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Prostate cancer is characterized by considerable geo-ethnic disparity. African

ancestry is asignificant risk factor, with mortality rates across sub-Saharan Africa of
2.7-fold higher than global averages'. The contributing genetic and non-genetic
factors, and associated mutational processes, are unknown??. Here, through
whole-genome sequencing of treatment-naive prostate cancer samples from 183
ancestrally (African versus European) and globally distinct patients, we generate a
large cancer genomics resource for sub-Saharan Africa, identifying around 2 million
somatic variants. Significant African-ancestry-specific findings include an elevated
tumour mutational burden, increased percentage of genome alteration, a greater
number of predicted damaging mutations and a higher total of mutational signatures,
and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBPI. Examining all
somatic mutational types, we describe amolecular taxonomy for prostate cancer
differentiated by ancestry and defined as global mutational subtypes (GMS). By
further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and
GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally
quiet) is universal (all ethnicities) and the African-European-restricted subtype
GMS-C (copy-number losses) predicts poor clinical outcomes. Inaddition to the
clinical benefit of including individuals of African ancestry, our GMS subtypes reveal
different evolutionary trajectories and mutational processes suggesting that both
common genetic and environmental factors contribute to the disparity between
ethnicities. Analogous to gene-environmentinteraction—defined here as a different
effect of an environmental surrounding in people with different ancestries or vice
versa—we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic
mutational processes in cancers, promoting global inclusion in landmark studies.

Prostate cancer is acommon heterogeneous disease that is respon-
sible annually for more than 1,400,000 new diagnoses and 375,000
male-associated deaths worldwide'. Characterized by a highly variable
natural history and diverse clinical behaviours*, it is not surprising
that genome profiling has revealed extensive intra- and intertumour
heterogeneity and complexity®¢. Theidentification of oncogenic sub-
types’ and actionable drug targets® are moving prostate cancer manage-
mentastep closer to the promise of precision medicine” 2. Although
high-income European ancestral countries are well along the road to

incorporating cancer genomicsin all aspects of cancer care®, the rest
oftheworld lags behind, with a notable absence in sub-Saharan Africa™.
Prostate cancer is no different, with a single large-scale study out of
China;in 2018, we provided asnapshot for sub-Saharan Africa, report-
ing anelevated mutational density inamere six cases®. With mortality
rates of greater than double compared with high-income countries and
quadrupled for greater Asia, in sub-Saharan Africa, prostate cancer is
thetop-ranked male-associated cancer both by diagnosis and deaths,
including southern Africa with age-standardized rates of 65.9 and 22
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Fig.1|Mutational density in prostate tumours of individuals with different
ancestries. a, Thedistribution of somatic aberrations (event number or
number of base pairs) for 7 mutational types across 183 tumour-blood WGS
pairsrepresenting n=61European, n=113 Africanand n =9 admixed
individuals. The box plots show the median (centre line), the 25th and 75th
percentiles (box limits), and +1.5x the interquartile range (whiskers).

per100,000, respectively'. Through the Southern African Prostate Can-
cer Study (SAPCS), we report a 2.1-fold increase in aggressive disease
(grades 4-5) and 4.8-fold increase in prostate-specific antigen levels
at diagnosis compared with African Americans'®.

Here we describe, to our knowledge, the largest cancer and prostate
cancer genomics data for sub-Saharan Africa, including 123 South Afri-
canmen. Controlling for study artefacts, an additional 53 Australianand
7 Brazilian individuals were passed simultaneously through the same
high-depth whole-genome sequencing (WGS), mutation-calling and
analytical framework. Focusing on treatment-naive cases (100% South
Africans, 98% Australians and two confirmed Brazilians) and aggressive
tumours (grades 4-5 for 72.2% South Africans, 86.8% Australians and
85.7% Brazilians; Extended DataFig.1a) at biopsy (100% South Africans)
or surgery (100% Australians, 62.5% Brazilians) and patient-matched
blood achieving coverages of 88.69 +14.78 and 44.34 + 8.11, respec-
tively (median + s.d.; Supplementary Table 1), we uniformly generated,
called and assessed about 2 million somatic variants. Through ancestral
classification (genetic ancestry over self-identified ethnicity), we show
agreater number of acquired genetic alterations within African indi-
viduals while identifying both globally relevant and African-specific
genomic subtypes. Combining our somatic variant dataset with that
published for ethnically defined European’®”*® and Chinese prostate
cancer genomes, we reveal a prostate cancer taxonomy with differ-
ent clinical outcomes. The inclusion of 2,658 cancer genomes from
the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)"
expanded our global mutational subtyping between cancer types.
Using known clock-like mutational processes in each subtype, we
inferred mutation timing of oncogenic drivers in broad periods of

b, Thedifferent types of mutational burden observed in this cohort. The
samples were percentile-ranked and then ordered on the basis of the sum of
percentiles across the mutational types observed in each ancestral group
(left). Right, Spearman correlation is shown between mutational types, with
thedotsize representing the magnitude of correlation and the background
colour giving the statistical significance of FDR values.

tumour evolution and calculated the mutation rates for each subtype
thathad adistinctive tumour evolution pattern. Combined, these analy-
ses enable us to demonstrate how globalinclusionin cancer genomics
can unravel unseen heterogeneity in prostate cancer in terms of its
genomic and clinical behaviours.

Genetic ancestry

Genetic ancestries were estimated for the 183 patient donors using
a joint dataset in a unified analysis aggregated from a collection
of geographically matched African (n=64) and European (n=4)
deep-coverage published and unpublished reference genomes'. Ances-
tries were assigned using 7,472,833 markers as African (n = 113, all South
Africans), with greater than 98% contribution; European (n = 61; 53
Australians, 5 South Africans and 3 Brazilians), allowing for up to 10%
Asian contribution (with asingle outlier of26%); and African-European
admixed (n=9; 5 South Africans and 4 Brazilians), with as little as 4%
African or European contribution (Extended Data Fig. 1b).

