables used in fundamental models.

2.4.7 Control strategies based on image analyses

Due to the close relationship between visual froth surface features and flotation performance, research

has been done on the use of flotation cameras as soft sensors for grades to provide measurements

at a faster rate than what can be provided by XRF analysers. Significant progress has been made in

understanding froth behaviour and quantifying the impact of manipulated and disturbance variables

on froth characteristics, such as the effect of reagent dosage on bubble size (Zhu, Gui, Yang, Xu and

Wang, 2014). He, Yang, Wang, Gui and Wei (2013) utilised a probability density function (PDF) of the

froth colour texture unit number to characterise froths based on colour and texture. A nonparametric

estimation method based on the fixed normal kernel basis was proposed to describe this distribution.

Xu, Chen, Xie, Yang and Gui (2015) proposed a comprehensive network-based texture extraction

and classification method for froth imaging to extract the distinctive froth texture features in different

production states. Liu and MacGregor (2008) developed a control strategy to achieve desired froth

image properties that are related to froth stability by manipulating reagent addition rates. Zhu, Gui, Liu,

Xu and Yang (2016) described the use of a B-spline estimator to determine the bubble size distribution,

which is, in turn, used to classify bubble size distributions with non-Gaussian features. A multi-output
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least square support vector machine (MLS-SVM) was then applied to establish a dynamic relationship

between the weights of the B-spline estimator and the reagent dosage rate. Based on this structure, a

reagent addition control strategy was implemented to track a desired bubble size distribution.

Other soft-sensing applications using froth images have also been evaluated. Xu, Chen, Chen, Xie,

Yang and Gui (2016) proposed a multi-model soft measurement method to estimate the froth layer

thickness based on visual features. The froth layer thickness was established by kernel extreme learning

machine (KELM) models under different working conditions.

Aldrich et al. (2010) concluded that despite several advances in machine vision on flotation froths,

conflicting results were obtained on linking image features to froth grade and no long-term fully

automated control system based on machine vision has been developed to date. However, there may be

scope to use froth image properties in combination with a flotation model and other measurements

to calculate grade and other flotation characteristics. Ai, Xie, Tang, Zhang and Gui (2021) and

Wang, Zhou, Song, Liu and Wang (2022) showed encouraging results in calculating setpoints for

pulp levels and reagent addition rates respectively, by developing process control applications that

integrate machine vision, machine learning, and physical measurements on the feed to a flotation circuit.

2.5 CONCLUDING REMARKS

The motivation to develop many of the existing flotation models is to model different circuit configura-

tions or operating practices accurately, either for circuit design purposes or to recommend changes that

would improve operation. Examples of such activities are described by Schwarz et al. (2006). Under

these circumstances, a detailed sampling campaign can often be justified to provide the data to fit a

comprehensive set of model parameters. Where models are to be used in continuous automatic control

and optimisation applications, extensive manual sampling campaigns are not viable on an ongoing

basis, and real-time measurements need to be used to maintain model integrity. A model for continuous

control and optimisation applications would thus need to be structured in such a way that available

real-time measurements provide the stimuli to the process model and also maintain model integrity by

estimating the model parameters where possible.

Basic froth flotation models are typically extended to characterise some behaviour that cannot be

explained by existing models. While more detailed models are essential to improve model accuracy
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and advance knowledge about the process, more comprehensive flotation models have a larger set

of parameters that needs to be fitted initially and updated regularly to maintain model consistency.

Steady-state models are required for circuit design and improvement activities, as described by Schwarz

et al. (2006), while models for dynamic process control applications require a focus on the dynamic

responses of models and the changes in process variables over time. For dynamic control purposes,

some accuracy could potentially be sacrificed in exchange for fewer parameters, as feedback provides

a mechanism to correct discrepancies between the model outputs and the measurements. However, it

is critical to include non-linear behaviour in the model, particularly where non-linearity changes the

sign of the model response—for example, as is the case with the effect of Jg on grade below or above

the peak in air recovery, as described by Hadler and Cilliers (2009) and Hadler et al. (2010b). While

the decision on which interactions to ignore are not trivial, the limited set of measurements available

on industrial flotation circuits dictates that simpler models with a significantly reduced parameter set

are required, to ensure that model parameters and states can be updated dynamically from real-time

measurements that are commonly available on industrial flotation circuits.

Although laboratory and pilot plant scale applications can provide information that can be used to

derive empirical models for use in industrial applications, the long-term reliability of these models in

the presence of changing operating conditions is a concern (Bouchard et al., 2009). Phenomenological

models should thus take priority if they are viable, but as all models and sensors would require

periodic calibration, empirical models still have an important role to play in modelling and control

applications.

While this chapter has covered a small portion of the flotation models and controller implementations

on froth flotation circuits described in the literature, it provides an overview of the modelling techniques

commonly employed and highlights the scarcity of model-based controllers used on industrial flotation

circuits. The MPC strategy described by Maldonado et al. (2009) was only implemented on a pilot

plant, and the HMPC strategy described by Putz and Cipriano (2015) was implemented on a simulator.

A review of flotation models for froth flotation control by Quintanilla, Neethling and Brito-Parada

(2021) came to similar conclusions: that very few examples of industrial implementations of MPC

control are available, existing models focus on phenomena that are mostly applicable to the pulp phase,

and the models used in controllers are mostly empirical models that are valid over a limited operating

range.
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The froth flotation model that is developed in the next chapter addresses these issues by providing a

flotation model for dynamic process control and optimisation applications with sufficient complexity to

describe the main flotation mechanisms, without losing the ability to continuously estimate key flotation

parameters, by using real-time process measurements that are commonly available on industrial

flotation circuits.
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CHAPTER 3 MODEL DEVELOPMENT

3.1 CHAPTER OVERVIEW

This chapter is based on Oosthuizen et al. (2021) and describes the development of a dynamic froth

flotation model that can be used in advanced model-based control and optimisation applications. A key

aspect of the model is that the main model parameters can be estimated from real-time measurements

that are commonly available on industrial flotation circuits, as confirmed by the state observability

and controllability analysis shown in Chapter 4. Existing models available in the literature are

combined into a model structure that allows model parameters to be estimated from real-time process

measurements, and where suitable models are not available, empirical relations are derived.

Dynamic froth flotation models that include interactions in the pulp and froth phases are not common

in the literature (Quintanilla et al., 2021), and where detailed froth flotation models are available

(Bascur, 2005; Schwarz et al., 2006), the number and nature of parameters used in these models often

require sampling and modelling campaigns that are much more extensive (and potentially disruptive)

than the routine sampling commonly conducted on flotation processes.

Sections 3.2.1 and 3.2.2 show fundamental mass and volume balance models as the core of the

model to describe pulp flows between flotation cells and the flow of the concentrate streams from

flotation cells into a concentrate hopper. The steady-state water recovery model of Neethling and

Cilliers (2009) is shown in Section 3.2.3 as the first component of the concentrate volumetric flow

rate from each cell. Section 3.2.4 describes the concentrate mass flow model as a combination of

a dynamic kinetic model for true flotation (Polat and Chander, 2000) and a steady-state model for

entrainment (Neethling and Cilliers, 2009). A simplification of the entrainment model is also shown.

The total concentrate volumetric flow rate model is described in Section 3.2.5 as a combination of the

water recovery model described in Section 3.2.3 and the concentrate mass flow models described
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in Section 3.2.4. Section 3.2.6 describes top-of-froth bubble size and air recovery models and the

derivation of linear relationships based on data that were collected on an industrial flotation circuit

(Hadler et al., 2010a). Section 3.3 compares the modelled inputs, disturbances, states and outputs to

the key variables identified in Chapter 2 to confirm that the key variables are included in the model that

is derived in this chapter, and that model outputs correspond with measurements that are commonly

available on industrial flotation circuits. The parameters fitted to the empirical models (Section 3.2.6)

are described in Section 3.5. A steady-state simulation of the model using operating ranges from an

industrial plant as described by Hadler et al. (2010a) is shown in Section 3.6.

3.2 MODEL DESCRIPTION

3.2.1 Volume balance

Mass and volume balances can be used to describe the transfer of pulp between flotation cells, the

transfer of concentrate from flotation cells to a concentrate hopper, and also the transfer of materials

between the pulp and froth phases within a flotation cell. Figure 3.1 shows the volumetric flow rates

between four flotation cells and a concentrate hopper similar to the rougher section described by Hadler

et al. (2010a).

Cell 1

Air

QAir1 QAir2 QAir3 QAir4

L1

h f1

L3

h f3

L4

h f4

LH
QH

QC1

QC2

QC3

QC4

QT2

QT3 QT4

Concentrate hopper

Cell 4
Cell 3QF1

QT1

Cell 2

L2

h f2

Figure 3.1. Volumetric flow rates between four flotation cells and a concentrate hopper.
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The volumetric feed flow rate (QF1) and density (ρF1) are typically measured, and feed composition

can be measured using an XRF device. For each cell k, a volume balance is defined as

dVk

dt
= Ak

dLk

dt
= QFk −QTk −QCk , (3.1)

where QFk is the volumetric feed flow rate to cell k, QTk is the volumetric tailings flow rate from cell k,

QCk is the volumetric concentrate flow rate from cell k, Ak is the surface area of cell k and Lk is the

pulp level in cell k. It is assumed that the flotation cell surface area, Ak, is uniform over its typical

operating range.

The tailings flow rate from cell k is the feed flow rate to cell k+1 (QTk = QFk+1). Jämsä-Jounela et al.

(2003) modelled the tailings flow rate, QTk , from flotation cell, k, as

QTk =Cvk zk
√

Lk−Lk+1 +hk , (3.2)

where Cvk is a constant that characterises the flow through the tailings valve with valve opening zk,

and hk is the physical difference in height between cells k and k+1. It is assumed that a stabilisation

controller as described by Schubert et al. (1995) is available to stabilise flotation pulp levels, Lk, by

manipulating valve positions, zk, to achieve the tailings flows rates, QTk , from each flotation cell,

k.

For the concentrate hopper with level LH , and surface area AH , the volume balance includes the

concentrate inflows from all N contributing cells (QC1 +QC2 + ...+QCN ) and the outflow from the

hopper (QH) as
dVH

dt
= AH

dLH

dt
= QC1 +QC2 + ...+QCN −QH . (3.3)

3.2.2 Mass balance

The rate of change in mass in each flotation cell, d
dt Mi, j

k is calculated from the mass balance:

d
dt

Mi, j
k = Ṁi, j

Fk
− Ṁi, j

Tk
− Ṁi, j

Ck
, (3.4)

where Ṁi, j
Fk

and Ṁi, j
Tk

are the mass flow rates into and out of flotation cell k, respectively, and Ṁi, j
Ck

is the

mass flow rate out of flotation cell k via the concentrate stream. The feed mass flow rate, Ṁi, j
Fk

, into cell

k is calculated from the feed volume, feed density and feed composition as

Ṁi, j
Fk

= QFk

SGl SGsCwk

100SGs− (SGs−SGl)Cwk

Gi, j
Fk
, (3.5)
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where QFk is the volumetric feed flow rate into flotation cell k, Cwk is the percentage solids by weight

of the pulp flowing into cell k, SGs and SGl are the specific gravities of the ore and liquid, respectively,

and Gi, j
Fk

is the feed grade of mineral species i and mineral class j to cell k. Equation (3.5) will be

used to calculate the mass flow rates to the first flotation cell in the rougher circuit. The mass flow

rates of different mineral species, i, are modelled separately to distinguish between desired (usually

floatable) minerals containing the elements that the flotation circuit aims to recover and other gangue

or undesired minerals. In addition, each species can be divided into multiple classes, j, where each

class could have different floatability characteristics (Oosthuizen and Craig, 2018) and/or different size

distributions affecting entrainment. The symbols are described in Table 3.1.

Table 3.1. Mass balance symbols.

Variable Unit Description

i - Superscript for mineral species (e.g. gangue or valuable mineral)

j - Superscript for mineral class with different floatability or size

k, H - Subscript for unit (flotation cell k, or hopper, H)

∆ - Subscript for concentrate C, tailings T , and feed F

Mi, j
k kg Accumulated mass of species i and class j, in cell k

Ṁi, j
∆k

kg/h Mass flow rate associated with a specific cell, k

Q∆k m3/h Volumetric flow rate associated with a specific cell, k

Cwk % Percentage solids by weight in the slurry feed to cell k

SGs - Specific gravity of the bulk solids

SGl - Specific gravity of the liquids

For the flotation cells, the tailings mass flow rate from cell k equals the feed flow rate to cell k+ 1

(Ṁi, j
Fk+1

= Ṁi, j
Tk

). The tailings mass flow rates from each cell can be calculated as the tailings volumetric

flow rate Ṁi, j
Tk

multiplied by the concentration of each species Mi, j
k inside the flotation cell, as

Ṁi, j
Tk

=
Mi, j

k
LkAk

QTk , (3.6)

where the pulp volume of cell k is given by the pulp level, Lk, multiplied by the surface area, Ak, of

cell k.
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For the concentrate hopper, a similar approach can be followed, with the change in the mass of mineral

species, i, and mineral class, j, in the concentrate hopper given by

d
dt

Mi, j
H =

N

∑
k=1

Ṁi, j
Ck
− Mi, j

H
LHAH

QH . (3.7)

The first term in (3.7) is the total inflow of mineral species i and mineral class j into the concentrate

hopper, as the sum of the concentrate mass flow rates Ṁi, j
Ck

from N contributing cells. The second term

in (3.7) is the mass outflow rate of each mineral species, i, and mineral class, j, from the concentrate

hopper, as a function of the mineral species in the hopper, Mi, j
H , the volumetric flow rate out of the

hopper, QH , and the concentrate volume in the hopper, as a function of the hopper surface area, AH ,

and the hopper level, LH .

The hopper mass pull rate is given by

ṀTot
H =

m

∑
i=0

n

∑
j=0

Mi, j
H

LHAH
QH , (3.8)

where m and n are the number of modelled mineral species and classes, respectively.

3.2.3 Water recovery to the froth phase

The first component of the concentrate volumetric flow rate from each cell, QWk , can be calculated

from the steady-state water recovery model given by Neethling and Cilliers (2009). For a two-phase

system, Neethling and Cilliers (2003) showed that froth depth or froth residence time are not the

main causes of reduced water recovery observed when the froth height increases (Wang, Peng and

Runge, 2016; Zheng et al., 2006) but rather the increase in bubble size associated with deeper froths.

Neethling and Cilliers (2003) showed that water recovery has an inverse squared relation to bubble

diameter, with the proportionality constant determined by the bubble shape. The model for water

recovery is defined as

QWk

Ak
=


Jgk

2 λout

k1
(1−αk)αk 0 < αk < 0.5

Jgk
2 λout

4k1
αk ≥ 0.5

, (3.9)

where Jgk is the superficial gas velocity for cell k, and αk is the air recovery for cell k.

The Plateau border length (λout) per volume of froth as used in (3.9) is defined as

λout ≈
6.81

DBFk
2 , (3.10)
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where DBFk is the mean top of froth bubble diameter for cell k. It is assumed for (3.10) that the bubbles

have similar geometry as Kelvin cells (Neethling and Cilliers, 2003). k1 in (3.9) quantifies the opposing

forces acting on a particle due to gravity and viscosity, and is defined as

k1 =
ρg

3 µ CPB
, (3.11)

where ρ is the fluid density, CPB is the Plateau border drag coefficient and µ is the fluid viscosity. Jgk

is calculated from the aeration rate Qairk of the flotation cell and its surface area, Ak, as

Jgk = 100
Qairk

Ak
. (3.12)

Table 3.2 summarises the variables for the water recovery model and provides the units for each

variable.

Table 3.2. Variables used in concentrate flow rate and entrainment models (Neethling and Cilliers,

2009).

Variable Units Description Typical value

CPB − Plateau border drag coefficient 50

DBFk mm Mean top of froth bubble diameter for cell k 10

Jgk mm/s Superficial gas velocity for cell k 10

Pe − Dispersion Peclet number 0.15

Qairk m3/h Volumetric air flow rate to cell k 360

dpmin µm Particle minimum diameter 10

dpmax µm Particle maximum diameter 150

g m/s2 Gravitational acceleration 9.81

h fk mm Froth depth 110

αk − Air recovery for cell k 0.25

ρ
i, j
s kg/m3 Solid particle density for species i and class j 3000

ρ kg/m3 Fluid density 1000

µ Pa · s Fluid viscosity 0.001

3.2.4 Concentrate mass flow rate

The two main flotation mechanisms governing the transfer of material between the pulp and

overflowing froth phases are the true flotation of hydrophobic particles and entrainment of all particles
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together with the bubble stream (Wills and Napier-Munn, 2006). True flotation is often modelled as a

first-order process, while entrainment is a function of particle size, density and the upward stream of

liquid (water recovery) as part of the bubble stream. The bulk of the desired mineral in the concentrate

stream would typically be hydrophobic particles (due to true flotation) and the bulk of the gangue

minerals in the concentrate stream would typically be entrained particles. However, both desired and

gangue minerals are entrained into the froth layer, and depressants are often required as a reagent

to suppress weakly floatable gangue minerals. In this work, both true flotation and entrainment are

modelled for all mineral species to quantify the contribution of each mechanism to the final concentrate

stream and provide insight into the effectiveness of the flotation reagents (depressants and activators).

A model-based control system can optimise the true flotation and entrainment mass flows from each

flotation cell by exploiting differences in the concentrations of mineral species among flotation cells

and their impact on the combined grade and recovery of the concentrate stream.

3.2.4.1 True flotation model

True flotation is usually modelled using a kinetic model based on a chemical reactor analogy, as

described by Polat and Chander (2000), for a batch reactor. Such a model has the general form:

dCi, j
pk

dt
=−Ki, j Ci, j

pk
Cbk R fk , (3.13)

where Ci, j
pk represents the concentrations of particles of species i, class j in the pulp of cell k, and Cbk

represents the concentration of bubbles in the pulp. Ki, j is a pseudo rate constant that depends on

various parameters affecting the flotation process. Ki, j is modelled as a distribution with different

values for each species i and class j. R fk represents the froth recovery.

In this work, Ki, j accounts for all mechanisms in the pulp related to the attachment and detachment of

hydrophobic particles to air bubbles. The true flotation model of (3.13) is hence modified to include

the detachment of particles in the froth phase due to bursting bubbles, by setting R fk equal to the

air recovery (αk), described in Section 3.2.3. As the attachment of particles only takes place on the

surfaces of bubbles, the effect of bubble surface area flux is taken into account by replacing Cbk in

(3.13) with a bubble surface area flux term, as described by Runge and Franzidis (2003) as

Sbk = 6
Jgk

DBPk

. (3.14)

Assuming that the operational range of the froth depth (h fk ) has a negligible effect on the pulp volume,

the change in mineral concentration in the cell due to true flotation (Ci, j
pk ) is replaced in (3.15) by a
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change in the mass of each species and class (Mi, j
k ) in flotation cell, k:

dMi, j
k

dt
=−Ki, j Mi, j

k Sbk αk , (3.15)

where DBPk is the Sauter mean bubble diameter in the pulp for cell, k. Table 3.3 summarises the

variables for the true flotation model and provides the units for each variable.

