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Multi-agent systems for resource allocation (MRAs) have been introduced as a concept for modelling
competitive resource allocation problems in distributed computing. An MRA is composed of a set
of agents and a set of resources. Each agent has goals in terms of allocating certain resources. For
MRAs it is typically of importance that they are designed in a way such that there exists a strategy
that guarantees that all agents will achieve their goals. The corresponding model checking problem
is to determine whether such a winning strategy exists or not, and the synthesis problem is to actually
build the strategy. While winning strategies ensure that all goals will be achieved, following such
strategies does not necessarily involve an optimal use of resources.

In this paper, we present a technique that allows to synthesise cost-optimal solutions to distributed
resource allocation problems. We consider a scenario where system components such as agents and
resources involve costs. A multi-agent system shall be designed that is cost-minimal but still capable
of accomplishing a given set of goals. Our approach synthesises a winning strategy that minimises
the cumulative costs of the components that are required for achieving the goals. The technique is
based on a propositional logic encoding and a reduction of the synthesis problem to the maximum
satisfiability problem (Max-SAT). Hence, a Max-SAT solver can be used to perform the synthesis.
From a truth assignment that maximises the number of satisfied clauses of the encoding a cost-
optimal winning strategy as well as a cost-optimal system can be immediately derived.

1 Introduction

Multi-agent systems for resource allocation (MRAs) have been introduced in [8] as a concept for mod-
elling competitive resource allocation problems in distributed computing. An MRA is composed of a set
of agents and a set of resources. Each agent has a goals in terms of allocating certain resources for a time
period before a deadline elapses. Resources can be allocated by means of request actions. Further types
of actions are release and idle. MRAs run in discrete rounds. In each round each agent selects an action,
and the tuple of selected actions gets executed in a simultaneous manner. Since resources are generally
shared, the achievement of goals is a competition between agents. For MRAs (or more specifically, for
the scenarios that they model) it is typically of importance that they are designed in a way such that there
exists a strategy that guarantees that all agents will achieve their goals. In this context, a strategy is a
mapping between states of the underlying MRA and actions to be taken by the agents in these states. The
corresponding model checking problem is to determine whether such a winning strategy exists or not,
and the synthesis problem is to actually build the strategy. In [23] we introduced a SAT-based technique
for checking goal-achievability properties of multi-agent systems for resource allocation. The technique
does not only decide the model checking problem, it also synthesises a corresponding winning strategy
if existent. The approach encodes the problem in propositional logic. Thus, model checking can be per-
formed via satisfiability solving. From a satisfying truth assignment of the encoded problem a winning
strategy can be immediately derived.
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While winning strategies ensure that all goals will be achieved, following such strategies does not
necessarily involve an optimal use of resources. In this paper, we extend our technique such that the
outcome of the synthesis is not only a winning strategy but also a cost-optimal MRA solution of a
distributed resource allocation problem. We consider a scenario where a distributed system shall be
designed that processes a given set of computational tasks. Such a system is a composition of networked
computers and shared resources. System components need to be purchased. Hence, it is of interest
to determine a cost-minimal system that is still capable of accomplishing all computational tasks. The
distributed system to be designed can be straightforwardly modelled as an MRA where agents represent
computers and the tasks are defined as goals of the agents. Given a set of tasks resp. goals, we build
an initial MRA that consists of sufficiently many agents and resources to achieve all goals. In our new
approach, prices can be assigned to agents and to the different types of resources in the system. The
extended synthesis will build a cost-optimal winning strategy: Following such a strategy will ensure
that all goals will be achieved, and it will additionally minimise the cumulative costs of the agents and
resources that are actually used in the run of MRA. Hence, from a cost-optimal winning strategy we
can derive a cost-optimal MRA by removing unused agents and resources. The cost-optimal MRA then
indicates which components actually need to be purchased for the distributed system to be designed.

The synthesis of cost-optimal strategies and systems is no longer a pure decision problem and there-
fore it cannot be reduced to standard Boolean satisfiability. However, we show that the synthesis can be
reduced to the maximum satisfiability problem (Max-SAT). Our reduction is based on an extension of the
existing propositional logic encoding by weighted ‘not in use’ clauses. Each such clause encodes that a
particular system component (agent or resource) is never used, and the weight of the clause corresponds
to the price of the component. We have proven that from a truth assignment that maximises the sum of
weights of satisfied ‘not in use’ clauses a corresponding cost-optimal winning strategy can be immedi-
ately derived. This allows us to employ Max-SAT solving for synthesising cost-optimal strategies and
MRAs.

We first present our technique based on the case where goals are already assigned to agents and only
the costs of the resources in the system need to be minimised. Secondly, we consider the case where
goals are initially unassigned and both the costs of agents and resources need to be minimised. We
have implemented our approach on top of the Max-SAT solver OPEN-WBO [17]. Experiments show
promising results. We demonstrate that optimal winning strategies synthesised via Max-SAT can involve
significant cost savings in comparison to bare winning strategies synthesised via standard SAT.

2 Multi-Agent Systems for Resource Allocation

In our approach we focus on synthesising strategies for multi-agent systems for resource allocation
(MRAs), originally introduced in [8].