Total somatic mutations

In 183 prostate tumours, we identified 1,067,885 single-nucleotide
variants (SNVs), 11,259 dinucleotides, 307,263 small insertions and
deletions (indels, <50 bp), 419,920 copy-number alterations (CNAs)
and 22,919 structural variants (SVs), with each mutational type elevated
intumours from Africanindividuals (Fig.1a). A median of 37.54% + 5.51
of SNVs were C-to-T mutations, and the transition and transversion
ratio was 1.282 cohort-wise. Tumours from African individuals had
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Fig.2|Taxonomy and differencesindriver mutationsin prostate cancer by
ancestry. a, Theselected 35driver genes classified as (1) the most altered in this
study (>10 patients), irrespective of ancestry (green); (2) DNA-damage repair
(DDR) genesthatare known to be associated with African ancestry (orange);

(3) other ancestry-associated genes studied in prostate cancer (assoc., purple).
The OR, 95% confidenceinterval and two-sided Pvalue (<0.05) were calculated
using Fisher exact tests for countdata andincluding 10 African-specific (OR=0)
and 3 European-specific (OR = infinity) genes. Significance was observed for
TMPRSS2(P=0.0006), ERG (P=0.003), SETBPI (P=0.012), DDX1IL1(P=0.0001),
STK19(P=0.004), NCOA2(P=3.14 x107°), PCATI (P=0.012), PAPSS2 (P=0.042)
and MTCH2 (P=0.014).b, The mutational frequency of the altered driver genes
between Africans and Europeans by mutational type (CDS, non-coding, SVand
CNA). ¢, Anintegrative clustering analysis reveals four distinct molecular
subtypes of prostate cancer. The molecular subtypes are illustrated by small
somatic mutations (coding regions and non-coding elements), somatic CNAs
and somatic SVs. The proportionand association between theiCluster
membership and patientancestry areillustrated in d. Additional unsupervised
consensus clustering on each datatype was performed and mostly
recapitulated the subtypes by integrative analysis. d, Total somatic mutations
across four molecular subtypesin this study. The dashed linesindicate the
median values of mutational densities across the four subtypes. For each
subtype, patientsare ordered on the basis of their ancestry.

a higher rate of small mutations (SNVs and indels), with a median of
1.197 mutations per Mb (range 0.031-170.445) compared with those
of Europeans (1.061 mutations per Mb; P=0.013, two-sample t-test;
exclusionof hypermutated tumoursat>30 mutations per Mb, P= 0.028).
The percentage of genome alteration (PGA) was similarly greater in Afri-
cans (7.26% versus 2.82%, P= 0.021). Correlation tests of ancestry and
total somatic mutations also supported the findings (false-discovery
rate (FDR) = 0.009 and FDR = 0.032 for SNVs and PGA, respectively;
Extended DataFig.1d). The top six highest estimates of SV breakpoints
per sample were observed among African patients (928-2,284 break-
points). No overall differences between the ancestries were observed
for chromothripsis (range, 52-55%) and chromoplexy (range, 33-38%),
whereas tumours from African individuals demonstrated a trend

554 | Nature | Vol 609 | 15 September 2022

towards a higher number of interchromosomal chromoplexic chains
(1-6 versus1-2). Moreover, the magnitude of all types of mutations was
strongly correlated with one another (Fig. 1b). Thus, the more muta-
tions a prostate tumour has of any given type, the more mutations it
is likely to have of all types.

Candidate oncogenicdrivers

Prostate cancer is known to have along tail of oncogenic drivers'®across
the spectrum of different mutational types® (Extended Data Fig. 2).
Protein-coding mutations, including those that are probably and pos-
sibly damaging, were significantly greater in each African individual
(PolyPhen-2,14 versus 11 mutationsina Europeanindividual; P= 0.022,
two-sample t-test; exclusion of hypermutated tumours, P=0.039).
We identified 482 coding and 167 non-coding drivers defined by the
PCAWG consortium? (Extended Data Fig. 3a). A median of two (first
quartiletothird quartile, 2-4) coding drivers was observed in this study
(Supplementary Table 2), with one (0-2) appearing to be specific to
prostate cancer’”®”*8, The coding driver genes significantly mutated
among 183 patients were FOXA1, PTEN, SPOPand TP53 (10-25 patients,
FDR =1.34 x107%-9.44 x 10°%), whereas non-coding driver elements
included the FOXA13’ UTR, SNORD3B-2 small RNA and aregulatory
micro RNA promoter at chromosome 22: 38381983 (FDR =9.12 x 1072,
FDR =6.16 x10° and FDR = 0.070, respectively). Recurrent CNAs of all
the patientsincluded 137 gains and 129 losses (GISTIC2, FDR < 0.10; Sup-
plementary Table 3) with some spanning driver genes (Extended Data
Fig.3b),suchas DNAH2 (FDR =2.18 x1077), FAM66C (FDR =1.30 x10°°),
FOXPI (FDR = 0.005), FXR2(FDR =2.18 x107), PTEN (FDR = 9.61 x 107™),
SHBG (FDR=2.18 x107) and TP53 (FDR =2.18 x107).

Moreover, a fraction of somatic SVs (2 breakpoints each; 1,328
breakpoints in total) overlapped with 156 driver genes reported as
altered by significantly recurrent breakpoints in the PCAWG study?,
while, using a generalized linear model with adjustable background
covariates, we identified an additional 100 genes to be significantly
affected by SV breakpoints (FDR =1.3 x 10"°-0.097; Extended Data
Fig.3cand Supplementary Table 4). For more than 20% of tumours, SV
breakpoints coexisted with other mutational types within DNAH2, ERG,
FAM66C, FXR2, PTEN, SHBG and TP53. Using optical genome mapping—
an alternative non-sequencing method to examine for chromosomal
abnormalities”—we validated recurrent breakpoints in HLA regions
(DQAIand DQBI1 genes), identifying translocations between the 3 Mb
HLA complex at chromosome 6 and its corresponding HLA alternative
contigs (Extended Data Fig. 3d).

Differences in oncogenicdriver alterations between ancestries were
observed (Fig.2a,b). Specifically, tumours from Africanindividuals were
more likely to have CNAs and mutations in SETBPI (frequency = 0.33,
oddsratio (OR) = 0.357, P=0.012), DDX11L1 (frequency = 0.48, OR = 0.24,
P=0.0001), STK19 (frequency = 0.25,0R = 0.215, P= 0.004) and NCOA2
(frequency =0.51, 0R=0.172, P=3.14 x 107%), along with SVs in PCAT1
(frequency = 0.13, OR = 0.11, P= 0.012). By contrast, SVs for TMPRSS2
(frequency =0.38,0R =3.639,P=0.0006) and ERG (frequency = 0.34,
OR=3.159,P=0.003) were more notable among Europeans. Although
several DNA-damage repair genes and other genes previously associated
with African ancestry were not significantly altered between Africans
and Europeans in this study, 10 were solely altered in Africans with
most in the coding sequence (frequency = 0.009-0.035). All of these
data support the inclusion of a larger number of under-represented
populationsinclinical enrolment for the benefit of precision oncology
studies®.

