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African-specific molecular taxonomy of 
prostate cancer

Weerachai Jaratlerdsiri1,2, Jue Jiang1,2, Tingting Gong1,2,15, Sean M. Patrick3, Cali Willet4, 
Tracy Chew4, Ruth J. Lyons2, Anne-Maree Haynes2, Gabriela Pasqualim5,6, Melanie Louw7, 
James G. Kench8, Raymond Campbell9, Lisa G. Horvath2,10, Eva K. F. Chan2,16, 
David C. Wedge11, Rosemarie Sadsad4, Ilma Simoni Brum5, Shingai B. A. Mutambirwa12, 
Phillip D. Stricker2,13, M. S. Riana Bornman3 & Vanessa M. Hayes1,2,3,14 ✉

Prostate cancer is characterized by considerable geo-ethnic disparity. African 
ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 
2.7-fold higher than global averages1. The contributing genetic and non-genetic 
factors, and associated mutational processes, are unknown2,3. Here, through 
whole-genome sequencing of treatment-naive prostate cancer samples from 183 
ancestrally (African versus European) and globally distinct patients, we generate a 
large cancer genomics resource for sub-Saharan Africa, identifying around 2 million 
somatic variants. Significant African-ancestry-specific findings include an elevated 
tumour mutational burden, increased percentage of genome alteration, a greater 
number of predicted damaging mutations and a higher total of mutational signatures, 
and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all 
somatic mutational types, we describe a molecular taxonomy for prostate cancer 
differentiated by ancestry and defined as global mutational subtypes (GMS). By 
further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and 
GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally 
quiet) is universal (all ethnicities) and the African–European-restricted subtype 
GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the 
clinical benefit of including individuals of African ancestry, our GMS subtypes reveal 
different evolutionary trajectories and mutational processes suggesting that both 
common genetic and environmental factors contribute to the disparity between 
ethnicities. Analogous to gene–environment interaction—defined here as a different 
effect of an environmental surrounding in people with different ancestries or vice 
versa—we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic 
mutational processes in cancers, promoting global inclusion in landmark studies.

Prostate cancer is a common heterogeneous disease that is respon-
sible annually for more than 1,400,000 new diagnoses and 375,000 
male-associated deaths worldwide1. Characterized by a highly variable 
natural history and diverse clinical behaviours4, it is not surprising 
that genome profiling has revealed extensive intra- and intertumour 
heterogeneity and complexity5,6. The identification of oncogenic sub-
types7 and actionable drug targets8 are moving prostate cancer manage-
ment a step closer to the promise of precision medicine7,9–12. Although 
high-income European ancestral countries are well along the road to 

incorporating cancer genomics in all aspects of cancer care13, the rest 
of the world lags behind, with a notable absence in sub-Saharan Africa14. 
Prostate cancer is no different, with a single large-scale study out of 
China11; in 2018, we provided a snapshot for sub-Saharan Africa, report-
ing an elevated mutational density in a mere six cases15. With mortality 
rates of greater than double compared with high-income countries and 
quadrupled for greater Asia, in sub-Saharan Africa, prostate cancer is 
the top-ranked male-associated cancer both by diagnosis and deaths, 
including southern Africa with age-standardized rates of 65.9 and 22 
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per 100,000, respectively1. Through the Southern African Prostate Can-
cer Study (SAPCS), we report a 2.1-fold increase in aggressive disease 
(grades 4–5) and 4.8-fold increase in prostate-specific antigen levels 
at diagnosis compared with African Americans16.

Here we describe, to our knowledge, the largest cancer and prostate 
cancer genomics data for sub-Saharan Africa, including 123 South Afri-
can men. Controlling for study artefacts, an additional 53 Australian and 
7 Brazilian individuals were passed simultaneously through the same 
high-depth whole-genome sequencing (WGS), mutation-calling and 
analytical framework. Focusing on treatment-naive cases (100% South 
Africans, 98% Australians and two confirmed Brazilians) and aggressive 
tumours (grades 4–5 for 72.2% South Africans, 86.8% Australians and 
85.7% Brazilians; Extended Data Fig. 1a) at biopsy (100% South Africans) 
or surgery (100% Australians, 62.5% Brazilians) and patient-matched 
blood achieving coverages of 88.69 ± 14.78 and 44.34 ± 8.11, respec-
tively (median ± s.d.; Supplementary Table 1), we uniformly generated, 
called and assessed about 2 million somatic variants. Through ancestral 
classification (genetic ancestry over self-identified ethnicity), we show 
a greater number of acquired genetic alterations within African indi-
viduals while identifying both globally relevant and African-specific 
genomic subtypes. Combining our somatic variant dataset with that 
published for ethnically defined European7,8,17,18 and Chinese11 prostate 
cancer genomes, we reveal a prostate cancer taxonomy with differ-
ent clinical outcomes. The inclusion of 2,658 cancer genomes from 
the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)13 
expanded our global mutational subtyping between cancer types. 
Using known clock-like mutational processes in each subtype, we 
inferred mutation timing of oncogenic drivers in broad periods of 

tumour evolution and calculated the mutation rates for each subtype 
that had a distinctive tumour evolution pattern. Combined, these analy-
ses enable us to demonstrate how global inclusion in cancer genomics 
can unravel unseen heterogeneity in prostate cancer in terms of its 
genomic and clinical behaviours.

Genetic ancestry
Genetic ancestries were estimated for the 183 patient donors using 
a joint dataset in a unified analysis aggregated from a collection 
of geographically matched African (n = 64) and European (n = 4) 
deep-coverage published and unpublished reference genomes19. Ances-
tries were assigned using 7,472,833 markers as African (n = 113, all South 
Africans), with greater than 98% contribution; European (n = 61; 53 
Australians, 5 South Africans and 3 Brazilians), allowing for up to 10% 
Asian contribution (with a single outlier of 26%); and African–European 
admixed (n = 9; 5 South Africans and 4 Brazilians), with as little as 4% 
African or European contribution (Extended Data Fig. 1b).

Total somatic mutations
In 183 prostate tumours, we identified 1,067,885 single-nucleotide 
variants (SNVs), 11,259 dinucleotides, 307,263 small insertions and 
deletions (indels, <50 bp), 419,920 copy-number alterations (CNAs) 
and 22,919 structural variants (SVs), with each mutational type elevated 
in tumours from African individuals (Fig. 1a). A median of 37.54% ± 5.51 
of SNVs were C-to-T mutations, and the transition and transversion 
ratio was 1.282 cohort-wise. Tumours from African individuals had 
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Fig. 1 | Mutational density in prostate tumours of individuals with different 
ancestries. a, The distribution of somatic aberrations (event number or 
number of base pairs) for 7 mutational types across 183 tumour–blood WGS 
pairs representing n = 61 European, n = 113 African and n = 9 admixed 
individuals. The box plots show the median (centre line), the 25th and 75th 
percentiles (box limits), and ±1.5× the interquartile range (whiskers).  

b, The different types of mutational burden observed in this cohort. The 
samples were percentile-ranked and then ordered on the basis of the sum of 
percentiles across the mutational types observed in each ancestral group 
(left). Right, Spearman correlation is shown between mutational types, with 
the dot size representing the magnitude of correlation and the background 
colour giving the statistical significance of FDR values.
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a higher rate of small mutations (SNVs and indels), with a median of 
1.197 mutations per Mb (range 0.031–170.445) compared with those  
of Europeans (1.061 mutations per Mb; P = 0.013, two-sample t-test; 
exclusion of hypermutated tumours at >30 mutations per Mb, P = 0.028).  
The percentage of genome alteration (PGA) was similarly greater in Afri-
cans (7.26% versus 2.82%, P = 0.021). Correlation tests of ancestry and 
total somatic mutations also supported the findings (false-discovery 
rate (FDR) = 0.009 and FDR = 0.032 for SNVs and PGA, respectively; 
Extended Data Fig. 1d). The top six highest estimates of SV breakpoints 
per sample were observed among African patients (928–2,284 break-
points). No overall differences between the ancestries were observed 
for chromothripsis (range, 52–55%) and chromoplexy (range, 33–38%), 
whereas tumours from African individuals demonstrated a trend 

towards a higher number of interchromosomal chromoplexic chains 
(1–6 versus 1–2). Moreover, the magnitude of all types of mutations was 
strongly correlated with one another (Fig. 1b). Thus, the more muta-
tions a prostate tumour has of any given type, the more mutations it 
is likely to have of all types.