Table 3.3. Variables used in the true flotation model.

Variable Units Description

Ci, j
pk kg/m3 Concentrations of particles of species i, class j in the pulp of cell k

DBPk mm Sauter mean bubble diameter in pulp for cell k

Ki, j − Flotation rate constant for species i, class j

R fk − Froth recovery for cell k, assumed to be equal to αk

Sbk s−1 Bubble surface area flux for cell k

3.2.4.2 Entrainment model

The entrainment model is based on the steady-state model by Neethling and Cilliers (2009), but is

simplified to lump the effect of different size classes together. The original entrainment model of

Neethling and Cilliers (2009) calculates an entrainment factor, Ent i, j, as

Ent i, j ≈


exp
(
− vi, j

set
1.5

h fk

DAxial
√

Jgk αk(1−αk)

)
0 < αk < 0.5

exp
(
− 2vi, j

set
1.5

h fk
DAxial
√

Jgk

)
αk ≥ 0.5

. (3.16)

Ent i, j in (3.16) defines the fraction of particles with a defined size, dp, and density, ρ
i, j
s , that will be

entrained for a specified Jgk and froth depth, h fk (3.16). The particle settling velocity, vi, j
set , in (3.16) is

defined as

vi, j
set ≈

1
3

g(ρ i, j
s −ρ)d2

p

18µ
, (3.17)

for species i and class j. The axial dispersion coefficient, DAxial , in (3.16) is given by

DAxial ≈
J1.5

gk√
k1
(√

3−π/2
)

Pe

, (3.18)

where Pe is the dispersion Peclet number (Neethling and Cilliers, 2009). The variables and units

for the entrainment model are defined in Table 3.2. Neethling and Cilliers (2009) noted that

although Ent i, j does not include a term for the froth bubble size, the water recovery defined in (3.9)

is dependent on DBFk , implying that the entrained mass is a function of froth depth and froth bubble size.
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3.2.4.3 Simplified entrainment model

Equation (3.16) has a sharp transition between an entrainment factor of 0 and 1 over a narrow range in

Jgk for a particular particle size, dp. Using a single entrainment factor with an average particle size does

not provide an accurate model with a gradual increase in entrainment (of particles of different sizes) as

Jgk increases, and using multiple entrainment factors to model different particle sizes quickly increases

model dimensions beyond practical limits. A simplified entrainment factor Ent i, j
var was consequently

derived to describe the entrainment of particles as a function of Jgk and h fk , based on the entrainment

models described in (3.16 - 3.18). Ent i, j
var is defined as

Ent i, j
var = exp(−

Ki, j
ent h fk di, j

ptr
3

Jgk
2 ) , (3.19)

where all other variables are lumped together in the single constant Ki, j
ent , defined as

Ki, j
ent =

[
1
3

g(ρ i, j
s −ρ)

18µ

]1.5
√

k1
(√

3−π/2
)

Pe√
αk(1−αk)

. (3.20)

The particle diameter, di, j
ptr, for which the entrainment factor equals 0.5, can be calculated from (3.19)

and (3.20) as

di, j
ptr =

3

√
− ln(0.5)Jgk

2

Ki, j
ent h fk

. (3.21)

For smaller particles, in particular, the entrainment factor changes from 0 to 1 over a fairly narrow

range of superficial air velocities. Assuming that this transition occurs rapidly, and also assuming

a flat size distribution profile over all size classes (on a log axis), the fraction of the material (of all

size classes) that is entrained, Ent i, j
Frac can be estimated as the ratio of the size class for which 50%

is entrained over the total size range, where dpmin and dpmax represent the minimum and maximum

ranges of the size classes that are modelled, as described by

Ent i, j
Frac =

ln(di, j
ptr)− ln(dpmin)

ln(dpmax)− ln(dpmin)
. (3.22)

A comparison of the original entrainment factor Ent i, j in (3.16) (Neethling and Cilliers, 2009) and

the simplified entrainment factor Ent i, j
Frac in (3.22) is shown in Figure 3.2. This figure shows a good

correlation over a wide range of Jgk , between 0 and 1 cm/s. For the comparison shown in Figure 3.2,

dpmin = 8µm, dpmax = 220 µm and αk = 0.5 were used.
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Figure 3.2. Comparison of original (3.16) and simplified (3.22) entrainment models.

3.2.4.4 Combined concentrate mass flow rate

The overall concentrate mass flow rate from each cell Ṁi, j
Ck

includes true flotation and entrainment

components. Ent i, j is defined as the ratio of the entrained solids concentration Ci, j
ck to the pulp solids

concentration Ci, j
pk , as shown in

Ent i, j ≈ Ci, j
ck

Ci, j
pk

. (3.23)

Equations (3.15), (3.23), (3.20) and (3.22) can be combined to yield

Ṁi, j
Ck

= Ki, j Mi, j
k Sbk αk +Ent i, j

Frac
Mi, j

k
Ak Lk

QCk , (3.24)

with Ci, j
pk in (3.23) defined as

Ci, j
pk
=

Mi, j
k

Ak Lk
. (3.25)

3.2.4.5 Variables calculated from the concentrate mass flow rates

The concentrate grade from each cell k, GCk , can be calculated from (3.24) as the ratio of the desired

element mass flow rate in the concentrate stream, ṀDCk (which may occur in a single or multiple
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mineral species), relative to the total concentrate mass flow rate, as

GCk =
ṀDCk

∑
m
i=1 ∑

n
j=1 Ṁi, j

Ck

. (3.26)

An instantaneous recovery, RCk , can be calculated as the ratio of the desired element mass flow rate in

the concentrate stream relative to the desired element mass flow rate in the feed stream ṀDF , as

RCk =
ṀDCk

ṀDF
. (3.27)

Despite the instantaneous recovery not taking variability in the feed composition and residence times

in the flotation circuit into account, it provides a useful real-time approximation of recovery. The

measured concentrate grade from the hopper, GH , can be calculated from the ratio between the desired

mass, MDH , and the total masses in the concentrate hopper as

GH =
MDH

∑
m
i=1 ∑

n
j=1 Mi, j

H

. (3.28)

3.2.5 Combined concentrate volumetric flow rate

The first component of the concentrate volumetric flow rate from each cell was defined in Section 3.2.3

based on the steady-state water recovery model described by Neethling and Cilliers (2009). Equa-

tion (3.9) needs to be extended to also include the volumetric flow rate of minerals due to true flotation

as described in Section 3.2.4.1. The volumetric concentrate flow rate for flotation cell k is given

by

QCk =


Ak

Jgk
2 λout

k1
(1−αk)αk +

dMi, j
k

dt /ρ
i, j
s 0 < αk < 0.5

Ak
Jgk

2 λout

4k1
+

dMi, j
k

dt /ρ
i, j
s αk ≥ 0.5

, (3.29)

where dMi, j
k

dt is the mass flow rate of mineral species i, class j to the froth phase in cell k due to true

flotation, and ρ
i, j
s is the density of mineral species i, class j.

3.2.6 Froth stability and bubble size models

The entrainment, water recovery and true flotation models described in (3.9), (3.15), (3.22) and (3.23)

use bubble size (DBFk ) and air recovery (αk) as parameters. These are dynamic parameters that vary

with operating conditions and need to be modelled.
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CHAPTER 3 MODEL DEVELOPMENT

Several attempts have been made to model αk or other measures of froth stability and the effect of the

entrained and attached particles on froth stability—often with conflicting results (Ata, 2008; Tang and

Tan, 1989). Zheng et al. (2006) and Barbian, Ventura-Medina and Cilliers (2003) reported a strong

correlation between air recovery and the ratio between froth depth and h f roth−max, where h f roth−max is

an experimentally determined maximum depth that froth would grow to in a non-overflowing column.

However, h f roth−max is not constant but increases as a function of the aeration rate (Barbian et al., 2003).

Although different measures of froth stability are used in the literature, good correlations have been

reported for some measures of bubble burst rates, dynamic froth stability and air recovery (Morar,

Hatfield, Barbian, Bradshaw, Cilliers and Triffett, 2006).

The role of bubble size in froth stability was investigated by Geldenhuys and McFadzean (2019) and

Gallegos-Acevedo, Espinoza-Cuadra, Perez-Garibay and Pecina-Trevino (2010). It was concluded that

the top-of-froth bubble size in a non-overflowing column is determined by the bubble loading and is

independent of the pulp bubble size. It was further shown that h f roth−max follows a decaying trend with

pulp bubble size. Ata (2008) performed experiments to determine the coalescence time of bubbles

with varying surface coverings. It was shown that the relation between the coalescence time between

two bubbles and the percentage of their surface coverage is mostly linear. Gallegos-Acevedo et al.

(2010) obtained similar results but also showed how the average bubble size stabilised at a constant

value of approximately 3 mm for high bubble loadings, while the average bubble size exceeded 5 mm

at lower loadings, indicating that further coalescence was inhibited at high bubble loadings.

Neethling and Cilliers (2003) used common probability functions to determine the probability that a

bubble film would fail, both in the models for bubble coalescence and in models for bubbles bursting

at the top of the froth. Morar, Bradshaw and Harris (2012) used similar variables and fitted the bubble

burst rate to a power function of both bubble size and bubble loading, but the sign of the power

function was not consistent for all experiments. Despite agreement on the mechanisms affecting

froth stability, Neethling and Brito-Parada (2018) concluded that the mechanisms for froth stability

cannot be modelled with sufficient accuracy, and hence used an empirical relation to model froth

stability and bubble size in combination with the fundamental water recovery model described in

(3.9) - (3.11).

Empirical models of top-of-froth bubble size and air recovery were derived by Oosthuizen et al. (2021)

based on industrial data collected by Hadler et al. (2010a). The steady-state top-of-froth bubble size
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CHAPTER 3 MODEL DEVELOPMENT

DBFSSk in cell k is given by

DBFSSk = KBFJg Jgk +KBFλ
λairk +DOSk , (3.30)

where KBFJg , KBFλ
and DOSk are empirical constants, and λairk is the average froth residence time,

defined as

λairk =
h fk

Jgk

. (3.31)

A variation on the αk model fitted by Oosthuizen et al. (2021) was used to ensure that αk has a peak in

Jgk , which depends on h fk (Hadler, Greyling, Plint and Cilliers, 2012). The steady-state model of air

recovery, αSSk is given by

αSSk = KαJg
(Jgk −KαJgk

−Kαh f
h fk)

2 +αOSk , (3.32)

where KαJg
, KαJgk

, Kαh f
and αOSk are empirically fitted parameters. KαJg

is a negative constant to define

a parabola with a peak air recovery at Jgk = KαJgk
+Kαh f

h fk .

The top-of-froth bubble size DBFk for flotation cell k is defined as a function of DBFSSk , in (3.30) and

λairk in (3.31), as
d
dt

DBFk =
DBFSSk −DBFk

λairk

. (3.33)

Similarly, the air recovery for cell k, αk, is defined as a function of αSSk , in (3.32) and λairk in (3.31),

as
d
dt

αk =
αSSk −αk

λairk

. (3.34)

First order models with unity gains define the dynamic responses of superficial gas velocities (Jgk ) to

setpoint changes (JgSPk ) as
d
dt

Jgk =
JgSPk − Jgk

τJgk

, (3.35)

where τJgk is the first order time constant of the air valve response of cell k.

3.2.7 Model summary

The symbols used in the flotation model are shown in Table 3.4, and the estimated model parameters

are shown in Table 3.5. The state equations for each flotation cell, k, are summarised in Table 3.6,

and the state equations for the concentrate hopper are summarised in Table 3.7. The Online measured

column in Tables 3.6 and 3.7 indicates if a state is measured. Additional measured model outputs

(calculated from states) are shown in Table 3.8, and measured disturbances are shown in Table 3.9.
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CHAPTER 3 MODEL DEVELOPMENT

The model states in Tables 3.6 and 3.7 that are not measured need to be estimated together with the

estimated parameters shown in Table 3.5.

Table 3.4. Flotation model symbols.

Variable Unit Description

i - Superscript for mineral species (e.g. gangue or valuable mineral)

j - Superscript for mineral class with different floatability or size

k, H - Subscript for unit (flotation cell k, or hopper H)

∆ - Subscript for concentrate C, tailings T , and feed F

Ak, AH m2 Surface area of cell k or concentrate hopper H

Jgk mm/s Superficial gas velocity for cell k

JgSPk mm/s Superficial gas velocity setpoint for cell k

Mi, j
k kg Accumulated mass of species i and class j in cell k

Ṁi, j
∆k

kg/h Mass flow rate associated with a specific cell k

Q∆k m3/h Volumetric flow rate associated with a specific cell k

Qairk m3/h Volumetric air flow rate to cell k

h fk mm Froth depth

λairk s Average froth residence time (
h fk
Jgk

)

τJgk s First order time constant of the air valve response of cell k
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Table 3.5. Model parameters to be estimated.

Symbol Unit Description

KBFJg s Effect of the superficial gas velocity on the mean top-of-froth bubble diameter

KBFλ
mm/s Effect of the average froth residence time on the mean top-of-froth bubble

diameter

KαJgk
mm/s Value of the superficial air velocity in cell k where air recovery is maximised

when h fk = 0

KαJg
s2/mm2 Effect of the difference between Jgk and Jg0 squared on air recovery

Kαh f
1/s Effect of a change in h fk on the superficial air velocity where air recovery is

maximised

αOSk - Offset included in steady-state air recovery equation, αSSk in cell k

DOSk mm Offset included in the steady-state top-of-froth bubble diameter equation,

DBFSSk in cell k

Cvk m5/2/h Valve constant for cell k

CPB - Plateau border drag coefficient

Ki, j - Flotation rate-constant for species i, class j

Table 3.6. States for each flotation cell.

Symbol Unit Description State equation Online

measured

DBFk mm Top of froth bubble diameter d
dt DBFk =

DBFSSk−DBFk
λairk

Yes

αk - Air recovery d
dt αk =

αSSk−αk

λairk
Yes*

Lk m Cell pulp level d
dt Lk = (QFk −QTk −QCk)/Ak Yes

Mi, j
k kg Masses in flotation cell d

dt Mi, j
k = Ṁi, j

Fk
− Ṁi, j

Tk
− Ṁi, j

Ck
No

Jgk mm/s Superficial gas velocity d
dt Jgk =

JgSPk−Jgk
τJgk

No

* ‘measured’ as indicated in (2.1)
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Table 3.7. States for the concentrate hopper.

Symbol Unit Description State equation Online measured

LH m Hopper level AH
dLH
dt = ∑

N
k=1 QCk −QH Yes

Mi, j
H kg Masses in hopper d

dt Mi, j
H = ∑

N
k=1 Ṁi, j

Ck
− Mi, j

H
LH AH

QH No

Table 3.8. Additional measured model outputs.

Symbol Unit Description Output equation

GH - Grade in hopper GH =
∑

n
j=1 M0, j

H

∑
m
i=1 ∑

n
j=1 Mi, j

H

GT4 - Grade in cell 4 tailings stream GT4 =
∑

n
j=1 M0, j

4

∑
m
i=1 ∑

n
j=1 Mi, j

4

CwH % Percent solids by mass in the

hopper

CwH = 100 ∑
m
i=1 ∑

n
j=1 Mi, j

H

∑
m
i=1 ∑

n
j=1 Mi, j

H +ρ

(
AH LH−∑

m
i=1 ∑

n
j=1

Mi, j
H

ρ
i, j
s

)

CwT % Percent solids by mass in the

tailings

CwT = 100 ∑
m
i=1 ∑

n
j=1 Mi, j

4

∑
m
i=1 ∑

n
j=1 Mi, j

4 +ρ

(
A4 L4−∑

m
i=1 ∑

n
j=1

Mi, j
4

ρ
i, j
s

)

Table 3.9. Measured disturbances.

Symbol Unit Description

QF1 m3/h Volumetric feed flow rate to cell 1

Cw1 % Feed density for flotation cell 1 (% solids by mass)

Gi
F - Feed grade of species i to cell 1

dpmin µm Particle minimum diameter

dpmax µm Particle maximum diameter
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CHAPTER 3 MODEL DEVELOPMENT

3.3 EVALUATION OF THE MODEL WITH REGARD TO THE KEY VARIABLES DEFINED

IN CHAPTER 2

The model inputs, outputs, states, internal variables and disturbances that were identified in Chapter 2

are repeated in Tables 3.10 - 3.15, including a motivation where a variable was not included in the

model, and a reference to the section where the model for each state and output is described. The

internal model variables shown in Table 3.14 include variables that have been identified as key model

states in Chapter 2 that can be derived from the model states defined in Table 3.13.

Table 3.10. Model inputs (manipulated variables).

Variable Description

Modelled

Pulp level setpoints Pulp level setpoints are included in the model to manipulate the

volume of pulp in each flotation cell and froth depth simultaneously.

Refer to Section 3.2.1 and (3.1).

Air flow rate setpoints Air flow rate setpoints are included in the model and impact a range

of flotation mechanisms in the pulp and froth phases, including true

flotation, entrainment, water recovery, air recovery and bubble size.

Refer to Section 3.2.3, Section 3.2.4 and (3.12).

Not modelled

Reagent addition The model structure and parameter set allow for reagents to be in-

cluded in future versions of the model. For this version, reagent

addition will not be included, as the dataset used (Hadler et al., 2010a)

did not include variations in reagent addition rates. The effect of vari-

ations in reagent additions and other dynamics that are not modelled

explicitly are lumped together in the model parameters.

Froth wash water Froth wash water was not used on any cells of the rougher flotation

circuit that was modelled, and it was hence excluded from the model.
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Table 3.11. Measured disturbances (modelled).

Variable Description

Modelled

Feed density The feed density is commonly measured on industrial flotation circuits

using nuclear density meters or as an output from an XRF analyser

and is included in the model as a measured disturbance (see Cwk in

(3.5)).

Volumetric feed flow rate The volumetric feed flow rate is commonly measured on industrial

flotation circuits using magnetic flow meters and is included in the

model as a measured disturbance. The combination of feed density

and volumetric feed flow rate is used to calculate the liquid feed flow

rate to the flotation circuit (see QFk in (3.5) for k = 1).

Feed grade The feed grade is often measured on industrial flotation circuits using

online XRF analysers or at a higher sampling frequency using visual

and near-infrared reflectance spectroscopy. Feed grade is included

in the model as a measured disturbance. The combination of feed

density, volumetric feed flow rate and feed grade is used in the model

to calculate the feed mass flow rate of different mineral species (see

GFk in (3.5) for k = 1).

Feed size distribution The model uses two data points on the feed size distribution as meas-

ured disturbances. Refer to Section 3.2.4.2 and (3.16).

