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In recent years, autonomous quadcopters have been gaining a lot of popularity in the research field

to perform various image processing applications such as surveillance, package delivery, search and

rescue missions, etcetera. However, the most important components of any quadcopter application

are the control and navigation of the quadcopter; without these components mentioned, it is difficult

to achieve most quadcopter applications. This especially applies to image processing applications,

because without an adequate control system the images from a camera will experience disturbances

that will hinder the performance of the image processing system. The navigation system is also an

important component as it gives the quadcopter the ability to transition between different positions,

thus making the quadcopter autonomous.

In several quadcopter-related research work, the research mainly focuses on the image processing

application and generally provides an inadequate description of the navigation and control of the

quadcopter. While image processing is an important and complex component, it can prove to be

unusable if the navigation and control of the quadcopter are of inferior quality. This dissertation

focuses on closing the gap and providing a detailed description of the design and implementation of the

navigation and control for a quadcopter that can be used for real-time image processing applications.

A stability controller, position controller and altitude controller were developed. A PID controller
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was used for the stability controller to ensure that the quadcopter would be stable during flight. A PD

controller was used for the position controller and a PID controller was used for the altitude controller.

A Kalman filter was used to reduce the noise from the sensors and also to improve data acquisition,

since the quadcopter had a fast refresh rate of 3 ms. The quadcopter required a fast refresh rate to

prevent it from experiencing an unstable flight. For the position estimation, the Kalman filter also

served as a data fusion algorithm to combine data from the accelerometer and the GPS latitude and

longitude coordinates.

Furthermore, the dissertation found that the three-blade propellers provided better overall stability;

however, it experienced a slightly longer response time. It can be said that the three-blade propellers

will perform better for image processing applications, as cameras are largely affected by fast movements

and vibrations on the frame. A battery-compensation algorithm was also used, as the quadcopter’s

motors were affected as the battery voltage was decreasing. Earplugs were installed to reduce the

vibrations that were transmitted from the frame to the flight controller board, which was particularly

helpful, as the accelerometer can be affected by vibrations. The Caddx Ratel camera was used as the

vision sensor for the quadcopter. The Caddx Ratel camera was able to provide the YOLOv2 algorithm

with an adequate image stream for further image processing for real-time applications, such as person

identification and tracking.
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LIST OF ABBREVIATIONS

ANN Artifical Neural Network

BRIEF Binary Robust Independent Elementary Features

CNN Convolutional Neural Network
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FAST Features from Accelerate Segment Test

FOV Field Of View

FPV First Person View

GPS Global Positioning System

GPU Graphic Processing Unit

HOG Histogram of Gradients

IMU Inertial Measurement Unit
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KDE Kernel Density Estimation

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

NMEA National Marine Electronics Association

NN Neural Network

ORB Oriented FAST and Rotated BRIEF

PID Proportional Integral and Derivative term

PSNR Peak Signal Noise Ratio

PWM Pulse Width Modulation

RPN Region Proposal Network

SIFT Scale-Invariant Feature Transform
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UKF Unscented Kalman Filter

YOLO You Only Look Once
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

In recent years, autonomous quadcopters have been gaining popularity to perform various image

processing applications, such as surveillance, package delivery, search and rescue missions, etcetera.

In several quadcopter-related research works, the research mainly focuses on the image processing

application and generally provides an inadequate description of the navigation and control of the

quadcopter. While image processing is an important and complex component, it can prove to be

unusable if the navigation and control of the quadcopter are of inferior quality [1].

The navigation and stability of a quadcopter are two important aspects of any quadcopter

application. Navigation is the ability for the quadcopter to transition to a certain position or estimate

the quadcopter’s current position. The stability controller is required to balance the quadcopter’s

frame when it is in the air, as well as to ensure that transitions are smooth. A well-designed stability

controller also allows the quadcopter to behave in a predictable and controlled manner [2]. In most

quadcopter applications, navigation and stability are important aspects to take into account, without

which it is difficult to actualise an application that employs a quadcopter [1]. This dissertation

demonstrates the process of designing and implementing a stability and navigation controller that can

be used for real-time image processing applications.
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CHAPTER 1 INTRODUCTION

1.1.2 Research gap

The main objective of this research is to implement a navigation and stability controller that can be

used in various applications, such as surveillance and package delivery. This dissertation presents the

research and development of a stability and navigation controller that can be used for real-time image

processing applications for quadcopters.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The main objective of this research is to design a navigation and control system for a quadcopter

that can be used for real-time image processing applications. As previously mentioned, navigation

and control of a quadcopter are important in any quadcopter application. Without a stability controller

the quadcopter will be difficult to manipulate in the air and the quadcopter will become unpredictable

[2]. There are various stability controllers. However, each stability controller has advantages and

disadvantages that need to be considered. An appropriate navigation algorithm has to be used to

estimate the quadcopter’s current and new position. The navigation algorithm is also responsible for

instructing the quadcopter’s relevant motors to make a transition to the desired position. If the stability

controller or navigation algorithm does not perform well, the images from the quadcopter can be

affected and can often complicate the performance of any image processing application [1].

Different sensors have different data acquisition rates, e.g. the GPS and accelerometer. Estimation

algorithms can be used to deal with the different data acquisition rates by fusing data from faster

sensors and slower sensors together [3]. Various different estimation algorithms exist. However, the

estimation algorithm for this application needs to balance speed and accuracy.

Many different propellers exist. Each design has advantages and disadvantages that need to be

considered. The appropriate propellers should to be used on the quadcopter to benefit the quadcopter

for real-time image processing applications. The following research questions are to be answered in

this proposed research:

1. Can a stability controller be designed to ensure a stable platform for accurate image acquisition?

2. Can accurate navigation be performed?

3. How can sensors with different data acquisition rates be combined for reliable stability control

and navigation?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

4. Is it possible to acquire reliable and not distorted images on this platform?

5. Is it possible to perform real-time image processing on this platform?

1.3 APPROACH

The proposed system consists of two main systems, namely: the controller system and the

image processing system. The proposed system uses real-time image processing to demonstrate the

quadcopter’s controller capabilities. The controller will be developed on an embedded platform that

will be mounted onto the quadcopter and the image processing software will be implemented on a

high-level programming language, such as Python.

The controller can be divided into a stability and a navigation controller. The stability controller

will have to be developed and tested intensely before the navigation controller is being developed. The

stability controller will undergo intensive testing to ensure that the quadcopter is stable and predictable.

The stability controller is an important part of the proposed system. If the stability controller is

unstable, it will prove to be difficult to get reliable images for the image processing applications and it

will be difficult to navigate to a new position. The navigation controller’s main function is to estimate

the current and new position of the quadcopter, as well as to navigate the quadcopter to the required

position. The navigation controller must perform accurately to ensure that the quadcopter can navigate

to the desired position and can perform the required image processing for the chosen application.

The image processing can be implemented once the controller has been implemented and tested

intensively. The image processing system will use a pre-trained Machine Learning (ML) network. The

pre-trained model will be imported and any extra image processing algorithms will be implemented

(e.g., colour classification and distance estimation) in Python. Finally, once each system has been

tested, relevant results will be obtained from the implemented system and will be compared to similar

research studies to identify the performance of the proposed system.

1.4 RESEARCH GOALS AND CONTRIBUTION

The main goal of this research is to provide a stability controller and navigation algorithm to be

used in quadcopters, being used for real-time image processing applications. The proposed system

will provide a structured approach in designing and implementing a stability and navigation controller

that utilises sensor fusion and estimation filters to achieve a quality flight controller for quadcopters

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1 INTRODUCTION

with real-time image processing capabilities.