Definition 1 (Multi-Agent System for Resource Allocation). A multi-agent system for resource alloca-
tion is a tuple M = (Agt,T,Res,$,Φ) where

• Agt = {a1, . . . ,an} is a set of agents,

• T = {τ1, . . . ,τm} is a set of resource types,

• Res =
⋃

τ∈T Resτ is a set of resources partitioned into subsets Resτ = {r1
τ , . . . ,r

mτ

τ } of resources of
type τ ,

• $ : T → N is a price function that assigns a price to each type of resource; the price function
extends to resources such that $(r) = $(τ) iff r ∈ Resτ ,
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• Φ =
⋃

a∈Agt{φ 1
a , . . . ,φ

ga
a } is a set of goals partitioned into subsets {φ 1

a , . . . ,φ
ga
a } of goals of agent

a ∈ Agt,

• each goal is a tuple φa = (R,p,d) where R ⊆ T is the resource composition, p ∈ N is the period,
and d ∈ N is the deadline of the goal.

Each agent has the objective to achieve all its goals. A goal φa = (R,p,d) has been achieved if a resource
of each type in R has been allocated by agent a for p consecutive time steps before the deadline time step
d is reached.

Example. We will illustrate the synthesis of strategies for achieving goal properties based on the example
system Mex = (Agt,T,Res,$,Φ) where

• Agt = {a1,a2,a3},
• T = {τ1,τ2,τ3},
• Res = Resτ1 ∪Resτ2 ∪Resτ3 = {r1,r2}∪{r3,r4}∪{r5,r6},
• $(τ1) = 1, $(τ2) = 2, $(τ3) = 3,

• φ 1
a1
= ({τ1,τ2},0,4), φ 2

a1
= ({τ3},0,1),

• φ 1
a2
= ({τ1,τ3},0,4),

• φ 1
a3
= ({τ2},0,1).

Mex consists of three agents and three different types of resources where two resources of each type are
in place. The prices 1, 2 and 3 are associated with the different resource types. Agent a1 has two goals
whereas the agents a2 and a3 have one goal each. The first goal of agent a1 is to allocate one resource of
type τ1 and one resource of type τ2 by time step 4. For simplicity, the periods of all goals are 0. That is,
once all the required resources for a goal have been allocated they can be released in the next time step.

The actions that agents in MRAs can perform in order to achieve their goals are the following:

Definition 2 (Actions). Given an MRA M, the set of actions Act is the union of the following types of
actions:

• request actions: {reqa
r | a ∈ Agt,r ∈ Res}

• release actions: {relar | a ∈ Agt,r ∈ Res}
• release-all actions: {relaall | a ∈ Agt}
• idle actions: {idlea | a ∈ Agt}

Hence, an agent can request a particular resource, release a particular resource that it currently holds,
release all resources that it currently holds, or just idle. An MRA runs in discrete rounds where in each
round each agent chooses its next action. In a round the tuple of chosen actions, one per agent, gets
executed simultaneously. The execution of actions leads to an evolution of the system between different
states over time.

Definition 3 (States). A state of an MRA M is a function s : Res→ Agt+ where Agt+ = Agt∪{a0} and
a0 is a dummy agent. If s(r) = a0 then resource r is unallocated in state s. If s(r) = ai and i > 0 then
r is allocated by agent ai in s. We denote by s0 the initial state of M, where s(r) = a0 for each r ∈ Res,
i.e. initially all resources are unallocated. We denote by S the set of all possible states of M. If we want
to express that resource r is currently allocated by agent ai but the current state is not further specified,
then we simply write r = ai.
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Hence, states describe the current allocation of resources by agents. In each state only a subset of actions
may be available for execution by an agent, which we call the protocol:

Definition 4 (Action Availability Protocol). The action availability protocol is a function P : S×Agt→
2Act defined for each s ∈ S and a ∈ Agt:

• reqa
r ∈ P(s,a) iff s(r) = a0;

• relar ∈ P(s,a) iff s(r) = a;

• relaall ∈ P(s,a) iff |s−1(a)|> 0;

• idlea ∈ P(s,a).

Thus, an agent can request a resource that is currently unallocated, an agent can release one or all re-
sources that it currently holds, and an agent can idle.

Definition 5 (Action Profiles). An action profile in an MRA M is a mapping ap : Agt→ Act. AP denotes
the set of all action profiles. We say that a profile ap is executable in a state s ∈ S if for each a ∈ Agt we
have that ap(a) ∈ P(s,a).

Based on action profiles we can formally define the evolution of an MRA.

Definition 6 (Evolution). The evolution of an MRA is a relation δ ⊆ S×AP×S where (s,ap,s′) ∈ δ iff
ap is executable in s and for each r ∈ Res:

1. if s(r) = a0 then:

(a) if ∃a : ap(a) = reqa
r ∧∀a′ 6= a : ap(a′) 6= reqa′

r then s′(r) = a;
(b) otherwise s′(r) = a0;

2. if s(r) = a for some a ∈ Agt then:

(a) if ap(a) = relar ∨ relaall then s′(r) = a0;
(b) otherwise s′(r) = a.

If an action profile is executed in a state of an MRA M, this leads to a transition of M into a corresponding
successor state, i.e. a change in the allocation of resources according to the actions chosen by the agents.
According to the evolution, the request of a resource r by an agent a will be only successful if a is the
only agent that requests r in the current round. If multiple agents request the same resource at the same
time, then none of the agents will obtain it.

We are interested in solving strategic model checking problems with regard to MRAs: Do the agents
in Agt have a joint uniform strategy that guarantees that all goals of all agents will be achieved?