Candidate oncogenic drivers
Prostate cancer is known to have a long tail of oncogenic drivers18 across 
the spectrum of different mutational types8 (Extended Data Fig. 2). 
Protein-coding mutations, including those that are probably and pos-
sibly damaging, were significantly greater in each African individual 
(PolyPhen-2, 14 versus 11 mutations in a European individual; P = 0.022, 
two-sample t-test; exclusion of hypermutated tumours, P = 0.039). 
We identified 482 coding and 167 non-coding drivers defined by the 
PCAWG consortium20 (Extended Data Fig. 3a). A median of two (first 
quartile to third quartile, 2–4) coding drivers was observed in this study 
(Supplementary Table 2), with one (0–2) appearing to be specific to 
prostate cancer7,8,17,18. The coding driver genes significantly mutated 
among 183 patients were FOXA1, PTEN, SPOP and TP53 (10–25 patients, 
FDR = 1.34 × 10−21–9.44 × 10−5), whereas non-coding driver elements 
included the FOXA1 3′ UTR, SNORD3B-2 small RNA and a regulatory 
micro RNA promoter at chromosome 22: 38381983 (FDR = 9.12 × 10−13, 
FDR = 6.16 × 10−9 and FDR = 0.070, respectively). Recurrent CNAs of all 
the patients included 137 gains and 129 losses (GISTIC2, FDR < 0.10; Sup-
plementary Table 3) with some spanning driver genes (Extended Data 
Fig. 3b), such as DNAH2 (FDR = 2.18 × 10−7), FAM66C (FDR = 1.30 × 10−9), 
FOXP1 (FDR = 0.005), FXR2 (FDR = 2.18 × 10−7), PTEN (FDR = 9.61 × 10−13), 
SHBG (FDR = 2.18 × 10−7) and TP53 (FDR = 2.18 × 10−7).

Moreover, a fraction of somatic SVs (2 breakpoints each; 1,328 
breakpoints in total) overlapped with 156 driver genes reported as 
altered by significantly recurrent breakpoints in the PCAWG study20, 
while, using a generalized linear model with adjustable background 
covariates, we identified an additional 100 genes to be significantly 
affected by SV breakpoints (FDR = 1.3 × 10−43–0.097; Extended Data 
Fig. 3c and Supplementary Table 4). For more than 20% of tumours, SV 
breakpoints coexisted with other mutational types within DNAH2, ERG, 
FAM66C, FXR2, PTEN, SHBG and TP53. Using optical genome mapping—
an alternative non-sequencing method to examine for chromosomal 
abnormalities21—we validated recurrent breakpoints in HLA regions 
(DQA1 and DQB1 genes), identifying translocations between the 3 Mb 
HLA complex at chromosome 6 and its corresponding HLA alternative 
contigs (Extended Data Fig. 3d).

Differences in oncogenic driver alterations between ancestries were 
observed (Fig. 2a,b). Specifically, tumours from African individuals were 
more likely to have CNAs and mutations in SETBP1 (frequency = 0.33, 
odds ratio (OR) = 0.357, P = 0.012), DDX11L1 (frequency = 0.48, OR = 0.24, 
P = 0.0001), STK19 (frequency = 0.25, OR = 0.215, P = 0.004) and NCOA2 
(frequency = 0.51, OR = 0.172, P = 3.14 × 10−6), along with SVs in PCAT1 
(frequency = 0.13, OR = 0.11, P = 0.012). By contrast, SVs for TMPRSS2 
(frequency = 0.38, OR = 3.639, P = 0.0006) and ERG (frequency = 0.34, 
OR = 3.159, P = 0.003) were more notable among Europeans. Although 
several DNA-damage repair genes and other genes previously associated 
with African ancestry were not significantly altered between Africans 
and Europeans in this study, 10 were solely altered in Africans with 
most in the coding sequence (frequency = 0.009–0.035). All of these 
data support the inclusion of a larger number of under-represented 
populations in clinical enrolment for the benefit of precision oncology 
studies22.

Integrative clustering analysis
Molecular subtyping of tumours is a standard approach in cancer 
genomics to stratify patients into different degrees of somatic altera-
tions in a homogeneous population, with an implication for clinical 
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Fig. 2 | Taxonomy and differences in driver mutations in prostate cancer by 
ancestry. a, The selected 35 driver genes classified as (1) the most altered in this 
study (>10 patients), irrespective of ancestry (green); (2) DNA-damage repair 
(DDR) genes that are known to be associated with African ancestry (orange);  
(3) other ancestry-associated genes studied in prostate cancer (assoc., purple). 
The OR, 95% confidence interval and two-sided P value (<0.05) were calculated 
using Fisher exact tests for count data and including 10 African-specific (OR = 0) 
and 3 European-specific (OR = infinity) genes. Significance was observed for 
TMPRSS2 (P = 0.0006), ERG (P = 0.003), SETBP1 (P = 0.012), DDX11L1 (P = 0.0001), 
STK19 (P = 0.004), NCOA2 (P = 3.14 × 10−6), PCAT1 (P = 0.012), PAPSS2 (P = 0.042) 
and MTCH2 (P = 0.014). b, The mutational frequency of the altered driver genes 
between Africans and Europeans by mutational type (CDS, non-coding, SV and 
CNA). c, An integrative clustering analysis reveals four distinct molecular 
subtypes of prostate cancer. The molecular subtypes are illustrated by small 
somatic mutations (coding regions and non-coding elements), somatic CNAs 
and somatic SVs. The proportion and association between the iCluster 
membership and patient ancestry are illustrated in  d. Additional unsupervised 
consensus clustering on each data type was performed and mostly 
recapitulated the subtypes by integrative analysis. d, Total somatic mutations 
across four molecular subtypes in this study. The dashed lines indicate the 
median values of mutational densities across the four subtypes. For each 
subtype, patients are ordered on the basis of their ancestry.
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use9–11. Identifying five out of the seven TCGA oncogenic driver-defined 
subtypes in our study7, European patients were 25% more likely than 
African patients to be classified (Supplementary Table 5 and Extended 
Data Fig. 4a–d). Whereas TMPRSS2-ERG fusions (predominantly 3 Mb 
deletions) were significantly elevated in our tumours from European 
individuals compared with from African individuals (37.7% versus 13.3%; 
OR = 3.919, P = 0.0004), albeit not significantly, African patients were 
1.3-fold more likely to present with SPOP-coding mutations (MATH 
and BTB domains).