Froth properties (speed,

bubble size distribution

and stability)

Froth properties are included as states in Table 3.13. Refer to Sec-

tion 3.2.6, (2.1), (3.33) and (3.34).
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Table 3.12. Measured disturbances (not modelled).

Variable Description

Not modelled

Electrochemical potentials

(Eh and pH)

It is assumed that a stabilisation control strategy is in place to control

the pH to a desired value that will favour selective flotation of minerals

where it is applicable. The effect of pH and Eh on model states

and outputs is not explicitly included in the model, but the effect

of variations in pH would be observable through variations in the

floatability of different mineral species.

Feed mineralogy (fineness

of crystallisation and min-

erals)

No real-time measurement of crystallisation or liberation is available.

Any variation will be treated as unmeasured disturbances that affect

model parameters.
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Table 3.13. Model states.

Variable Description

Modelled

Pulp levels in flotation

cells and the concentrate

hopper

Pulp levels are defined as model states based on the volume balance

described in Section 3.2.1.

Mineral masses The mineral masses in each flotation cell and in the concentrate hopper

are modelled using the mass balance described in Section 3.2.2. The

mass flows between the pulp and froth phases within each flotation

cell are modelled by taking the mechanisms of true flotation (see

Section 3.2.4.1) and entrainment (see Section 3.2.4.2) into account.

Froth properties (speed,

bubble size distribution

and stability)

The top-of-froth bubble size DBFk and air recovery αk (as a measure

of froth stability) are defined as model states in Section 3.2.6, using

empirical models. Froth velocity is measured and used in the model

for air recovery, as shown in (2.1).

Not modelled

Gas holdup Gas hold-up is not commonly measured in real time on industrial flot-

ation circuits, and no data on air hold-up was included in the industrial

dataset used in this model development. There are conflicting views

as to the significance of the gas holdup as a measure of the efficiency

of gas dispersion or of flotation performance (Deglon, Egya-Mensah

and Franzidis, 2000). Variations in air hold-up will be considered an

unmeasured disturbance, and the effect of air hold-up will be com-

pensated by adapting model parameters over time.
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Table 3.14. Internal model variables.

Variable Description

Modelled

Superficial air velocity Superficial air velocity is calculated from the measured volumetric

airflow rate to each flotation cell and the surface area of the cell,

assuming a uniform surface area throughout the flotation cell, as

defined in (3.12).

Froth depth Pulp levels are defined as model states, as shown in Table 3.13. The

froth depth is calculated as the difference between the flotation cell

height and the pulp level, plus the measured froth height above the

lip. For deep froth layers, a simplifying assumption that the variation

in froth height above the lip is negligible compared to the total froth

depth can be used. This assumption does not imply that froth depth

above the lip is not used in the calculation of air recovery as described

in (2.1).

Mineral concentrations in

all intermediate streams

(grades)

Mineral masses in each flotation cell has been defined as states in

Table 3.13. Mineral grades can be calculated from the mineral masses

in the pulp and froth phases.

Densities of all streams The mass and volume balances used to model the mineral and liquid

masses in the flotation cells, as described in Table 3.13, can be used

to calculate densities in flotation cells and the concentrate hopper.

The effect of density on model states and parameters has not been

modelled explicitly due to a limited dataset.

Feed, tailings and concen-

trate flow rates

The concentrate volumetric flow rate is modelled based on froth

properties and air addition to each flotation cell, as described in Sec-

tions 3.2.3 and 3.2.5. The volumetric feed flow rate is defined as a

measured disturbance (see Table 3.11), and the tailings flow rates

can be calculated from the volume balance described in Section 3.2.1

based on the measured flotation cell pulp levels, Lk.

Not modelled

Bias superficial velocity

(mostly columns)

Wash water was not modelled as it was not used for the rougher

flotation circuit that was modelled.
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Table 3.15. Measured model outputs.

Symbol Description

Flotation cell and concen-

trate hopper levels

Levels are typically measured using a float with a target plate and

ultrasonic level transmitter and are considered measured outputs for

the model.

Top-of-froth bubble dia-

meter

The Sauter mean bubble diameter can be determined from froth im-

ages, and it is assumed that froth cameras are available on each flota-

tion cell that is modelled.

Air recovery The air recovery of each flotation cell can be calculated from the froth

velocity, froth height above the lip, aeration rate of each flotation cell

and cell dimensions, as defined in (2.1), and is considered a measured

model output for the model.

Concentrate hopper grade It is assumed that grade measurements using XRF or reflectance

spectroscopy are available on the outflow from the concentrate hopper.

Concentrate hopper dis-

charge volumetric flow

rate

It is assumed that a volumetric flow measurement using a magnetic

flow meter is available on the concentrate hopper discharge.

Concentrate hopper dis-

charge density

It is assumed that the concentrate hopper discharge density is meas-

ured using a nuclear density meter or as an output from an XRF

device.
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3.4 DATASET

The dataset used for the industrial trial described in Hadler et al. (2010a) was reused in this study to

fit model parameters to the model described in Section 3.2. The aim of the original industrial trial

described in Hadler et al. (2010a) was to compare the concentrate grades and recoveries when different

combinations of flotation cells are operated at air addition rates (Qairk ) that maximise the air recoveries

(αk) for each cell, k. Qairk to four rougher and four scavenger cells were manipulated as part of the

trial. Data from the four rougher cells were used to fit the model parameters for the circuit shown in

Figure 3.1.

Different cells were operated at different froth depths (h fk ) and a limited amount of variation occurred

in h fk during the trial, but h fk was not intentionally varied as part of the trial. A series of six experiments

were conducted on an industrial copper flotation circuit — five of the experiments having data collected

for eight flotation cells and one on four cells only. Real-time operational data was supplemented with a

mineralogical sampling campaign on the concentrate streams of each flotation cell, image analyses to

quantify froth properties on each cell, and measurements of Jgk for each cell using the Anglo Platinum

bubble sizer instrument. Variables from the dataset that were used to fit model parameters for the

model described in Section 3.2 are listed in Table 3.16.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3 MODEL DEVELOPMENT

Table 3.16. Variables used to fit model parameters.

Variable Description

Real-time operational data

Volumetric feed flow rate to cell 1 (m3/h) Value of QF1 in the model.

Feed density for flotation cell 1 (%solids) Value of Cw1 in the model.

Feed grade (%copper) Feed grade of species 0 in the model (G0
F ).

Feed size (P80) (µ m) Used to estimate dpmin and dpmax in the model by

assuming a uniform distribution.

Rougher tailings grade (%copper) Grade in cell 4 tailings stream (GT4).

Rougher levels (mm) Lk in the model.

Rougher bank air flow rate (m3/h) Combined air flow rates (Qairk ) to cells 1 and 2,

and cells 3 and 4 respectively.

Survey data

Combined concentrate grade from four

rougher cells (%)

Steady-state value of GH in the model.

Combined recovery from four rougher cells

(%)

Steady-state recovery in the model.

Image analyses data

Froth height above the lip (mm) Used in the calculation of αk.

Froth velocity (mm/s) Used in the calculation of αk.

Calculated air recovery Calculated from the froth height above the lip,

froth velocity and physical dimensions of the flot-

ation cell as described in (2.1). αk in the model.

Top of froth bubble diameter (mm) DBFk in the model.

Anglo Platinum Bubble Sizer data

Superficial gas velocity for each cell (mm/s) Jgk in the model.
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3.5 MODEL PARAMETER FIT

The model parameters of the empirical models for DBFk and αk that are described in Section 3.2.6

were fitted to the industrial data described in Hadler et al. (2010a). Model parameters for DBFk were

determined using a least-squares fit on the data for each cell, k. αOSk and KαJgk
were set to the

average peak air recoveries (PAR) and Jgk at PAR respectively, reported by Hadler et al. (2010a) for

two experiments performed at PAR. The remaining model parameters for αk (KαJg
and Kαh f

) were

determined using a least-squares fit on the full data set. The model parameter values are shown in

Table 3.17 and were fitted using the experimental results of five experiments that were reported by

Hadler et al. (2010a).

For DBFk , an R2 value of 0.99 was obtained, while the R2 value for the model fit for αk was lower

but still reasonable at 0.82. The effect of outliers on the parameter fit and model statistics can

potentially be reduced by removing the data points with the highest residuals from the dataset (Steyn

and Sandrock, 2021). Due to the size of the dataset the full dataset was used to fit the empirical

parameters shown in Table 3.17.

Table 3.17. Empirical model parameter values.

Symbol Unit Value k=1 k=2 k=3 k=4

KBFJg s 0.529

KBFλ
mm/s 0.313

KαJg
s2/mm2 -0.0248

Kαh f
1/s 0.01

DOSk mm 9.79 6.35 8.55 5.93

KαJgk
mm/s 7.20 7.30 7.00 6.63

αOSk - 0.410 0.269 0.168 0.170

The dataset described in Section 3.4 did not contain any information to calibrate the valve constants,

Cvk , for each cell, k. As Cvk is only used for level stabilisation — not for the optimisation of the flotation

circuit — the values of Cvk were arbitrarily chosen to provide the required tailings flow rates at valve

openings of approximately 50% on all cells, to ensure adequate ranges for process control.
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Data on the volumetric flow rate of concentrate to a concentrate hopper would typically be used to

calibrate CPB, but was not available in the dataset described in Section 3.4. Neethling and Cilliers

(2009) defined the expected range of CPB between 10 and 50, with a higher value of CPB corresponding

with higher water recovery, which in turn increases entrainment of both desired (copper) and gangue

particles. An assumption was made that the main mechanism responsible for gangue minerals

reporting to the concentrate stream, is entrainment (determined by CPB) - not true flotation (determined

by K1,0 - the flotation rate constant for gangue minerals). An iterative procedure was hence followed

to calibrate CPB, K0,0, and K1,0 based on the dataset described in Section 3.4, by choosing K0,0 to

achieve the desired recovery of copper containing minerals, CPB to achieve the desired concentrate

grade (subject to the range defined by Neethling and Cilliers (2009)), and adjusting K1,0 to achieve the

desired grade when CPB has insufficient range.

3.6 STEADY-STATE MODEL SIMULATION

Steady-state simulations were performed for a single flotation cell using the models described in

Section 3.2 to show the dependence of the modelled variables on the controlled variables, Jgk and h fk

(as a function of LSPk ). Operating ranges and model outputs were based on the industrial data reported

by Hadler et al. (2010a). Simulation results of the empirical models of αk and DBFk , as described in

(3.33) and (3.34), are shown in Figure 3.3 and Figure 3.4 respectively. Concentrate water recovery

was simulated based on (3.9), including the dependence of DBFk and αk on h fk and Jgk . Grade and

recovery simulations are based on true flotation (3.15) and the simplified entrainment model (3.22).

The same ranges that Hadler et al. (2010a) used for Jgk and h fk were used in the simulations, and model

parameters were fitted to obtain similar results for these variables, as reported by Hadler et al. (2010a).

Note that the experimental trial conducted by Hadler et al. (2010a) focused on the effect of Jgk on αk

and other process variables and that h fk was not varied intentionally as part of the test work.

The dependence of air recovery, αk, on Jgk and h fk is shown in Figure 3.3. The model fit for αk resulted

in a peak at Jgk ≈ 8.4mm/s. Figure 3.3 shows that maximum air recovery occurs at a lower value of Jgk

for shallower froths, as reported by Hadler et al. (2012).
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.3. Air recovery, αk, (3.34) as a function of Jgk and h fk .

A plot of the top-of-froth bubble size, DBFk , is shown in Figure 3.4. An increase in h fk results in

an increase in DBFk due to an increase in froth residence time λairk with h fk . DBFk is defined as a

linear function of Jgk and λairk (3.15). However, λairk is inversely proportional to Jgk , resulting in the

non-linear response between Jgk and DBFk .
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.4. Top-of-froth bubble size, DBFk , (3.33) as a function of Jgk and h fk .

The effect of Jgk and h fk on true flotation is shown in Figure 3.5. An increase in Jgk increases the

bubble surface area that is available for hydrophobic particles to attach to. The effect of air recovery

αk on true flotation is clear from the correlation between αk and true flotation.
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.5. True flotation, dMi, j
k

dt , (3.15) as a function of Jgk and h fk .

Water recovery, QCk , has a quadratic dependence on Jgk and an inverse dependence on bubble size,

which results in some interesting variations in entrainment over a range for Jgk and h fk , as shown in

Figure 3.6. Similar to the trend of the air recovery, αk, shown in Figure 3.3, water recovery also has a

peak, but the peaks in αk and QCk occur at different values of Jgk .

The entrainment of gangue and copper-containing particles are strongly correlated with water recovery,

QCk . The entrained gangue mass flow rate and the mass flow rate of copper-containing minerals

due to entrainment are shown in Figures 3.7 and 3.8. The reason that the peak in the entrainment

of copper-containing minerals shown in Figure 3.8 does not correspond with the peak in the water

recovery, QCk , shown in Figure 3.6 is that the concentration of copper-containing minerals in the

flotation cell was higher at high values of Jgk due to αk reducing true flotation, while the concentration

of gangue minerals remained relatively constant. For the rougher flotation section that was modelled in

this chapter, the mechanism of entrainment contributed a negligible fraction to the total mass flow rate

of copper-containing minerals compared to the mechanism of true flotation.
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.6. Water recovery, QCk , (3.9) as a function of Jgk and h fk .

Figure 3.7. Gangue entrainment (second term in (3.24)) as a function of Jgk and h fk .
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.8. Copper-containing mineral entrainment (second term in (3.24)) as a function of Jgk and

h fk .

When true flotation and entrainment components are combined, the concentrate grade, as shown in

Figure 3.9, increases with an increase in h fk and a decrease in Jgk as expected. However, recovery,

as shown in Figure 3.10, shows a strong dependence on air recovery. This implies that the same

concentrate grade can be obtained at multiple recoveries, which confirms that h fk and Jgk cannot be

considered independently when grade and recovery are optimised in a flotation cell.

The maximum recovery for the single flotation cell simulation shown in Figure 3.10 is 26.2% when

the cell is operated at Jgk = 8.6 mm/s and h fk = 100 mm. Figure 3.9 shows a grade of 26.4% at this

operating point, which can also be achieved at various other operating points. If the flotation cell was,

for example, operated at Jgk = 8.7 mm/s and h fk = 120 mm, the same grade of 26.4% would have been

achieved but at a recovery of only 23.5%. In a flotation section with multiple flotation cells, there is still

an opportunity to recover more of the desired minerals in downstream cells where upstream cells are

not operated at their recovery peaks. The masses of desired minerals that are available in downstream

cells are also dependent on the recoveries in upstream cells, as indicated by the mass balance (3.4).

This quantitative example provides an indication of the potential benefit that model-based control could
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.9. Concentrate grade, GCk , (3.26) as a function of Jgk and h fk .

have on improving recoveries in flotation processes.
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CHAPTER 3 MODEL DEVELOPMENT

Figure 3.10. Concentrate Recovery, RCk , (3.27) as a function of Jgk and h fk .

3.7 DISCUSSION

The flotation model described in Section 3.2 can model the effect of variations in aeration rate, Jgk ,

and froth depth, h fk , on multiple mineral species and show how the contribution from each species

influences the concentrate hopper and tailings grades, and the recovery of a flotation section. The

model was compared to the key variables for flotation processes that were identified in Chapter 2, and

it was shown in Section 3.3 that the flotation model is comprehensive enough to cover the majority of

the key variables that have been identified. Where variables were not modelled due to the absence of a

real-time measurement device or experimental data, a motivation was provided and it was discussed

how the effect of unmeasured variables will be included in the model by real-time adjustment of

model parameters. For example, the effect of all factors contributing to the attachment and detachment

of particles in the pulp are lumped together in a pseudo rate constant, Ki, j, as defined in (3.15).

In addition, it was shown that the model outputs correspond with real-time measurements that are

commonly available on industrial flotation circuits.

The fact that all modelled outputs correspond with real-time measurements that are commonly available

on industrial flotation circuits, does not imply that all model parameters and states can be estimated
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CHAPTER 3 MODEL DEVELOPMENT

from available real-time measurements. An observability and controllability analysis is performed

in Chapter 4 to evaluate if the model states and parameters can be estimated continuously and hence

automatically adjust to changes in operating conditions, rather than relying on manual sampling

campaigns to adjust model parameters.

A key aspect of the model described in this chapter is the ability to continuously estimate (and hence

update) model parameters using real-time measurements (as shown in Chapter 4). Future work to

expand the model should ensure that any additional model parameters that are added can also be

estimated from real-time (or frequently updated) measurements to ensure that model accuracy is

maintained over time.

DBFk shown in Figure 3.4 varies by less than 2 mm over the simulated operating range, which seem

small compared to variability in DBFk that is commonly observed on industrial flotation circuits.

Additional parameters (potentially reagents) could be included in future models to enhance the existing

model of DBFk as a function of h fk and Jgk .

An instantaneous recovery was defined in (3.26) using a steady-state approximation to quantify

flotation circuit performance. The instantaneous recovery could differ from true recovery during

transient (non steady-state) periods and in the presence of noise or short-term variations in the feed or

concentrate streams. Such discrepancies between instantaneous and true recovery is not a reason for

concern, as all the simulation studies presented in Chapter 5 were done over sufficiently long periods

to allow the flotation circuit to reach a steady state, at which point differences between instantaneous

and true recoveries would be negligible.
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CHAPTER 4 MODEL ANALYSIS

4.1 CHAPTER OVERVIEW

A froth flotation model was derived in Chapter 3, showing that the key variables that are required to

model froth flotation are included in the model and that the model outputs correspond with real-time

measurements that are commonly available on industrial flotation plants. While the model described in

Chapter 3 is not the most comprehensive model available in the literature, the model was designed

with the aim of estimating key model parameters from real-time data rather than relying on potentially

infrequent sampling campaigns to update model parameters.

In this chapter, a state observability and state controllability analysis is performed on the model

described in Chapter 3 to confirm that the model is suitable for real-time parameter estimation and

dynamic control and optimisation applications. Observability is a modelling property that describes

the possibility of inferring the internal state of a system from observations of its output. A related

property, structural identifiability, refers to the theoretical possibility of determining the parameter

values from the output (Xia and Moog, 2003). The benefit of having a state observable and parameter

identifiable system is that variations in model parameters can be observed from real-time measured

model outputs, and model parameters can be updated in real time. In addition, the model parameters

can adjust to short-term variations in operating conditions instead of using outdated parameters in

a model that is used for automatic control, or configuring parameters conservatively to ensure safe

operation at a worst-case operating point.

In Section 4.2, the key equations of the flotation model described in Chapter 3 are repeated. The theory

of state observability and state controllability is summarised in Section 4.3. In Section 4.4, a state

observability analysis is performed to show that the model parameters and states can be estimated

from the available set of real-time measurements. This is followed by a state controllability analysis in
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CHAPTER 4 MODEL ANALYSIS

Section 4.5 to show that the variables defined as model inputs can drive the process states towards a

desired operating region. The results are discussed in Section 4.6 and concluding remarks are given in

Section 4.7.