1.5 RESEARCH OUTPUTS

An article is being prepared for publication. V. Govender and H. C. Myburgh, “Navigation and

control of a quadcopter for real-time image processing applications,” to be submitted to MDPI Sensors.

1.6 OVERVIEW OF STUDY

Chapter 2 provides a full literature study on the different quadcopter platforms, stability controllers,

image processing techniques and estimation algorithms that are possible candidates in designing and

implementing a navigation and stability controller for a quadcopter.

Chapter 3 provides reasoning for choosing hardware and software components to achieve a

fully-functional quadcopter that can achieve the research goals.

Chapter 4 of the dissertation deals with the results regarding the stability and navigation algorithms

obtained from the quadcopter being implemented. The results are thoroughly scrutinised in Chapter

4 of the dissertation to answer the proposed research questions and to discuss the performance

of the developed system opposed to previous research papers. Image processing results for a

person-following application is also presented in this chapter to prove that the proposed navigation and

control system provides sufficient functionality for real-time image processing applications.

The final chapter of the dissertation provides a summary of the findings and also provides a brief

discussion of further improvements to the system.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter documents the research having been conducted to determine a suitable control and

navigation system for a quadcopter that can be used in real-time image processing applications. The

literature survey is divided into five main components. Section 2.2 discusses the various quadcopter

configurations and the axes that will be used in further modelling of the quadcopter. In Section 2.3,

popular controllers being used for stability, altitude and position are discussed, along with a list of

possible sensors that can be used for a flight controller. In Section 2.4, estimation filters to improve the

accuracy of sensor data are discussed.

In Section 2.5, the different types of cameras that can be used on a quadcopter are discussed.

Finally, in Section 2.6, the different types of image processing techniques, such as ORB, Canny edge

detection and various deep learning methods are discussed.

2.2 QUADCOPTER PLATFORM

This section describes the two main types of quadcopter configurations and the advantages and

disadvantages of both configurations. The basic definition of movement is also clarified in this section

and is used in further sections of the quadcopter modelling.

2.2.1 Quadcopter configuration

Before proceeding to the control of the quadcopter, it is important to define and model the quadcopter.

The quadcopter can be defined as a + configuration or an x configuration [4]. The + configuration of a
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CHAPTER 2 LITERATURE STUDY

quadcopter can be seen in Figure 2.1(a) and the x configuration can be seen in Figure 2.1(b).

(a) (b)

Figure 2.1. A top view of the + configuration and x configuration of a quadcopter are represented. (a)

+ configuration (Taken from [4], © 2016 IEEE.), (b) x configuration (Taken from [4], © 2016 IEEE.).

The main difference between the configurations is that the + configuration only has to use one motor

to influence the roll, pitch or yaw motion of the quadcopter, whereas the x configuration uses two

motors [4]. The x configuration can produce more thrust on either side of the quadcopter compared to

the + configuration, since the x configuration has two motors on each side of the quadcopter [4]. The

x configuration is the most popular configuration, as it provides better stability and also allows the

quadcopter to be more acrobatic in the air [4]. The x configuration is also the preferred method, as it

allows a camera to be easily mounted facing straight, as there are no propellers limiting the camera’s

line of vision [4]; however, this can be easily avoided in the + configuration if a landing gear is attached

to the quadcopter and the camera is mounted to the bottom of the quadcopter. The direction in which

the motors will be spinning should be noted. The opposing motors spin in the same direction and the

adjacent motors spin in the opposite directions; this keeps the quadcopter in equilibrium, provided that

all the motors are producing the same thrust [4].

The basic definition of the quadcopter’s movements is briefly described to prevent confusion in

the rest of the paper. Roll is a movement that causes the quadcopter to move to the left or to the

right. Pitch is the movement that causes the quadcopter to move forward or backwards. Yaw is the

movement that causes the quadcopter to rotate clockwise or anti-clockwise. The angular motions are

illustrated in Figure 2.2 [5]. To increase or decrease the altitude, all the motors are required to produce

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

the same thrust. To increase altitude, the motors need to produce a thrust greater than the gravitational

force acting on the quadcopter, and to decrease the altitude the thrust is required to be less than the

gravitational force acting on the quadcopter.

Figure 2.2. Roll, pitch and yaw of a quadcopter (Taken from [5], © 2014 IEEE.).

Typically, an Inertial Measurement Unit (IMU) sensor is used to measure the pitch and roll of a

quadcopter. An IMU sensor consists of a gyroscope and an accelerometer. The gyroscope measures

the rate of change in angular velocity and the accelerometer measures the acceleration forces acting on

the quadcopter. The gyroscope is susceptible to drift [6] and the accelerometer is sensitive to vibrations

[7]; therefore, data from the gyroscope and the accelerometer are often combined to improve results in

pitch and roll.

2.3 FLIGHT CONTROLLER

This section deals with a detailed understanding of the stability controller, altitude controller and

the position controller. Each controller is essential to ensure that the quadcopter can navigate in a 3D

environment in a predictable and stable manner. Mathematical descriptions accompanied by reasoning

are important to understand the working principles of each controller, as well as the contribution that

each controller makes to the overall flight controller.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.3.1 Stability controllers

A stability controller for the quadcopter is important to account for factors, such as manufacturing

defects in motors, external forces (e.g. wind), propeller imbalances and the non-symmetrical weight

distribution of a quadcopter. The stability controllers being evaluated, include the Sliding Mode (SM)

controller [8, 9] and a Proportional Integral Derivative (PID) controller [10, 11, 12]. The SM and

PID controllers are chosen to be evaluated as they are the most popular methods used for stability

controllers for quadcopters.

2.3.1.1 SM controller

The Sliding Mode (SM) controller is a robust stability controller that accounted for non-linearities

[9]. The SM controller consists of two components, namely the continuous and the discontinuous

components [9]. The discontinuous component is represented by µD and the continuous component is

represented by µC. The result of the continuous and discontinuous components are [9]

u(t) = µC(t)+µD(t). (2.1)

The continuous component is represented by [9]

µC(t) =
( d

dt +λ
)n

e(t)dt, (2.2)

where λ represents the gain parameter, n represents the order and e(t) represents the error between the

reference value and the current value. When n = 1, the continuous component is reduced to,

µC(t) = ė+λe. (2.3)

The discontinuous component is represented by [9]

µD(t) = KDsign(µC(t)), (2.4)

where KD is the gain parameter for the discontinuous component and sign represents a non-linear

function. Typically, a sigmoid function [9] is used as the non-linear function, therefore resulting

in,

sign(µC(t))∼= µC(t)
|µC(t)|+δ

, (2.5)

and the discontinuous term is expanded to [9]

µD(t) = KD
µC(t)

|µC(t)|+δ
. (2.6)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

Finally, the thrust, roll, pitch and yaw are represented by U1, U2, U3 and U4, respectively [9],

U1 = (z̈d +λ (żd − ż)+g) m
cosθ cosφ

+Kz
sz

|sz|+δ
, (2.7)

U2 =
[
φ̈d − ψ̇θ̇

(
Iy−Iz

Ix

)
− ψ̇θ̇ + Jr θ̇Ωr

Ix
+λ

(
φ̇d − φ̇

)]
Ix +KDφ

sφ

|sφ |+δ
, (2.8)

U3 =
[
θ̈d − ψ̇φ̇

(
Iz−Ix

Iy

)
+ ψ̇φ̇ − Jr φ̇Ωr

Iy
+λ

(
θ̇d − θ̇

)]
Iy +KDθ

sθ

|sθ |+δ
, (2.9)

U4 =
[
ψ̈d − φ̇ θ̇

(
Ix−Iy

Iz

)
− φ̇ θ̇ +λ (ψ̇d − ψ̇)

]
Iz +KDψ

sψ

|sψ |+δ
. (2.10)

2.3.1.2 PID controller

The PID controller is the most popular controller used to stabilise an aerial vehicle. The PID

controller consists of three components, namely the proportional component, the integral component

and the derivative component [10, 12].