For further molecular classification, we performed iCluster analysis 
on all mutational types (small mutations, CNAs and SVs) identifying 
four subtypes—A to D (Fig. 2c,d and Supplementary Table 6). We found 
that subtype A is mutationally quiet (1.01 mutations per Mb, 0.50 break-
points per 10 Mb, 2% PGA); by contrast, subtype D showed the greatest 
mutational density (1.91 mutations per Mb, 1.08 breakpoints per 10 Mb, 
31% PGA) with a mixture of CN gains and losses, whereas subtypes B and 
C were marked by substantial CN gains or losses, respectively (Fig. 3a). 
The quiet subtype seems to be common in prostate cancer studies7,9,23, 
while the number of pan-cancer consensus drivers20 increased from 

subtype A (median, 2 drivers) to B (median, 3 drivers), C (median,  
3 drivers) and D (median, 4 drivers).

Using all of the mutational types in the analysis, 124 genes were 
significantly mutated across the four subtypes (FDR = 3.742 × 10−13–
0.067; Fig. 3a), occurring in 31 to 183 patients (frequency, 0.17–1). 
Among them, 100 genes were reported as oncogenic drivers in the 
PCAWG20, and FOXA1 and SPOP genes acting as the TCGA subtypes 
were also replicated in this analysis, while the 24 new mutated genes 
among the subtypes were predominantly affected by SV breakpoints 
and CNAs. The median number of mutated genes ranged from 28 
(range 3–105) for subtype A to 82, 98 and 93 for subtypes B, C and 
D, respectively (42–109, 72–112, 49–107). Although different muta-
tional types tended to co-occur within genes and/or patients (Sup-
plementary Table 7), small mutations (coding and non-coding) were 
noticeably observed in the quiet subtype A, supporting acquisition 
early in tumorigenesis24. Our preferentially mutated genes within 
tumour subtypes resemble the long tail of prostate cancer drivers18, 
with some highly impacting many tumours, but most only affecting 
a few tumours.

a

A
TR

X
Z

M
Y

M
3

K
D

M
6A

R
E

R
E

U
B

X
N

8
M

G
A

P
D

E
4D

JA
K

3
N

O
TC

H
2

K
M

T2
C

C
N

O
T1

S
M

A
R

C
A

4
TP

53
PA

P
D

5
Z

N
F4

92
R

B
FO

X
1

TY
W

1
P

TE
N

Z
N

F4
43

P
IB

F1
C

D
K

N
1B

M
P

D
U

1
S

E
N

P
3

E
LN

FO
X

P
1

S
K

IL
M

A
LA

T1
M

A
C

R
O

D
2

IL
6S

T
C

FL
1P

1
A

TA
D

1
B

R
A

F
M

TC
H

2
P

B
R

M
1

C
H

D
4

R
G

S
7

S
TA

T3
A

S
X

L1
M

U
C

17
C

H
D

3
TD

G
P

IK
3R

1
R

A
B

G
A

P
1L

B
C

L3
B

R
D

4
C

D
K

12
R

O
M

O
1

N
E

D
D

4L
IK

Z
F1

D
D

X
4

S
C

A
I

M
TH

FD
1L

P
O

M
Z

P
3

Z
N

F8
14

C
U

L2
PA

P
S

S
2

A
TP

2B
2

TE
N

M
4

R
U

N
X

1T
1

P
O

LR
2F

S
P

O
P

A
K

T2
P

TP
R

D
P

TP
4A

1
TH

A
D

A
W

D
R

74
LR

P
1B

C
S

N
K

1E
A

TM
R

P
N

1
M

TO
R

N
D

C
80

O
S

B
P

L1
0

A
C

P
P

P
LX

N
A

4
M

C
F2

L2
U

TR
N

IT
FG

1
C

IC
N

TR
K

3
P

R
D

M
16

A
TA

D
2B

R
O

B
O

2
E

R
F

V
W

C
2

C
B

X
3

IV
L

S
LC

45
A

3
FO

X
A

1
K

R
A

S
R

N
F4

3
P

S
G

6
IR

F4
P

D
G

FB
E

LK
4

H
IS

T1
H

1E
N

U
C

K
S

1
S

O
R

C
S

2
H

LA
-B

A
R

ID
1B

K
C

N
H

8
O

TU
D

7A
A

P
C

H
LA

-A
K

R
TA

P
1-

1
K

R
TA

P
1-

3
FI

P
1L

1
M

FF
P

D
E

4D
IP

C
H

R
N

B
2

A
K

R
1C

1
M

IR
43

03
TY

R
O

3P
A

K
R

1C
2

K
R

TA
P

5-
11

Z
FP

36
L2

C
S

P
G

4
G

S
TA

2
N

D
S

T4
G

Y
PA

K
R

TA
P

10
-6

K
IT

G
Z

M
H

G
Z

M
B

Mutational type

Hemi. loss
CN gain SV breakpoint

CDS
NC

CDS + SV and/or NC Gain + SV ± CDS
Gain + SV + CDS ± NC
Gain + CDS and/or NC

Loss + SV ± CDS
Loss + CDS and/or NC

Homo. loss

Ethnicity
A�can

Age (years)

PSA

ISUP

Missing data
NA

A

B

C

D

A
ge

IS
U

P
E

th
ni

ci
ty

P
S

A

Chr. X

45–55
55–65
66–70
>70

0–9.9
10–19.99
20–500
>500

0
1
2
3
4
5

European
Admixed

a

c

100500 150 200
Time (months)

+ ++++ +++++ +++++++++++++++++++++++++++++++++ +
++ +++++++

+
+ + + ++++ ++++

+++++++

++ +

+ +

++ +++ +

+

P = 0.0410.25

0.50

0.75

1.00
S

ur
vi

va
l p

ro
b

ab
ili

ty
+ +Subtype A C

100

75

50

25

M
ut

at
io

na
l f

re
q

ue
nc

y 
(%

)

+
++ +++ ++++++ + + +++ + ++++++++++++++++++++++++++++++++++++ +

+++ ++++ ++
+

+ +

P = 0.0076

b

0

0.25

0.50

0.75

1.00

0 50 100
Time (months)

B
C

R
-f

re
e 

su
rv

iv
al

Subtype + +A C

Fig. 3 | Significance of somatic aberrations across four diverse subtypes. 
 a, Analysis of the long tail of driver genes using different combinations of 
mutational types (CDS, coding driver data; NC, non-coding driver data; SV, 
significantly recurrent breakpoint data; and CN, gene-level CN data), resulting 
in the identification of 124 preferentially mutated genes among the subtypes. 
Ordered by mutational frequency, 100 (80.6%) have been reported as 
significantly recurrent mutations/SV breakpoints in the PCAWG Consortium20, 
and 24 (19.4%) are significantly mutated in this study (marked by asterisks). 
Using iClusterplus, unsupervised hierarchical clustering of all mutational 
types identified four prostate cancer subtypes (A–D; Fig. 2c), presented for 183 
patients (rows) and 124 mutated genes (columns), with each subgroup ordered 
by ancestry. Ancestrally diverse subtypes A and C are mutationally quiet and 

are marked by CN loss, respectively. African-specific/predominant subtypes  
B and D are marked by CN gains and are mutationally noisy, respectively. Three 
genes on chromosome X, KDM6A, ATRX and ZMYM3, are considered to be 
significant due to the abundance of homozygous (homo.) loss present in 
subtype C. Chr., chromosome; hemi., hemizygous; ISUP, International Society 
of Urologic Pathologists; NA, not applicable. b, Kaplan–Meier plot of 
biochemical relapse (BCR)-free survival proportion of European patients for 
subtype A (n = 161) versus C (n = 19). c, Kaplan–Meier plot of the cancer survival 
probability of European patients for subtype A (n = 82) versus C (n = 17). For  
b and c, the probability estimates, 95% confidence intervals and two-sided P 
values (log-rank test) are indicated.
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The 124 preferentially mutated genes within our tumour subtypes 
corresponded to 8 TCGA/ICGC cancer pathways (Supplementary Infor-
mation and Extended Data Fig. 5). Whereas six showed slightly elevated 
mutational frequencies in tumours from African individuals, genes 
affecting epigenetic mechanisms were significantly biased towards 
European individuals (OR = 5.586, P = 2.9 × 10−7; Extended Data Fig. 6b). 
Pathway enrichment analysis supported five functional networks of the 
cancer pathways, with two of them involved in signal transduction and 
DNA checkpoint processes that five out of the eight pathways interacted 
with (Extended Data Fig. 6a and Supplementary Table 8).