4.2 FLOTATION MODEL SUMMARY

The objective of a state observability analysis is to determine if all the model states that are defined

in Tables 3.6 and 3.7, and the model parameters defined in Table 3.5 can be estimated from real-

time measurements that are typically available on industrial flotation circuits, as shown in Table 3.8.

Tables 3.5, 3.6, 3.7 and 3.8 in Chapter 3 are repeated as Tables 4.1, 4.2, 4.3 and 4.4.

Table 4.1. Model parameters to be estimated.

Symbol Unit Description

KBFJg s Effect of the superficial gas velocity on the mean top-of-froth bubble diameter

KBFλ
mm/s Effect of the average froth residence time on the mean top-of-froth bubble

diameter

KαJgk
mm/s Value of the superficial air velocity in cell k where air recovery is maximised

when h fk = 0

KαJg
s2/mm2 Effect of the difference between Jgk and Jg0 squared on air recovery

Kαh f
1/s Effect of a change in h fk on the superficial air velocity where air recovery is

maximised

αOSk - Offset included in steady-state air recovery equation, αSSk in cell k

DOSk mm Offset included in the steady-state top-of-froth bubble diameter equation,

DBFSSk in cell k

Cvk m5/2/h Valve constant for cell k

CPB - Plateau border drag coefficient

Ki, j - Flotation rate-constant for species i, class j
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Table 4.2. States for each flotation cell.

Symbol Unit Description State equation Online

measured

DBFk mm Top of froth bubble diameter d
dt DBFk =

DBFSSk−DBFk
λairk

Yes

αk - Air recovery d
dt αk =

αSSk−αk

λairk
Yes*

Lk m Cell pulp level d
dt Lk = (QFk −QTk −QCk)/Ak Yes

Mi, j
k kg Masses in flotation cell d

dt Mi, j
k = Ṁi, j

Fk
− Ṁi, j

Tk
− Ṁi, j

Ck
No

Jgk mm/s Superficial gas velocity d
dt Jgk =

JgSPk−Jgk
τJgk

No**

*‘measured’ as indicated in (2.1)

**JgSPk is ‘measured’ as per (3.12) **Jgk is an unmeasured transient

Table 4.3. States for the concentrate hopper.

Symbol Unit Description State equation Online measured

LH m Hopper level AH
dLH
dt = ∑

N
k=1 QCk −QH Yes

Mi, j
H kg Masses in hopper d

dt Mi, j
H = ∑

N
k=1 Ṁi, j

Ck
− Mi, j

H
LH AH

QH No

Table 4.4. Additional measured model outputs.

Symbol Unit Description Output equation

GH - Grade in hopper GH =
∑

n
j=1 M0, j

H

∑
m
i=1 ∑

n
j=1 Mi, j

H

GT4 - Grade in cell 4 tailings stream GT4 =
∑

n
j=1 M0, j

4

∑
m
i=1 ∑

n
j=1 Mi, j

4

CwH % Percent solids by mass in the

hopper

CwH = 100 ∑
m
i=1 ∑

n
j=1 Mi, j

H

∑
m
i=1 ∑

n
j=1 Mi, j

H +ρ

(
AH LH−∑

m
i=1 ∑

n
j=1

Mi, j
H

ρ
i, j
s

)

CwT % Percent solids by mass in the

tailings

CwT = 100 ∑
m
i=1 ∑

n
j=1 Mi, j

4

∑
m
i=1 ∑

n
j=1 Mi, j

4 +ρ

(
A4 L4−∑

m
i=1 ∑

n
j=1

Mi, j
4

ρ
i, j
s

)
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4.3 THEORETICAL BACKGROUND

The non-linear flotation model can be represented in a state-space format, with x as the states, u as the

manipulated variables and y as the measured outputs
dx
dt

= f(t,x,u)

y = h(t,x,u) .
(4.1)

The non-linear system can be linearised at a steady-state operating point, (x0,u0), with the deviation

variables defined as δx = x−x0, δu = u−u0 and δy = y−y0, as
d
dt

δx =Aδx+Bδu

δy =Cδx+Dδu .
(4.2)

The system matrices, A, B, C and D can be calculated as

A =
∂ f(t,x,u)

∂x

∣∣∣∣
x0,u0

C =
∂h(t,x,u)

∂x

∣∣∣∣
x0,u0

B =
∂ f(t,x,u)

∂u

∣∣∣∣
x0,u0

D =
∂h(t,x,u)

∂u

∣∣∣∣
x0,u0

.

(4.3)

Skogestad and Postlehwaite (2005) describe how state observability and state controllability can be

determined for linear systems by calculating the rank of an observability (O) and controllability (C)

matrix respectively. If the linearised system is observable or controllable, it implies that the non-linear

system is also observable or controllable (Hermann and Krener, 1977; le Roux et al., 2017). All the

states x are said to be observable or controllable from the input vector u and output vector y if O or

C has full rank, n, where n is the dimension of the state vector x. This technique can also be used to

determine if model parameters can be estimated from u and y, by augmenting the state vector x, with

the model parameters as states without any dynamics (Simon, 2006). The state observability matrix O

is defined as

O=


C

CA
...

CAn−1

 , (4.4)

and the state controllability matrix C as

C=
[
B AB A2B . . . An−1B

]
. (4.5)
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If the rank of O as described in (4.4) does not confirm that the linearised system described in (4.2)

is state observable, it might still be possible to estimate the model states and parameters by using

a non-linear observer, such as a moving horizon estimator (MHE). For the non-linear observability

analysis, the flotation model must be described in a multi-input-multi-output control-affine form

as
dx
dt

= f(t,x)+g(t,x)u

y = h(t,x) ,
(4.6)

where dim(x) = n and dim(y) = m.

The observability co-distribution for the system described in (4.6) is defined by Hermann and Krener

(1977) as

dO= span
{

dh j,dL f h f , . . . ,dLn−1
f h j

}
, (4.7)

where Lk
f is the k-th repeated Lie derivative of the scalar function h j(x) along the vector field f (x),

and d is the exterior derivative (Doyle and Henson, 1997). If the system defined in (4.6) satisfies the

observability rank condition in that the dO that is defined in (4.7) has dimension n, the system is

locally (weakly) observable in a region around x0 where (4.7) is evaluated.

4.4 OBSERVABILITY ANALYSIS

The observability analyses shown in Sections 4.4.1 and 4.4.2 evaluate different combinations of

model states and measurements to show which measurements are required to estimate specific sets of

parameters. Should an observability analysis return a negative result, the interpretation is that all model

states and parameters can not be estimated using the defined model equations and measurements. An

alternative model definition with additional measurements (which may include derivatives of existing

measurements), a reduced parameter set or alternative model equations would be necessary to estimate

all the model states and parameters. The observability analysis is performed using the linearised system

and O, as defined in (4.4). dO as defined in (4.7) is only used if the rank of O is less than n, i.e. the

linearised system is not observable.

The dynamic flotation model described in Chapter 3 can be analysed by dividing it into two parts:

the parameter estimation for froth bubble size, DBFk , and air recovery, αk (see Section 4.4.1), and the

volume and the mass balances (see Section 4.4.2).
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4.4.1 Parameter estimation of froth bubble size and air recovery

The state equations for DBFk and αk are shown in Table 4.2. In Section 3.2.6 KBFJg , KBFλ
and DOSk were

estimated from multiple steady-state measurements of DBFk , Jgk and h fk . Similarly, linear regression

was used to estimate KαJg
and Kαh f

based on multiple steady-state measurements of αk, Jgk and h fk

and experimentally determined values for αOSk and KαJgk
.

In this section an observability analysis is performed to verify that the model parameters KBFJg , KBFλ
,

KαJgk
, KαJg

, Kαh fk
, Kαh f

, DOSk and αOSk can be estimated from continuously varying measurements,

rather than relying on steady-state approximations and experimental results. Note that the measurement

of αk uses the froth height above the lip h, as defined in (2.1). The state equation for αk was defined in

(3.34) as a function of h fk , which only depends on the flotation cell level, Lk.

For a flotation cell k, the state (xck), output (yck), input (uck) and parameter (xp0 and xpk) vectors are

given by

yck = [DBFk ,αk,Lk]
T

xck = [DBFk ,αk,Lk,Jgk ]
T

uck = [JgSPk ,zk]
T

xp0 = [KBFJg ,KBFλ
,KαJg

,Kαh f
]T

xpk = [KαJgk
,DOSk ,αOSk ]

T .

(4.8)

For a single flotation cell, the linearised system matrices described in (4.3) can be calculated from the

vectors y1, u1, x1, and xaug1 that are defined as

y1 = [yc1]

x1 = [xc1]

u1 = [uc1]

xaug1 = [xT
1 ,x

T
p0,x

T
p1]

T

, (4.9)

where xaug1 is the augmented state matrix comprising the state (x1) and parameter (xp0 and xp1)

vectors.
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For two flotation cells, the linearised system matrices described in (4.3) can be calculated from the

vectors y2, u2, x2, and xaug2 that are defined as

y2 = [yT
c1,y

T
c2]

T

x2 = [xT
c1,x

T
c2]

T

u2 = [uT
c1,u

T
c2]

T

xaug2 = [xT
2 ,x

T
p0,x

T
p1,x

T
p2]

T

. (4.10)

Similarly, for three flotation cells, the vectors are given by

y3 = [yT
c1,y

T
c2,y

T
c3]

T

x3 = [xT
c1,x

T
c2,x

T
c3]

T

u3 = [uT
c1,u

T
c2,u

T
c3]

T

xaug3 = [xT
3 ,x

T
p0,x

T
p1,x

T
p2,x

T
p3]

T

, (4.11)

and for four flotation cells, as for the industrial data provided by Hadler et al. (2010b), the vectors are

given by

y4 = [yT
c1,y

T
c2,y

T
c3,y

T
c4]

T

x4 = [xT
c1,x

T
c2,x

T
c3,x

T
c4]

T

u4 = [uT
c1,u

T
c2,u

T
c3,u

T
c4]

T

xaug4 = [xT
4 ,x

T
p0,x

T
p1,x

T
p2,x

T
p3,x

T
p4]

T

. (4.12)

The results of the state observability analysis for one, two, three and four flotation cells are shown in

Table 4.5.

Table 4.5. Results of the state observability analysis for αk and DBFk .

Number of cells (q) dim(xaugq) Rank of O Rank of dO Observable

1 11 6 9 No

2 18 12 17 No

3 25 18 24 No

4 32 24 31 No

From Table 4.5, it can be seen that the augmented state vector is not observable using a linear or

non-linear observer. The analysis was thus repeated with a smaller parameter set. It is assumed that the
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parameter determining the curvature of the air recovery αk (Kαh f
) does not change significantly over

time and that the position of the peak in air recovery is a more important parameter to estimate over

time. KαJg
was thus removed from the definition of xp0 in (4.8), and (4.8) was replaced with

yck = [DBFk ,αk,Lk]
T

xck = [DBFk ,αk,Lk,Jgk ]
T

uck = [JgSPk ,zk]
T

xp0 = [KBFJg ,KBFλ
,Kαh f

]T

xpk = [KαJgk
,DOSk ,αOSk ]

T

. (4.13)

The results of the observability analysis of the system described in (4.9), (4.10), (4.11) and (4.12),

using the definition of xp0 in (4.13), are shown in Table 4.6.

Table 4.6. Results of the state observability analysis for αk and DBFk with a reduced parameter set.

Number of cells (q) dim(xaugq) Rank of O Rank of dO Observable

1 10 6 9 No

2 17 12 17 Yes

3 24 18 24 Yes

4 31 24 31 Yes

From Table 4.6, it can be seen that the augmented state vector is state observable for two or more

flotation cells but only when a non-linear estimator such as an MHE is used, as only dO meets the

rank requirements. The model parameters (KBFJg , KBFλ
, KαJgk

, Kαh f
, DOSk and αOSk ) that are used in

the models for αk and DBFk can thus only be estimated from dynamic process data using a non-linear

estimator.

Alternative output vectors (yck), including derivatives of measurements, were not considered, as the

measurements of αk and DBFk are expected to be noisy. Should only a linear state estimator be available,

the use of derivatives of αk or DBFk in the output vectors may need to be considered, or simpler models

could be used for αk or DBFk , as used by Oosthuizen et al. (2021) to obtain a state observable and

parameter identifiable system when three flotation cells were considered.
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KBFJg is only identifiable if the dynamic response of Jgk as shown in (3.35) is included in the model.

When Jgk does not vary KBFJg would not be identifiable and the estimate of KBFJg could drift over time.

By adding a small perturbation to JgSPk it could be ensured that Jgk would change over time and that

KBFJg would remain identifiable. However, this is a limitation of the model which—together with the

limited sensitivity of DBFk to variations in Jgk and λairk —cast some doubt on the value of including

DBFk in the model. DBFk will be included in subsequent model analyses and simulations, but it is

recommended that the model for DBFk be revised in future versions.

4.4.2 Parameter estimation including the mass and volume balances

In this section, the observability analysis done in Section 4.4.1 is extended to include all the model

parameters listed in Table 4.1, all the states listed in Tables 4.2 and 4.3, and the model outputs listed in

Table 4.4. Note that the parameter KαJg
is excluded from the parameter vector, similar to the model

definition in (4.13).

For the full flotation model shown in Tables 4.2–4.4, the state (xck), output (yck), input (uck) and

parameter (xpk) vectors for a flotation cell k are given by

yck = [DBFk ,αk,Lk]
T

xck = [DBFk ,αk,Lk,M
0,0
k ,M1,0

k ,Jgk ]
T

uck = [JgSPk ,zk]
T

xpk = [Cvk ,KαJgk
,DOSk ,αOSk ]

T

. (4.14)

Compared to (4.13), the state vector (xck) has been extended to also include the states for the two

mineral species M0,0
k (chalcopyrite) and M1,0

k (gangue minerals), as used by Hadler et al. (2010a).

Some variables are relevant to the entire flotation section, such as the states and measurements of

the concentrate hopper and the measurements of the tailings stream from the last flotation cell in the

rougher section. For the rougher flotation section model that is evaluated in this section, the state (xH),
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output (yH), input (uH) and parameter (xpH ) vectors are given by

yH = [LH ,CwH ,GH ,CwT ,GT 4]
T

xH = [LH ,M
0,0
H ,M1,0

H ]T

uH = [QH ]
T

xpH = [KBFJg ,KBFλ
,Kαh f

,CPB,K0,0,K1,0]T

, (4.15)

with all the variables defined in Tables 4.1-4.4.

The linearised system matrices described in (4.3) for the flotation section comprising four flotation

cells and a concentrate hopper can be calculated by combining (4.14) and (4.15) to yield the vectors

y5, u5, x5 and xaug3 that are defined as

y5 = [yT
c1,y

T
c2,y

T
c3,y

T
c4,y

T
H ]

T

x5 = [xT
c1,x

T
c2,x

T
c3,x

T
c4,x

T
H ]

T

u5 = [uT
c1,u

T
c2,u

T
c3,u

T
c4,u

T
H ]

T

xaug5 = [xT
5 ,x

T
p1,x

T
p2,x

T
p3,x

T
p4,x

T
pH
]T

. (4.16)

The dimensions of the vectors defined in (4.14), (4.15) and (4.16) are summarised in Table 4.7.

The observability analysis was performed for the system of four flotation cells and a concentrate hopper.

Linear system matrices A, B, C and D were calculated as described in (4.3), using the model variables

defined in Table 4.16. The observability matrix O, as shown in (4.4), was calculated for the linear

observability analysis, and the matrix dO for the non-linear analysis. The results of the observability

analyses are shown in Table 4.8.

The rank of the observability matrix O, as defined in (4.4), was calculated to be 42 when the matrices

C, CA and CA2 were included in O. As the dimension of xaug5 is 49, the states and parameters can

not be estimated for the system defined in (4.16) by using a linear state estimator.

A non-linear observability analysis was performed using the matrix dO as described in (4.7). The

span of dO was calculated to be 49, which means that the states and parameters that are defined

in (4.16) can be estimated using the real-time measurements that were defined in (4.16), using a

non-linear estimator such as an MHE. Note that the parameter quantifying the shape of the peak
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Table 4.7. Vector dimensions of the flotation model.

Vector Dimension Description

yck 3×1 Measured outputs per flotation cell

yH 5×1 Additional measured outputs per section

y5 17×1 Total number of measured outputs for the section

xck 6×1 States per flotation cell

xH 3×1 Additional model states per section

x5 27×1 Total number of model states for the section

uck 2×1 Manipulated variables per flotation cell

uH 1×1 Additional manipulated variables for the section

u5 9×1 Total number of manipulated variables for the section

xpk 4×1 Estimated parameters per flotation cell

xpH 6×1 Additional estimated parameters for the section

xpH 22×1 Total number of estimated parameters for the section

xaug5 49×1 Augmented state vector with all states and estimated parameters

Table 4.8. Results of the state observability analysis for the rougher section.

Variable

xaug5 dim = 49

O rank = 42

dO span = 49

Observable (linear) No

Observable (non-linear) Yes
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CHAPTER 4 MODEL ANALYSIS

in air recovery (KαJg
) was assumed to remain relatively constant and was not included in xaug5 in (4.16).

4.5 CONTROLLABILITY ANALYSIS

The objective of the state controllability analysis is to determine if the model states can be driven

towards desired setpoints using the defined model inputs. Similar to the observability analysis per-

formed in Section 4.4, if all the states are not controllable, it means that the states cannot be driven to a

specific operating condition given the available inputs. The controllability analysis does not provide

any conclusion on the operating ranges of the model inputs relative to the desired model states.

The state controllability of the linear system is analysed to determine if the states x5, described

in (4.16), are controllable using the manipulated variables u5 in (4.16). The flotation cell level

states, Lk, and hopper level state, LH , are typically controlled to user-defined setpoints when basic

stabilisation controllers are implemented, as described by Saffy et al. (2019). A grade control strategy,

as implemented by Saffy et al. (2019), controls the grade in the concentrate hopper GH to a desired

setpoint. The grade can be calculated from the states describing the masses of different minerals in the

concentrate hopper (Mi, j
H ), as shown in Table 3.15. Hadler et al. (2010a) showed how the maximum

recovery for each flotation cell, k, is achieved when the air recovery, αk, is maximised. It is therefore

important that all the states defined in Tables 4.2 and 4.3 are controllable using the model inputs defined

in Table 4.9 to ensure that all the control objectives described in this paragraph can be achieved. Note

that the state vector x5 defined in (4.16) is used in the controllability analysis—not the augmented state

vector, xaug5, that also includes model parameters, as used in the observability analysis performed in

Section 4.4.

Table 4.9. Model inputs.