The proportional component calculates the error between the reference value and the current value,

and scales the error according to the Kp term. The proportional component is applied to the system in

the opposite direction of the error. The proportional component is calculated by [12]

ut = Kp(y(t)− xt), (2.11)

where Kp is a proportional gain parameter, y(t) is the reference value of the quadcopter at time t, and

xt is the current value of the quadcopter at time t.

By using only the proportional component, the system often experiences rapid changes; therefore,

a derivative component is often added to smooth the response of the system [12]. The derivative

component is responsible for reducing the rapid response from the system [12]. However, it should

be noted that the derivative term will provide no significance in the case of a constant error, as the

derivative component measures the rate of change in error [12]. This type of stability controller is

known as a PD controller

ut = Kp(y(t)− xt)+KD
∂ (y(t)− xt)

∂ t
, (2.12)

where KD is a derivative gain parameter.

In some applications, the PD controller is sufficient as a stability controller. However, the PD

controller cannot reduce the error to zero and, therefore, the integral component is added [12]. The

integral component calculates the sum of errors over a period of time. The PID controller is calculated

by [10, 12]

ut = Kp(y(t)− xt)+KI

∫
(y(t)− xt)dt +KD

∂ (y(t)− xt)

∂ t
, (2.13)
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CHAPTER 2 LITERATURE STUDY

where KI is an integral gain parameter and the Laplace transform is [12]

U(s) = (Kp +KDs+
Ki

s
)(Y (s)−X(s)). (2.14)

setpoint actuator process

sensors

 Σet

Figure 2.3. Block diagram for PID controller (Taken from [5], © 2014 IEEE.).

It can be noted that if the stability controller is not tuned correctly the quadcopter could react

slowly to change and the image processing application cannot be fully realised. On the other hand,

if the stability controller reacts in a abrupt manner the quadcopter will not be able to obtain quality

images for further processing [2]. Therefore, it is of utmost importance that the stability controller is

tuned correctly.

The SM controller [9] and the PID controller [10, 11] was compared by evaluating rise time,

settling time and overshoot. It was found that both controllers produced satisfactory results. Due to

popularity, the PID controller is slightly advantageous.

2.3.2 Altitude controller

Ultrasonic or laser sensors are often used to measure distance; however, in the case of the quadcopter,

the sensors mentioned suffer a change in height if there is an obstacle on the ground, e.g. if the

quadcopter flies over a box [13]. Due to the issue mentioned, an alternative altitude sensor that can be

used, is a barometric sensor. By making use of the pressure measurements, it is possible to calculate

the altitude of the quadcopter. By using this method, it is possible to keep the barometric sensor far
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CHAPTER 2 LITERATURE STUDY

from the ESCs to reduce electromagnetic interference and eliminate the issue of uneven ground. The

altitude of the drone can be calculated by [11]

h = 44.33×103

 ( 1
5255×10−3 )

1−
[

P
P0

]
 , (2.15)

where h represents the altitude, P represents the current pressure and P0 represents the ground pressure.

2.3.3 Position controller

The position controller is used to track the position of the quadcopter and to enable the quadcopter

to navigate. An accelerometer can be used to estimate the distance travelled by the quadcopter in its

respective directions; however, accelerometers are sensitive to vibration. To minimise the error, GPS

data and the accelerometer data are combined to develop an accurate position estimation algorithm [3].

GPS modules use the National Marine Electronics Association (NMEA) Protocol. The NMEA

protocol is a data protocol being used for communication transfer. The NMEA communication protocol

was developed for marine electronics. Nowadays, the NMEA communication protocol is also used for

other electronic devices, such as GPS modules. Table 2.1 shows the message IDs and the respective

description for each message ID.

Table 2.1. NMEA message ID [14]

NMEA Packet message ID

–RMC Time, latitude, longitude, date, speed, magnetic variation.

–VTG Course over ground, speed over ground

–GGA Time, number of satellites, altitude, global latitude and longitude

–GSA Provides details for each satellite (maximum of 12 satellites)

–GSV Provides elevation angle, azimuth angle, signal to noise ratio

–GLL Time, geographic latitude and longitude

2.3.4 Propellers

One of the important factors when designing a quadcopter is the type of propellers that will be used

on the quadcopter. There exists a variate of choices regarding propellers. Each propeller is associated

with a set of specifications, such as, diameter. pitch and number of blades.
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Diameter is the full length of he propeller [15]. The pitch is the measurement of how far a propeller

will travel in a single rotation [15]. An example of a propeller specification would be 10 * 4.5 inches,

the 10 inches indicates the diameter and the 4.5 inches indicates the pitch of the blade [15]. The

number of blades on a propeller is also indicated, such as, two-blade or three-blade propeller. In this

dissertation only discusses how two-blade and three-blade propellers affect the quadcopter.

Each propeller there exists advantages and disadvantages. The two-blade propellers are efficient

propellers and require smaller power motors compared to the three-blade propellers, as the three-bade

propellers produce more thrust [15]. The two-blade propellers are more affected by the wind and

opposed to the three-blade propellers [15]. The three-blade propellers are generally better for

applications that favour stability as opposed to speed [15]. It can also be noted that the three-blade

propeller could potentially mean an increase in cost, as the more powerful motors will be needed [15].

2.4 ESTIMATION FILTERS

The estimation filter can also be used to predict sensor values when data acquisition is too slow. In

the case of the proposed project, the estimation filter will be used for position estimation. By making

use of an estimation filter, the overall system responsiveness and accuracy will improve. The following

estimation filters are the most widely-used filters.

A Kalman filter is a Bayes filter that is used for linear distributions. The Kalman filter assumes a

linear Gaussian distribution [16] and is a popular state estimator. Variation of the Kalman filter exists

to deal with non-linear distributions, such as the extended Kalman filter and the unscented Kalman

filter [16].

The Extended Kalman filter (EKF) is a Bayes filter and an optimal estimator. The EKF shares most

of the properties of the Kalman filter; however, it uses a first-order Taylor expansion to linearise a

non-linear model [16].

The Unscented Kalman filter (UKF) is used for non-linear systems and is a variation of the Kalman

filter. The UKF makes use of the unscented transform.

A Particle filter is a recursive Bayes filter. The broad idea of the Particle filter is to make use of

several points, called particles, that are used to depict a distribution [16]. Each particle represents

a possible state, while the state estimation can be improved with the increase of particles, there is

a trade-off for computational time [16]. The Particle filter is useful, as it can work with unknown

distributions. The motion model and the observation model remain the same in both the Kalman filter
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and the Particle filter [16].

2.5 VISION SENSOR

Cameras are used as vision sensors. The most common methods to use a camera is monocular

[17, 18, 19, 20, 21] and stereo vision [22, 23, 24, 21]. The main difference between the monocular

and stereo vision approach is that monocular vision uses a single camera, while stereo vision uses two

cameras. The cameras used for either approach are often low pixel because high pixel cameras produce

a large amount of data to process; thereby increasing the computation time of the image processing. In

the stereo vision approach two cameras are placed at different angles, viewing the same scene [25].

Stereo vision allows for depth information by computing a disparity map, using both images from the

cameras [25]. Stereo vision is often used to detect features in a scene, as well as to estimate distance

between the cameras and the objects in a scene.