Global molecular subtypes
By combining molecular profiling and patient demographics, genetic 
ancestry and geography, we identified a new prostate cancer taxonomy 
that we define as GMS (Fig. 2d). Whereas all European patients from 
Australia (n = 53) and Brazil (n = 3) were limited to GMS-A and GMS-C, 

tumours from African individuals were dispersed across all four sub-
types. We found that GMS-B and GMS-D predominate in African indi-
viduals, with GMS-B including a single patient of admixed ancestry 
(92% African) and GMS-D including a single admixed (63% African) 
and a single European ancestral patient. The latter individual was one 
of only five Europeans in our study who was born and raised in Africa. 
Compared with the other patients of European ancestry, this patient 
showed the highest mutational density across all types. Alternative 
consensus clustering of individual mutational types mostly recapitu-
lated the subtypes by integrative analysis (Supplementary Table 6). 
By further including Chinese Asian high-risk prostate cancer data11 
(n = 93; Extended Data Fig. 7a), we found that GMS-A is ancestrally 
and geographically universal, whereas GMS-D remained African spe-
cific, with a new African–Asian GMS-E emerging. GMS-B remained 
African specific and GMS-C remained European–African specific. 
Although all of the patients were treatment naive at the time of sam-
pling, our European cohort was recruited with extensive follow-up 
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Fig. 5 | Evolutionary history of globally mutated subtypes. a, The cancer 
timeline of the universal subtype (A) begins from the fertilized egg to the age of 
the patients in a cohort. b, The cancer timeline of GMS-C. Estimates for major 
events, such as whole-genome duplication (WGD) and the emergence of the 
most-recent common ancestor (MRCA) are used to define the early, variable, 
late and subclonal stages of tumour evolution approximately in chronological 
time. When the early and late clonal stages are uncertain, the variable stage is 
assigned. Driver genes and CNAs are shown in each stage if present in previous 
studies8,20 and defined by the MutationTime.R program. Mutational signatures 
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Significant pairwise interaction events between the mutations and CNAs were 
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calculated using Fisher exact tests. Co-occurrence or mutually exclusive event 
is considered when OR > 2 or OR < 0.5, respectively. The interaction 
significance between pairs in GMS-A and GMS-C has P values ranging from 
2.04 × 10−30 to 0.047 and from 1.64 × 10−27 to 0.045, respectively. Median 
mutation rates of CpG-to-TpG burden per Gb are calculated using the 
age-adjusted branch length of cancer clones and maximally branching 
subclones. The mutation rate plots in a and b show the median ± 2 s.e. of fitted 
data as dashed lines and error bands, respectively. c, Schematic of a world map 
with the distribution of GMS-A–D among ancestrally/globally diverse 
populations. The gene–environment interaction of GMS is shown on the right. 
The contingency table of the number of patients with different ancestries 
(germline variants) stratified by subtypes and associated with certain 
geography or environmental exposure (two-sided P = 0.0005, Fisher exact test 
with 2,000 bootstraps).
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data (median ± s.d., 122.5 ± 44.4 months). Interestingly, biochemical 
relapse (Fig. 3b) and death-free survival probability (Fig. 3c) explains 
better clinical outcomes for patients presenting with the universal 
over the European-African GMS (GMS-A versus GMS-C, log-rank test, 
P = 0.008 and P = 0.041, respectively).

Our GMS taxonomy could leverage pan-cancer studies in the fol-
lowing ways. First, a sampling strategy of patients from the PCAWG 
project was rather homogeneous in each cancer, therefore inhibiting 
the discovery of globally restricted subtypes3,13 (Extended Data Fig. 7b). 
Second, genetic ancestral25 and geographical data of patients should 
be included in molecular profiling of cancers. Finally, the inclusion 
of ethnic disparity in cancer studies would need to properly address 
genetic admixture in a sampling cohort, with a too low ancestral cut-off 
appearing to create highly admixed, but similar, ancestry among indi-
viduals, therefore discouraging ethnically diverse samples.

New and known mutational signatures
Approximating the contribution of mutational signatures to indi-
vidual cancer genomes facilitates the association of the signatures 
with exogenous or endogenous mutagen exposures that contribute 
to the development of human cancer3. Here we generated a list of CN 
and SV signatures and their contributions to prostate cancer using 
non-negative matrix factorization26 (Extended Data Fig. 8a,b). Com-
bined with a known catalogue of small mutational signatures, including 
single-base substitutions (SBSs), doublet base substitutions (DBSs) and 
indels (IDs), we observed not only a substantial variation in the number 
of mutational features but also over-representation in tumours from 
African individuals (Extended Data Fig. 8c). Overall, 96 SBS, 78 DBS and 
83 ID features examined had significantly higher totals in African indi-
viduals (SBSs, 3,399 versus 2,840 in Europeans, P = 0.014; DBSs, 42 ver-
sus 32, P = 0.006; IDs, 374 versus 360, P = 0.016, two-sample t-tests). We 
generated six de novo signatures for each small signature type (median 
cosine similarity, 0.986, 0.856 and 0.976, respectively), corresponding 
to 12, 7 and 8 global signatures, respectively (median cosine similarity, 
0.966, 0.850 and 0.946, respectively; Extended Data Fig. 9), with 26 
likely to be of biological origin (SBS47, possible sequencing artefacts). 
DBSs accounted for about 1% of the prevalence of SBSs. The CN features 
were also greater in Africans (CN, 3,971 versus 2,721, P = 1.92 × 10−8; SV, 
94 versus 88, P = 0.100). The SV features defined in a recent pan-cancer 
study26 were each mutually exclusive and included simple SVs (split 
according to size, replication timing and occurrence at fragile sites), 
templated insertions (split by size), local n-jumps and local–distant 
clusters. The factorization of a sample-by-mutation spectrum matrix 
identified six CN signatures (CN1–6) and eight SV signatures (SV1–8), 
as well as their contributions to each tumour.