Integrative clustering analysis

Molecular subtyping of tumours is a standard approach in cancer
genomics to stratify patients into different degrees of somatic altera-
tions in a homogeneous population, with an implication for clinical
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a, Analysis of the long tail of driver genes using different combinations of
mutational types (CDS, coding driver data; NC, non-coding driver data; SV,
significantly recurrent breakpoint data; and CN, gene-level CN data), resulting
intheidentification of 124 preferentially mutated genes among the subtypes.
Ordered by mutational frequency, 100 (80.6%) have been reported as
significantly recurrent mutations/SV breakpoints in the PCAWG Consortium?®,
and 24 (19.4%) are significantly mutated in this study (marked by asterisks).
UsingiClusterplus, unsupervised hierarchical clustering of all mutational
typesidentified four prostate cancer subtypes (A-D; Fig. 2c), presented for 183
patients (rows) and 124 mutated genes (columns), with each subgroup ordered
by ancestry. Ancestrally diverse subtypes A and C are mutationally quietand

use® ™. Identifying five out of the seven TCGA oncogenic driver-defined
subtypes in our study’, European patients were 25% more likely than
African patients to be classified (Supplementary Table 5 and Extended
Data Fig. 4a-d). Whereas TMPRSS2-ERG fusions (predominantly 3 Mb
deletions) were significantly elevated in our tumours from European
individuals compared with from Africanindividuals (37.7% versus 13.3%;
OR=3.919, P=0.0004), albeit not significantly, African patients were
1.3-fold more likely to present with SPOP-coding mutations (MATH
and BTB domains).

For further molecular classification, we performed iCluster analysis
on all mutational types (small mutations, CNAs and SVs) identifying
four subtypes—Ato D (Fig.2c,d and Supplementary Table 6). We found
that subtype Ais mutationally quiet (1.01 mutations per Mb, 0.50 break-
points per10 Mb, 2% PGA); by contrast, subtype D showed the greatest
mutational density (1.91 mutations per Mb, 1.08 breakpoints per 10 Mb,
31%PGA) with amixture of CN gains and losses, whereas subtypes B and
Cwere marked by substantial CN gains or losses, respectively (Fig. 3a).
The quiet subtype seems to be commonin prostate cancer studies’?,
while the number of pan-cancer consensus drivers? increased from
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aremarked by CN loss, respectively. African-specific/predominant subtypes
Band D are marked by CN gains and are mutationally noisy, respectively. Three
genesonchromosome X, KDM6A, ATRX and ZMYM3, are considered to be
significant due to the abundance of homozygous (homo.) loss presentin
subtype C. Chr.,chromosome; hemi., hemizygous; ISUP, International Society
of Urologic Pathologists; NA, not applicable. b, Kaplan-Meier plot of
biochemical relapse (BCR)-free survival proportion of European patients for
subtype A (n=161) versus C (n=19). ¢, Kaplan-Meier plot of the cancer survival
probability of European patients for subtype A (n = 82) versus C (n=17). For
bandc, the probability estimates, 95% confidence intervals and two-sided P
values (log-rank test) areindicated.

subtype A (median, 2 drivers) to B (median, 3 drivers), C (median,
3drivers) and D (median, 4 drivers).

Using all of the mutational types in the analysis, 124 genes were
significantly mutated across the four subtypes (FDR = 3.742 x 10™*-
0.067; Fig. 3a), occurring in 31 to 183 patients (frequency, 0.17-1).
Among them, 100 genes were reported as oncogenic drivers in the
PCAWG?, and FOXAI and SPOP genes acting as the TCGA subtypes
were also replicated in this analysis, while the 24 new mutated genes
among the subtypes were predominantly affected by SV breakpoints
and CNAs. The median number of mutated genes ranged from 28
(range 3-105) for subtype A to 82, 98 and 93 for subtypes B, C and
D, respectively (42-109, 72-112, 49-107). Although different muta-
tional types tended to co-occur within genes and/or patients (Sup-
plementary Table 7), small mutations (coding and non-coding) were
noticeably observed in the quiet subtype A, supporting acquisition
early in tumorigenesis®. Our preferentially mutated genes within
tumour subtypes resemble the long tail of prostate cancer drivers',
with some highly impacting many tumours, but most only affecting
afew tumours.
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Hochberg correction. The colours of each dot represent the correlation
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large-sized mutational signatures agree with the GMS. HR, homologous
recombination; PSA, prostate-specific antigen. b, Sankey diagram depicting a

The 124 preferentially mutated genes within our tumour subtypes
corresponded to 8 TCGA/ICGC cancer pathways (Supplementary Infor-
mationand Extended DataFig. 5). Whereas six showed slightly elevated
mutational frequencies in tumours from African individuals, genes
affecting epigenetic mechanisms were significantly biased towards
Europeanindividuals (OR =5.586, P=2.9 x107; Extended DataFig. 6b).
Pathway enrichment analysis supported five functional networks of the
cancer pathways, with two of theminvolved insignal transduction and
DNA checkpoint processes that five out of the eight pathways interacted
with (Extended Data Fig. 6a and Supplementary Table 8).