Definition 7 (Uniform Strategy). A uniform strategy of an agent a ∈ Agt in an MRA is an injective
function σa : S→ Act. A strategy can be also denoted by a relation σa ⊆ S×Act where σa(s,acta) = true
iff σa(s) = acta. A joint strategy for all agents in Agt is a tuple of strategies σAgt = (σa1 , . . . ,σar), one for
each a ∈ Agt. We denote by ΣAgt the set of all possible joint strategies of Agt.

A strategy determines which action an agent will choose in which state. A strategy is uniform if the
following holds: Each time when the system reaches the same state, the agent will perform the same
action according to the strategy. The outcome of a joint strategy σAgt in a state s is a path.

Definition 8 (Outcome of a Strategy). Let M be an MRA and s a state of M. Moreover, let σAgt be a joint
strategy. Then the outcome of σAgt in state s is a path π(s,σAgt) = s0s1 . . . where s0 = s and∧

t∈N
∧

a∈Agt (σa(st) ∈ P(st,a)∧ (st,(σa1(st) . . . ,σan(st)),st+1) ∈ δ).

We denote by Π(M) the set of all possible paths of M.



N. Timm & J. Botha 71

The MRA model checking problem is to decide whether a joint strategy exists that results in a path on
which all goals will be achieved. We call such a strategy a winning strategy.

Definition 9 (MRA Model Checking of Agent Goal Properties). Let M = (Agt,T,Res,$,Φ) be an MRA,
and let s ∈ S be a state of M. Then the strategic MRA model checking problem [M,s |= 〈〈Agt〉〉Φ] is
inductively defined as follows:

[M,s |= 〈〈Agt〉〉Φ] ≡
∨

σAgt∈ΣAgt
[M,π(s,σAgt) |= Φ]

[M,π |= Φ] ≡
∧

φa∈Φ [M,π |= φa]

[M,π |= φa] ≡
∨d−p

t=0
∧

τ∈R
∨

r∈Resτ

∧t+p
t′=t π(t′)(r) = a

where φa is assumed to be the tuple (R,p,d), and π(t′) denotes the t′-th state of the path π .

Solving [M,s |= 〈〈Agt〉〉Φ] will not only decide the model checking problem but also synthesise a corre-
sponding winning strategy σAgt if existent.

For our example system Mex the actions listed in Table 1 characterise a winning strategy. Each action
in the table is associated with an agent and a time step. Agent a1 performs action reqr5 at time step 0,
which immediately results in the achievement of the goal φ 2

a1
. Hence, the agent releases the allocated

resource at the next time step. It then consecutively performs the actions reqr1 and reqr3 which results in
the achievement of φ 1

a1
. The listed actions also ensure that all goals of the other agents will be achieved.

Table 1: Actions that characterise a winning strategy.

time step: 0 1 2 3 4
a1’s actions: reqr5 relall reqr1 reqr3 relall

a2’s actions: reqr2 reqr6 relall idle idle
a3’s actions: reqr3 relall idle idle idle

So far, costs of resources are not considered in the synthesis.

2.1 Resource Cost-Optimal Strategy Synthesis

We will now extend MRA model checking such that the outcome is a resource cost-optimal winning
strategy. For this, we first define the resource costs of paths.

Definition 10 (Resource Costs of Paths). Let M = (Agt,T,Res,$,Φ) be an MRA, and let k = max(d |
(R,p,d) ∈ Φ) be the latest deadline. The cost of a path π ∈ Π(M) with regard to a resource r ∈ Res is
defined as

cr(π) =

{
0 if

∧k
t=0 π(t)(r) = a0,

$(r) otherwise.

and the cost of a path π ∈Π(M) with regard to all resources in Res is defined as

cRes(π) = ∑r∈Res cr(π)

where π(t) denotes the t-th state of π .
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Hence, the resource costs of a path π is the sum of prices of the resources that are ever allocated by some
agent in the states along π . Conversely, resources that are never allocated do not contribute to the costs.
We consider MRAs that run until all goals have been achieved where each goal has a deadline. Thus, in
the calculation of the costs of a path it is sufficient to only take the k-prefix of the path into account where
k is the latest deadline. Based on path costs we can now define what a resource cost-optimal winning
strategy is.
Definition 11 (Resource Cost-Optimal Strategy). Let M = (Agt,T,Res,$,Φ) be an MRA, let s0 be its
initial state, and let σAgt be a joint strategy. Then σAgt is a cost-optimal winning strategy with regard to
resources if the following conditions hold:

1. [M,π(s0,σAgt) |= Φ]
(winning)

2. ∀σ ′Agt 6= σAgt : [M,π(s0,σ
′
Agt) |= Φ] → cRes(π(s0,σ

′
Agt))≥ cRes(π(s0,σAgt))

(resource cost-optimal)
Hence, a winning strategy σAgt is cost-optimal with regard to resources if following this strategy results
in a path whose costs are less or equal to the costs of the paths resulting from any other winning strategy
σ ′Agt. We denote the corresponding cost-optimal strategy synthesis problem by [M,s |= 〈〈Agt〉〉Φ]Res

Opt.
The actions listed in Table 2 characterise a resource cost-optimal winning strategy for the example

system Mex. The strategy makes use of the resources r1,r2,r3 and r5 whereas the resources r4 and r6 are
never used. According to the price function of Mex, the cost of the path resulting from this strategy is 7.
In contrast, the cost of the path resulting from the non-optimal winning strategy from Table 1 is 10. This
strategy additionally uses the resource r6.