Symbol Unit Description Equation

JgSPk mm/s Superficial air velocity setpoint for cell k Jgk =
Qairk

Ak

zk % Tailings valve position for cell k -

QH m3/h Flow rate out of the concentrate hopper -

The dimensions of the sub-matrices of the controllability matrix C are given in Table 4.10. The state

vector x5 has a length of 27, as shown in Table 4.7. If the state controllability matrix C as defined in
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(4.5) has a rank of 27, all the states defined in x5 are controllable using the model inputs defined in

u5.

Table 4.10. Results of the state controllability analysis for the rougher section.

Matrix Rank

B 9

AB 8

[B,AB] 17

[B,AB,A2B] 25

[B,AB,A2B,A3B] 27

From Table 4.10, it can be seen that a full rank of 27 is achieved for the state controllability matrix, C,

as defined in (4.5), when the terms B, AB, A2B and A3B are included. This confirms that all 27 states

in x5 can be driven towards desired setpoints using the superficial air velocity (Jgk ) and valve positions

(zk) for each flotation cell, k, in combination with the concentrate hopper outflow rate (QH).

4.6 DISCUSSION

The ability to estimate model parameters for αk and DBFk from online measurements provide valuable

information on how close each cell is operating to the maximum air recovery point and in what direction

the superficial air velocity, Jgk , and froth depth, h fk , should be adjusted to maximise the recovery of

each cell. By combining the estimated maximum air recovery point with a model for DBFk (which

has a strong influence on entrainment and, hence, grade), differences in operation between flotation

cells in a section can be identified and compensated for, and options are available to expand the model

described in Chapter 3 to include additional manipulated variables, such as reagent addition, into an

optimisation strategy.

One parameter, KαJg
, was removed from the parameter vector shown in (4.8) to obtain a state observable

and parameter identifiable system shown in (4.13). A constant value thus needs to be specified for

KαJg
, which will affect the estimated values of KαJgk

and Kαh f . While the curvature of the peak in air

recovery is expected to be less important than the location of the peak (defined by KαJgk
and Kαh f ), the

sensitivity of the parameter estimation function to an error in KαJg
needs to be considered.
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The volume balance and associated observability analysis allow the water recovery from each cell to be

calculated. This provides a good indication of the relative contribution of each cell to the total entrained

mass. A reduction in the water recovery, QWk , to the concentrate stream of a flotation cell, k, generally

results in an increase in the concentrate grade. The quadratic relationship between water recovery and

DBFk that is shown in Figure 3.6 highlights the importance of including a real-time measure of froth

bubble size as part of an optimisation strategy.

The mass balance and the parameters that can be estimated from the full flotation model provide

invaluable information to distinguish between true flotation and entrainment in the concentrate streams

from each flotation cell. This is the key to optimising reagent addition. Low concentrate grades

can be caused by insufficient suppression of gangue minerals M1,0
k , excessive entrainment of gangue

minerals or insufficient flotation of the valuable mineral M0,0
k , which may in turn require an adjustment

of reagents (collectors or activators) or an adjustment to the grind size. The ability to estimate the

flotation rate constants of the desired and gangue minerals (K0,0 and K1,0) from online measurements

opens a range of opportunities to optimise reagent additions and respond to short-term variations in

ore characteristics that occur between sampling campaigns. An estimate of the relative contribution

from each cell to the overall concentrate stream allows for optimisation across multiple cells to achieve

optimal operation of a flotation section or, potentially, a flotation plant.

While the observability analysis confirms that valuable process parameters can be estimated from

real-time measurements, the controllability analysis confirms that a model-based automatic control

strategy can be used to stabilise and optimise the state variables of a flotation process, as defined by

the model in Chapter 3. Control variables that are commonly available on industrial flotation plants

(JgSPk , zk and QH) are sufficient to control the concentrate grade and air recovery, αk, while stabilising

the concentrate hopper level, LH , and flotation cell levels, Lk. The ability to control αk in each cell

implies that each cell can be controlled at its peak air recovery, αk, at all times, using a model-based

controller instead of relying on an iterative stepping algorithm.

The objective of a flotation plant is to maximise the production of a product of a desired grade. By

controlling the overall concentrate grade to a desired setpoint while each flotation cell is operated

at the maximum air recovery (αk) (which is associated with maximum mineral recovery (Hadler et

al., 2012)), an important step towards optimising flotation operation is achieved.
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4.7 CONCLUSION

A flotation model was described in Chapter 3 to model the key flotation variables that were identified in

Chapter 2. Only variables that are commonly manipulated on industrial flotation circuits (see Table 4.9)

were defined as manipulated variables for use in the controllability analysis, and only measurements

that are commonly available on industrial flotation circuits were used in the observability analysis

for state and parameter estimation. The observability analysis in Section 4.4 indicates that all the

model parameters defined in Table 4.1, except for KαJg , can be estimated using online measurements—

including floatability constants of desired and gangue minerals that are normally calculated as part

of lab analyses, based on spot or averaged samples. The controllability analysis confirms that all the

modelled states defined in Tables 4.2 and 4.3 can be driven towards desired values using manipulated

variables that are commonly available on industrial flotation circuits. This implies that a model-based

control strategy based on the model states defined in Tables 4.2 and 4.3 can be used to optimise flotation

operation by taking interactions between states and non-linear relationships into account to ensure that

each state is driven towards an operating condition that would maximise performance of the flotation

section.

The combination of fundamental dynamic mass and volume balances, steady-state flotation froth

models and empirical relations for air recovery and froth bubble size, allows key characteristics of

flotation processes to be estimated from real-time measurements, supporting the first hypothesis in

Section 1.5. This opens up opportunities to control the flotation process more efficiently, optimise the

flotation process across multiple flotation cells and expand the model in future to include additional

variables such as reagent additions.
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CHAPTER 5 CONTROLLER DESIGN

5.1 CHAPTER OVERVIEW

It was shown in Chapter 4 that the states of the froth flotation model described in Chapter 3 are

observable and the parameters are identifiable. This implies that the unmeasured process states, such as

the mineral masses in each flotation cell Mi, j
k and in the concentrate hopper Mi, j

H , can be estimated. In

addition, the model parameters that are used in the model to distinguish between mineral recovery due

to true flotation compared to recovery due to entrainment (e.g., the floatability constants K0,0 and K1,0,

and CPB) can be estimated from real-time measurements that are commonly available on industrial

flotation plants. The ability to estimate model states and parameters from real-time measurements is a

key aspect of the model structure described in Chapter 3, as changes in process parameters could be

detected in real-time and be used in a model-based control strategy, rather than depending on infrequent

manual sampling results to update model parameters.

The design of an automatic controller implementation based on the model described in Chapter 3 has

two components: the design of a state and parameter estimator and the design of the model-based

control strategy. In this chapter a simulation study is presented that uses the flotation model described

in Chapter 3 in a non-linear model predictive controller implementation. The simulation framework

that includes the MPC and an MHE is first described in Section 5.2. In Section 5.3, the design of

the MHE is described, followed by simulation results showing the performance of the MHE. In

Section 5.4, the design of an MPC is described, with the objective of maximising recovery while

maintaining a target concentrate grade. In Section 5.5, the simulation results of three simulation

studies are shown. The first simulation study in Section 5.5.1 shows how an increase in the air recovery

that a bank of flotation cells is operated at relates to a series of grade-recovery curves of increasing

recovery. The second simulation study in Section 5.5.2 demonstrates the MPC’s performance in

rejecting typical disturbances and variability in model parameters on a flotation circuit. The third
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CHAPTER 5 CONTROLLER DESIGN

simulation study in Section 5.5.3 compares the performance of the MPC to a conventional proportional

integral derivative (PID) control strategy that does not explicitly take process non-linearities into

account. Results are discussed in Section 5.6 and concluding remarks are given in Section 5.7.

5.2 SIMULATION FRAMEWORK

A modular scheme for a non-linear MPC controller implementation is described by Lucia, Tătulea-

Codrean, Schoppmeyer and Engell (2017), which includes function blocks for a model, an optimiser,

an observer and a simulator. A Python library (do-mpc) provides an environment to implement

the function blocks and data exchange mechanisms between function blocks and data visualisation

interfaces. The do-mpc Python library was used in the simulation studies shown in Section 5.5 to

implement the controller and simulator for the flotation circuit and to estimate unmeasured states and

model parameters using an MHE.

The model framework is shown in Figure 5.1, including vectors for measured and unmeasured

disturbances, measured outputs, states, parameters, setpoints and control actions specific to the model

described in Chapter 3.

5.2.1 Flotation simulator

The flotation plant block shown in Figure 5.1 simulates the dynamic flotation model described

in Chapter 3. Initial conditions and model parameters were chosen based on data that were

collected from an industrial flotation circuit as described by Hadler et al. (2010b) to ensure that

simulation results are representative of typical operation on an industrial flotation circuit. Random

noise with a uniform distribution was added to the measured model outputs. Details of the noise

levels that were simulated are provided for each simulation study. Some of the model parameters

in the flotation simulator were varied in Section 5.5.2 to simulate the effect of unmeasured disturbances.

5.2.2 Moving horizon estimator

An extended Kalman Filter or MHE is often used to perform state and parameter estimation (Lucia et

al., 2017). For this simulation study, the MHE that was available in the do-mpc Python library was

used for state and parameter estimation, as the observability analysis that was described in Chapter 4

indicated that a non-linear observer was required to estimate the states and parameters. A comparison

of different state and parameter estimation techniques is outside the scope of this work, but additional
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Figure 5.1. Block diagram of MPC controller implementation.

advantages of an MHE (e.g., the ability to include constraints on model states) and disadvantages (e.g.,

computational cost) are described by Haseltine and Rawlings (2005). The MHE design is described in

detail in Section 5.3.

5.2.3 Model predictive controller

The non-linear MPC implementation that is shown in Figure 5.1 was separated into two control-

lers:

• A slave MPC (level stabiliser) to stabilise the flotation cell levels, Lk, and the concentrate hopper

level, LH .

• A master MPC (grade control and recovery optimiser) to calculate the optimal combinations of

level setpoints, LSPk , and aeration rate setpoints, JgSPk , for each flotation cell to achieve a target

concentrate grade while maximising recovery.

This is consistent with the approach that is commonly employed in industrial flotation control

and optimisation applications. Model-based stabilisation controllers such as the FloatStar Level

Stabiliser that is described by Schubert et al. (1995) are common in industry, while grade and
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recovery optimisation is commonly implemented as a higher-level master (grade control and recovery

optimisation) controller that provide setpoints to a slave (stabilisation) controller, as described by Saffy

et al. (2019). The option exists to integrate the stabilisation and optimisations controllers into a single

MPC controller. For this study, the functionality of level stabilisation and grade control and recovery

optimisation was separated to allow the same stabilisation controller to be used in a comparison of

different grade control strategies in Section 5.5.3, thereby removing any bias as a result of using

different stabilisation controllers.

5.2.3.1 Level stabilisation strategy

Figure 5.2 shows the implementation of the stabilisation controllers. Circles indicate instrumentation,

solid arrows indicate process flows and dashed lines indicate signals that form part of the controller

implementation. The slave MPC (level stabiliser) stabilises the flotation cell levels, Lk, at desired level

setpoints, LSPk , by manipulating the tailings flow control valves, zk. Stabilisation of the concentrate

hopper level, LH , at a desired setpoint, LSPH , by manipulating the concentrate flow rate, QH , also forms

part of the stabilisation controller. PID controllers are used to manipulate the air flow rate, QAirk into

each flotation cell, k, to control the superficial gas velocity, Jgk to a desired setpoint, JgSPk .

Air

LH

Jg1
Jg2

Jg3
Jg4L1

L2
L3

L4

QH

MPC (level stabiliser)
LSPH

Air
Air

Air

QF1

JgSPk LSPk

z1
z2

z3
z4

PI
PI

PI
PI

Figure 5.2. Level and air stabilisation implementation.
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5.2.3.2 Grade control and optimisation strategy

Figure 5.3 shows the implementation of the master (grade control and recovery optimisation) strategy.

ρF and ρH are the feed and concentrate densities that are equivalent to CwF and CwT . QF1 and QH

are the feed and concentrate volumetric flow rates, and GF and GH are the feed and concentrate

grades.

The grade control strategy does not explicitly specify a concentrate mass flow rate setpoint. Variations

in pulp level setpoints and aeration rate setpoints for the flotation cells would affect concentrate mass

flow, which would result in a change in hopper level, LH , and/or ρH . The concentrate hopper level

controller will respond to a change in LH by adjusting the pump speed, which will result in a change in

the measured volumetric flow rate, QH from the hopper.

Air
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ρH

QH

Jg1
Jg2

Jg3
Jg4L1
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Figure 5.3. Grade control and optimisation implementation.
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5.3 MOVING HORIZON ESTIMATOR DESIGN

The MHE implementation uses a system with the form

ẋ(t) = f (x(t),u(t),p(t))+w(t),

y(t) = g(x(t),u(t),p(t))+v(t),
(5.1)

with the variables defined in Table 5.1. The measurement noise, v(t), quantifies the error between the

measured output, y(t) and the modelled output, g(x(t),u(t),p(t)). The MHE objective function for a

discretised system is given by Rao and Rawlings (2002) as

min
x0,p,

{wk}N−1
k=0

‖x0− x̃0‖2
Px
+‖p− p̃‖2

Pp
+

N−1

∑
k=0

(
‖vk‖2

Pv
+‖wk‖2

Pw

)
,

subject to xk+1 = fk(xk,uk,p,k)+wk,

yk = gk(xk,uk,p,k)+vk,

hk(xk,uk,p)≤ 0


k = 0, . . . ,N

, (5.2)

with the variables defined in Table 5.2.

Table 5.1. Parameters used in the system equations.

Variable Description

x State vector

u Input vector

y Measured output vector

p Estimated parameter vector

w Process noise vector

v Measurement noise vector

Each weighting matrix (Px, Pp, Pv and Pw) is defined as a diagonal matrix, with the entries on the

diagonal determining the penalties applied to variations in the corresponding state (for Px and Pw),

output (Pv) or parameter (Pp) in (5.2). Since process noise, wk, was not included in the models described

in Chapter 3, Pw was not defined for this study.
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Table 5.2. Parameters used in the MHE objective function.

Variable Description

N MHE horizon

k Iterator for MHE objective function

x̃0 Previous estimate of x0

p̃ Previous estimate of p

Px Weighting matrix on x0

Pp Weighting matrix on p

Pv Weighting matrix on v

Pw Weighting matrix on w

vk Measurement noise

fk(...) Non-linear state-space function

gk(...) Non-linear output function

hk(...) Model constraints (state, parameter and output)

Typical operating ranges for the model states (x), inputs (u) and parameters (p) are shown in Table 5.3,

and were used to normalise the diagonal elements of the weighting matrices, Px, Pp and Pv. In addition,

the normalised diagonal elements in Px, Pp and Pv were multiplied by weighting factors to obtain the

desired response. Where measurement noise was added to the simulated process outputs, the noise was

calculated as a percentage of the operating range values in Table 5.3. The final values of the weighting

matrices Px, Pp and Pv (excluding normalisation) are shown in Table 5.3.

Simulation results of the MHE estimating model parameters are shown in Figures 5.4 - 5.9 for scenarios

with no noise and with uniformly distributed measurement noise of 1%, 3% and 5% of the variable

ranges added to the model outputs. The model parameters in Table 5.4 were increased linearly to a

maximum of 5% above their default values and then decreased again to their default values. K1,0 was

increased over a larger range to 20% above its original value, as the noise levels that were simulated

masked the relatively small quantities of gangue minerals that report to the concentrate stream through

the mechanism of true flotation. A 5% step change was made to the output offset parameters, αOSk and

DOSk , to simulate an unmeasured disturbance in reagent addition.
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Table 5.3. MHE parameter ranges and weights.

Variable Notes Operating Px Pv Pp

range (max-min)

States

DBFk mm 2.0 1×10−1 1×101

αk 0.05 1×101 1×101

Lk m 0.1 1×102 1×102

M0,0
k Chalcopyrite 50.0 1×10−1

M1,0
k Gangue 10000 1×10−1

Jgk mm/s 1.0 5×101

LH m 0.1 1×102 1×100

M0,0
H Chalcopyrite 500 1×102

M1,0
H Gangue 100 1×102

Parameters

KBFJg s 0.529 1×102

KBFλ
mm/s 0.313 1×101

DOSk mm 10.0 1×101

KαJgk
mm/s 7.20 1×10−2

Kαh f
1/s 0.01 1×103

αOSk 0.1 1×102

CPB 50.0 1×10−2

K0,0 Chalcopyrite 2.3 1×10−1

K1,0 Gangue 2.1×10−4 1×100

Outputs

GH 0.005 1×100

GT 0.0005 1×100

CwH 2.0 1×100

CwT 0.1 1×10−1
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Table 5.4. Model parameters to be estimated.

Symbol Unit Description

KBFJg s Effect of the superficial gas velocity on the mean top-of-froth bubble diameter

KBFλ
mm/s Effect of the average froth residence time on the mean top-of-froth bubble

diameter

KαJgk
mm/s Value of the superficial air velocity in cell k where air recovery is maximised

when h fk = 0

Kαh f
1/s Effect of a change in h fk on the superficial air velocity where air recovery is

maximised

αOSk - Offset included in steady-state air recovery equation, αSSk in cell k

DOSk mm Offset included in the steady-state top-of-froth bubble diameter equation,

DBFSSk in cell k

Cvk m5/2/h Valve constant for cell k

CPB - Plateau border drag coefficient

Ki, j - Flotation rate-constant for species i, class j

The sampling interval was chosen based on the shortest process time constant and the prediction

horizon was chosen based on the time to steady-state. The same sampling interval and prediction

horizon were used for the MHE and MPCs described in Section 5.4. In terms of the choice of the

sampling interval, the shortest time constant in the model relates to the average froth residence time,

λairk . At a froth depth h fk = 120 mm and superficial gas velocity Jgk = 7.5 mm/s, the average froth

residence time is approximately 16 s. In terms of the choice of the prediction horizon, the residence

time of a flotation cell for the operating conditions reported in Hadler et al. (2010a) is approximately

60 s, and four cells are connected in series for the rougher bank. Therefore, to include the fastest

system dynamics in the froth, but also allow the prediction horizon of the MPC controller to capture

most of the steady-state response for the mass transfer between cells, the sampling interval was chosen

as 10 s and the prediction horizon P as 30 samples (300 s).

Oosthuizen et al. (2021) showed two sets of simulation results: the first set assuming that grade

and flow measurements are available on the tailings stream and the second set using a steady-state
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approximation to estimate measurements on the tailings stream. The main difference between the

model used in the simulations by Oosthuizen et al. (2021) compared to the model that was used in

the simulation results shown in this chapter is that Oosthuizen et al. (2021) assumed that the peaks

in air recovery would occur at the same values of Jgk for all the flotation cells, k, while the model

that was used in this chapter allows for the peaks in air recovery to occur at different values of Jgk

for each flotation cell, k, as was observed on industrial trials (Hadler and Cilliers, 2009; Smith et

al., 2010).