Global molecular subtypes

By combining molecular profiling and patient demographics, genetic
ancestry and geography, we identified a new prostate cancer taxonomy
that we define as GMS (Fig. 2d). Whereas all European patients from
Australia (n = 53) and Brazil (n = 3) were limited to GMS-A and GMS-C,

556 | Nature | Vol 609 | 15 September 2022

c 0o e @6 00 o

ROBO2

e
~Q o
IOBS L
3% £ R R Proposed aetiology:
¢ @ ¢ * Deamination of 5-methylcytosine
« ¢ ® + ¢ Defective HR DNA repair, BRCA1/2 mutation
o - @e
® ® @ ¢ @ Defective DNA mismatch repair
® o0 o o
e 00 -0
¢ o e o « POLDT mutation and mismatch repair deficiency
e « » « « Defective DNA mismatch repair
© © @ ° » Defective base-excision repair, NTHL1 mutation
* ® e o - Defective base-excision repair, MUTYH mutation
0@ o
@ @ e - - Tobacco smoking and other
e @0
@0 0
« o « o « Defective DNA mismatch repair
® o ® o o Possibly APOBEC activity
@0
elo@le
@ - ° Replication slippage, defective DNA mismatch repair
o : * * Replication slippage, defective DNA mismatch repair
Y B0
< o o ® - DSB repair by non-homologous end joining
« o - » DSB repair by non-homologous end joining
c 0 0@
.00 @0
000 - b _
°
o 0.25
o
w
® 0.50 Other SV features
GMS-A Other SV
* 0.75
. =
J0@- o E 0.5
c.@o0 - 3 GMS-D Other CN features
ce@eco °MO Other CN
s 0@ o Ke]
°o@9® 0 T
s-@-s 205 Gain
c-@00 § GMS-B
CN1 Amp
CN4 Gain LOH
Tandem Dupl
GMS-C SV5 Amp LOH
Trans plus
sv2 3- and 4-jump

Templated ins
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tumours from African individuals were dispersed across all four sub-
types. We found that GMS-B and GMS-D predominate in African indi-
viduals, with GMS-B including a single patient of admixed ancestry
(92% African) and GMS-D including a single admixed (63% African)
and asingle European ancestral patient. The latter individual was one
of only five Europeans in our study who was born and raised in Africa.
Compared with the other patients of European ancestry, this patient
showed the highest mutational density across all types. Alternative
consensus clustering of individual mutational types mostly recapitu-
lated the subtypes by integrative analysis (Supplementary Table 6).
By further including Chinese Asian high-risk prostate cancer data™
(n=93; Extended Data Fig. 7a), we found that GMS-A is ancestrally
and geographically universal, whereas GMS-D remained African spe-
cific, with a new African-Asian GMS-E emerging. GMS-B remained
African specific and GMS-C remained European-African specific.
Although all of the patients were treatment naive at the time of sam-
pling, our European cohort was recruited with extensive follow-up
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calculated using Fisher exact tests. Co-occurrence or mutually exclusive event
isconsidered when OR>20or OR< 0.5, respectively. Theinteraction
significance between pairs in GMS-A and GMS-C has Pvalues ranging from
2.04x107°t0 0.047 and from 1.64 x 10 to 0.045, respectively. Median
mutation rates of CpG-to-TpG burden per Gb are calculated using the
age-adjusted branch length of cancer clones and maximally branching
subclones. The mutationrate plotsinaand b show the median + 2 s.e. of fitted
dataasdashedlines and error bands, respectively. ¢, Schematic of aworld map
with the distribution of GMS-A-D among ancestrally/globally diverse
populations. The gene-environmentinteraction of GMSis shown on theright.
The contingency table of the number of patients with different ancestries
(germline variants) stratified by subtypes and associated with certain
geography or environmental exposure (two-sided P= 0.0005, Fisher exact test
with2,000 bootstraps).
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data (median £s.d., 122.5 + 44.4 months). Interestingly, biochemical
relapse (Fig. 3b) and death-free survival probability (Fig. 3c) explains
better clinical outcomes for patients presenting with the universal
over the European-African GMS (GMS-A versus GMS-C, log-rank test,
P=0.008 and P=0.041, respectively).

Our GMS taxonomy could leverage pan-cancer studies in the fol-
lowing ways. First, a sampling strategy of patients from the PCAWG
project was rather homogeneous in each cancer, therefore inhibiting
thediscovery of globally restricted subtypes®” (Extended DataFig. 7b).
Second, genetic ancestral® and geographical data of patients should
be included in molecular profiling of cancers. Finally, the inclusion
of ethnic disparity in cancer studies would need to properly address
geneticadmixtureinasampling cohort, withatoo low ancestral cut-off
appearingto create highly admixed, but similar, ancestry among indi-
viduals, therefore discouraging ethnically diverse samples.

New and known mutational signatures

Approximating the contribution of mutational signatures to indi-
vidual cancer genomes facilitates the association of the signatures
with exogenous or endogenous mutagen exposures that contribute
to the development of human cancer?®. Here we generated a list of CN
and SV signatures and their contributions to prostate cancer using
non-negative matrix factorization® (Extended Data Fig. 8a,b). Com-
bined with aknown catalogue of small mutational signatures, including
single-base substitutions (SBSs), doublet base substitutions (DBSs) and
indels (IDs), we observed not only a substantial variationinthe number
of mutational features but also over-representation in tumours from
Africanindividuals (Extended Data Fig. 8c). Overall, 96 SBS, 78 DBS and
831D features examined had significantly higher totalsin African indi-
viduals (SBSs, 3,399 versus 2,840 in Europeans, P= 0.014; DBSs, 42 ver-
sus32,P=0.006;1Ds, 374 versus 360, P= 0.016, two-sample t-tests). We
generated six de novo signatures for each small signature type (median
cosine similarity, 0.986,0.856 and 0.976, respectively), corresponding
to12,7and 8 global signatures, respectively (median cosine similarity,
0.966, 0.850 and 0.946, respectively; Extended Data Fig. 9), with 26
likely to be of biological origin (SBS47, possible sequencing artefacts).
DBSsaccounted forabout 1% of the prevalence of SBSs. The CN features
were also greater in Africans (CN, 3,971 versus 2,721, P=1.92 x1075;SV,
94 versus 88, P=0.100). The SV features defined in arecent pan-cancer
study? were each mutually exclusive and included simple SVs (split
according to size, replication timing and occurrence at fragile sites),
templated insertions (split by size), local n-jumps and local-distant
clusters. The factorization of asample-by-mutation spectrum matrix
identified six CN signatures (CN1-6) and eight SV signatures (SV1-8),
as well as their contributions to each tumour.