Two types of cameras are often considered for drone use:

• Charge-Coupled Device (CCD) cameras,

• Complementary Metal–Oxide–Semiconductor (CMOS) cameras.

CCD cameras use an image CCD image sensor [26]. The image sensor consists of photoelectrons

that convert the intensity of light into electric charge. The downside of CCD cameras is that the

electric charge is collected serially; therefore, image acquisition is limited [26]. The CMOS camera

has a similar method for image acquisition. However unlike the CCD camera, the CMOS collects the

charge in a parallel manner, which ultimately improves the image acquisition time [26].

2.5.1 Jello effect

Jello effect is the phenomenon that occurs when a camera experiences high frequency vibration

[27]. This phenomenon causes the camera’s image to be distorted. The jello effect is caused by fast

movements in the air and high frequency vibration that are transmitted from the quadcopter’s frame to

the camera [27]. Figure 2.4(a) represents the original image and Figure 2.4(b) represents the distorted

image. The red dotted line clearly indicates the distortion between the two images.
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(a)

(b)

Figure 2.4. Comparison between original image and distorted image. (a) Original image (Taken from

[28], © 2015 IEEE.), (b) Distorted image (Taken from [28], © 2015 IEEE.).

To mitigate the effects of jello, smoother quadcopter movements are required, as well as a vibration

damping system to isolate high frequency vibration between the quadcopter frame and camera.

The Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) are popular methods to

measure image quality [29, 30]. MSE calculates the cumulative square intensity difference between

the reference image and the image to be evaluated [29, 30]. PSNR uses the MSE to measure the

peak error [29, 30]. Another popular method is the Structural SIMilarity (SSIM) that measures the

similarity in an image by taking into account lamination, contrast and similarity [29, 30].
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2.6 TARGET DETECTION

Image processing is often used for target detection. There are two main steps to develop a target

detection system: Pre-processing and target detection.

In the pre-processing phase, the image undergoes various processing to reduce noise in the image

and to remove unwanted features in the image [31]. Pre-processing is particularly important because

it intensifies key features in an image and improves the accuracy of the image processing [31].

Pre-processing techniques include dilution, erosion, maximum and minimum filter, smoothing filter

etcetera. [31]. In the target detection phase, the target of interest is extracted from the pre-processed

image. The target detection involves algorithms, such as template matching [22], Neural Networks

(NN) [32, 33, 12], Histogram of Gradients (HOG) [24].

In work related to pre-processing, the dilation and erosion techniques have been used. Dilation and

erosion are known as a morphological technique that can be used to influence the size of an image

[31, 21]. The main difference between the erosion and dilation technique is that the erosion technique

reduces the size of a target by eliminating pixels around the target’s edges and the dilation technique

increases the size of a target by increasing the number of pixels around the target’s edges [31, 21].

In earlier work related to target detection, background extraction methods were used to obtain

the foreground target in an image [21, 34]. By using a background extraction method, a model of

the background is required [34]. Kernel Density Estimation (KDE) is also used for target detection;

however, due to its poor performance with outliers, a Robust KDE was developed and proved

to successfully deal with outlier [23]. Using colour alone for target detection often fails, due to

illumination issues [35]. Recent methods have used colour and depth estimation to account for

illumination [35]. However, the issue with depth-sensing becomes clear when multiple targets with

the same depth are visible in a frame [35]. Feature detection algorithms such as Scale-Invariant

Feature Transform (SIFT) [22, 19, 36], Speeded-Up Robust Features (SURF) [19] and Oriented FAST

and Rotated BRIEF (ORB) [22], are commonly used for target detection. In recent studies, ORB

has been found to perform better than SIFT and SURF [22, 19]. Other target detection algorithms

used foreground blob detection and Histogram of Gradients (HOG). It has been found that the HOG

produces higher accuracy than foreground blob detection. However, foreground blob detection is

more applicable for real-time operation [24]. Canny edge detection can also be combined with colour

detection, in order to improve target detection [20].

A Convolution Neural Network (CNN) is also a viable option for target detection [19]; however, an

issue with the CNN is that it requires a large number of training inputs to provide accurate results [19].
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A Siamese Network is often used, as opposed to the CNN, because the Siamese Network requires a

small number of samples to train the network; therefore being an ideal option if there is a lack of

training data [33]. The Faster Region CNN (R-CNN) is a variation of a CNN and is one of the leading

deep learning methods for target detection, as it provides reasonable accuracy for real-time target

detection [37, 38]. The You Only Look Once (YOLO) method is an alternative deep learning method

that can perform in real-time and provide adequate accuracy [39, 40].

A few of the popular target detection techniques are further discussed.

2.6.1 ORB

The Oriented FAST and Rotated BRIEF (ORB) algorithm is a common algorithm being used for

real-time feature detection that is a combination of a Features from Accelerate Segment Test (FAST)

algorithm and the Binary Robust Independent Elementary Features (BRIEF) algorithm [41].

BRIEF is a binary descriptor that compares the intensities of the pixels of two images [41]. FAST

is an algorithm that is used for corner detection [41]. Figure 2.5 is used to assist in the explanation

of the FAST algorithm. A pixel is regarded to be a corner pixel if the intensity of the pixel is greater

or less than other pixels surrounding the pixel of interest [41]. In the case of pixel p, the intensity of

sixteen other pixels is compared to pixel p [41]. The number of pixels evaluated around the pixel of

interest can be set, thus allowing the FAST algorithm to be computationally efficient and suitable for

real-time applications [41]. An issue with the FAST algorithm is that it does not provide the orientation.

However, a rotational matrix can be used to get the orientation before the BRIEF algorithm is applied

[41].

Figure 2.5. Feature detection with FAST (Taken from [42], © 2008 IEEE.).
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SIFT and SURF are other techniques being used for corner detection; however, these algorithms do

not perform well in real-time applications [22].

2.6.2 Canny edge detection

Canny edge detection is an algorithm that is applied to a grayscale image to emphasise edges in a

picture. Canny edge detection consists of five stages. For the first step, a Gaussian blur is applied to

the image to reduce noise [43].

The second step is to calculate the gradient [43]. By calculating the gradient, the intensity and

the direction of the edge can be found [43]. The gradient for each pixel is calculated, using a Sobel

operator [43]. To find the gradient in the horizontal plane, the kernel function (KGX ) is applied to the

horizontal and vertical plane [43]. The magnitude and direction of the gradient are then calculated.

In the third step, the local maximum gradient pixels are kept, while the rest are eliminated. This is

done by evaluating each pixel, as well as neighbouring pixels around each pixel, and checking if the

current pixel has the highest gradient amongst the neighbouring pixels [43]. When the current pixel

has the highest gradient amongst the neighbouring pixels, then the pixel is kept. When the current pixel

does not have the highest gradient amongst the neighbouring pixels, then the pixel is set to zero [43].

The fourth step is to determine which pixels are relevant and which pixels do not provide any

relevance. This is done by using a high threshold and a low threshold [43]. Pixels that have a higher

value than the high threshold are placed in a strong group, while pixels that have a lower value than the

low threshold, are eliminated and pixels that are between the low threshold and the high threshold are

placed in a weak group [43].

The final step is constructing the output for the Canny edge detection algorithm. All strong pixels

are kept, while weak pixels are only kept if they are connected to strong pixels [43].

2.6.3 Deep learning methods

A number of deep learning methods exists; however, only a few of the popular deep learning

methods for the real-time image processing application will be discussed further.
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2.6.3.1 Artificial neural network

An Artificial Neural Network (ANN) is a collection of units that are linked together [12]. An ANN

mimics the neurons in the brain. The units in an ANN are often referred to as a neurons [12]. Figure

2.6 shows a neuron in an ANN [12, 44].