We found that the full spectrum of mutational signatures (SBSs, 
DBSs, IDs, CNs and SVs) supports our newly described GMS. Enrich-
ment records of the top signatures in each tumour were significantly 
associated type by type with the taxonomic subtypes, except for DBSs 
(P = 5.1 × 10−7–0.017, one-way analysis of variance (ANOVA) or Fisher 
exact test; Extended Data Fig. 8d). Regardless of the signature type, 13 
out of 40 mutational signatures showed either inverse or proportion-
ate correlations with our GMS (FDR = 4.97 × 10−13–0.095, Spearman 
correlation; Fig. 4a). Duplication signatures, including CN1 (tandem 
duplication), CN4 (whole-genome duplication), SV2 (insertion) and SV5 
(large duplication), were biased to the most mutationally noisy subtype 
(Extended Data Fig. 8a, b), with CN4 and SV5 frequent in Africans (cor-
relation coefficient = −0.24, FDR = 0.005–0.006). Figure 4b shows 
that the duplication signatures have at least a 1.5× greater proportion 
of genomic aberrations in GMS-B, GMS-C and GMS-D compared with 
the universal GMS-A. Furthermore, the African-specific subtype GMS-B 
consisted of several CN4 and SV5 genomic aberrations composed 
predominantly of CN amplification (>5 copies and mainly >100 kb in 
length) and tandem duplication (<5 Mb in size occurred during early to 

late timing of DNA replication), respectively. Moreover, the mutational 
density of 30 out of 32 genes that are highly mutated in our GMS and 
reported in prostate cancer was significantly correlated with different 
somatic signatures, with most observed in CN2, CN6 and SV6 signatures 
that were mainly caused by deleted genomes (FDR = 1.61 × 10−7–0.082).

Evolution of GMS
Timeline estimates of individual somatic events reflect evolutionary 
periods that differ from one patient to another; for example, a cluster 
of identical alterations derived from clones in one patient presented 
as subclonal events in another patient (Extended Data Fig. 10a,b). How-
ever, they provide in part the order of driver mutations and CNAs pre-
sent in each sample24. The reconstruction of aggregating single-sample 
ordering of all drivers and CNAs reveals different evolutionary patterns 
that are unique to each GMS subtype (Fig. 5a,b and Extended Data 
Fig. 10c). We drew approximate cancer timelines for each GMS subtype 
portraying the ordering of driver genes, recurrent CNAs and signature 
activities chronologically interleaved with whole-genome duplica-
tion and the emergence of the most recent common ancestor leading 
up to diagnosis. Basically, significantly co-occurring interactions of 
the drivers and CNAs are shown (OR = 2.6–97.8, P = 2.04 × 10−30–0.01), 
supporting their clonal and subclonal ordering states within the recon-
structed timelines. SBS and indel signatures that are abundant in each 
GMS subtype display changes in their mutational spectrum between 
the clonal and subclonal state, suggesting a difference in mutation 
rates. The plot of clock-like CpG-to-TpG mutations and patient-age 
adjustment shows a median mutation rate of as low as 0.968 per year 
for the universal GMS, but a highest rate of 1.315 per year observed in 
the African-individual-specific GMS-D. GMS-B and GMS-C have rates 
of 1.144 and 1.092 per year, respectively. Assessing the relative timing 
of somatic driver events, TP53 mutations and accompanying 17p loss 
are of particular interest, occurring early in GMS-C progression and at 
a later stage in GMS-A. League model relative timing of driver events 
(Supplementary Information) is consistent with a fraction of probability 
distribution of the TP53 alterations at the early stage, but most are at 
an intermediate state of evolution (Extended Data Fig. 10d). This basic 
knowledge of in vivo tumour development suggests that some tumours 
could have a shorter latency period before reaching their malignant 
potential, so known genomic heterogeneity of their primary clones is 
paramount to pave the way for early detection.

Discussion
Our study represents one of the largest whole-genome prostate cancer 
genome resources for sub-Saharan Africa (a summary is provided in 
Supplementary Table 12). Acknowledging the lack of information on 
clinical staging for the South African patients (recruited at diagnosis), 
we describe a prostate cancer molecular taxonomy, identifying ances-
trally distinctive GMS. Compared to previous taxonomy using signifi-
cantly mutated genes in prostate cancer7,18, we found that GMS subtypes 
compliment known subtypes such as SPOP and FOXA1 mutations, in 
contrast to under-represented subtypes in this study, including gene 
fusions (Extended Data Fig. 4a). We also found that GMS subtypes cor-
relate with mutational signatures reported in the known catalogue of 
somatic mutations in cancer, in which each tumour is represented by 
different degrees of exogenous and endogenous mutagen exposures3. 
Our study used the analysis of evolution across 38 cancer types by the 
PCAWG consortium24, recognizing that each GMS subtype represents a 
unique evolutionary history with drivers and mutational signatures var-
ied between cancer stages and linking somatic evolution to a patient’s 
demographics. Thus, some represent rare or geographically restricted 
signatures that have not been observed in pan-cancer studies3,13.

We considered two extreme cases, universal GMS-A versus African- 
specific GMS-B and GMS-D, that would have been influenced by two 
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different mutational processes for conceptual simplicity (Fig. 5c). One 
factor is predisposing genetics27–29 contributing to endogenous muta-
tional processes, especially those with significant germline–somatic 
interactions, such as the TMPRSS2-ERG fusion that is less frequently 
observed in men of African and Asian ancestry11,30, germline BRCA2 
mutations and the somatic SPOP driver co-occurred with their respec-
tive counterparts31,32. Another factor is modifiable environmental 
attributes that are specific to certain circumstances or geographical 
regions that, to date, have not been observed in prostate cancer. They 
act as mutagenic forces leading to the positive selection of point muta-
tions throughout life in healthy tissues33,34 and cancers35, forming fluid 
boundaries between normal ageing and cancer tissues. According to 
Ottman36, the above-mentioned model of gene–environment interac-
tion is observed when there is a different effect of a genotype on disease 
in individuals with different environmental exposures or, alternatively, 
a different effect of an environmental exposure on disease in individuals 
with different genotypes. Other GMS subtypes would be a combination 
of the two processes, warranting a need for larger populations captur-
ing ancestral versus ethnic and geographical diversity. As such, the 
study directly accounts for the large spatiogenomic heterogeneity of 
prostate cancer and its associated evolutionary history in understand-
ing the disease aetiology.

Our study suggests that larger genomic datasets of geo-ethnically 
diverse and ancestrally defined populations in a unified analysis will 
continue to identify rare and geographically restricted subtypes in 
prostate cancer and potentially other cancers. We demonstrate that 
ancestral and geographical attributes of patients could facilitate those 
studies on cancer population genomics, an alternative to cancer per-
sonalized genomics, for a better scientific understanding of nature 
versus nurture.
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Methods

Patient cohorts and WGS
Our study included 183 treatment-naive patients with prostate cancer 
who were recruited under informed consent and appropriate ethics 
approval (Supplementary Information 2) from Australia (n = 53), Bra-
zil (n = 7) and South Africa (n = 123). While matched for pathological 
grading, as previously reported, prostate-specific antigen levels are 
notably elevated within our African patients16 and we cannot exclude 
on the basis of potential metastasis (as data on metastases in this cohort 
are unavailable). DNA extracted from fresh tissue and matched blood 
underwent 2 × 150 bp sequencing on the Illumina NovaSeq instrument 
(Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical 
Research).

WGS processing and variant calling
Each lane of raw sequencing reads was aligned against human reference 
hg38 + alternative contigs using bwa (v.0.7.15)37. Lane-level BAM files 
from the same library were merged, and duplicate reads were marked. 
The Genome Analysis Toolkit (GATK, v.4.1.2.0) was used for base qual-
ity recalibration38. Contaminated and duplicate samples (n = 8) were 
removed. We implemented three main pipelines for the discovery of 
germline and somatic variants, with the latter including small (SNV 
and indel) to large genomic variation (CNAs and SVs). The complete 
pipelines and tools used are available from the Sydney Informatics 
Hub (SIH), Core Research Facilities, University of Sydney (see the ‘Code 
availability’ section). Scalable bioinformatic workflows are described 
in Supplementary Information 4.