We found that the full spectrum of mutational signatures (SBSs,
DBSs, IDs, CNs and SVs) supports our newly described GMS. Enrich-
ment records of the top signatures in each tumour were significantly
associated type by type with the taxonomic subtypes, except for DBSs
(P=5.1x107-0.017, one-way analysis of variance (ANOVA) or Fisher
exacttest; Extended DataFig.8d). Regardless of the signature type, 13
outof 40 mutational signatures showed either inverse or proportion-
ate correlations with our GMS (FDR =4.97 x 10™-0.095, Spearman
correlation; Fig. 4a). Duplication signatures, including CN1 (tandem
duplication), CN4 (whole-genome duplication), SV2 (insertion) and SV5
(large duplication), were biased to the most mutationally noisy subtype
(Extended DataFig. 8a, b), with CN4 and SV5 frequent in Africans (cor-
relation coefficient =-0.24, FDR = 0.005-0.006). Figure 4b shows
that the duplication signatures have at least a1.5x greater proportion
of genomic aberrations in GMS-B, GMS-C and GMS-D compared with
the universal GMS-A. Furthermore, the African-specific subtype GMS-B
consisted of several CN4 and SV5 genomic aberrations composed
predominantly of CN amplification (>5 copies and mainly >100 kb in
length) and tandem duplication (<5 Mbinsize occurred duringearly to
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late timing of DNA replication), respectively. Moreover, the mutational
density of 30 out of 32 genes that are highly mutated in our GMS and
reported in prostate cancer was significantly correlated with different
somatic signatures, withmost observedin CN2, CN6 and SV6 signatures
that were mainly caused by deleted genomes (FDR =1.61 x 107-0.082).

Evolution of GMS

Timeline estimates of individual somatic events reflect evolutionary
periods that differ from one patient to another; for example, acluster
of identical alterations derived from clones in one patient presented
assubclonal eventsinanother patient (Extended Data Fig.10a,b). How-
ever, they providein partthe order of driver mutations and CNAs pre-
sentineach sample®. The reconstruction of aggregating single-sample
orderingof alldrivers and CNAs reveals different evolutionary patterns
that are unique to each GMS subtype (Fig. 5a,b and Extended Data
Fig.10c). We drew approximate cancer timelines for each GMS subtype
portraying the ordering of driver genes, recurrent CNAs and signature
activities chronologically interleaved with whole-genome duplica-
tion and the emergence of the most recent common ancestor leading
up to diagnosis. Basically, significantly co-occurring interactions of
the driversand CNAs are shown (OR =2.6-97.8, P=2.04 x 107°-0.01),
supporting their clonal and subclonal ordering states within the recon-
structed timelines. SBS and indel signatures that are abundantineach
GMS subtype display changes in their mutational spectrum between
the clonal and subclonal state, suggesting a difference in mutation
rates. The plot of clock-like CpG-to-TpG mutations and patient-age
adjustment shows a median mutation rate of as low as 0.968 per year
for the universal GMS, but a highest rate of 1.315 per year observed in
the African-individual-specific GMS-D. GMS-B and GMS-C have rates
of1.144 and 1.092 per year, respectively. Assessing the relative timing
of somatic driver events, TP53 mutations and accompanying 17p loss
areof particularinterest, occurring early in GMS-C progression and at
alater stage in GMS-A. League model relative timing of driver events
(Supplementary Information) is consistent withafraction of probability
distribution of the TP53 alterations at the early stage, but most are at
anintermediate state of evolution (Extended Data Fig.10d). This basic
knowledge of in vivo tumour development suggests that some tumours
could have a shorter latency period before reaching their malignant
potential, so known genomic heterogeneity of their primary clonesis
paramount to pave the way for early detection.

Discussion

Our study represents one of the largest whole-genome prostate cancer
genome resources for sub-Saharan Africa (asummary is provided in
Supplementary Table 12). Acknowledging the lack of information on
clinical staging for the South African patients (recruited at diagnosis),
we describe aprostate cancer molecular taxonomy, identifying ances-
trally distinctive GMS. Compared to previous taxonomy using signifi-
cantly mutated genes in prostate cancer’®, we found that GMS subtypes
compliment known subtypes such as SPOP and FOXAI mutations, in
contrast to under-represented subtypes in this study, including gene
fusions (Extended Data Fig. 4a). We also found that GMS subtypes cor-
relate with mutational signatures reported in the known catalogue of
somatic mutations in cancer, in which each tumour is represented by
different degrees of exogenous and endogenous mutagen exposures>.
Our study used the analysis of evolution across 38 cancer types by the
PCAWG consortium®, recognizing that each GMS subtype representsa
unique evolutionary history with drivers and mutational signatures var-
ied between cancer stages and linking somatic evolutionto a patient’s
demographics. Thus, some representrare or geographically restricted
signatures that have not been observed in pan-cancer studies®?,

We considered two extreme cases, universal GMS-A versus African-
specific GMS-B and GMS-D, that would have been influenced by two



different mutational processes for conceptual simplicity (Fig. 5c). One
factoris predisposing genetics® ?° contributing to endogenous muta-
tional processes, especially those with significant germline-somatic
interactions, such as the TMPRSS2-ERG fusion that is less frequently
observed in men of African and Asian ancestry™*°, germline BRCA2
mutations and the somatic SPOP driver co-occurred with their respec-
tive counterparts®-*, Another factor is modifiable environmental
attributes that are specific to certain circumstances or geographical
regionsthat, to date, have notbeen observed in prostate cancer. They
actas mutagenic forces leading to the positive selection of point muta-
tions throughout lifein healthy tissues®*** and cancers®, forming fluid
boundaries between normal ageing and cancer tissues. According to
Ottman®, the above-mentioned model of gene-environmentinterac-
tionis observed when thereis a different effect of agenotype ondisease
inindividuals with different environmental exposures or, alternatively,
adifferenteffect of an environmental exposure on diseaseinindividuals
with different genotypes. Other GMS subtypes would be acombination
ofthe two processes, warranting a need for larger populations captur-
ing ancestral versus ethnic and geographical diversity. As such, the
study directly accounts for the large spatiogenomic heterogeneity of
prostate cancer and its associated evolutionary history in understand-
ing the disease aetiology.

Our study suggests that larger genomic datasets of geo-ethnically
diverse and ancestrally defined populations in a unified analysis will
continue to identify rare and geographically restricted subtypes in
prostate cancer and potentially other cancers. We demonstrate that
ancestral and geographical attributes of patients could facilitate those
studies on cancer population genomics, an alternative to cancer per-
sonalized genomics, for a better scientific understanding of nature
versus nurture.
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Methods

Patient cohorts and WGS

Our study included 183 treatment-naive patients with prostate cancer
who were recruited under informed consent and appropriate ethics
approval (Supplementary Information 2) from Australia (n = 53), Bra-
zil (n=7) and South Africa (n =123). While matched for pathological
grading, as previously reported, prostate-specific antigen levels are
notably elevated within our African patients' and we cannot exclude
onthebasis of potential metastasis (as dataon metastases in this cohort
are unavailable). DNA extracted from fresh tissue and matched blood
underwent 2 x 150 bp sequencing onthe lllumina NovaSeq instrument
(Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical
Research).