Table 2: Actions that characterise a resource cost-optimal strategy.

time step: 0 1 2 3 4
a1’s actions: reqr5 relall reqr1 reqr3 relall

a2’s actions: idle reqr2 reqr5 relall idle
a3’s actions: reqr3 relall idle idle idle

Assuming that our example MRA models a resource allocation problem in distributed computing, the
resource cost-optimal strategy gives us an indication which types and amounts of resources actually need
to be purchased for an agent-based solution that guarantees the achievement of all resource goals. So far,
we assumed that the number of agents in the system is fixed and that goals are pre-assigned to agents.
In the following we will relax this condition and introduce a generalised cost-optimal strategy synthesis
that also considers costs for agents.

2.2 MRA Cost-Optimal Strategy Synthesis

For our generalised cost-optimal strategy synthesis we define agent costs of paths.
Definition 12 (Agent Costs of Paths). Let M = (Agt,T,Res,$,Φ) be an MRA, and let k = max(d |
(R,p,d) ∈Φ) be the latest deadline. Moreover, let $A ∈ N be the price of each agent. The cost of a path
π ∈Π(M) with regard to an agent a ∈ Agt is defined as

ca(π) =

{
0 if

∧k
t=0

∧
r∈Res π(t)(r) 6= a,

$A otherwise.
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and the cost of a path π ∈Π(M) with regard to all agents in Agt is defined as

cAgt(π) = ∑a∈Agt ca(π)

where π(t) denotes the t-th state of π .
Hence, the agent costs of a path is the sum of the prices of the agents that ever allocate some resources
along the path. We can now straightforwardly define the overall costs of paths with regard to resources
and agents.
Definition 13 (MRA Costs of Paths). Let M = (Agt,T,Res,$,Φ) be an MRA, and let k = max(d |
(R,p,d) ∈ Φ) be the latest deadline. Moreover, let $A ∈ N be the price of each agent. The cost of a
path π ∈Π(M) with regard to M is defined as

cM(π) = cRes(π)+ cAgt(π).

This allows us to consider a generalised scenario where the goals to be achieved are not assigned to
particular agents.
Definition 14 (MRA Model Checking of General Goal Properties). Let M = (Agt,T,Res,$,Φ∗) be an
MRA where the special set Φ∗ = {φ 1, . . . ,φ g} consists of goals that are not associated with particular
agents. Then the strategic MRA model checking problem [M,s |= 〈〈Agt〉〉Φ∗] is inductively defined as
follows:

[M,s |= 〈〈Agt〉〉Φ∗] ≡
∨

σAgt∈ΣAgt
[M,π(s,σAgt) |= Φ∗]

[M,π |= Φ∗] ≡
∧

φ∈Φ∗ [M,π |= φ ]

[M,π |= φ ] ≡
∨

a∈Agt[M,π |= φa]

where [M,π |= φa] is defined according to Definition 9.
Thus, model checking of general goal properties searches for a strategy that ensures that each goal will
be achieved by some agent. In this context, a cost-optimal winning strategy is one that minimises the
combined costs of required resources and agents.
Definition 15 (MRA Cost-Optimal Strategy). Let M = (Agt,T,Res,$,Φ∗) be an MRA where the special
set Φ∗ = {φ 1, . . . ,φ g} consists of goals that are not associated with particular agents. Moreover, let s0
be the initial state of M, let $A be the price of each agent, and let σAgt be a joint strategy. Then σAgt is a
cost-optimal winning strategy with regard to M if the following conditions hold:

1. [M,π(s0,σAgt) |= Φ∗]
(winning)

2. ∀σ ′Agt 6= σAgt : [M,π(s0,σ
′
Agt) |= Φ∗] → cM(π(s0,σ

′
Agt))≥ cM(π(s0,σAgt))

(MRA cost-optimal)
Hence, a winning strategy σAgt is MRA cost-optimal if following this strategy results in a path whose
combined resource and agent costs are less or equal to the costs of the paths resulting from any other
winning strategy σ ′Agt. We denote the corresponding cost-optimal strategy synthesis problem by [M,s |=
〈〈Agt〉〉Φ]MOpt.

Let us now consider a slight variant of our example system Mex where the goals are no longer pre-
assigned to agents. The actions listed in Table 3 characterise an MRA cost-optimal winning strategy for
this variant. The resource costs are still the same as in the strategy depicted in Table 2. But the MRA
cost-optimal strategy requires just two instead of three agents for achieving all goals. The role of agent
a3 is insignificant here. Thus, the strategy indicates that only two agents need to be ‘purchased’.
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Table 3: Actions that characterise a MRA cost-optimal strategy.

time step: 0 1 2 3 4
a1’s actions: reqr5 relall reqr1 reqr3 relall

a2’s actions: reqr3 relall reqr2 reqr5 relall

a3’s actions: idle idle idle idle idle

3 Reduction of Cost-Optimal Strategy Synthesis to Weighted Max-SAT

In this section we show how cost-optimal strategy synthesis can be reduced to weighted maximum satis-
fiability solving.

3.1 Weighted Maximum Satisfiability Problem

The weighted maximum satisfiability problem is a generalisation of the Boolean satisfiability problem
of propositional logic formulas in conjunctive normal form.

Definition 16 (Conjunctive Normal Form (CNF)). Let Var be a set of Boolean variables. A propositional
logic formula F over Var in conjunctive normal form is a conjunction of clauses C where each clause
is a disjunction of literals l, and a literal is either a variable v ∈ Var or its negation ¬v.