Genetic ancestry was estimated using fastSTRUCTURE (v.1.0)39, 
Bayesian inference for the best approximation of marginal likelihood 
of a very large variant dataset. Reference panels for African and Euro-
pean ancestry compared in this study were retrieved from previous 
whole-genome databases19.

Analysis of chromothripsis and chromoplexy
Clustered genomic rearrangements of prostate tumours were identi-
fied using ShatterSeek (v.0.4)40 and ChainFinder (v.1.0.1)41. Our somatic 
SV and somatic CNA call sets were prepared and co-analysed using 
custom scripts (see the ‘Code availability’ section; Supplementary 
Information 6).

Analysis of mutational recurrence
We used three approaches to detect recurrently mutated genes or 
regions based on three mutational types, including small muta-
tions, SVs and CNAs (Supplementary Information 7). In brief, small 
mutations were tested within a given genomic element as being sig-
nificantly more mutated than the adjacent background sequences. 
The genomic elements retrieved from syn5259886, the PCAWG 
Consortium20, were a group of coding sequences and ten groups of 
non-coding regions. SV breakpoints were tested in a given gene for 
their statistical enrichment using gamma–Poisson regression and 
corrected by genomic covariates12. Focal and arm-level recurrent CNAs 
were examined using GISTIC (v.2.0.23)42. Known driver mutations in 
coding and non-coding regions published in PCAWG20,43,44 were also 
recorded in our 183 tumours, and those specific to prostate cancer 
genes were also included7,8,12,17,18.

Integrative analysis of prostate cancer subtypes
Integrative clustering of three genomic data types for 183 patients 
was performed using iClusterplus11,45 in R, with the following inputs: 
(1) driver genes and elements; (2) somatic CN segments; and (3) sig-
nificantly recurrent SV breakpoints. We ran iClusterPlus.tune with 
clusters ranging from 1 to 9. We also performed unsupervised consensus 
clustering on each of the three data types individually. Association 
analysis of genomic alteration with different iCluster subtypes was 

performed in detail (Supplementary Information 8). Differences in 
driver mutations, recurrent breakpoints and somatic CNAs across 
different iCluster subtypes were reported.

Comparison of iCluster with Asian and pan-cancer data
To compare molecular subtypes between extant human populations, 
the Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA, 
PRJCA001124)11 was merged and processed with our integrative clus-
tering analysis across the three data types described above, with 
some modifications. Moreover, we leveraged the PCAWG consor-
tium data13 to define molecular subtypes across different ethnic 
groups in other cancer types using published data of somatic muta-
tions, SV and GISTIC results by gene. Four cancer types consisting of 
breast, liver, ovarian and pancreatic cancers were considered due to 
existing primary ancestries of African, Asian and European with at 
least 70% contribution. Full details are provided in Supplementary 
Information 8.4.

PCAWG13 participants with prostate cancer were retrieved to compare 
with Australian data with clinical follow-up. Only those of European 
ancestry greater than 90% (n = 139) were analysed for the three genomic 
data types of iCluster subtyping, as well as individual consensus clus-
tering. Clustering results identical to the larger cohort size mentioned 
above were chosen for association analyses. Differences in the bio-
chemical relapse and lethal prostate cancer of the participants across 
the subtypes were assessed using the Kaplan–Meier plot followed by 
a log-rank test for significance.

Analysis of mutational signatures
Mutational signatures (SBSs, DBSs and indels), as defined by the PCAWG 
Mutational Signatures Working Group3, were fit to individual tumours 
with observed signature activities using SigProfiler46. Non-negative 
matrix factorization was implemented to detect de novo and global 
signature profiles among 183 patients and their contributions. New 
mutational genome rearrangement signatures (CN and SV) were also 
performed using non-negative matrix factorization, with 45 CN and 
44 SV features examined across 183 tumours. We followed the PCAWG 
working classification and annotation scheme for genomic rearrange-
ment26. Two SV callers were used to obtain exact breakpoint coordi-
nates. Replication timing scores influencing on SV detection were set 
at >75, 20–75 and <20 for early, mid, and late timing, respectively47. Full 
details of analysis steps, parameters and relevant statistical tests are 
provided in Supplementary Information 9.

Reconstruction of cancer timelines
Timing of CN gains and driver mutations (SNVs and indels) into four 
epochs of cancer evolution (early clonal, unspecified clonal, late clonal 
and subclonal) was conducted using MutationTimeR24. CN gains includ-
ing 2 + 0, 2 + 1 and 2 + 2 (1 + 1 for a diploid genome) were considered 
for a clearer boundary between epochs instead of solely information 
of variant allele frequency. Confidence intervals (tlo – tup) for timing 
estimates were calculated with 200 bootstraps. Mutation rates for 
each subtype were calculated according to ref. 24 such that CpG-to-TpG 
mutations were counted for the analysis because they were attributed 
to spontaneous deamination of 5-methyl-cytosine to thymine at CpG 
dinucleotides, therefore acting as a molecular clock.

League model relative ordering was performed to aggregate across 
all study samples to calculate the overall ranking of driver mutations 
and recurrent CNAs. The information for the ranking was derived from 
the timing of each driver mutation and that of clonal and subclonal 
CN segments, as described above. A full description is provided in 
Supplementary Information 10.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA001124


Data availability
DNA-sequencing data have been deposited at the European Genome- 
Phenome Archive (EGA) under overarching accession EGAS00001006425 
and including the Southern African Prostate Cancer Study (SAPCS) 
Dataset (EGAD00001009067 and Garvan/St Vincent’s Prostate Cancer 
Database EGAD00001009066). Academic researchers meeting the 
data-access policy criteria may apply for data access through the 
respective data access committees. CPGEA data are available through 
http://www.cpgea.com. PCAWG data are available at ICGC Data Portal 
(https://dcc.icgc.org/releases/PCAWG).

Code availability
The core computational pipelines used in this study for read align-
ment, quality control and variant calling are available at GitHub (https://
github.com/Sydney-Informatics-Hub/Bioinformatics). Analysis code 
for chromothripsis and chromoplexy is also available at GitHub (https://
github.com/tgong1/Code_HRPCa).
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Extended Data Fig. 1 | Clinical cohorts and statistical metrics. a, Clinical  
and pathological patient. characterization. Pairwise comparisons using 
contingency tables and Fisher’s Exact test between African ancestry and 
Admixed/European ancestry are highlighted in bold with two-sided P-value 
<0.05 (*), <0.01 (**), or <0.001 (***). Summary statistics, including the median, 
first and third quartiles (Q1-Q3), are also present. b, STRUCTURE analysis of 
bi-allelic germline variants with the logistic prior model. Model components 

used to explain structure in the plot are K = 5. All spectrum of African 
contributions are summed and assigned as African ancestry. c, Saturation 
curve for all driver types across 183 patients. Recurrent copy number gains and 
losses were measured using GISTIC v2 (Supplementary Methods). CDS, coding 
sequence; SV, structural variation. d, Spearman’s correlation between different 
variables measured in this cohort. Dot sizes represent the magnitude of 
correlation, with significant P-values (two-sided) <0.01.