WGS processing and variant calling

Eachlane of raw sequencing reads was aligned against human reference
hg38 + alternative contigs using bwa (v.0.7.15)*. Lane-level BAM files
fromthesamelibrary were merged, and duplicate reads were marked.
The Genome Analysis Toolkit (GATK, v.4.1.2.0) was used for base qual-
ity recalibration®. Contaminated and duplicate samples (n = 8) were
removed. We implemented three main pipelines for the discovery of
germline and somatic variants, with the latter including small (SNV
and indel) to large genomic variation (CNAs and SVs). The complete
pipelines and tools used are available from the Sydney Informatics
Hub (SIH), Core Research Facilities, University of Sydney (see the ‘Code
availability’ section). Scalable bioinformatic workflows are described
in Supplementary Information 4.

Genetic ancestry was estimated using fastSTRUCTURE (v.1.0)*,
Bayesianinference for the best approximation of marginal likelihood
ofavery large variant dataset. Reference panels for African and Euro-
pean ancestry compared in this study were retrieved from previous
whole-genome databases”.

Analysis of chromothripsis and chromoplexy

Clustered genomic rearrangements of prostate tumours were identi-
fied using ShatterSeek (v.0.4)*°and ChainFinder (v.1.0.1)*. Our somatic
SV and somatic CNA call sets were prepared and co-analysed using
custom scripts (see the ‘Code availability’ section; Supplementary
Information 6).

Analysis of mutational recurrence

We used three approaches to detect recurrently mutated genes or
regions based on three mutational types, including small muta-
tions, SVs and CNAs (Supplementary Information 7). In brief, small
mutations were tested within a given genomic element as being sig-
nificantly more mutated than the adjacent background sequences.
The genomic elements retrieved from syn5259886, the PCAWG
Consortium?, were a group of coding sequences and ten groups of
non-coding regions. SV breakpoints were tested in a given gene for
their statistical enrichment using gamma-Poisson regression and
corrected by genomic covariates™. Focal and arm-level recurrent CNAs
were examined using GISTIC (v.2.0.23)*2. Known driver mutationsin
coding and non-coding regions published in PCAWG****** were also
recorded in our 183 tumours, and those specific to prostate cancer
genes were also included”®21718,

Integrative analysis of prostate cancer subtypes

Integrative clustering of three genomic data types for 183 patients
was performed using iClusterplus™* in R, with the following inputs:
(1) driver genes and elements; (2) somatic CN segments; and (3) sig-
nificantly recurrent SV breakpoints. We ran iClusterPlus.tune with
clustersranging from1to 9. We also performed unsupervised consensus
clustering on each of the three data types individually. Association

analysis of genomic alteration with different iCluster subtypes was

performed in detail (Supplementary Information 8). Differences in
driver mutations, recurrent breakpoints and somatic CNAs across
different iCluster subtypes were reported.

Comparison of iCluster with Asian and pan-cancer data

To compare molecular subtypes between extant human populations,
the Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA,
PRJCA001124)" was merged and processed with our integrative clus-
tering analysis across the three data types described above, with
some modifications. Moreover, we leveraged the PCAWG consor-
tium data® to define molecular subtypes across different ethnic
groupsinother cancer types using published data of somatic muta-
tions, SVand GISTIC results by gene. Four cancer types consisting of
breast, liver, ovarian and pancreatic cancers were considered due to
existing primary ancestries of African, Asian and European with at
least 70% contribution. Full details are provided in Supplementary
Information 8.4.

PCAWG?" participants with prostate cancer were retrieved to compare
with Australian data with clinical follow-up. Only those of European
ancestry greater than 90% (n =139) were analysed for the three genomic
datatypes of iCluster subtyping, as well as individual consensus clus-
tering. Clusteringresultsidentical tothelarger cohort size mentioned
above were chosen for association analyses. Differences in the bio-
chemicalrelapse and lethal prostate cancer of the participants across
the subtypes were assessed using the Kaplan-Meier plot followed by
alog-rank test for significance.

Analysis of mutational signatures

Mutational signatures (SBSs, DBSs and indels), as defined by the PCAWG
Mutational Signatures Working Group?, were fit to individual tumours
with observed signature activities using SigProfiler*¢. Non-negative
matrix factorization was implemented to detect de novo and global
signature profiles among 183 patients and their contributions. New
mutational genome rearrangement signatures (CN and SV) were also
performed using non-negative matrix factorization, with 45 CN and
44 SV features examined across 183 tumours. We followed the PCAWG
working classification and annotation scheme for genomic rearrange-
ment?. Two SV callers were used to obtain exact breakpoint coordi-
nates. Replication timing scores influencing on SV detection were set
at>75,20-75and <20 for early, mid, and late timing, respectively*. Full
details of analysis steps, parameters and relevant statistical tests are
provided in Supplementary Information 9.

Reconstruction of cancer timelines

Timing of CN gains and driver mutations (SNVs and indels) into four
epochs of cancer evolution (early clonal, unspecified clonal, late clonal
andsubclonal) was conducted using MutationTimeR*. CN gains includ-
ing2+0,2+1and2+2(1+1foradiploid genome) were considered
for a clearer boundary between epochs instead of solely information
of variant allele frequency. Confidence intervals (¢, - t,,,) for timing
estimates were calculated with 200 bootstraps. Mutation rates for
each subtype were calculated according to ref.* such that CpG-to-TpG
mutations were counted for the analysis because they were attributed
to spontaneous deamination of 5-methyl-cytosine to thymine at CpG
dinucleotides, therefore acting as amolecular clock.

League model relative ordering was performed to aggregate across
all study samples to calculate the overall ranking of driver mutations
andrecurrent CNAs. The information for the ranking was derived from
the timing of each driver mutation and that of clonal and subclonal
CN segments, as described above. A full description is provided in
Supplementary Information 10.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability

DNA-sequencing data have been deposited at the European Genome-
PhenomeArchive (EGA) underoverarchingaccessionEGAS00001006425
and including the Southern African Prostate Cancer Study (SAPCS)
Dataset (EGAD00001009067 and Garvan/St Vincent’s Prostate Cancer
Database EGAD00001009066). Academic researchers meeting the
data-access policy criteria may apply for data access through the
respective dataaccess committees. CPGEA data are available through
http://www.cpgea.com.PCAWG data are available at ICGC Data Portal
(https://dcc.icgc.org/releases/PCAWG).