For CNF formulas the satisfiability problem is defined as follows:

Definition 17 (Boolean Satisfiability Problem). Let F over Var be a formula in conjunctive normal
form. The Boolean satisfiability problem with regard to F is the problem of determining whether there
exists a truth assignment α : Var→ {0,1} that makes all clauses of F true. Boolean satisfiability can
be also defined as a function

sat(F ) =

{
1 if ∃α ∈A (Var) with α(F ) = 1,

0 otherwise,

where A (Var) is the set of all possible truth assignments over Var.

Weighted conjunctive normal form extends CNF by assigning non-negative weights to each clause of a
formula.

Definition 18 (Weighted Conjunctive Normal Form (WCNF)). Let Var be a set of Boolean variables.
A propositional logic formula F over Var in weighted conjunctive normal form is a conjunction of
weighted clauses (C ,wC ) where C is a standard clause and wC ∈ N∞ is its weight. A clause (C ,wC )
with wC ∈ N is called a soft clause and a clause (C ,∞) is called a hard clause.

For the sake of simplicity we typically just write C for hard clauses (C ,∞). Each WCNF formula F
can be written as a conjunction H ∧S where H are the hard clauses and S are the soft clauses of F .
For WCNF formulas the following optimisation problem has been defined:

Definition 19 (Weighted Maximum Satisfiability Problem). Let F =H ∧S over Var be a propositional
logic formula in weighted conjunctive normal form where H are the hard clauses and S are the soft
clauses. The weighted maximum satisfiability problem with regard to F is the problem of finding a truth
assignment α : Var→{0,1} that maximises

∑
(C ,wC )∈S

α(C ) ·wC
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subject to the condition that α(H ) = 1 holds. Weighted maximum satisfiability can be defined as a
function

max-sat(F ) =


nil if sat(H ) = 0,

arg max
α∈A (Var)

(α(H ) · ( ∑
(C ,wC )∈S

α(C ) ·wC )) otherwise,

where A (Var) is the set of all possible truth assignments over Var.

Hence, the solution of the weighted maximum satisfiability problem with regard to F is a truth assign-
ment α that maximises the sum of weights of the satisfied soft clauses, under the condition that all hard
clauses are satisfied. If no such assignment exists, then the weighted maximum satisfiability problem
has no solution. We will now show how cost-optimal strategy synthesis problems can be encoded as
weighted Max-SAT problems.

3.2 Max-SAT Encoding of Resource Cost-Optimal Strategy Synthesis

In [23] we showed how to encode standard MRA strategy synthesis problems [M,s0 |= 〈〈Agt〉〉Φ] as
propositional logic formulas F such that the following equivalence holds:

[M,s0 |= 〈〈Agt〉〉Φ] ≡ sat(F )

Hence, the synthesis of winning strategies can be performed via satisfiability solving. A further property
of our encoding is that each truth assignment α that satisfies F characterises a winning strategy σα

Agt.
The overall encoding is a conjunction F = [〈〈Agt〉〉 ]∧ [M]∧ [Φ] where [〈〈Agt〉〉 ] encodes that all agents
must follow a uniform strategy and adhere to the protocol, [M] encodes the feasible paths of M, and [Φ]
restricts the paths to those that satisfy all goals in Φ. In [23] we only considered simple goals, one for
each agent and with regard to a single type of resource. Thus, for the more complex goals that we focus
on in this work, we introduce the following extended encoding of goals:

Definition 20 (Encoding of Goals). Let M = (Agt,T,Res,$,Φ) be an MRA. Then the agent goal property
Φ is encoded in propositional logic as

[Φ] =
∧

φa∈Φ

∨d−p
t=0

∧
τ∈R

∨
r∈Resτ

∧t+p
t′=t [r = a]t

Let M = (Agt,T,Res,$,Φ∗) be an MRA. Then the general goal property Φ∗ is encoded in propositional
logic as

[Φ∗] =
∧

φ∈Φ

∨
a∈Agt

∨d−p
t=0

∧
τ∈R

∨
r∈Resτ

∧t+p
t′=t [r = a]t

where φa resp. φ is assumed to be the tuple (R,p,d), and [r = a]t encodes that resource r is allocated by
agent a at time step t.

The definition of the sub encoding [r = a]t can be found in [23].
In order to enable the synthesis of resource cost-optimal winning strategies, we further extend our

encoding. Solving this optimisation problem involves to find a strategy that minimises the costs of the
resources that are actually used. We can equivalently search for a strategy that maximises the costs of the
unused resources, which makes the problem compatible with Max-SAT. The first part of the extension
introduces auxiliary variables nur that encode that a resource r ∈ Res is never used.
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Definition 21 (Auxiliary Encoding – Resource Costs). Let M = (Agt,T,Res,$,Φ) be an MRA and let k =
max(d | (R,p,d) ∈Φ) be the latest deadline. Then the auxiliary encoding for resource cost optimisation
is

[AuxRes] =
∧

r∈Res (nur↔ (
∧k

t=0[r = a0]t))

where nur with r ∈ R are the auxiliary variables introduced for the encoding, and [r = a0]t encodes that
resource r is unallocated at time step t.