Extended Data Fig. 2 | Somatic driver mutations in 183 prostate cancer 
patients of different ancestries. The covariates on the right show the total 
number of altered samples for different mutational types. a, Search of the top 
300 driver genes altered in primary prostate tumours among 183 specimens. 
Only driver genes discovered in PCAWG and this study, present in more than six 
patients or significantly different between Africans and Europeans are chosen 
for plotting. The top barplot shows the distribution of the number of prostate 
cancer drivers and/or that of PCAWG. The heatmap shows drivers found in this 

study (rows) for each patient (columns). Heatmaps are coloured by mutational 
type. The dual barplot on the left depicts gene-level comparisons of mutational 
recurrence directly between Africans and Europeans. Bottom covariates show 
the clinical features of patients. The percentage of transition/transversion 
mutations across 183 patients shows 1,364,210 small somatic mutations across 
chromosomes 1-Y. b, The bottom heatmap shows the top 22 of previously 
reported coding driver genes in prostate cancer observed in this study7,8,17,18. 
The left barplot shows statistical support of recurrence analysis for our study.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Discovery of prostate cancer drivers. a, The number 
and types of PCAWG driver genes and elements studied in our cohort.  
b, Recurrent copy number alterations among 183 prostate tumours identified 
with a 99% confidence level using GISTIC v2 (Supplementary Methods).  
The figure shows GISTIC peaks of significant regions of recurrent amplification 
(red) or deletion (blue) supported by FDR < 0.01. c, Genome-wide scan for 
significantly recurrent breakpoints in our study. The quantile-quantile plot 
shows two-sided P-values for mutational densities across 183 prostate cancer 
patients. Multiple hypothesis corrections using the false discovery rate (FDR; 
Benjamini–Hochberg method) are shown in Supplementary Table 4. 
Generalized linear modelling (GLM) of somatic mutation densities along the 
genome with significant background mutational processes adjusted in the 
model is also shown. d, Bionano Genomics optical genome mapping at the HLA 

complex. Examples of HLA translocations from a European patient (ID 12543) 
and an African patient (ID UP2360) studied in this cohort are characterized by 
pairs of optical maps, each carrying a fusion junction with flanking fragments 
aligning to one side of the two reference breakpoints. Using the recurrent HLA 
breakpoints identified in this study, the genome map of the African specimen is 
found to have a low-end fusion function matched with chromosome 6 through 
a manual inspection of unfiltered consensus maps using Bionano Access v1.5.2. 
Note that the HLA alternate contig fused in the European tumour is different 
from one suggested by short-read sequencing (chr6_GL000252v2_alt).  
The reference genome map is an in silico digest of the human reference hg38 
with the DLE-1 enzyme. Genome map sizes are indicated on the horizontal axis, 
in megabase (Mb) units. Matching fluorescent labels between sample and 
reference genome map are connected by grey lines.
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Extended Data Fig. 4 | TCGA molecular taxonomy. a, Seven important 
oncogenic drivers identified by TCGA within our African and European 
patients. b, Coding mutations observed within SPOP and FOXA1 genes. Rarely,  
a mutation at the BTB domain of SPOP gene is shown (R221C in an African 
patient, KAL0072). FH, forkhead. c, ETV1 fusions within positive patients 

caused by copy number (CN) losses and/or structural variants (DEL, deletion; 
ICX, interchromosomal translocation; and INV, unbalanced or balanced 
inversion). CN changes in chromosome 7 show the ETV1 loss with log2 CN ratio 
less than −0.2. d, ERG fusions caused by CN losses and/or structural variants.



Extended Data Fig. 5 | Prostate cancer genes and pathways. The search of 
our 124 preferentially mutated genes across tumour subtypes is carried out 
using the TCGA and ICGC cancer databases. The top affected genes for each 
pathway are present with lollipop plots to show their hotspots of simple coding 

mutations if they existed. Mutational frequencies of each altered gene in a 
pathway are separately measured between Africans (n = 113) and Europeans 
(n = 61) and shown on the right as a percentage in order (AFR, EUR).
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Extended Data Fig. 6 | Major biological pathways and networks of prostate 
cancer. a, Networks of functional interactions between driver genes are shown 
for each cancer pathway. Nodes represent Gene Ontology biological processes 
and Reactome pathways and edges show functional interactions. b, Pathway 

alteration frequencies between African and European. A sample was 
considered altered in a given pathway if at least a single gene in the pathway had 
a genomic alteration (see Extended Data Fig. 5). P-values indicate the level of 
significance (two-sided Fisher’s exact test).



Extended Data Fig. 7 | Molecular subtypes in prostate cancer and 
pan-cancers. a, Unsupervised hierarchical clustering of primary prostate 
tumours across three major ancestral groups was performed using total 
somatic mutations present within WGS normalized data. Admixed individuals 
were also tested in prostate cancer subtypes to which they belonged.  
b, Molecular subtyping of total somatic mutations within pan-cancer studies, 

namely pancreatic, ovarian, breast and liver cancers. Raw data of small somatic 
mutations, structural variants and copy number alterations acquired per 
cancer were retrieved from the PCAWG13. For each subtype, patients are 
ordered based on their ancestry. Ancestral groups are assigned using a cut-off 
of ancestral contribution greater than 70%; otherwise, considered as Admixed.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Known and novel mutational signatures in prostate 
cancer. a, Copy number signatures in prostate cancer across 45 CN features 
ranked by mutational processes observed. The six most distinctive signatures 
and their important components extracted by the NMF algorithm were run  
on the sample size of 183 genomes. Bar charts represent the estimated 
proportion of each event feature assigned to each signature (rows sum to one). 
b, Structural variation signatures in prostate cancer ranked by mutational 
processes observed from small deletion to reciprocal rearrangement. The 
eight most distinctive signatures and their important components extracted 
from 44 features using the NMF algorithm were run on the sample size of 183 
genomes. Bar charts represent the estimated proportion of each event feature 
assigned to each signature (rows sum to one). c, Frequency of SBS, DBS, ID, CN 
and SV features across 183 tumours. Colours at the bottom panel show the 
following ancestral groups: i) African, red; ii) Admixed, green; and iii) 

European, blue. d, Stacked barplots of multiple signature exposures for each 
mutational type enriched per patient and ranked by ancestral group. In many 
cases, certain mutational signatures occur more frequent in a tumour than 
others. The top enrichment of small- to large-size mutational signatures 
mentioned is shown for each patient in Supplementary Table 9 (see 
Enrichment). Copy number and structural variation signatures (CN1-6 and  
SV1-8, respectively) are the first identified in this study for prostate cancer, and 
their top enrichment of signature mixture/exposure per patient appears to be 
significantly associated with our GMS (one-way ANOVA or Fisher’s exact test, 
two-sided P-values = 5.1e-07–0.017), considering either de novo or global 
mutational signatures discovered in the Catalogue of Somatic Mutations in 
Cancer (COSMIC). This supports a role of GMS in explaining intrinsic and 
extrinsic mutational processes in cancer.
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Extended Data Fig. 9 | Total profiles of SBS, DBS, ID, CN and SV signatures. 
The classification of each signature type (SBS, 96 classes; DBS, 78 classes; ID,  
83 classes; CN, 45 classes; and SV, 44 classes) is described in Supplementary 

Methods. The plotted data are available in digital form (Supplementary 
Table 9).