Code availability

The core computational pipelines used in this study for read align-
ment, quality control and variant calling are available at GitHub (https://
github.com/Sydney-Informatics-Hub/Bioinformatics). Analysis code
for chromothripsis and chromoplexy is also available at GitHub (https://
github.com/tgongl/Code_HRPCa).
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Extended DataFig.1|Clinical cohorts and statistical metrics. a, Clinical
and pathological patient. characterization. Pairwise comparisons using
contingency tables and Fisher’s Exact test between African ancestry and
Admixed/European ancestry are highlighted in bold with two-sided P-value
<0.05 (*),<0.01 (**), or <0.001 (***). Summary statistics, including the median,
firstand third quartiles (Q1-Q3), are also present. b, STRUCTURE analysis of
bi-allelic germline variants with the logistic prior model. Model components

usedtoexplainstructureinthe plotare K=>5. All spectrumof African
contributions aresummed and assigned as African ancestry. ¢, Saturation
curve foralldriver types across 183 patients. Recurrent copy number gains and
losses were measured using GISTIC v2 (Supplementary Methods). CDS, coding
sequence; SV, structural variation. d, Spearman’s correlation between different
variables measured in this cohort. Dot sizes represent the magnitude of
correlation, with significant P-values (two-sided) <0.01.
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Extended DataFig. 3 | Discovery of prostate cancer drivers.a, The number
andtypes of PCAWG driver genes and elements studied in our cohort.

b, Recurrent copy number alterations among 183 prostate tumours identified
witha99% confidencelevel using GISTIC v2 (Supplementary Methods).

The figure shows GISTIC peaks of significant regions of recurrent amplification
(red) ordeletion (blue) supported by FDR < 0.01. ¢, Genome-wide scan for
significantly recurrent breakpointsinour study. The quantile-quantile plot
shows two-sided P-values for mutational densities across 183 prostate cancer
patients. Multiple hypothesis corrections using the false discovery rate (FDR;
Benjamini-Hochberg method) are shown in Supplementary Table 4.
Generalized linear modelling (GLM) of somatic mutation densities along the
genome with significant background mutational processes adjustedinthe
modelisalsoshown.d, Bionano Genomics optical genome mapping atthe HLA

complex. Examples of HLA translocations froma European patient (ID 12543)
and an African patient (ID UP2360) studied in this cohort are characterized by
pairs of optical maps, each carrying afusion junction with flanking fragments
aligning to one side of the two reference breakpoints. Using the recurrent HLA
breakpointsidentified in this study, the genome map of the African specimen s
found to have alow-end fusion function matched with chromosome 6 through
amanualinspectionof unfiltered consensus maps using Bionano Access v1.5.2.
Note that the HLA alternate contig fused in the European tumour is different
fromonesuggested by short-read sequencing (chr6_GL000252v2 _alt).
Thereference genome mapisaninsilico digest of the humanreference hg38
with the DLE-1enzyme. Genome map sizes are indicated on the horizontal axis,
in megabase (Mb) units. Matching fluorescent labels between sample and
reference genome map are connected by grey lines.
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Extended DataFig. 8| Known and novel mutational signaturesinprostate
cancer. a, Copy number signatures in prostate cancer across 45 CN features
ranked by mutational processes observed. The six most distinctive signatures
and theirimportant components extracted by the NMF algorithm were run
onthesamplesize of 183 genomes. Bar charts represent the estimated
proportion of each event feature assigned to each signature (rows sum to one).
b, Structural variation signatures in prostate cancer ranked by mutational
processes observed fromsmall deletion toreciprocal rearrangement. The
eight most distinctive signatures and theirimportant components extracted
from 44 features using the NMF algorithm were run on the sample size of 183
genomes. Bar chartsrepresent the estimated proportion of each event feature
assignedto eachsignature (rows sumtoone).c, Frequency of SBS, DBS, ID, CN
and SV features across 183 tumours. Colours at the bottom panel show the
following ancestral groups: i) African, red; ii) Admixed, green; and iii)

European, blue.d, Stacked barplots of multiple signature exposures for each
mutational type enriched per patientand ranked by ancestral group. In many
cases, certain mutational signatures occur more frequentina tumour than
others. The top enrichment of small- to large-size mutational signatures
mentioned is shown for each patientin Supplementary Table 9 (see
Enrichment). Copy number and structural variation signatures (CN1-6 and
SVI1-8, respectively) are the firstidentified in this study for prostate cancer, and
their top enrichment of signature mixture/exposure per patient appears to be
significantly associated with our GMS (one-way ANOVA or Fisher’s exact test,
two-sided P-values = 5.1e-07-0.017), considering either de novo or global
mutational signatures discovered in the Catalogue of Somatic Mutationsin
Cancer (COSMIC). Thissupportsarole of GMS in explaining intrinsic and
extrinsic mutational processesin cancer.
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Extended DataFig. 9| Total profiles of SBS, DBS, ID, CN and SV signatures. Methods. The plotted data are available in digital form (Supplementary
The classification of each signature type (SBS, 96 classes; DBS, 78 classes; ID, Table9).
83 classes; CN, 45 classes; and SV, 44 classes) is described in Supplementary
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10|Stages of prostate tumour development. a, Clonal
architectureand its frequency in prostate cancer between Africans and
Europeans. Tumoursare divided into three groups: monoclonal, linear and
branching polyclonal. The number of small somatic mutations (SSM) and CNAs
as percentage of genome alteration (PGA) is provided as medianand rangein
bracket. Cancer cell fraction (CCF) in each clone and/or subcloneisshownina
circular node. Tumours that show characteristics consistent with being
polytumours or with multiple independent primary tumors are excluded to
remain conservative. b, Unbiased hierarchical clustering of CNAs between
clonal (trunk) and subclonal (branch) mutations. Trunk mutations encompass
those that occur between the root node (normal) and its only child node, while
allothersare classified to have occurred in branch. Red indicates gain; blue
indicatesloss; and rows indicate patients. Unidentified regions in trunk and
branchare assumed to have neutral copy number. ConsensusClusterPlus
showed seven CNA clusters among our patients to be optimal. The figure shows
thatatrunkalteration from one patientis mutationally similar to abranch
alteration fromanother, rather than to other trunk ones from different patients
inacohort.c, Cancer timelines of GMS-B and -D identified in this study.