If we conjunctively add the auxiliary encoding [AuxRes] to the overall encoding of a strategy synthesis
problem, this will not affect the satisfiability. But now we have that a truth assignment α will set an
auxiliary variable nur to true if and only if α characterises a strategy σα

Agt and the resource r will be
never used when the strategy σα

Agt is followed. Hence, nur is a single-variable encoding of r never being
used. We can now utilise each nur as a unit clause in the optimisation extension of our encoding:

Definition 22 (Resource Costs Optimisation Encoding). Let M = (Agt,T,Res,$,Φ) be an MRA. Then
the resource costs optimisation encoding is

[OptRes] =
∧

r∈Res(nur,$(r))

where nur with r ∈ Res are the Boolean variables introduced in the auxiliary encoding for resource cost
optimisation.

Hence, [OptRes] consists of soft clauses (nur,$(r)), one for each r∈Res, where nur encodes that r is never
used and $(r) (the price of the resource r) is the weight of the clause. The overall encoding of the problem
of synthesising a resource cost-optimal strategy is F Res

Opt = [〈〈Agt〉〉 ]∧ [M]∧ [Φ]∧ [AuxRes]∧ [OptRes] where
the sub formula [〈〈Agt〉〉 ]∧ [M]∧ [Φ]∧ [AuxRes] consists of hard clauses only. Solving max-sat(F Res

Opt )
will return a truth assignment that satisfies all hard clauses and maximises the sum of weights of satisfied
soft clauses, if such an assignment exists. Such an assignment characterises a winning strategy that is
resource cost-optimal.

Theorem 1 (Resource Cost-Optimal Strategy Synthesis). Let [M,s0 |= Φ]Res
Opt be a resource cost-optimal

strategy synthesis problem and let F Res
Opt be its WCNF encoding. Then the following properties hold:

1. If max-sat(F Res
Opt ) = nil, then there does not exist a joint winning strategy for achieving all goals

in Φ with the resources in Res.

2. If max-sat(F Res
Opt ) = α , then α characterises a resource cost-optimal winning strategy σα

Agt.

Proof.
We have that F Res

Opt = H Res
Opt ∧S Res

Opt where H Res
Opt = [〈〈Agt〉〉 ]∧ [M]∧ [Φ]∧ [AuxRes] are the hard clauses

and S Res
Opt = [OptRes] are the soft clauses of the encoding. Moreover, the WCNF formula F Res

Opt is defined
over a set of Boolean variables Var, and A (Var) is the set of all possible truth assignments over Var.

Proof of Property 1:
max-sat(F Res

Opt ) = nil implies that sat([〈〈Agt〉〉 ]∧ [M]∧ [Φ]∧ [AuxRes]) = 0 (Definition 19). The sub for-
mula [AuxRes] only introduces auxiliary variables and sets them equivalent to resource properties (Defini-
tion 21). Hence, [AuxRes] cannot be the cause of unsatisfiability and we can conclude that sat([〈〈Agt〉〉 ]∧
[M]∧ [Φ]) = 0. This implies that [M,s0 |= 〈〈Agt〉〉Φ] does not hold (shown in [23]). We can now imme-
diately conclude that there does not exist a joint winning strategy to achieve Φ.
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Proof of Property 2:
max-sat(F Res

Opt ) = α implies that α = arg max
α∈A (Var)

(α(H Res
Opt ) · ( ∑

(C ,wC )∈S Res
Opt

α(C ) ·wC )) (Definition 19).

Hence, the assignment α satisfies all hard clauses of F Res
Opt . In particular, α([〈〈Agt〉〉 ]∧ [M]∧ [Φ]) =

1. We can conclude that [M,s0 |= 〈〈Agt〉〉Φ] holds, and that α characterises a corresponding winning
strategy σα

Agt (shown in [23]). Now we still need to prove that σα
Agt is cost-optimal with regard to the use

of resources. According to the definition of max-sat, out of all truth assignments that satisfy all hard
clauses, α is the assignment that maximises the sum of weights of the satisfied soft clauses. Let ws

α be
the sum of weights of the soft clauses satisfied by α . Then for all other truth assignments α ′ that satisfy
all hard clauses we have that ws

α ≥ ws
α ′ (Definition 19). Conversely, let wu

α be the sum of weights of
the soft clauses not satisfied by α . Then for all other truth assignments α ′ that satisfy all hard clauses
we have that wu

α ≤ wu
α ′ . Each soft clause is of the form (nur,$(r)). For a resource r ∈ Res, α(nur) = 1

implies that α(
∧k

t=0[r = a0]t) = 1 (Definition 21). The hard clauses of the encoding, [〈〈Agt〉〉 ]∧ [M]∧ [Φ],
ensure that α(

∧k
t=0[r = a0]t) = 1 if and only if α characterises a joint strategy σα

Agt that results in a path
π(s0,σ

α
Agt) where resource r is never allocated by any agent at all time steps until k where k is the latest

deadline (shown in [23]). We can conclude that α characterises a strategy that results in a k-bounded
path where ws

α are the cumulative costs of the resources that are never used, and wu
α are the cumulative

costs of the resources that are actually used. Thus, cRes(π(s0,σ
α
Agt)) = wu

α (Definition 10). Based on a
similar argumentation, we can show that each alternative truth assignment α ′ that satisfies all hard clauses
characterises a path π(s0,σ

α ′
Agt) with cumulative costs of resources cRes(π(s0,σ

α ′
Agt)) = wu

α ′ . We already
argued that wu

α ≤ wu
α ′ for all alternative assignments α ′. Hence, we can conclude that α characterises a

joint winning strategy σα
Agt that is resource cost-optimal (Definition 11).