Figure 2.6. Model of a neuron (Taken from [44], with permission.).

At the neuron, multiple inputs (Xn) are scaled, using a corresponding weight of Wkn and added

together. The sum of the scaled inputs are calculated as [44]

Uk =
n

∑
j=0

Wk jX j +bk. (2.16)

Once the sum of the scaled inputs has been computed (Uk), the sum of the scaled inputs is passed

through an activation function. An activation function is used to scale Uk between the limits of the

activation function being used [12, 44]. Depending on the activation function being used, it can

introduce non-linearities to the ANN [12, 44]. The most common activation functions include the

sigmoid function, hyperbolic tangent function, unit function ,etcetera. [12]. The output from the

neuron is given as [44]

Yk = g(Uk), (2.17)
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where g represents the activation function.

In Figure 2.7 it should be noted that the layers between the input layer and the output layer are

known as the hidden layers [12]. Figure 2.7 shows a feed-forward ANN and is referred to as a

feed-forward ANN because the arrows are all pointed in one direction [12, 45].

Output

Input 1

Input 2

Input 3

Input 4

Input layer Hidden layer Output layer

Figure 2.7. A neural network (From [45], © 2017 IEEE.).

An ANN that has arrows pointing forward and backwards, exists. The backwards operation is known

as back-propagation. Back-propagation is the process of training the ANN to update the weights (Wk j)

being used to scale the inputs [12]. To train a network, data consisting of known outputs are used,

which is known as the training set. The back-propagation process can be mathematically described as

[12]

Wk j =Wk j +αa j∆k, (2.18)
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where α is the learning rate and ∆ is the error between the predicted output and the actual output.

The ANN indeed performs reasonably well; however, it requires a large amount of training data

to provide accurate results [12]. The ANN also suffers from overfitting if the training data does not

contain a fair representation of all data [12].

A Siamese network deals with the problem of requiring large training data sets. A Siamese network

differs from a traditional ANN, by training the Siamese network with a small amount of available data,

and instead of trying to classify the input data, the Siamese network calculates the similarity between

the input data and the training data [33].

2.6.3.2 Convolutional neural networks

Another type of deep learning method being used for target detection is a Convolutional neural

networks (CNN). The CNN architecture consists of three types of layers: convolutional layer, pooling

layer and fully-connected layer.

The convolutional layers are filters that are convolved with the input to the convolutional layer.

A convolutional layer is then followed by an activation function, e.g. ReLU, sigmoid etcetera. The

output being generated from the convolutional layer is known as a feature map [46].

The pooling layer is used to reduce the size of the convolutional layers, in order to reduce the

computational time. The two methods used for pooling are max pooling and average pooling. The

pooling layer segments the input, based on stride size and filter size. The max or average value in each

segment is then retained and placed in an output matrix of the pooling layer [46]. Max pooling is the

most common method for pooling.

The last type of layer is the fully-connected layer. The fully-connected layer is a neural network

where every neuron is connected to the features of the preceding layer. The fully-connected layer is

then passed through to a function, such as a softmax function, as the final output from the CNN [46].

Initially, a sliding window was used for target detection. To use the sliding window method, an nxn

window size was predefined, indicating the number of pixels that was passed through the CNN at a

time. The window would then slide across the input image, based on a stride size. The problem with

the CNN and the sliding window method is that it was computationally expensive; therefore it could

not be used for real-time target detection. Another problem with the sliding window was that it was

difficult to choose the correct size of the window.
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2.6.3.3 Faster region convolutional neural network

The R-CNN is a method used to reduce the computation time. The main issue with the

CNN and the sliding window approach was that some of the windows being processed by the

CNN were not necessary, as the windows did not contain anything useful to the relevant applic-

ation. For example, if the application was to detect cars in an image, then some of the sliding

windows would contain portions of the sky. The architecture for a Faster R-CNN is shown in Figure 2.8.

Figure 2.8. R-CNN architecture. (Taken from [38], © 2018 IEEE.).

The Faster R-CNN consists of the CNN and the Region Proposal Network (RPN). The CNN

remains the same as disussed in the CNN section; however, instead of using the sliding window

method, the Faster R-CNN has a seperate network (RPN) to propose regions in an image that contain

mostly relevant portions of an image. The proposed regions and the feature map from the convolutional

layers are combined in the RoI pooling and are then passed through the classifier for target detection
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[37, 38, 47, 48].

2.6.3.4 You Only Look Once (YOLO)

The YOLO algorithm is currently one of the state of the art real-time target detection algorithms.

The YOLO algorithm divides the input image into an SxS grid cell, as shown in Figure 2.9. The SxS

grid is also the output from the CNN being used in the YOLO algorithm [39, 40, 49, 50].

Figure 2.9. Image divided into an SxS grid (Taken from [51], © 2016 IEEE.).

The YOLO algorithm uses a CNN to predict the bounding box around the target, the confidence

level that there is a target in a given grid cell, as well as what type of target is found in a given grid cell.

Figure 2.10 shows the bounding boxes found by the CNN [39, 40, 49, 50].
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Figure 2.10. Result from the CNN (Taken from [51], © 2016 IEEE.).

It can be noted from Figure 2.10 that there is a lot of bounding boxes drawn on the image. To

remove some of the overlapping bounding boxes and unnecessary bounding boxes, a non-suppression

method is used. The non-suppression method compares each overlapping bounding box and calculates

the Intersection of Union (IoU), which is calculated as

IoU =
I
A
, (2.19)

where I represents the area of intersection of the two bounding boxes and A represents the sum of the

areas of each bounding box.

The non-suppression algorithm first discards all bounding boxes with a confidence level lower than

a predefined threshold (pc). The non-suppression algorithm then picks the bounding boxes with the

highest confidence levels and then discards any boxes with a IoU value of less than the predefined

threshold (c) [39, 40, 49, 50]. The result after the non-suppresion algorithm has been applied is shown

in Figure 2.11.
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Figure 2.11. CNN output after undergoing non-suppression (Taken from [51], © 2016 IEEE.).

The YOLO algorithm can also be used to detect people in an image to meet the requirements of

the proposed project. To detect the colour of the person’s shirt and pants, a colour classification

algorithm is required. The K-Means and the MeanShift algorithm produced successful results for

extracting colour from an image [36]. MeanShift is advantageous compared to the K-Means clustering

algorithm because it does not require the number of clusters upon start-up, however, MeanShift is

computationally expensive compared to K-Means clustering [52].

2.7 CHAPTER SUMMARY

This chapter discussed different quadcopter configurations along with each configuration’s ad-

vantages and disadvantages. Furthermore, the flight controller was discussed extensively, as well

as estimation filters that can be used to improve stability and accuracy of the position, altitude and

stability controllers. The vision sensors were discussed and key factors, such as the jello effect were

also discussed. Finally, the possible target detection and colour classification algorithms for real-time

image processing were discussed. The algorithms that were discussed in this chapter are not the only

algorithms that exist that can solve the various challenges for this project; however, they are the most

viable algorithms that will achieve the desired goals.
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CHAPTER 3 METHODS

3.1 CHAPTER OVERVIEW

This chapter deals with the design and implementation of the quadcopter platform and image

processing system. This chapter is divided in six main sections. The platform and mass calculations

of the quadcopter is presented in Section 3.2. In Section 3.3, the design and implementation of the

subsystems for the flight controller, such as the stability controller, altitude controller and position

controller are presented. Furthermore, the magnetometer calculations and the battery compensation

algorithm are presented in Section 3.3. In Section 3.4 the Bayes filter and the Kalman Filter are

presented that will be used as the estimation filter to improve sensor data.