A comparison of scenarios with and without grade (GT4) and density (CwT ) measurements on the final

tailings stream, similar to what was described by Oosthuizen et al. (2021), is repeated in this chapter.

For the scenario where a grade measurement is not available on the final tailings stream, Figures 5.4 -

5.6 compare the model described in Chapter 3 to a model that does not have a measurement of grade

available on the final tailings stream, GT4 , but uses a steady-state approximation based on the feed grade,

GF , and concentrate grade, GH , instead. For this study, the benefit of the additional instrumentation on

the tailings stream is not significant. However, it is clear that with the more conservative configuration

of the MHE for the model using a steady-state approximation on tailings flow and grade, the parameter

K0,0 is slower to respond to changes. Factors such as the residence time of the concentrate hopper and

fast varying process disturbances could potentially reduce the accuracy of the steady-state estimate,

but for the set of disturbances considered and their rates of change, the model and set of measurements

shown in Chapter 3—both with and without measurements on the tailings stream—provide a viable

solution using instrumentation that is commonly available on industrial sites.

Figures 5.7 - 5.9 show the effect of noise on the accuracy with which the parameters are estimated,

using the models described in Chapter 3. Noise on the parameter estimates can be reduced further by

increasing the MHE horizon, but the delay in response will increase as the MHE horizon is increased.

The MHE performed well under all noise levels considered, tracking 5% variations in model parameters

reasonably well, even with 5% measurement noise.

An interesting observation is that the estimate of Kαh f in Figure 5.8 becomes less accurate at higher

noise levels, while undesired offsets in the estimates of KBFJg, KBFλ and DOSk in Figure 5.9 reduce

as noise levels increase. As the identifiability of KBFJg is dependent on variability in Jgk , higher

noise levels potentially increase the variability in Jgk , thereby improving the estimation accuracy of

KBFJg (which also affects the estimates of KBFλ and DOSk ). It is concerning that an offset in estimated
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parameters (KBFJg, KBFλ and DOSk ) could develop under certain conditions, and a careful design of

the MHE would be required to ensure that these parameters are only estimated under suitable conditions.

Figure 5.4. Model parameter estimation—comparing responses of models with and without grade and

density measurements on QT4 .
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Figure 5.5. Model parameter estimation related to αk—comparing responses of models with and

without grade and density measurements on QT4 .

Figure 5.6. Model parameter estimation related to DBFk —comparing responses of models with and

without grade and density measurements on QT4 .
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Figure 5.7. Model parameter estimation—performance with different noise levels.

Figure 5.8. Model parameter estimation related to αk—performance with different noise levels.
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Figure 5.9. Model parameter estimation related to DBFk —performance with different noise levels.

5.4 CONTROLLER DESIGN

Two MPCs were designed as depicted in Figure 5.1. These two controllers are connected in a master-

slave configuration:

1. The slave MPC is the stabilisation controller depicted in Fig. 5.2 and discussed in Section 5.2.3.1.

2. The master MPC is the grade controller and recovery optimiser depicted in Fig. 5.3 and discussed

in Section 5.2.3.2.

The stabilisation controller (slave MPC) has the objective to maintain all flotation cell levels, Lk, and

hopper level, LH , at setpoints by manipulating tailings flow rates of the flotation cells by adjusting

tailings valves zk and the hopper flow rate, QH . The master MPC (grade control and recovery optimiser)

calculates the flotation cell level setpoints (LSPk ) and superficial gas velocity setpoints (JgSPk ) which are

sent as inputs to the slave MPC controller.

Simplified models of Lk and LH were defined for the master controller:
d
dt

Lk =
LSPk −Lk

τL

d
dt

LH =
LSPH −LH

τL
,

(5.3)
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where τL is an estimated time constant of the stabilisation controller and LSPH is a user-defined setpoint

for the concentrate hopper level.

The grade controller and recovery optimiser (master MPC) have the following objectives:

• control the grade in the hopper (GH) to a desired setpoint by manipulating the aeration rates

(JSPgk ) and froth depths (h fk ) for each cell by adjusting the flotation cell level setpoints (LSPk )

• maximise circuit recovery (RC).

The MPC minimises a dynamic objective function of the following form (Qin and Badgwell,

2003):

J(uM) =
P

∑
j=1

{
‖ey

k+ j‖
q
Q j

+‖s j‖q
T

}
+

M−1

∑
j=0

{
‖eu

k+ j‖
q
R j

+‖∆uk+ j‖q
S j

}
(5.4)

subject to a model constraints:

xk+ j = f (xk+ j−1,uk+ j−1) ∀ j = 1,P,

yk+ j = g(xk+ j,uk+ j) ∀ j = 1,P
(5.5)

and subject to inequality constraints:

y− s j ≤ yk+ j ≤ y+ s j ∀ j = 1,P,

s j ≥ 0 ∀ j = 1,P,

u≤ uk+ j ≤ u ∀ j = 1,M−1,

∆u≤ ∆uk+ j ≤ ∆u ∀ j = 1,M−1.

(5.6)

Deviations from the desired output trajectory, yr
k+ j, are penalised in (5.4) through the error term, ey

k+ j,

defined as

ey
k+ j ≡ yr

k+ j−yk+ j . (5.7)

Similarly, deviations from a desired steady-state input vector, us, are penalised in (5.4) through the

error term, eu
k+ j, defined as

eu
k+ j ≡ uk+ j−us . (5.8)

Other variables used in (5.4) - (5.6) are defined in Table 5.5.

The default MPC objective function in the do-mpc library (Lucia et al., 2017) uses a simplified version

of (5.4) with M = P and R j = 0. Q j, R j, S j and T were defined as positive semi-definite weighting

matrices to set the relative importances of the four components in the MPC objective function shown

in (5.4).
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Table 5.5. Parameters used in the MPC objective function.

Variable Description

P Prediction horison

M Control horison

q q=1 for an L1 vector norm and q=2 for an L2 vector norm

s j Output constraint slack variables

∆uk+ j Change in input values, u, over the control horison, M

Q j, R j, S j and T Weighting matrices to set relative importances of components in J(uM)

y and y Minimum and maximum limits for y

u and u Minimum and maximum limits for u

∆u and ∆u Minimum and maximum limits for ∆u

For the slave MPC (stabilisation controller) in Figure 5.1, ‖ey
k+ j‖

q
Q j

in (5.4) is given by

‖ey
k+ j‖

q
Q j

=
4

∑
k=0

(LSPk −Lk)
2 +(LSPH −LH)

2 , (5.9)

where LSPk [m] is the pulp level setpoint for each flotation cell k, and LSPH [m] is the concentrate hopper

level setpoint. ‖ey
k+ j‖

q
Q j

in (5.9) is minimised by manipulating zk and QH .

For the master MPC (grade control and recovery optimisation) in Figure 5.1, ‖ey
k+ j‖

q
Q j

is given

by

‖ey
k+ j‖

q
Q j

= 100× (SPGC −GH)
2−0.01× (1.0−RC) , (5.10)

where SPGC is the concentrate grade target, and RC is the instantaneous recovery of the flotation section

that is modelled. ‖ey
k+ j‖

q
Q j

in (5.10) is minimised by manipulating LSPk and JgSPk . RC is calculated

as the ratio of the desired element mass flow rate in the concentrate stream relative to the desired

element mass flow rate in the feed stream ṀDF (Oosthuizen et al., 2021). Note, an L1 vector norm was

used to maximise RC in (5.10) to reduce the impact of RC at lower values on the setpoint-following

performance of GH .

Default values of the diagonal elements of the S j-term that is used in (5.4) are shown in Table 5.6.

The relative scaling between the weightings on the control actions (see Table 5.6) and the controlled
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variables in (5.9) and (5.10) were determined experimentally for each experiment to obtain the desired

response.

Table 5.6. Default weightings on control actions (diagonal elements of S j in (5.4)).

Variable Weight

JgSPk 0.1

LSPk 0.01

zk 0.01

QH 0.01

5.5 SIMULATION STUDY

5.5.1 Simulation Study 1: The link between air recovery and mineral recovery

The experimental trials conducted by Hadler et al. (2010a), Smith et al. (2010) and Phillpotts et al.

(2021) indicated that the recovery of a flotation sections increased when αk is maximised. This implies

that operation at higher air recoveries when all other operating conditions remain constant should result

in grade recovery curves of higher metallurgical efficiency. The grade setpoint for the concentrate

hopper was configured to increase linearly from 0.26 to 0.31. A range of target values was specified

for the air recoveries (αk). Three different scenarios were investigated:

• Scenario 1: Control αk to a set of target values and manipulate both JgSPk and LSPk

• Scenario 2: Control αk above a set of target values and manipulate both JgSPk and LSPk

• Scenario 3: Control αk to a set of target values and manipulate only JgSPk

5.5.1.1 Scenario 1: Control αk to a set of target values and manipulate both JgSPk and LSPk

The master and slave MPCs (stabilisation and optimisation) designed in Section 5.4 were used to

simulate the response of a control system. The objective function of the master MPC (grade control

and recovery optimiser) was modified to control αk explicitly (instead of maximising recovery as in

(5.10)), as

‖ey
k+ j‖

q
Q j

= 10× (GSPH −GH)
2 +10×

4

∑
k=0

(αSPk −αk)
2 , (5.11)

where αSPk is a target air recovery defined as a fraction of the maximum αk for each cell, k.
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Figure 5.10 shows the resulting grade-recovery curves when the ranges of JgSPk and LSPk are not

constrained. From these curves, it is clear how higher air recoveries correspond with grade-recovery

curves of increased efficiency (higher recovery at the same grade). These graphs also indicate that high

recoveries can be maintained over a range of grades by manipulating both Jgk and LSPk .

Figure 5.10. Grade-recovery curves at different air recoveries (unconstrained).

5.5.1.2 Scenario 2: Control αk above a set of target values and manipulate both JgSPk and

LSPk

To highlight the effect that αk has on controller behaviour, a second simulation was performed where

both JgSPk and LSPk are allowed to vary - but where αk is only penalised in the objective function when

below a defined target - not above the target, as shown by

‖ey
k+ j‖

q
Q j

= 10× (GSPH −GH)
2 +10×

4

∑
k=0

(max{αSPk −αk,0})2 . (5.12)

The grade-recovery curves shown in Figure 5.11 confirms that the same concentrate grade can be

obtained at different air recoveries and that in general, higher air recoveries result in higher mineral

recoveries. The smooth grade-recovery curve in Figure 5.11 also shows the expected relationship

between grade and recovery—similar to what was shown in Figure 1.3. However, any point on

the smooth grade-recovery curve shown in Figure 5.11—where αk was not explicitly controlled—
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represents sub-optimal behaviour. The horizontal lines on the right-hand side of the smooth curve

consistently achieve higher recoveries at the same grade as the smooth grade-recovery curve where αk

was not controlled, highlighting the importance of considering αk in grade and recovery optimisation

strategies.

Figure 5.11. Grade-recovery curves at different minimum air recoveries (unconstrained).

5.5.1.3 Scenario 3: Control αk to a set of target values and manipulate only JgSPk

The experimental trial conducted by Hadler et al. (2010a) focused on varying Jgk only. The simulation

was hence repeated to only allow variation in JgSPk while keeping LSPk constant at values that would

yield h fk = 120 mm for Rougher Cells 1 and 2 and h fk = 110 mm for Rougher Cells 3 and 4, to be

consistent with the froth depths that were measured during the trial conducted by Hadler et al. (2010a).

The objective function (5.11) described for Scenario 1 was used for this simulation.

The results are shown in Figure 5.12. When the froth depths, h fk , are kept constant, the ranges of

grades and recoveries that can be achieved at a specific air recovery, αk, are limited, and the resulting

grade-recovery curves at different values of αk can be approximated as a single curve. The recoveries

for the scenario when h f k is not varied (see Figure 5.12) are lower than when h f k is varied (see

Figure 5.10), with the difference in recoveries being a function of the choice of h f k and the target

concentrate grade GC. Figure 5.12 still shows how higher air recoveries, αk, correspond with higher
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mineral recoveries RC. However, different to the results shown in Figure 5.10 where h f k was adjusted

to maximise air recovery (αk) for a desired grade (GC), there is much less scope to maximise air

recovery (αk) at a target grade (GC) when froth depths (h f k) are fixed.

Figure 5.12. Grade-recovery curves at different air recoveries (h fk not varied).

The ranges of Jgk and h fk for the three scenarios are compared in Table 5.7. The ranges of Jgk in

Scenario 3, where LSPk was not varied, were similar to the ranges used in the industrial trial conducted

by Hadler et al. (2010a) and did not extrapolate beyond the reported dataset. Although caution should

be used in interpreting simulation results based on an extrapolated data range (as done in the simulation

where LSPk and JgSPk were varied), it is clear that by keeping h fk constant and only adjusting JgSPk ,

the range of achievable grades and recoveries are restricted considerably, and such a configuration

could potentially prevent the peak in air recovery from being obtained, as described by Hadler et al.

(2012).
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Table 5.7. Ranges of manipulated variables.

Variable Unit Scenario 1 (Figure 5.10) Scenario 2 (Figure 5.11) Scenario 3 (Figure 5.12)

Jgk mm/s 6.3 - 9.6 6.6 - 9.6 7.0 - 7.9

h fk mm 26 - 322 26 - 322 110 - 120

5.5.2 Simulation Study 2: Disturbance rejection

In this section, the ability of the MPC controller to reject typical disturbances that are expected to occur

on an industrial flotation site is evaluated. The controller design and objectives described in Section 5.4

are used, and the model described in Chapter 3 is used for the controller, MHE and simulator. Relative

weights of the Q and S matrices as part of the MPC objective function shown in (5.4) are listed in

Tables 5.8 and 5.9.

Table 5.8. Weightings on controlled variables (diagonal elements of Q j in (5.4)).

Variable Weight

Lk 1.0

LH 1.0

GH 1000

RC 0.01

Table 5.9. Weightings on control actions (diagonal elements of S j in (5.4)).

Variable Weight

JgSPk 1.0

LSPk 100

zk 0.1

QH 0.1
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Disturbances in volumetric feed rate to the flotation circuit (QF1), feed density (ρF ) and feed grade

(Gi
F ) could occur due to ore variability, or constraints or variability in upstream processes such as the

grinding circuit. Variations in the feed particle size distribution received from the grinding circuit would

affect the minimum (dpmin) and maximum (dpmax) particle sizes, and also the floatability constants

(Ki, j), as variability in the particle size distribution is likely to cause variability in mineral liberation.

The effect of gangue minerals, such as talc and mica, on the concentrate grade, froth stability and

bubble size is described by Farrokhpay, Ndlovu and Bradshaw (2018) and is modelled as a disturbance

in the floatability of the gangue minerals (Ki, j) and a step change in froth stability (αk) and bubble size

(DBFk ). The disturbances that are included in this simulation study are summarised in Table 5.10. Note

that the step disturbances on αOSk and DOSk were applied sequentially to the four cells, k, spaced 5

minutes apart.

Table 5.10. Simulated disturbances.

Time Disturbance Magnitude Measured

30 min QF1 −5% Yes

60 min ρF −5% Yes

90 min Gi
F −5% Yes

120 min dpmin and dpmax −50% Yes

150 min K0,0 (Chalcopyrite) +10% No

180 min K1,0 (Gangue) +20% No

210−225 min αOSk +0.05 No

240−255 min DOSk +0.2cm No

The measured disturbances that are shown in Table 5.10 are used both by the MHE to estimate process

parameters and by the MPC controller to feed-forward the impact of disturbances and predict model

responses. By measuring QF1 together with the measured states shown in Tables 4.2 - 4.4, the tailings

flow rates, QTk , can be estimated for all flotation cells, k, as shown by Oosthuizen et al. (2021), from

which the valve constants, Cvk , can be calculated. The measurement of the volumetric feed flow rate,

QF1 , allows the MPC controller to compensate for the effect of feed flow rate disturbances on flotation

cell levels and compensate for variations in residence times and variations in the mass transfers between

flotation cells and between the pulp and froth phases. The combination of the measured volumetric

feed flow rate (QF1), feed density (ρF ) and the feed grade (Gi
F ) allows the total mass flow rate and
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the mass flow rates of all the defined mineral species to the first flotation cell to be calculated. The

MHE uses these measurements to estimate the flotation rate constants of all the species and classes

(Ki, j). The feed size distribution (dpmin and dpmax) affects entrainment and need to be measured to

allow the MHE to distinguish between particles reporting to the concentrate hopper due to entrainment

and particles reporting to the concentrate hopper due to true flotation. The effect of the feed size

distribution (dpmin and dpmax) can also be used to define different floatability classes within mineral

species (e.g., fast and slow floating minerals due to different levels of liberation) but were not used in

this simulation study.

Figure 5.13 illustrates the ability of the MPC controller to reject the disturbances that are listed in

Table 5.10, with the control actions and resulting flow rates shown in Figure 5.14. The measured

disturbance in volumetric feed flow rate (QF1) at t = 30 minutes resulted in large controller responses,

but the grade was maintained close to the setpoint, and the instantaneous recovery increased slightly.

The disturbance in particle sizes (dpmin and dpmax) at t = 120 minutes was rejected, but the instantaneous

recovery reduced by approximately 1% as a result. The unmeasured disturbances affecting K0,0 at t =

150 minutes and K1,0 at t = 180 minutes were both rejected, resulting in an increase of approximately

2.5% in the instantaneous recovery. A control philosophy that can increase K0,0 (potentially using

reagent addition or improving the size distribution dpmin and dpmax) could thus have a significant

impact on circuit performance. The increase in air recovery (αk) at t = 210 minutes and bubble

size (DBFk ) at t = 240 minutes were both rejected and resulted in an increase in the instantaneous

recovery of approximately 2.5% for each disturbance. Significant gains in instantaneous recovery

can be realised by maximising αk and controlling DBFk to a target (using revised models for DBFk ),

rather than responding to unmeasured disturbances in αOSk and DOSk . Overall, the concentrate grade

was controlled in a narrow band with less than 0.5% deviation from the setpoint for all the simulated

disturbances, while the calculated instantaneous recovery remained above 0.84 for the duration of the

simulation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 CONTROLLER DESIGN

Figure 5.13. Grade and instantaneous recovery for the disturbances shown in Table 5.10.
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Figure 5.14. Control actions to reject the disturbances shown in Table 5.10 and αk.
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5.5.3 Simulation Study 3: A comparison of grade controllers

Grade control strategies employed on industrial sites can include reagent addition, control of recircu-

lating loads and mass pull control (Shean and Cilliers, 2011). The aeration rate setpoint (JgSPk ) and

froth depth (h fk ) (by adjusting LSPk ) are often manipulated to achieve a desired concentrate mass pull

rate from a flotation cell by relying on the principle that an increase in a concentrate mass pull rate

will result in an increase in recovery and a decrease in concentrate grade. Without a measurement

of air recovery and a model to take the effect of air recovery into account, a linear grade controller

will typically increase the mass pull rate in an attempt to increase recovery by increasing JgSPk and

decreasing h fk independently. However, Hadler et al. (2010b) showed how the peak in air recovery

determines if a higher mass pull rate results in an increase or a decrease in recovery. By not accounting

for the effect of air recovery on the resulting mass pull rate, grade, and recovery, a linear (i.e., PI or

PID) controller could operate a flotation cell in a sub-optimal region where an increase in the mass

pull rate reduces recovery (Hadler et al., 2010b). Without additional condition monitoring strategies or

models to intervene when the recovery decreases excessively, the linear controller could potentially

operate at a significantly reduced efficiency for extended periods.