2

This theorem can be utilised as follows: Several practically relevant resource allocation problems in
distributed computing can be modelled as an MRA M where the agents represent the computers of the
distributed system. While it is of primary importance that the system will achieve all goals, it is of
secondary importance that the costs of the resources that need to be purchased are as low as possible.
In the MRA model of the distributed system, we can initialise Res as a saturated set {rτ | ∀(R,p,d) ∈
Φ ∀τ ∈ R} that contains a resource for each type of each resource composition of each goal. The
resource cost-optimal strategy synthesis problem with regard to M can then be encoded in propositional
logic. Max-SAT-based solving of the encoded problem will not only yield an optimal strategy, it will also
indicate which resources of the model are actually dispensable. We can safely remove these resources
from Res, and it is still guaranteed that all goals can be achieved. For the modelled distributed system
only the indispensable resources need to be purchased. Hence, our Max-SAT-based technique can be
used to synthesize cost-optimal MRA solutions to resource allocation problems.

In the next sub section we show that our Max-SAT approach can be straightforwardly extended to
the optimisation of systems where also agents need to be purchased and where goals can be assigned to
arbitrary agents.

3.3 Max-SAT Encoding of MRA Cost-Optimal Strategy Synthesis

For the Max-SAT encoding of MRA cost-optimal strategy synthesis problems we need to introduce
further auxiliary variables, one for each agent in the system.

Definition 23 (Auxiliary Encoding – Agent Costs). Let M = (Agt,T,Res,$,Φ∗) be an MRA and let
k=max(d | (R,p,d)∈Φ∗) be the latest deadline. Then the auxiliary encoding for agent cost optimisation
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is

[AuxAgt] =
∧

a∈Agt (nua↔ (
∧k

t=0
∧

Res¬[r = a]t))

where nua with a ∈ Agt are the auxiliary variables introduced for the encoding, and [r = a]t encodes that
resource r is allocated by agent a at time step t.

Hence, each nua encodes that agent a never allocates any resource. We now utilise each nua as a unit
clause in the optimisation of agent costs encoding.

Definition 24 (Agent Costs Optimisation Encoding). Let M = (Agt,T,Res,$,Φ∗) be an MRA and let
$A ∈ N be the price of each agent. Then the agent costs optimisation encoding is

[OptAgt] =
∧

a∈Agt(nua,$A)

where nua with a ∈ Agt are the Boolean variables introduced in the auxiliary encoding for agent cost
optimisation.

Hence, [OptAgt] consists of soft clauses (nua,$A), one for each a ∈ Agt, where nua encodes that a is
never used and $A is the weight of the clause. The overall encoding of the problem of synthesising an
MRA cost-optimal strategy is F M

Opt = F Res
Opt ∧ [AuxAgt]∧ [OptAgt]. Solving max-sat(F M

Opt) will return a
truth assignment that satisfies all hard clauses and maximises the sum of weights of satisfied soft clauses,
if such an assignment exists. Such an assignment characterises a winning strategy that is MRA cost-
optimal.

Theorem 2 (MRA Cost-Optimal Strategy Synthesis). Let [M,s0 |= Φ∗]MOpt be an MRA cost-optimal strat-
egy synthesis problem and let F M

Opt be its WCNF encoding. Then the following properties hold:

1. If max-sat(F M
Opt) = nil, then there does not exist a joint winning strategy for achieving all goals

in Φ∗ with the resources Res and agents Agt.

2. If max-sat(F M
Opt) = α , then α characterises an MRA cost-optimal winning strategy σα

Agt.

The proof of Theorem 2 is analogous to the proof of Theorem 1.

Thus, given a set of resource allocation goals Φ∗ this theorem can be exploited to synthesise a winning
strategy that does not only minimise the costs of required resources but also results in an optimal assign-
ment of goals to agents. Such an optimal assignment will ensure that the resource allocation problem
associated with Φ∗ will be solved with a cost-minimal amount of agents and resources.

4 Implementation and Experiments

We developed the tool SATMAS1 that implements our synthesis approach in Python. SATMAS takes
a specification of a multi-agent system for resource allocation M = (Agt,T,Res,$,Φ) as an input. The
output is a resource cost-optimal winning strategy σα

Agt and a corresponding cost-optimal set of required
resources if existent. Otherwise, the tool outputs ‘no winning strategy exists’. SATMAS encodes the syn-
thesis problem in propositional logic. The maximum-satisfiability solver OPEN-WBO [17] is employed
to determine a truth assignment for the encoding that satisfies all hard clauses and maximises the sum of
weights of the satisfied soft clauses. From such an assignment the corresponding cost-optimal strategy

1available at https://github.com/TuksModelChecking/Satmas/tree/nur_optimization

https://github.com/TuksModelChecking/Satmas/tree/nur_optimization
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and the cost-optimal set of required resources can be immediately derived. The extension of our tool to
the synthesis of strategies that are additionally optimal with regard to agent costs is in preparation.

In experiments we were able to synthesise resource cost-optimal strategies for MRAs consisting of
ten agents and six different types of resources in less than a minute. Table 4 shows our experimental
results. The Scenario column indicates the number of agents Agt = {a1, . . . ,an} and the number of
resource types T = {τ1, . . . ,τm} in the MRA. As a price function we used $(τi) = i. For simplicity,
we fixed the number of goals of each agent as well as the period of each goal to one. The resource
composition of each goal was randomly selected under the constraint that the total number of resource
types associated with a goal is from the interval R. Moreover, the deadline of each goal was randomly
selected from the interval D . The column Costs indicates the total costs of resources associated with the
synthesised cost-optimal winning strategy. The column Time shows the overall time that the tool spent on
encoding and satisfiability solving. The experiments were conducted on a 2.6 GHz Intel Core i7 system
with 16 GB.