Section 3.5 presents the vision sensor chosen for the image processing application. The real-time

image processing technique being used, are described in detail in Section 3.6. Finally, in Section 3.7,

the various communications between the quadcopter and base station are described in detail.

3.2 QUADCOPTER PLATFORM OVERVIEW

The method used to achieve the proposed system is divided into the stability controller for the

quadcopter and the target detection algorithm. Figure 3.1 shows the high-level representation of the

system.

Image processing (Laptop)

Vision sensor (Camera)

Flight Instructions
. Output to

motors.

Sensors (IMU, GPS, barometer)

Flight Controller (STM32 Board)

Figure 3.1. High-level representation of the proposed system.
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A base station (laptop) was responsible for handling the image processing required for the proposed

system. The base station received wireless input from the cameras to perform target detection. Based

on the image processing, flight instructions were sent to the flight controller. The flight controller was

responsible for controlling the motors and stabilising the quadcopter. The flight controller received

inputs from the sensors (IMU, GPS and barometer), as well as the flight instructions received by the

image processing. A list of components on the quadcopter and masses are recorded in Table 3.1.

Table 3.1. List of components used on the quadcopter.

Components Mass(g)

Component Mass (g)

DJI quadcopter frame 282

DJI 920KV motor 64 x 4

DJI ESC 15 x 4

Power distribution board 10

2200mAh LiPo battery 173

STM32F10 10

GPS (U-blox M8N + HMC588L) 45

IMU (MPU6050) 15

Barometer (MS5611) 1.2

RC receiver 32

8 x 4.5" propellers 9 x 4

Caddx Ratel FPV camera 8

Eachine transmitter (TS5828L) 30

3D prints 16.4

Estimated total mass 1067.5 + miscellaneous

Actual total mass 1150

For the quadcopter to perform the desired motion, the quadcopter configuration must be defined

and each motor should be labelled. Figure 3.2 represents the quadcopter in an x configuration and the

motors are labelled from 1 to 4.
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Figure 3.2. Quadcopter x configuration.

3.2.1 Quadcopter modelling

The fixed frame of the quadcopter is shown in Figure 3.3(a). It is important to establish a point of

reference to measure the linear translation and the rotation of the quadcopter [10, 53, 54]. The force

diagram of the quadcopter is shown in Figure 3.3(b). The force diagram for the quadcopter represents

the forces and the moments, acting on the quadcopter.

(a) (b)

Figure 3.3. Fixed frame and the force diagram for the quadcopter. (a) Fixed frame (Taken from [55],

© 2018 IEEE.), (b) Force diagram (From [55], © 2018 IEEE.).
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The fixed frame is described, using the Cartesian representation. The fixed frame is represented by

the symbol ξξξ [10, 53]

ξξξ =


x

y

z

 . (3.1)

The rotation of the quadcopter is measured in roll, pitch and yaw. The roll, pitch and yaw are

represented by φ , θ and ψ , respectively. The vector ηηη represents the rotation of the quadcopter

[10, 53, 54]

ηηη =


φ

θ

ψ

 . (3.2)

The linear velocities in the x, y and z direction are represented by vx,Q, vy,Q and vz,Q, respectively

[10, 53]. The vector VVV Q represents the linear velocities

VVV Q =


vx,Q

vy,Q

vz,Q

 . (3.3)

The angular velocities (vvv) for the quadcopter are represented by p, q and r [10, 53, 54]

vvv =


p

q

r

 . (3.4)

For simplicity, the cos, sin and tan functions are represented by C, S and T symbols, respectively,

and the angle is shown in subscript [10, 53, 54]. The rotational matrix being used to describe the

motion of the quadcopter, is represented by RRR,

RRR =


CψCθ CψSθ Sφ −SψCφ CψSθCφ +SψSφ

SψCθ SψSθ Sφ +CψCφ SψSθCφ −CψSφ

−Sθ Cθ Sφ CθCφ

 . (3.5)

The quadcopter is assumed to be symmetrical; therefore, the diagonal components of the moment of

inertia are only present, resulting in the rest of the components equating to zero [10, 53]. The moment

of inertia is calculated as,

III =


Ixx 0 0

0 Iyy 0

0 0 Izz

 . (3.6)
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The force produced by each motor is represented by fi [10, 53],

fi = kω
2
i , (3.7)

where k represents the lift constant and ω represents the angular velocity of the motor. The created

torque from a signle motor is represented by τ [10, 53],

τMi = bω
2
i + IMω̇i, (3.8)

where b represents the drag constant and IM represents the inertia moment being produced by the

motor.

The thrust force produced by all the motors, needs to overcome the force of gravitational force that

acts on the quadcopter [53]. The vector TTT Q represents the thrust force in the Cartesian representa-

tion,

TTT Q =


0

0

∑
4
i=1 kω2

i

 . (3.9)

The torque is represented by τ , using the fixed frame representation [53, 54],

τττ =


τφ

τω

τψ

=


lk(−ω2

2 +ω2
4 )

lk(−ω2
1 +ω2

3 )

∑
4
i=1 τMi

 , (3.10)

where l represents the length between the motor and the centre of mass of the quadcopter.

The Newton-Euler equations were used to describe the dynamics of the quadcopter, therefore, to

use the Newton-Euler equations, the quadcopter is assumed to be a rigid-body [10, 53, 54]. The

quadcopter’s forces include the force required to accelerate the quadcopter and the centrifugal force

acting on the quadcopter, which are required to equal the gravitational force and the total thrust force

[53, 54]. The Newton-Euler general equation is,

mV̇VV B + vvv× (mVVV Q) = RRRT GGG+TTT Q. (3.11)

In the fixed frame, a centrifugal force does not exist, therefore, the equation is reduced to [53,

54],

mξ̈ξξ = GGG+RRRTTT Q, (3.12)

and in its expanded form, it is [53],
ẍ

ÿ

z̈

= −


0

0

g

+
∑

4
i=1 kω2

i

m


CψSθCφ +SψSφ

SψSθCφ −CψSφ

CθCφ

 . (3.13)
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In the force diagram, the centrigual force is present. The angular acceleration of the quadcopter and

the gyroscopic forces are also present [53, 54]. Therefore, the Newton-Euler equation becomes,

Iv̇vv+ vvv× (Ivvv)+ΓΓΓ = τττ, (3.14)

and in its expanded form, it is [53],
φ̈

θ̈

ψ̈

= I−1

−


p

q

r

×


Ixx p

Iyyq

Izzr

− Ir


p

q

r

×


0

0

1

ωr + τ

 . (3.15)

3.3 ESTIMATION FILTER

In the case of the proposed project, the estimation filter will be used for position estimation. By

using an estimation filter, the overall system responsiveness and accuracy will improve.