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Stages of prostate tumour development. a, Clonal 
architecture and its frequency in prostate cancer between Africans and 
Europeans. Tumours are divided into three groups: monoclonal, linear and 
branching polyclonal. The number of small somatic mutations (SSM) and CNAs 
as percentage of genome alteration (PGA) is provided as median and range in 
bracket. Cancer cell fraction (CCF) in each clone and/or subclone is shown in a 
circular node. Tumours that show characteristics consistent with being 
polytumours or with multiple independent primary tumors are excluded to 
remain conservative. b, Unbiased hierarchical clustering of CNAs between 
clonal (trunk) and subclonal (branch) mutations. Trunk mutations encompass 
those that occur between the root node (normal) and its only child node, while 
all others are classified to have occurred in branch. Red indicates gain; blue 
indicates loss; and rows indicate patients. Unidentified regions in trunk and 
branch are assumed to have neutral copy number. ConsensusClusterPlus 
showed seven CNA clusters among our patients to be optimal. The figure shows 
that a trunk alteration from one patient is mutationally similar to a branch 
alteration from another, rather than to other trunk ones from different patients 
in a cohort. c, Cancer timelines of GMS-B and -D identified in this study. 

Detailed explanation is provided in Fig. 5. Significant somatic interactions 
based on Fisher’s Exact test are indicated by odds ratio (OR) estimates and two-
sided P-values on the top left panels. Interaction significance between somatic 
events in GMS-B and -D has P-values ranging from 3.16e-22–0.041 and 9.11e-25, 
respectively. Mutation rate plots show the median ±2× standard error of fitted 
data as dashed lines and error bands, respectively. d, Relative ordering model 
(PhylogicNDT LeagueModel) results for a cohort of 66 samples. The samples 
can be analysed if they have somatic events of interest prevalent greater than 
5% of the sample size and have informative clonal status available for each event 
(16 events). Probability distributions show the uncertainty of timing for 
specific events in the cohort. e, Molecular timing distribution of copy number 
gains and loss of heterozygosity (LOH) between Africans and Europeans. Pie 
charts depict the distribution of the inferred mutation time for a given copy 
number alteration. Orange denotes early clonal gains/LOH, with a gradient to 
green for late gains/LOH. The size of each chart is proportional to the 
recurrence of this event across different patients. Most of the gains and LOH 
are considered early clonal based on MutationTimeR results. Whole-genome 
duplication is more frequent in Africans (63%) than in Europeans (57%).
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D � The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement 

D � A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly 

D � The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section. 

D � A description of all covariates tested 

D � A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons 

D � A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) 

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable. 

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings 

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes 

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated 

Our web collection on statistics for biologists contains articles on many of the paints above. 
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Data collection       

Data analysis The core computational pipelines used in this study for read alignment, quality control and variant calling are available to the public at https:// 
github.com/Sydney-lnformatics-Hub/Bioinformatics. Analysis code for chromothripsis and chromoplexy is available through another GitHub 
page, https://github.com/tgongl/Code_HRPCa. Individual software components are as follows: fastp v.0.20.0; bwa v0.7.15; bwakit v. 0.7.17; 
SAMbamba v.0.7.1; SAM blaster v. 0.1.24; SAMtools v. 1.10; GATK v 4.1.2; ShatterSeek v0.4; Chain Finder vl.0.1; fastSTRUCTURE vl.0; 
Pophelper v2.2.7; ActiveDriverWGS vl.0.1; GISTIC v2.0.23; CNVkit v0.9.6; Manta vl.6.0; GRIDSS v2.8.3; fish Hook v0.l; Bionano Access 1.5.2; 
ConsensusClusterPlus vl.50.0; ActivePathways vl.0.2; TitanCNA snakemake workflow vl.17.1. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our QQli.gt_ 
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Data and metadata were collected from International Cancer Genome Consortium (ICGC), using ICGC Data Portal search (https://
dcc.icgc.org/). Data repositories specific to CPGEA were also used for data collection (http://www.cpgea.com).

DNA sequence data have been deposited in the European Genome-Phenome Archive (EGA; https://ega-archive.org) under overarching accession 
EGAS00001006425 and including the Southern African Prostate Cancer Study (SAPCS) Dataset EGAD00001009067 and Garvan/St Vincent’s Prostate 
Cancer Database EGAD00001009066. Academic researchers meeting the Data Access Policy criteria, may apply for data access via the respective Data 
Access Committees. CPGEA data are available via http://www.cpgea.com. PCAWG data are available at ICGC Data 
Portal (https://dcc.icgc.org/releases/PCAWG). 
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Sample size 

Sample sizes were determined in order to obtain nearly 200 tumour-blood pairs, based on biospecimen availability, with a focus on samples 
of underrepresented populations. All primary tumours and matched-blood tissue from 190 specimens were used to generate sequencing 
data in this study. We considered this sample size would be sufficient because our significant comparison of tumour genome profiling 
between Europeans (n=9) and Africans (n=6) has been previously published in a peer-reviewed journal. For comparisons, 93 CPGEA donors 
were included due to high-risk prostate cancer with most treatment-naive and 628 PCAWG donors were chosen based on different primary 
ancestries. Additional 256 prostate cancer patients from PCAWG were compared with most treatment-naive.

Data exclusions After quality assurance, data from 8 tumour-blood pairs were excluded as unusable. Reasons for data exclusion included evidence of cross­
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Human research participants 
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Population characteristics 

Recruitment 

Patient-by-patient clinical data are provided in Supplementary Table 1. Demographically, the cohort included 53 Australians, 
7 Brazilians and 123 Africans, with ages ranging from 45-99 years old (median 65.5 yo). Having performed genetic ancestry 
analysis, the cohort consisted of 113 Africans, 61 Europeans and 9 Admixed mostly between African and European. 
Preoperative PSA levels ranged from 3.5 to 4,84� ng/ml (median 22.9 ng/ml). ISUP Grade Groups were distributed as follows: 
0-2: 29 (16.6%); 3: 11 (6.3%); 4: 52 (29.7%); and 5: 83 (47.4%). All patients are male.

After obtained the consent of patients, 183 patients from Australia (n=53), Brazil (n=7) and South Africa (n=123) and 
presenting mostly with clinicopathologically confirmed prostate cancer had their tumour and blood samples collected. All 
except one Australian patient (PID 15178) treated with one-month-long Ozurdex therapy were treatment na'i've at time of 
sampling. Three patients were unconfirmed for the cancer and confirmed for benign prostate hyperplasia (BPH). All men 
from the Southern African Prostate Cancer Study (SAPCS) were recruited at the time of diagnosis, and therefore tumour 
tissue was derived from biopsy core, while age and PSA levels were recorded at the time of diagnosis. Australian and Brazilian 
subjects were recruited at the time of radical prostatectomy. Additional selection criteria included: availability of fresh-frozen 
tissue and matched blood, self-reported ethnicity and country of origin, as well as availability of clinical and pathological data. 

contamination and duplication. Hypermutated tumours (30 mutations/Mb) were removed in mutational recurrence analysis of small 
mutations and cancer evolution analysis , following ActiveDriverWGS and PhyloWGS software user manuals.

The accuracy of SV breakpoint inference was assessed by applying two different algorithms and selecting only calls detected by both. 
Integrative clustering analysis was re-assessed using independent clustering of each dataset, with subsequent results mostly recapitulating 
the subtypes found by the integrative analysis.
N/A - This exploratory study of genome profiling tumours in underrepresented populations did not contain a randomisation step due to 
biospecimen scarcity. 

N/A - This exploratory study within underrepresented populations did not contain a blinded data collection due to the focus on those populations in this 
study. Sequencing and early steps in data analysis were partially blinded using a pool of all samples of different ancestries collected. 

Results in this study would not represent all underrepresented populations in Africa and South America as only South 
Africa and Brazil were studied.
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