Table 4: Cost-Optimal Strategy Synthesis.
Scenario Costs Time

|Agt|= 2, |T|= 3, R = [1,2], D = [5,15] 3 0.2s
|Agt|= 4, |T|= 4, R = [1,3], D = [5,15] 6 1.0s
|Agt|= 6, |T|= 4, R = [2,3], D = [5,20] 6 3.5s
|Agt|= 8, |T|= 6, R = [2,5], D = [5,30] 15 20.4s
|Agt|= 10, |T|= 6, R = [2,4], D = [5,30] 10 54.3s

Thus, for our randomly generated MRA consisting of ten agents and six types of resources there exists a
cost-optimal winning strategy that involves resource costs of 10. We ran the synthesis again for the same
MRA but with having the optimisation disabled. This resulted in a winning strategy with resource costs
of 21. Hence, our optimisation approach can enable significant savings in terms of resource costs.

5 Related Work

Model checking and strategy synthesis for multi-agent systems has been originally proposed in [1].
The authors introduce the alternating-time logics ATL and ATL∗, which are logics for reasoning about
strategic abilities of agents. The general ATL model checking problem is PTIME-complete whereas the
ATL∗ model checking problem is 2EXPTIME-complete. Thus, while for ATL model checking BDD-
based tools like MCMAS [16] and MOCHA [2] exist, ATL∗ has been rather considered on a theoretical
level [22]. An existing tool for synthesising ATL strategies is SMC [21], which operates on a BDD
model of the multi-agent system to be verified. It iteratively guesses a strategy, fixes the strategy in the
model and checks whether it is a winning strategy, which reduces ATL model checking to CTL model
checking [7] in each iteration. The techniques and tools mentioned above focus on synthesising winning
strategies for general multi-agent systems and alternating-time properties. In contrast, our approach
focusses on systems and properties with regard to resource allocation problems [19]. Moreover, we aim
at synthesising winning strategies that are additionally optimal in terms of costs for resources and agents.

Our approach is related to strategy synthesis for systems with combined qualitative and quantitative
objectives [6, 5, 12, 11, 3]. In [6, 5] parity games are studied where the objectives combine qualitative
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ω-regular requirements and quantitative energy usage requirements. The authors of [12, 11] introduce
multi-agent systems in which agents have a primary objective that is qualitative and a secondary objec-
tive that is quantitative. In [11] it is shown that if the qualitative objectives are LTL formulas then the
problem is 2EXPTIME-complete. Another framework for reasoning about systems where agents have
both qualitative and quantitative objectives is proposed in [3]. The authors augment multi-agent sys-
tems with transition pay-offs and introduce a quantitative extension of the logic ATL∗. This allows to
model check whether agents have the strategic abilities to achieve quantitative pay-off objectives and at
the same time qualitative state-based objectives. Our approach is similar to the above in the sense that
we consider systems where resource allocation goals are qualitative objectives and cost-optimality is a
quantitative objective. However, in [12, 11, 3] it is assumed that each agent has individual quantitative
objectives. Hence, these works aim at synthesising Nash equilibrium strategies [20] rather than over-
all optimal strategies. Moreover, the above works are predominantly of theoretical nature and focus on
establishing general complexity results. In contrast, our work considers a more specific resource alloca-
tion scenario and we propose a practical approach to solve the synthesis problem, which is based on a
Boolean encoding and on maximum satisfiability solving (Max-SAT) [13].

To the best of our knowledge, our technique is the first Max-SAT-based approach to the synthesis of
cost-optimal strategies for multi-agent systems. In related fields, Max-SAT has been employed to find
optimal coalitions of agents for solving network security problems [15], to synthesise reactive controllers
of autonomous systems [9], and to model check quantitative hyper-properties [10].

6 Conclusion and Outlook

In this paper, we presented a Max-SAT-based technique for synthesising winning strategies for multi-
agent systems for resource allocation. The synthesised strategies do not only ensure that all resource
allocation goals will be achieved, they also result in a cost-optimal use of resources and agents. Our
approach can be utilised to model resource allocation problems in distributed systems and to determine
optimal agent-based solutions. We showed that from a cost-optimal strategy the system components that
actually need to be purchased can be derived. Our technique is based on a propositional logic encoding
of the synthesis problem. A truth assignment that maximises the sum of weights of satisfied clauses of
the encoding characterises an optimal strategy. This enables us to exploit the power of state-of-the-art
Max-SAT tools to solve the synthesis problem. We showed that optimal winning strategies synthesised
via Max-SAT can involve significant cost savings in comparison to bare winning strategies synthesised
via standard SAT.

As future work we plan to consider enhanced goal properties allowing for goal-dependencies (with
regard to the order in which goals have to be achieved) and for periodic goals. For the latter, we intend
to combine our synthesis technique with k-induction [24] in order to handle strategies that result in a
looped run of the system. While our MRAs are an abstract concept for representing resource allocation
problems, they can be easily adjusted to model concrete problems in distributed computing. Thus, we
plan to apply our approach to real-world scenarios in the fields of distributed operating systems [14],
wireless sensor networks [18] or clouds [4]. A further direction of future work is to tune the Max-
SAT solver by employing heuristics that exploit the particular structure of our encodings of cost-optimal
strategy synthesis problems.
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