3.3.1 Bayes filter

The Bayes filter is one of the main building blocks for developing an estimation filter. It is beneficial

to understand the probability theory of the Bayes filter before moving on to estimation filters, such as

the Kalman filter and the Particle filter. The belief state is defined as [16]

bel(xxxt) = p(xxxt |zzz1:t ,uuu1:t), (3.16)

where xxx is the current position, zzz is the observation and uuu the motion control. The Bayes rule is applied

to the belief state [16]

bel(xxxt) = np(zzzt |xxxt ,zzz1:t−1,uuu1:t)× p(xxxt |zzz1:t−1,uuu1:t). (3.17)

By using the Markov assumption, the belief state becomes [16]

bel(xxxt) = np(zzzt |xxxt)× p(xxxt |zzz1:t−1,uuu1:t). (3.18)

The law of total probability is then applied to transform the belief state to [16]

bel(xxxt) = np(zzzt |xxxt)×
∫

xxxt−1

p(xxxt |xxxt−1,zzz1:t−1,uuu1:t)p(xxxt−1|zzz1:t−1,uuu1:t)dxxxt−1. (3.19)

The Markov assumption is once again applied to transform the belief state into [16]

bel(xxxt) = np(zzzt |xxxt)×
∫

xxxt−1

p(xxxt |xxxt−1,uuut)p(xxxt−1|zzz1:t−1,uuu1:t)dxxxt−1. (3.20)
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The Bayes filter can be broken into two steps, namely: prediction step and correction step. The

prediction step can be written as [16]

¯bel(xxxt) =
∫

xxxt−1

p(xxxt |xxxt−1,uuut)p(xxxt−1|zzz1:t−1,uuu1:t−1)dxxxt−1, (3.21)

and the correction step is written as [16]

bel(xxxt) = np(zzzt |xxxt) ¯bel(xxxt). (3.22)

Two models are used to describe the position estimation, namely the motion model and the obser-

vation model. The motion model describes the belief state with regards to the previous state and the

external inputs (e.g. RC receiver). The motion model can be mathematically described by [16]

P(xxxt |xxxt−1,uuut). (3.23)

The observation model uses measurements (e.g. IMU, GPS, etcetera.) to update the belief state. The

observation model can be mathematically described by [16]

P(zzzt |xxxt). (3.24)

3.3.2 Kalman filter

A Kalman filter is a Bayes filter that is used for linear distributions. The Kalman filter assumes a

linear Gaussian distribution [16] and is a popular state estimator. The motion model (Xt+1) for the

Kalman filter can be calculated by [16]

Xt+1 = AtXt +Btut + εεε t , (3.25)

where At is a square matrix that represents a state with the absence of external inputs, Bt is a square

matrix that represents a state due to external inputs and εεε t represents additional noise. The observation

model (Zt) is calculated by [16]

Zt = CtXt +δδδ t , (3.26)

where Ct is a projection matrix and δδδ t represents the input measurement noise from sensors or image

processing. Observation noise is represented by Rt . The covariance matrix (Pt) is calculated by

[16]

Pt = AtPtAT
t +Rt . (3.27)

The next step is to calculate the Kalman gain. The Kalman gain indicates if the measured value or

the predicted measurement represents the actual value more accurately [16]. The Kalman gain is a
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value between zero and one. A Kalman gain of one indicates that the measured value depicts the actual

value more accurately [16]. The Kalman gain (Kt) can be calculated by [16]

Kt = PtCT
t [CtPtCT

t +Qt ]
−1. (3.28)

The Kalman gain is then used to update the estimated state by [16]

Xt+1 = Xt +Kt(Zt −CtXt). (3.29)

The covariance matrix (Pt) is also updated, using the Kalman gain [16]

Pt+1 = (I - KtCt)Pt . (3.30)

In the case of the quadcopter, the basic equation of motion is used in one-dimension is

xt = xt−1 + vt +
1
2

at∆T 2 (3.31)

where, xt represents the new position, xt−1 represents the previous position, vt represent the

measured velocity and at represents the measured acceleration. ∆T is 3 ms since the quadcopter takes a

sample every 3 ms. The same equation of motion will be used to estimate the position of the quadcopter

in the x and y axis. Therefore A, B and C equates to

A =

1 ∆T

0 1

 (3.32)

B =

1
2 ∆T

∆T

 (3.33)

Since only the position was required the C becomes

C =
[
1 0

]
(3.34)

The noise terms εεε and δδδ was assumed to be zero. The final motion model is

Xt+1 =

1 ∆T

0 1

Xt +

1
2 ∆T

∆T

 (3.35)

and observation model is

Zt =
[
1 0

]
Xt (3.36)
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3.4 FLIGHT CONTROLLER

This section describes the stability controller for the quadcopter and mathematically describes

the functions being used, based on the roll, pitch and yaw angles that are provided from the IMU

sensor. The altitude controller is described, based on the barometeric pressure sensor, and the position

controller is described according to the GPS and magnetometer. The altitude and position controller

also describe the involvement of the estimation filter. A number of flowcharts are featured in this

section to assist with the explanations.

3.4.1 Stability controller

To stabilise the frame of the quadcopter, a controller was required. The stability controller consists

of three parts, namely a proportional component, an integral component and the derivative component,

often known as a Proportional, Integral and Derivative (PID) controller [5, 10, 11, 12, 56]. The

proportional component consists of a proportional constant (Kp) and a calculated error (e(t)). In the

case of the quadcopter, the proportional constant (Kp) was a tunable parameter and the calculated error

(e(t)) was the difference between the IMU measured angle (roll, pitch and yaw) and the desired angle

of the quadcopter [11]. The proportional component was calculated as [12]

ControllerP = Kpe(t). (3.37)

The derivative component was used for a smooth response and was often used to prevent rapid

changes in motion. The derivative component consists of a derivative constant (KD) and the derivative

of the error (e(t)). In the case of the quadcopter, the derivative constant (KD) was a tunable parameter

and the derivative of the error (e(t)) was the difference between the previous IMU angle and the current

IMU angle [5, 11]. The derivative component was calculated as [12]

ControllerD = KD
∂e(t)

∂ t
. (3.38)

In some cases, a PD controller is sufficient; however, to increase stability an integral component

was added. The integral component consists of an integral constant (KI) and the integral of the error

(e(t)). In the case of the quadcopter, the integral constant (KI) was a tunable parameter and the integral

of the error (e(t)) is the accumulation of errors over a period of time [5, 11]. The integral component
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was calculated as [12]

ControllerI = KI

∫
e(t)dt. (3.39)

Therefore, the PID controller can be written as in its simplest form

PID =ControllerP +ControllerI +ControllerD. (3.40)

Equation (3.40) can be expanded and can be written as [11, 12]

PID = Kpe(t)+KI

∫
e(t)dt +KD

∂e(t)
∂ t

. (3.41)

Figure 3.4 shows a flowchart for the stability controller. The stability controller first retrieved the

gyroscope and accelerometer data from the IMU module. Each component of the PID controller was

then calculated in the next three steps. The PID controller was then computed for the roll, pitch and

yaw axes.

ControllerP =  
Kp (M - D)

ControllerI =  
ControllerI_PREV  + KI (M - D)

ControllerD =  
 KD( (M - D) - (MPREV - DPREV) )

Generate PIDPITCH, PIDROLL
and PIDYAW.

Let M, be the measured angle
from the IMU sensor 

and
let D, be the desired angle.

Repeat for roll, pitch and yaw.

Output PIDPITCH, PIDROLL
and PIDYAW.

Figure 3.4. PID algorithm for stability controller.

3.4.2 Altitude controller

The stability controller was used to stabilise the frame of the quadcopter; however, the stability

controller did not control the altitude of the quadcopter. The altitude controller made use of a barometer

sensor to measure the altitude of the quadcopter [11, 57]. A barometer sensor measures pressure

and the temperature to compute the altitude of the quadcopter. The MS5611 barometric sensor was

chosen because it operated between 3.3 - 5V [58] and had a resolution of 10 cm [58]. The MS5611

specifications produced high precision, which was favourable for this application. Table 3.2 shows the

factory calibration variables that was read from the barometer sensor.
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Table 3.2. Factory calibration of the barometer sensor [58].

Variables Description

C1 Pressure sensitivity

C2 Pressure offset

C3 Temperature coefficient of pressure sensitivity

C4 Temperature coefficient of pressure offset

C5 Reference temperature

C6 Temperature coefficient of the temperature

The variables found in Table 3.2 were further used to calculate the pressure at a given altitude.