In this simulation study, the benefit of a non-linear model-based control strategy (using the structure

shown in Figure 5.1) for grade control is illustrated by comparing its performance to that of a linear

mass pull-based control strategy that does not take the effect of air recovery into account. For the

control of a single rougher flotation bank in isolation, recirculating streams are not considered. The

mass pull controller of the non-model-based control strategy is implemented as a set of PI controllers

on JgSPk and LSPk for each flotation cell, as shown in Figure 5.15. The shaded PID controllers for LSPk ,

as shown in Figure 5.15, are disabled for the simulations in Section 5.5.3.2, where only JgSPk is varied.

The PI controllers and MPC were initialised at the same operating point that intersects with a data

point from industrial data described by Hadler et al. (2010a) to ensure that the performance of the PI

controllers and MPC are representative of typical plant operation.

The PI controllers were implemented using the velocity form of the PI controller algorithm (Seborg,

Edgar and Mellichamp, 1989):

∆pn = pn− pn−1 = Kc

[
(en− en−1)+

∆t
τI

en

]
, (5.13)

where ∆pn is the change in control action at sampling interval n, en and en−1 are the errors between

the grade setpoint and grade measurement at sampling intervals n and n− 1 respectively, Kc is the
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Figure 5.15. Using PI controllers to manipulate pulp levels LSPk and superficial air velocity JgSPk for

grade control.

PI controller gain, τI is the controller integral time, and ∆t is the period between successive control

actions (pn and pn−1).

The signs of the controller gains were chosen to increase JgSPk and LSPk (to decrease h fk ) when the

grade is above the setpoint, thereby increasing mass pull. The same controller gains were used for four

single-loop PI controllers—one for each cell— for JgSPk or LSPk . For the first scenario (where JgSPk and

LSPk were manipulated) the controller gains were chosen to ensure a similar control range as that of the

MPC controller, and for the second scenario (where only JgSPk was manipulated) controller gains were

increased to obtain acceptable setpoint tracking. The PI controller configurations for the two scenarios

are summarised in Table 5.11 and controller tuning settings for the two scenarios are summarised in

Table 5.12.
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Table 5.11. Simulation configurations (for MPC, see Figure 5.1, and for PI, see Figure 5.15).

Variable Simulation 1 Simulation 2

PI LSPk Manipulated Fixed

PI Jgk Manipulated Manipulated

PI Levels Stabilised Stabilised

MPC LSPk Manipulated Fixed

MPC JgSPk Manipulated Manipulated

MPC Levels Stabilised Stabilised

Table 5.12. PI controller tuning parameters.

Variable Simulation 1 (Kc) Simulation 1 (τI) Simulation 2 (Kc) Simulation 2 (τI)

PI JgSPk -0.2 60 s -5.0 120 s

PI LSPk -0.1 30 s - -

5.5.3.1 Scenario 1: Manipulating JgSPk and LSPk

The concentrate grade setpoint was linearly increased over a period of ten hours from 0.285 to 0.310

for the simulation results shown in Sections 5.5.3.1 and 5.5.3.2. Figure 5.16 shows a graph of the

linear change in the concentrate grade setpoint, and the resulting recoveries when PI controllers

are used (see Figure 5.15) and when an MPC is used (see Figure 5.1) when both JgSPk and LSPk are

manipulated.

The grade-recovery curves for the first scenario are shown in Figure 5.17, comparing a linear PI-based

grade control strategy (see Figure 5.15) to a non-linear MPC grade control strategy (see Figure 5.1),

varying both JgSPk and LSPk . The master MPC (grade controller and recovery optimiser) was configured

to control the grade to setpoint (see Figure 5.16) and maximise recovery. The same slave MPC

(stabilisation controller) was used for both simulations to stabilise flotation cell and concentrate hopper

levels. It is clear that the non-linear MPC controller outperforms the linear controller by a large margin

by consistently achieving higher recoveries than the linear controllers at the same grade. Figure 5.18
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Figure 5.16. Scenario 1: Linear change in grade setpoint to compare controllers (scenario 1).

shows the changes in Jgk , h fk and αk over time to achieve the grade setpoint that is shown in Figure 5.16.
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Figure 5.17. Scenario 1: Grade-recovery curves for PI control compared to MPC control (Jgk and LSPk

manipulated).
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Figure 5.18. Scenario 1: Changes in Jgk , h fk and αk over time, comparing PI control to MPC control

(Jgk and LSPk manipulated).
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5.5.3.2 Scenario 2: Manipulating Jgk only

The grade-recovery curves for the scenario where only JgSPk is varied are shown in Figure 5.19,

including an operating point from the dataset used by Hadler et al. (2010a). The master MPC (grade

controller and recovery optimiser) was configured to control the grade to setpoint and maximise

recovery, in addition to maintaining stable flotation cell and concentrate hopper levels. h fk was set

to the default values of 120 mm for the first two cells, and 110 mm for Cells 3 and 4, as described

by Hadler et al. (2010a). LSPk was kept constant for both simulations and the starting points for the

PI controllers were chosen to correspond with the average PAR points that the model fit was based

on.

Although the recoveries shown in Figure 5.17 (where both JgSPk and LSPk were manipulated) are higher

than the recoveries shown in Figure 5.19 (where only JgSPk was manipulated), the non-linear MPC

controller also outperforms the linear controller when only Jgk is manipulated, consistently achieving

higher recoveries than the linear controllers at the same grade. Figure 5.20 shows the changes in JgSPk

and αk over time to achieve the grade setpoint shown in Figure 5.21. h fk remained constant as LSPk

was not changed for this simulation.
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Figure 5.19. Scenario 2: Grade-recovery curves for PI control compared to MPC control (only Jgk

manipulated).
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Figure 5.20. Scenario 2: Changes in Jgk , h fk and αk over time, comparing PI control to MPC control

(only Jgk manipulated).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 CONTROLLER DESIGN

Figure 5.21. Scenario 2: Linear change in grade setpoint to compare controllers (scenario 2).
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CHAPTER 5 CONTROLLER DESIGN

5.5.3.3 Scenario 3: Best case scenario for a linear PI control strategy

When the performances of different controllers are compared numerous factors can contribute to one

controller outperforming the other, potentially biasing the result. In this section it was investigated

whether an operating point and tuning parameters could be chosen where the linear PI control strategy

described in Section 5.5.3.1 could match or exceed the performance of the non-linear MPC strategy.

The following factors were considered:

• PI controller parameters in Section 5.5.3.1 were chosen to obtain similar ranges for the manipu-

lated variables (JgSPk and LSPk ) in both the MPC and PI control strategies while achieving accept-

able setpoint following. The same PI controller parameters (that were used in Section 5.5.3.1)

were used in this section.

• An increasing grade setpoint was simulated to ensure that the PI control actions (as a function of

the control parameters and initial operating points) would reduce. This is required to prevent the

linear PI control strategy from operating in a region relative to the PAR where the gain between

recovery and JgSPk or LSPk is reversed.

• The initial values of JgSPk and LSPk for both the PI controllers and the MPC were chosen to

correspond with the PAR values used in the model fit. This is different to the simulation results

shown in Section 5.5.3.1 where the initial values for both controllers were set equal to a different

data-point reported by Hadler et al. (2010a) - not the PAR point.

Figure 5.23 shows the grade and recovery trends for the non-linear MPC (Figure 5.1)and linear PI

(Figure 5.15) controller strategies under ideal conditions, and confirms that both controllers tracked the

grade setpoint adequately. Grade-recovery curves for the MPC and PI controllers are almost identical,

confirming that the PI control strategy can achieve similar performance as the MPC strategy under

ideal operating conditions (see Figure 5.22). Figure 5.24 compares Jgk , h fk and αk for the non-linear

MPC and PI control strategies under ideal condition, showing similar trends for Jgk , h fk αk. It is thus

possible to choose initial operating points, an operating range and controller tuning parameters that

would result in a linear non model-based control strategy (PI controllers) matching the performance of

a non-linear model-based control strategy (MPC) in a simulated environment. However, in an industrial

environment where

• the PAR point and Jgk and h fk values at the PAR point are not continuously estimated,

• the PAR point changes over time as reported by Phillpotts et al. (2021), and

• the PAR point might shift to a point where an increase in Jgk would result in a decrease in

recovery,
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the non model-based control strategy (PI master controllers shown in Figure 5.15) would under-perform

a non-linear model-based control strategy (MPC master controllers shown in Figure 5.1) by a margin

dependent on the deviation from ideal operating conditions.

Figure 5.22. Scenario 3: Linear change in grade setpoint to compare controllers under ideal conditions.
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Figure 5.23. Scenario 3: Grade-recovery curves for PI control under ideal conditions compared to

MPC control (Jgk and LSPk manipulated).
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Figure 5.24. Scenario 3: Changes in Jgk , h fk and αk over time, comparing PI control under ideal

conditions to MPC control (Jgk and LSPk manipulated).
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CHAPTER 5 CONTROLLER DESIGN

5.6 DISCUSSION

The peak in air recovery that is described by Hadler and Cilliers (2009) implies that a non-linear

model-based control strategy is required to optimise flotation operation by maintaining the operating

point as close as possible to the air recovery peak. The non-stationary nature of the peak in air recovery,

as reported by Phillpotts et al. (2021), requires a strategy capable of dynamically adapting the model

to track variability in the air recovery peak position over time. The non-linear flotation model shown

in Chapter 3 and described by Oosthuizen et al. (2021) provides the basis for model-based control and

optimisation implementation to dynamically track variations in the peak in air recovery while using

fundamental models to model the transfer of mineral species between flotation cells and between the

pulp and froth phases within a flotation cell. Key aspects of the model described in Chapter 3 are

that the model uses measurements that are commonly available on industrial flotation circuits and

that the unmeasured model states and model parameters can be estimated from commonly available

real-time measurements on an industrial site, as confirmed by an observability analysis performed in

Chapter 4.

A control framework comprising a robust non-linear MPC and an MHE is described by Lucia et al.

(2017), which can be used to implement a non-linear model-based control strategy based on the flotation

model described in Chapter 3. The MHE is a key component of the control and optimisation solution

that is required to track variations in the peak air recovery point and other flotation parameters over time.

In Section 5.3, it was demonstrated that the MHE could be used to estimate model parameters—even

when the measurement noise is of a similar magnitude as the variability in parameters that are being

estimated. The flexible structure of the MHE cost function and the ability to specify constraints on

parameters and states allow for a robust solution that can be guaranteed to remain within a feasible

operating range in the presence of large disturbances and modelling and measurement errors.

A basic MPC controller design was described in Section 5.4 to combine the stabilisation of flotation

cell and concentrate hopper levels with optimisation of aeration rates (Jgk ) and froth depth (h fk ) (by

adjusting Jgk and LSPk ), to maximise recovery at a target concentrate grade. Additional constraints (e.g.,

a threshold on minimum recovery, below which, the grade may be compromised) can be added in

future to address operational constraints on industrial sites, or the non-linear objective function can be

modified to include economic objectives representative of trade-offs between—for example, smelter

penalties, reagent cost and recovery.
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In Section 5.5.1, a comparison of grade-recovery curves that are generated at different air recoveries

clearly shows how operating at higher air recoveries are equivalent to shifting the process to a more

efficient grade-recovery curve, which achieves higher recovery at the same grade (see Figure 5.10).

The peak in air recovery is thus a key parameter to include in a flotation optimisation strategy. A

second set of curves for a scenario where only aeration rates are varied—not froth depth—provided

similar results (higher air recovery corresponding to operation at a more efficient grade-recovery curve)

but over a smaller operating range (see Figure 5.12). When only Jgk is used as a manipulated variable,

the selection of the froth depth profile for the flotation section dictates the range of air recoveries and

grades that can be achieved in the circuit. Unless the froth depth profile is optimised and adjusted over

time to suit operating conditions, recovery could be considerably lower than what could be achieved

when both LSPk and JgSPk form part of a non-linear model-based control strategy.

Section 5.5.3 compares the non-linear MPC controller designed in Section 5.4 to a linear PI-based

strategy (see Figure 5.16) to maximise recovery while maintaining a target grade. The limitation

of a linear non-model based control strategy, as implemented using PI controllers, is that such a

strategy does not consider any non-linearities in the inverse relationship between grade and recovery

or the sign change in the relation between αk and Jgk when the PAR point is crossed. The non-linear

MPC controller consistently outperformed the PI controllers on recovery by moving the process to a

more efficient grade-recovery curve that maximises recovery over a range of grade setpoints. This is

confirmed by the grade-recovery curves shown in Figures 5.17 and 5.19, where the MPC controller

consistently achieved higher recoveries at the same grade as the linear PI-based control strategy.

However, the benefit provided by the MPC when both JgSPk and LSPk are manipulated (Figure 5.17)

exceeds the benefit when only JgSPk is manipulated (Figure 5.19) by a significant margin, with an

average increase in recovery of 5.8% shown in Figure 5.17, compared to 0.32% in Figure 5.19.

Section 5.5.3.3 showed how—by selecting and ideal set of operating conditions and controller tuning

parameters—a linear PI based control strategy can match the performance of the non-linear model-

based strategy. Under non-ideal conditions (e.g., on an industrial flotation circuit) the results shown

in Section 5.5.3.1 are more representative of the expected benefit that could be achieved by using a

non-linear model-based controller.

In Section 5.5.2, Figure 5.13 demonstrates how the MPC controller is able to reject typical

disturbances that can be expected to occur on an industrial flotation plant, which include measured

disturbances in the feed and unmeasured disturbances as a result of ore changes or variability in the
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feed from the grinding process. The controller rejected all the disturbances while maintaining the

concentrate grade within a narrow band around the setpoint and maximising recovery. Disturbances,

such as the grind size (dpmin and dpmax), volumetric feed flow rate (QF1), feed density (ρF ) and

potentially the floatability of minerals (Ki, j) due to variability in liberation, are directly related

to the upstream grinding process, which provides opportunities to integrate optimisation of the

grinding and flotation processes (le Roux and Craig, 2019). Although the controller managed

to reject the disturbances in froth stability / air recovery (αk) and bubble size (DBFk ) well, the

reagent mixture would typically be adjusted when an increase in specific minerals (e.g., talc

in the feed) results in a significant change in froth stability and bubble size, as described by

Farrokhpay et al. (2018). Future work should expand the flotation model to include reagents as

manipulated variables to the controller—potentially replacing the DBFk model with a model de-

pendent on reagents and with a higher sensitivity to changes in the model inputs than the existing model.

5.7 CONCLUSION

Air recovery is a critical parameter to include in a flotation optimisation strategy. It provides the

mechanism to move towards an optimal grade-recovery curve with the highest recovery for a desired

grade instead of moving along a sub-optimal grade-recovery curve. A non-linear model-based control

strategy combined with a state and parameter estimator are key components of such a flotation optim-

isation strategy. It provides the means to adapt the model to rapid changes in the peak in air recovery

and to control the flotation process at an optimal operating point. The non-linear flotation model, MHE

and non-linear MPC presented in this thesis consistently outperformed the linear control strategies,

and provide a viable framework to optimise an industrial flotation circuit that relies only on real-time

measurements that are commonly available on industrial flotation circuits. This supports the second

hypothesis in Section 1.5.
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CHAPTER 6 DISCUSSION AND CONCLUSION

6.1 SUMMARY

The aim of this work is to develop a flotation model for real-time control and optimisation applications

on industrial flotation circuits that include key flotation mechanisms. The feature that distinguishes the

flotation model developed in Chapter 3 from other models that are available in the literature and makes

it suitable for real-time control and optimisation applications, is its ability to continuously estimate key

flotation parameters and states from real-time measurements that are commonly available on industrial

flotation circuits. It was shown through an observability analysis in Chapter 4 and demonstrated

through a simulation study in Chapter 5 that model parameters can be estimated from real-time process

measurements and that it is viable to include the flotation model in a non-linear model-based controller

for control and optimisation applications. The structure that comprises a non-linear flotation model, a

state and parameter estimator, and a model predictive controller provides a viable solution to be used

in industrial flotation control and optimisation applications.

6.2 FLOTATION MODEL STRUCTURE

Three shortcomings have been identified in flotation models that are available in the literature that limit

the extent to which these models can be used in industrial control and optimisation applications:

• Steady-state models are often used for plant design without considering process dynamics.

• Detailed steady-state or dynamic models rely on an extensive set of model parameters that need

to be determined through sampling campaigns. While many variables are unlikely to change

much over time, parameters related to ore characteristics and operating conditions are expected

to vary considerably over time and need to be updated regularly to maintain model accuracy

when process characteristics change.
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CHAPTER 6 DISCUSSION AND CONCLUSION

• Flotation models that are used in model-based control applications are often linear empirical

models that do not take non-linearities, such as air recovery, into account.

A simple dynamic flotation model was developed that combines fundamental mass and volume

balances with froth image properties and empirical models. While more comprehensive and detailed

flotation models have been developed, this model distinguishes itself from other models by relying

only on measurements that are commonly available in real time on industrial flotation circuits

to estimate key flotation parameters and model states. The flotation mechanisms and properties

that were identified in Chapter 2 were included in the model, and where specific interactions in

the flotation process (e.g., variations in turbulence in the pulp phase) are not modelled explicitly,

the effect of such variability can still be observed through variability in flotation parameters. The

flotation model described in Chapter 3 provides a minimum viable model definition that describes

the key mechanisms that contribute to the flotation process in sufficient detail to be used in real-time

control and optimisation applications, and this model can potentially be expanded and built on in future.

6.3 STATE AND PARAMETER ESTIMATION

Real-time measurements of concentrate grades provide information on different mineral species that

are present in the concentrate hopper but not on the flotation mechanism that results in each mineral

being transferred to the concentrate hopper or on the relative contributions from each flotation cell.

Real-time estimation of the model parameters that distinguishes between the mechanisms of true

flotation and entrainment for all the mineral species allows for the design of a control and optimisation

strategy that is capable of addressing the root cause of deviations from the desired grade or recovery by

controlling each flotation cell in an optimal fashion. For the flotation model in its current form, such a

control and optimisation strategy could calculate the optimal combination of froth depth and aeration

rates on each flotation cell to achieve the desired control and optimisation objectives of maintaining a

target concentrate grade while maximising recovery. However, the additional information on flotation

parameters opens up opportunities to integrate the control of reagent addition into the existing structure

too, as described in Section 6.5.