Detailed explanationis provided in Fig. 5. Significant somaticinteractions
based onFisher’s Exact testareindicated by odds ratio (OR) estimates and two-
sided P-values onthe top left panels. Interaction significance between somatic
eventsin GMS-B and -D has P-values ranging from 3.16e-22-0.041and 9.11e-25,
respectively. Mutation rate plots show the median +2x standard error of fitted
dataasdashedlines and error bands, respectively.d, Relative ordering model
(PhylogicNDT LeagueModel) results for acohort of 66 samples. The samples
canbeanalysedifthey have somatic events of interest prevalent greater than
5% of the sample size and have informative clonal status available for each event
(16 events). Probability distributions show the uncertainty of timing for
specificeventsinthe cohort. e, Molecular timing distribution of copy number
gainsand loss of heterozygosity (LOH) between Africans and Europeans. Pie
chartsdepict the distribution of the inferred mutation time foragiven copy
number alteration. Orange denotes early clonal gains/LOH, with agradient to
green for late gains/LOH. The size of each chartis proportional to the
recurrence of this event across different patients. Most of the gainsand LOH
are considered early clonal based on MutationTimeR results. Whole-genome
duplicationis more frequentin Africans (63%) thanin Europeans (57%).
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Access Committees. CPGEA data are available via http://www.cpgea.com. PCAWG data are available at ICGC Data

Portal (https://dcc.icgc.org/releases/PCAWG).

=4
Q)
—t
o=
=
D
§o!
o)
=
o
=
-
D)
g}
@)
=
>
Q
wn
C
S
S
Q
<

120z Y21




Field-specific reporting

|Z| Life sciences [:] Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

Al StUdies must dIsCiose On tnese points even wnen the disclosure 1S negative.

Sample sizes Were determined in order to obtain nearly 200 tumour-blood pairs, based on biospecimen availability, with a focus on samples
of underrepresented populations. All primary tumours and matched-blood tissue from 190 specimens Were used to generate sequencing
data in this study. We considered this sample size would be sufficient because our significant comparison of tumour genome profiling
between Europeans (n=9) and Africans (n=6) has been previously published in a peer-reviewed journal. For comparisons, 93 CPGEA donors
were included due to high-risk prostate cancer with most treatment-naive and 628 PCAWG donors Were chosen based on different primary
ancestries. Additional 256 prostate cancer patients from PCAWG Were compared With most treatment-naive.
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Sample size

Data exclusions  After quality assurance, data from 8 tumour-blood pairs were excluded as unusable. Reasons for data exclusion included evidence of cross-
contamination and duplication. Hypermutated tumours (30 mutations/Mb) were removed in mutational recurrence analysis of small
mutations and cancer evolution analysis , following ActiveDriverWGS and PhyloWGS software user manuals.

Replication The accuracy of SV breakpoint inference was assessed by applying two different algorithms and selecting only calls detected by both.
Integrative clustering analysis Was re-assessed using independent clustering of each dataset, with subsequent results mostly recapitulating
the subtypes found by the integrative analysis.

Randomization  N/A- This exploratory study of genome profiling tumours in underrepresented populations did not contain a randomisation step due to
biospecimen scarcity.

Blinding N/A - This exploratory study within underrepresented populations did not contain a blinded data collection due to the focus on those populations i
study. Sequencing and early steps in data analysis were partially blinded using a pool of all samples of different ancestries collected.
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Human research participants

Policy information about studies involving human research participants

Population characteristics Patient-by-patient clinical data are provided in Supplementary Table 1. Demographically, the cohort included 53 Australians,
7 Brazilians and 123 Africans, with ages ranging from 45-99 years old (median 65.5 yo). Having performed genetic ancestry
analysis, the cohort consisted of 113 Africans, 61 Europeans and 9 Admixed mostly between African and European.
Preoperative PSA levels ranged from 3.5 to 4,847 ng/ml (median 22.9 ng/ml). ISUP Grade Groups were distributed as follows:
0-2:29 (16.6%); 3: 11 (6.3%); 4: 52 (29.7%); and 5: 83 (47.4%). All patients are male.

Recruitment After obtained the consent of patients, 183 patients from Australia (n=53), Brazil (n=7) and South Africa (n=123) and
presenting mostly with clinicopathologically confirmed prostate cancer had their tumour and blood samples collected. All
except one Australian patient (PID 15178) treated with one-month-long Ozurdex therapy were treatment naive at time of
sampling. Three patients were unconfirmed for the cancer and confirmed for benign prostate hyperplasia (BPH). All men
from the Southern African Prostate Cancer Study (SAPCS) were recruited at the time of diagnosis, and therefore tumour
tissue was derived from biopsy core, while age and PSA levels were recorded at the time of diagnosis. Australian and Brazilian
subjects were recruited at the time of radical prostatectomy. Additional selection criteria included: availability of fresh-frozen
tissue and matched blood, self-reported ethnicity and country of origin, as well as availability of clinical and pathological data.

Results in this study would not represent all underrepresented populations in Africa and South America as only South
Africa and Brazil were studied.
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Ethics oversight All samples were obtained with written informed consent, as per study approval granted from the St. Vincent’s Human
Research Ethics Committee in Australia (HREC), SVH/12/231, the Grupo de Pesquisa e Pds-Graduacdo (GPPG) Scientific
Committee and Research Ethical Commission (IRB) approval number 20160539 in Brazil or the University of Pretoria Faculty
of Health Sciences Research Ethics Committee (with US Federal wide assurance FWA00002567 and IRBO0002235
IORG0001762) approval number 43/2010 in South Africa. Samples were shipped to the Garvan Institute of Medical Research
in accordance with institutional Material Transfer Agreements (MTAs), as well as additional Republic of South Africa
Department of Health Export Permit (National Health Act 2003, J1/2/4/2 No 1/12). Whole genome sequencing and analysis
were performed in accordance with approval granted by St. Vincent’s Hospital HREC SVH/15/227 and governance review
authorisation granted for human research at the Garvan Institute of Medical Research GHRP1522.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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