It has been demonstrated in Chapter 4 that an MHE can be designed for the flotation model of Chapter 3

to estimate the key flotation model parameters reliably in the presence of noisy measurements. A

viable solution is thus presented to estimate key flotation parameters from real-time measurements that

are commonly available on industrial flotation circuits.
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In industrial implementations modelled and measured process responses would differ due to process

noise and modelling errors, which could reduce the accuracy of parameter estimates—particularly for

the empirical models. An error term for process noise, wk could be included in the MHE objective

function shown in (5.2) to compensate for model errors. Such an error term, wk could reduce the

responsiveness of model parameters to rapid process changes, but would also reduce undesired

fluctuations in model parameters caused by a mismatch between the measured and modelled process

responses.

6.4 SIMULATION RESULTS

Three sets of simulation results were presented in Chapter 5. The first set demonstrated how higher air

recoveries result in higher concentrate recoveries for the same grade. This confirms that the non-linear

characteristics of air recovery form an important model state that needs to be considered in flotation

control and optimisation strategies. Linear optimisation strategies that do not explicitly consider

the peak in air recovery need to assume operation on one side of the air recovery peak and include

functionality to either restrict the operating range in an attempt to avoid operation on both sides of the

peak or include some intervention mechanism when the linear controller does not have the desired

effect. In both cases, operation would be sub-optimal.

The second simulation study showed how the system comprising the MHE and MPC could be used in

a flotation control and optimisation strategy to maximise mineral recovery for a desired concentrate

grade in the presence of typical disturbances. The results showed how the concentrate grade could

be maintained close to a target setpoint for most disturbances while mineral recovery was maximised

throughout the simulation. The non-linear characteristics of air recovery form a key part of the model-

based control and optimisation strategy that leverage the increase in mineral recovery when flotation

cells are operated at high air recoveries. However, the peak in air recovery is not stationary and needs

to be estimated continuously to maximise the performance of the flotation circuit over a range of

operating conditions. This second simulation study confirms that the control and optimisation strategy

that was developed in Chapter 5 is capable of maintaining system performance in the presence of noise

and measured and unmeasured disturbances that one would expect to find on an industrial flotation

circuit.

The third simulation study demonstrated the benefit of using a non-linear model-based control strategy
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for flotation optimisation over a linear PI controller-based strategy, to control the concentrate grade to

a target while maximising recovery. For the linear control strategy, the controller gains and operating

region were chosen conservatively to ensure that the controllers did not exceed the aeration rate

or froth depth at which the peak in air recovery occurs. This was to prevent the controllers from

entering an operating region where the effect of froth depth or aeration rate on concentrate grade

and recovery is reversed. Without such limits or additional logic linked to the control system, a

PI-based control strategy could potentially push the circuit to an operating point of low grade and

low mineral recovery to the concentrate due to low air recoveries. Given the non-linear characterist-

ics of air recovery, plant optimisation can benefit significantly from a non-linear model-based approach.

6.5 FUTURE WORK

Various enhancements can be considered to include additional flotation mechanisms or include

additional manipulated variables, such as the reagent addition rates to the froth flotation model that

was described in Chapter 3. Some recommendations are described in this section. For any model

enhancements, it remains crucial that the model be re-evaluated for state observability, parameter

identifiability and state controllability—similar to the analysis that was done in Chapter 4—to ensure

that the model parameters can still be estimated in real time using only real-time measurements that

are commonly available on industrial flotation circuits.

6.5.1 Reagent addition

Aeration rates and froth depths are often the first parameters to be automated in grade control strategies,

as the direct cost associated with manipulating these variables are minimal. A suitable reagent mixture

is critical to provide the desired operating conditions where froth depth and aeration rates can be

manipulated within their operating ranges to achieve the desired concentrate grade and recovery.

By including reagent addition rates as part of an automatic control and optimisation strategy, the

operation of a flotation circuit will not be limited to optimal aeration rates and froth depths for a given

combination of reagents but will also include the optimisation of reagents based on the estimated

model parameters.

A frother is expected to affect bubble sizes, DBFk , and froth stability, αk, in each flotation cell, k. The

frother concentration in each flotation cell can be calculated from frother addition rates and volumetric

flow rates into and out of each flotation cell, and the models for bubble size DBFk and αk can be
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expanded to model the effect of frother addition rates. The objective function may need to be revised

to penalise frother addition to ensure that the cost of reagents are minimised.

Reagents, such as depressants, activators and collectors, are expected to affect the flotation rate

constants, Ki, j, of the mineral species. Rather than having constant reaction rate constants (that are

estimated from real-time measurements) in the model, the reaction rate constants can potentially be

defined as a function of the concentrations of depressants, activators and collectors. The concentrations

of different reagents in each flotation cell can be calculated from measured reagent addition rates

and volumetric flow rates into and out of the flotation cells. Models of reagents will need to take

interactions between different reagents into account.

6.5.2 Expanding the true flotation model to include particle size information

Particle size information is currently included in the entrainment model to model the preferential

entrainment of light particles over heavy particles. The particle size distribution can also be included

in the true flotation model. It is well documented (Wills and Napier-Munn, 2006) that true flotation

is most effective within a band of size classes, as larger and heavier particles become detached from

bubbles more easily, and smaller and lighter particles are easily swept past bubbles rather than colliding

and attaching to the bubbles in the pulp phase.

One option to model the effect of the particle size distribution on true flotation is to define three

size classes in the model for coarse, intermediate and fine particles—each with its own floatability

characteristics. The simplest approximation is that true flotation only occurs within the defined

particle size band and is zero outside it, but the error that is introduced by such an approximation

needs to be considered. The alternative is to estimate the flotation rate constants of the coarse,

intermediate and fine size classes individually from real-time measurements. The set of real-time

measurements that were defined in Chapter 2 will need to be expanded to estimate additional floatability

constants, but it may be possible if particle size information is also available on the concentrate streams.

6.5.3 Expanding the flotation model to include additional mechanisms contributing to flota-

tion

Flotation model parameters such as the floatability constants Ki, j lump together several mechanisms in

the pulp and froth phases that contribute to the resultant minerals reporting to the concentrate hopper.
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The effect of turbulence in the pulp phase is, for example, not modelled as was done in the model

described by Bascur and Herbst (1982), and the mechanisms of particles attaching and detaching from

the bubbles are not modelled separately. While the model parameters that were defined in Chapter 3

will adapt over time (based on real-time measurements) to account for all the flotation mechanisms

that contribute to the overall floatability, a more detailed model’s predictive capabilities is likely to

improve as the fundamental flotation mechanisms are modelled in finer detail.

Should the flotation model described in Chapter 3 be expanded to model additional flotation

mechanisms explicitly, maintaining state observability and parameter identifiability would be a key

criterion to determine if such a model expansion is viable.

6.5.4 Investigating other flotation section configurations

A rougher flotation section generally has a simple configuration, with the tailings streams flowing

sequentially from one flotation cell, k, to the next cell, k+ 1, and the concentrate streams from all

the flotation cells combining into a concentrate hopper. For other flotation sections, such as cleaner

sections, the concentrate streams typically flow in a counter-current direction relative to the tailings

flows, with each flotation cell, k, receiving tailings flow from an upstream cell, k−1, and concentrate

flow from a downstream cell, k+1.

A system analysis was performed in Chapter 4 on a rougher flotation section only, as described by

Hadler et al. (2010a). The observability and controllability analysis would have to be repeated for

different flotation sections and configurations to confirm that model parameters can be estimated

from the available real-time measurements and that the process states are controllable for the specific

configuration. Should the system not be observable with the real-time process measurements that

were defined in Chapter 2, there could still be room to use additional real-time measurements or soft

sensors based on, for example, visual froth characteristics to obtain a system that is state observable

and parameter identifiable.

6.5.5 Integrating flotation and grinding circuits

Crushing and grinding circuits are commonly installed upstream of a flotation circuit to produce the

desired particle size distribution required for the feed to the flotation circuit. Determining the ideal

size distribution is not a trivial exercise, as the particles that contain the valuable minerals need to be
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sufficiently liberated in the grinding process without over-grinding or using excessive energy in the

grinding circuit. As the size distribution of the feed to the flotation process affects both true flotation

and entrainment, the effect of finer grinding on both flotation mechanisms need to be considered.

The particle size distribution that is produced by the grinding circuit is only one aspect where there is

scope to integrate the control of grinding and flotation processes to optimise the overall process:

• The throughput of the grinding circuit determines the residence time in the flotation circuit.

Depending on ore characteristics, bottlenecks in the process and economic considerations, it

could be beneficial to reduce throughput from the milling circuit to increase residence times in

the flotation circuit to increase recoveries.

• Optimisation objectives of a grinding circuit would typically include the maximisation of

grinding efficiency and throughput, subject to bottlenecks in the process. However, it is possible

to achieve a finer grind at the same throughput by operating a grinding mill in a less efficient mode

that favours attrition grinding over impact breakage. Depending on the economic objectives and

relative contributions of the economic factors, it could be beneficial for the combined grinding

and flotation processes to operate the grinding circuit in a sub-optimal fashion (in terms of

specific energy consumption) to achieve a different feed size distribution to the flotation circuit

that would maximise recovery.

• In addition to operating within the operational constraints of the flotation and milling circuits, an

integrated automatic control and optimisation strategy can be designed to optimise the combined

milling and flotation processes based on the economic objectives. Such an economic objective

function needs to consider the cost of deviating from target product specifications and the

cost of control actions (e.g., reagents and electricity cost) that can be used to compensate for

disturbances that drive the product away from the desired specifications. While fixed costs

of production and constraints on other downstream processes may limit the scope of such a

strategy, an economic optimisation could potentially trade off strategies that can achieve the

same objectives using different combinations of control actions, to maximise the operating profit

for the combined grinding and flotation circuits.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

126

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES

Ai, M., Xie, Y., Tang, Z., Zhang, J. and Gui, W. (2021). Deep learning feature-based setpoint

generation and optimal control for flotation processes, Information Sciences 578: 644–658.

Aldrich, C., Marais, C., Shean, B. J. and Cilliers, J. J. (2010). Online monitoring and control of froth

flotation systems with machine vision: A review, International Journal of Mineral Processing

96(1–4): 1–13.

Alves Dos Santos, N., Savassi, O., Peres, A. E. C. and Martins, A. H. (2014). Modelling flotation with

a flexible approach–Integrating different models to the compartment model, Minerals Engineering

66: 68–76.

Ata, S. (2008). Coalescence of bubbles covered by particles, Langmuir 24(12): 6085–6091.

Baas, D., Hille, S. and Karageorgos, J. (2007). Improved flotation process control at Newcrest’s

Telfer operation, Ninth Mill Operators’ Conference, 19–21 March 2007, Fremantle, Australia,

pp. 87–93.

Barbian, N., Ventura-Medina, E. and Cilliers, J. J. (2003). Dynamic froth stability in froth flotation,

Minerals Engineering 16(11): 1111–1116.

Bascur, O. A. (2005). Example of a dynamic flotation framework, Centenary of Flotation Symposium,

6–9 June 2005, Brisbane, pp. 85–91.

Bascur, O. A. and Herbst, J. A. (1982). Dynamic modelling of a flotation cell with a view towards

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES

automatic control, XIV International Mineral Processing Conference, 17-23 October 1982,

Toronto, Canada, pp. III–11.1–III–11.22.

Bascur, O. and Herbst, J. (1985). On the development of a model-based control strategy for copper ore

flotation, in E. Forsberg (ed.), Flotation of Sulphide Minerals, Elsevier, Netherlands, pp. 409–431.

Bergh, L. and Yianatos, J. (2013). Control of rougher flotation circuits aided by industrial simulator,

Journal of Process Control 23: 140–147.

Bergh, L. G. and Yianatos, J. B. (2011). The long way toward multivariate predictive control of

flotation processes, Journal of Process Control 21(2): 226–234.

Bhondayi, C. and Moys, M. H. (2014). Measurement of a proxy for froth phase bubble sizes as a

function of froth depth in flotation machines Part 1. Theoretical development and testing of a

new technique, International Journal of Mineral Processing 130: 8–19.

Bouchard, J., Desbiens, A. and Del Villar, R. (2014). Column flotation simulation: A dynamic

framework, Minerals Engineering 55: 30–41.

Bouchard, J., Desbiens, A., del Villar, R. and Nunez, E. (2009). Column flotation simulation and

control: An overview, Minerals Engineering 22(6): 519–529.

Brooks, K. and Munalula, W. (2017). Flotation velocity and grade control using cascaded model

predictive controllers, IFAC-PapersOnLine 50(2): 25–30.

Coghill, P. J., Millen, M. J. and Sowerby, B. D. (2002). On-line measurement of particle size in

mineral slurries, Minerals Engineering 15: 83–90.

Conradie, A. v. E., Bascur, O., Aldrich, C. and Nieuwoudt, I. (2003). Integrated comminution and

flotation neurocontrol using evolutionary reinforcement learning, Application of Computers and

Operations Research in the Minerals Industries, SAIMM, pp. 209–216.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

128

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES

Craig, I. K. and Henning, R. G. (2000). Evaluation of advanced industrial control projects: a

framework for determining economic benefits, Control Engineering Practice 8(7): 769–780.

Craig, I. K. and Koch, I. (2003). Experimental design for the economic performance evaluation of

industrial controllers, Control Engineering Practice 11(1): 57–66.

Deglon, D. A., Egya-Mensah, D. and Franzidis, J. P. (2000). Review of hydrodynamics and gas

dispersion in flotation cells on South African platinum concentrators, Minerals Engineering

13(3): 235–244.

Deglon, D. A., Sawyerr, F. and O’Connor, C. T. (1999). A model to relate the flotation rate constant and

the bubble surface area flux in mechanical flotation cells, Minerals Engineering 12(6): 599–608.

Doyle, F. and Henson, M. (1997). Nonlinear systems theory, in M. Henson and D. Seborg (eds),

Nonlinear process control, Prentice Hall, Upper Saddle River, N.J., USA, pp. 111–147.

Du Preez, N. B., Crundwell, F. K. and Knights, B. D. H. (2013). Flotation of PGM-containing

minerals: Plant-wide regression and prediction of circuit performance, Minerals Engineering

54: 116–123.

Farrokhpay, S., Ndlovu, B. and Bradshaw, D. (2018). Behavior of talc and mica in copper ore flotation,

Applied Clay Science 160: 270–275.

Finch, J. A. and Dobby, G. S. (1990). Column Flotation, Pergamon Press, Oxford.

Gallegos-Acevedo, P. M., Espinoza-Cuadra, J., Perez-Garibay, R. and Pecina-Trevino, E. T. (2010).

Bubbles coalescence: Hydrofobic particles effect, Journal of Mining Science 46(3): 333–337.

Gaudin, A. M. (1957). Flotation, 2nd edn, Mc Graw-Hill, New York.

Geldenhuys, S. and McFadzean, B. (2019). The effect of pulp bubble size on the dynamic froth

stability measurement, Minerals Engineering 131: 164–169.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

129

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES

Gomes-Sebastiaõ, G. A., Hearne, Z., Lam, S., Van der Spuy, D. D. V., Thompson, M. and Vines, N.

(2018). Nova copper-nickel project optimisation of the copper rougher-scavenger circuit through

advanced measurement and control, 14th AusIMM Mill Operators’ Conference, 29–31 August

2018, Brisbane, Australia, pp. 77–92.

Hadler, K. and Cilliers, J. J. (2009). The relationship between the peak in air recovery and flotation

bank performance, Minerals Engineering 22(5): 451–455.

Hadler, K., Greyling, M., Plint, N. and Cilliers, J. J. (2012). The effect of froth depth on air recovery

and flotation performance, Minerals Engineering 36-38: 248–253.

Hadler, K., Smith, C. and Cilliers, J. (2010a). Flotation performance improvement by air recovery

optimisation on roughers and scavengers, XXV International Mineral Processing Congress, IMPC

2010, 6–10 September 2010 3: 1917–1924.

Hadler, K., Smith, C. D. and Cilliers, J. J. (2010b). Recovery vs. mass pull: The link to air recovery,

Minerals Engineering 23(11-13): 994–1002.

Haseltine, E. L. and Rawlings, J. B. (2005). Critical evaluation of extended Kalman filtering and

moving-horizon estimation, Industrial and Engineering Chemistry Research 44(8): 2451–2460.

He, M., Yang, C., Wang, X., Gui, W. and Wei, L. (2013). Nonparametric density estimation of

froth colour texture distribution for monitoring sulphur flotation process, Minerals Engineering

53: 203–212.

Hermann, R. and Krener, A. J. (1977). Nonlinear controllability and observability, IEEE Transactions

on Automatic Control 22(5): 728–740.

Hernandez-Aguilar, J. R., Gomez, C. O. and Finch, J. A. (2002). A technique for the direct

measurement of bubble size distributions in industrial flotation cells, Proceedings 34th Annual

Meeting of the Canadian Mineral Processors, 22–24 January 2002, Ottawa, Canada, pp. 389–402.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

130

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES

Hodouin, D., Jämsä-Jounela, S.-L., Carvalho, M. T. and Bergh, L. (2001). State of the art and

challenges in mineral processing control, Control Engineering Practice 9(9): 995–1005.

Jämsä-Jounela, S. (1992). Simulation study of self-tuning adaptive control for rougher flotation,

Powder Technology 69: 33–46.

Jämsä-Jounela, S. L., Dietrich, M., Halmevaara, K. and Tiili, O. (2003). Control of pulp levels in

flotation cells, Control Engineering Practice 11: 73–81.

Kämpjärvi, P. and Jämsä-Jounela, S. L. (2003). Level control strategies for flotation cells, Minerals

Engineering 16: 1061–1068.

Kewe, T., Moffat, N. and Schaffer, M. (2014). Porgera flotation circuit upgrade and expert system in-

stallation, 12th AusIMM Mill Operators’ Conference, 1–3 September 2014, Townsville, Australia,

pp. 345–355.

King, R. P. (ed.) (1982). Principles of Flotation, Cape and Transvaal Printers, Cape Town.

Kongas, M. (2003). Mineral slurry on-stream, Filtration + Separation 40(7): 36–37.

Laurila, H., Karesvuori, J. and Tiili, O. (2002). Strategies for instrumentation and control of

flotation circuits, in A. L. Mular, D. N. Halbe and D. J. Barratt (eds), Mineral Processing Plant

Design, Practise and Control, Vol. 1, Society for Mining, Metallurgy, and Exploration (SME),

pp. 2174–2195.

le Roux, J. D. and Craig, I. K. (2019). Plant-wide control framework for a grinding mill circuit,

Industrial and Engineering Chemistry Research 58(26): 11585–11600.

le Roux, J., Steinboeck, A., Kugi, A. and Craig, I. (2017). An EKF observer to estimate semi-

autogenous grinding mill hold-ups, Journal of Process Control 51: 27–41.

Liu, J. J. and MacGregor, J. F. (2008). Froth-based modeling and control of flotation processes,

Minerals Engineering 21: 642–651.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

131

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES
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