The temperature reading and the pressure reading were represented by D1 and D2, respectively. The

difference between the digital temperature value and the reference temperature was calculated by

[58]

dT = D2−C5. (3.42)

The actual temperature was calculated by [58]

T EMP = 2000+dT
C6
28 . (3.43)

The offset at the actual temperature was then calculated by [58]

OFF = 216 ×C2+
C4×dT

27 . (3.44)

The sensitivity at the actual temperature was calculated by [58]

SENS = 215C1+
C3×dT

28 . (3.45)

Finally, the actual pressure was calculated by [58]

P =
D1×SENS

221 −OFF
215 . (3.46)

Equations (3.42)-(3.46) can be found in the MS5611 barometer sensor data sheet [58]. An issue

with the MS5611 barometric sensor was that it was sensitive to light; therefore, to mitigate this issue,

an enclosure was required. The designed enclosure had to prevent light from reaching the sensor, as

well as to have adequate airflow for the barometric sensor to measure the air pressure.

For the quadcopter to react in a timely manner the refresh rate of the quadcopter was required to

be 3 ms. However, the MS5611 sensor takes approximately 9.04 ms [58] to convert the pressure or
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temperature data after the data had been requested. This meant that to get temperature and pressure

readings it would have taken approximately 18.08 ms and the altitude could only be calculated

approximately every 5 cycles. It was noticed that the temperature did not change significantly as the

altitude increased; therefore, to increase the refresh rate from the barometer, a temperature reading was

taken only every 0.5 s. This increased the refresh rate dramatically and the actual altitude could be

computed approximately every 3 cycles. In every cycle the Kalman filter was used to predict a new

pressure value and to reduce noise from the barometer readings. In addition to off-loading some of the

controller calculations, the altitude controller calculated the pressure the quadcopter required to fly,

based on the desired height. By rearranging (2.15), the pressure can be calculated as

P = P0

 (5255×10−3)[
1− h

44.33×103

]
 . (3.47)

Once the altitude had been calculated, the altitude value was passed through a PID controller to allow

the quadcopter to maintain altitude [5, 10, 59]. The motors were manipulated by using (3.48)-(3.51)

[11, 10], with reference to Figure 3.2.

Motor1 = PWM−PIDPITCH +PIDROLL −PIDYAW +PIDALT ITUDE (3.48)

Motor2 = PWM+PIDPITCH +PIDROLL +PIDYAW +PIDALT ITUDE (3.49)

Motor3 = PWM+PIDPITCH +PIDROLL −PIDYAW +PIDALT ITUDE (3.50)

Motor4 = PWM−PIDPITCH −PIDROLL +PIDYAW +PIDALT ITUDE (3.51)

Figure 3.5 shows a flowchart of the quadcopter’s altitude controller.
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Store calibration
values.

Calculate pressure by
using temperature
and raw pressure.

Read raw pressure
data.

Read temperature. Update temperature
value. Request temperature.

Calculate
compensated

pressure.

NO

YESHad 0.5 s  passed since the last
temperature reading ?

Output final pressure.

Kalman filter

NO

YESHad 9 ms passed ? Request raw 
pressure data.

Request temperature
and pressure.

Figure 3.5. Altitude controller.

3.4.3 Position controller

The data from the GPS module and the accelerometer were combined to produce an accurate

distance estimation [60, 61, 62]. The data were combined by using the Kalman filter. The acceleration

data was used in the prediction step (3.25) and the latitude and longitude from the GPS module were

used in the update step (3.29) [60, 61, 62]. Table 3.3 shows the NMEA message structure being used

by the GPS module.
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Table 3.3. NMEA message structure [14].

NMEA message structure

$ The NMEA start character.

Talker ID

GP and GN if the message ID is RMC, GSA or GLL.

GL if the message ID is GSV.

GP if the message ID is other.

NMEA message ID NMEA message ID.

Data field Delimited by a comma ’,’

* End character of data field

Checksum

A hexadecimal number calculated by exclusive OR

of all characters between ’$’ and ’*’

<CR><LF> End character of NMEA message

The u-blox NEO M8N GPS module has a default baud rate of 9600 bps and a default refresh rate of

1 Hz [63]. The refresh rate of the GPS module was increased to 10 Hz and the baud rate was set to

57600 bps. Furthermore, the NMEA packet –GSV message ID was removed to reduce the size of the

NMEA output message. For the positon controller the latitude and longitude are required. The number

of satellites are also required to determine the accuracy of the GPS coordinates. Table 3.4 shows the

example of the GPS NMEA message output.

Table 3.4. Example of NMEA message structure [14].

NMEA message structure.

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

$GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41

$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33

$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*1

$GPVTG,309.62,T, ,M,0.13,N,0.2,K,A*23

Figure 3.6 shows the flowchart for the position controller.
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Get latitude and
longitude from GPS

module.

Use the GPS data in
for the Kalman filter 

update step.

Get accelerometer
data in the x and y

direction.

Use the
accelerometer data
for the Kalman filter

prediction step.

Output
position.

Figure 3.6. Position estimation controller.

3.4.3.1 Magnetometer

To determine that the direction the quadcopter is facing, a magnetometer is required. The magneto-

meter is used to detect the magnetic field on earth. The magnetometer can measure the strength of

the magnetic field in a three-dimensional space [64]. The magnetometer outputs an electrical voltage

that is related to the strength of the magnetic field. Figure 3.7 shows a two-dimensional representation

of how the magnetic north is calculated. The force of the magnetic field in the x direction and the

y direction are represented by MX and MY, respectively. If Y = 0 is assumed to be the front of the

quadcopter, then β represents the angle between the quadcopter and the magnetic north.

Y

X

Magnetic
north

MX

MY

β

Figure 3.7. Two dimensional representation of calculating the magnetic north.

The angle between the quadcopter and the magnetic north can be calculated by

β = arctan
(

MY
MX

)
. (3.52)

The issue with the magnetometer sensor is that it outputs an electrical voltage related to the magnetic

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://3.4.3.1


CHAPTER 3 METHODS

north; however, the GPS module output coordinates with respect to the geographic north. Figure 3.8

shows the magnetic north in red and the geographic north in blue.

Magnetic
north

Geographic
north

Figure 3.8. Angle difference between the magnetic north and the geographic north.

The representation shown in Figure 3.8, is a simple diagram and the difference between the magnetic

north and the geographic north is different across the world. Fortunately, a world magnetic model

exists [65] that provides the difference between the magnetic north and the geographic north. In South

Africa the difference is approximately -20◦ [65]. Figure 3.9 shows the way in which to calculate the

geographic north, where τ is the value found from the world magnetic map.

Y

X

Magnetic
north

MX

MY

β
Geographic

north

τ

Figure 3.9. Relationship between the magnetic north and the geographic north.

The geographic (g) north is mathematically calculated by

g = β − τ. (3.53)
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A rotational matrix is applied to the magnetometer outputs to compensate if the compass is tilted

during flight. The adjusted equations are represented by

XH = X cosθ +Y sinθ sinφ −Z cosθ sinφ (3.54)

and

YH = Y cosθ +Z sinθ , (3.55)

where the magnetometer outputs are represented by X, Y and Z. The pitch of the quadcopter is

represented by θ and the roll is represented by φ . The compensated azimuth can be calculated

by

Azimuth = arctan
(

YH

XH

)
, (3.56)

where, XH represents the earth’s magnetic field in the x-axis and YH represents the earth’s magnetic

field in the y-axis. However, by using only the earth’s horizontal magnetic field to calculate the heading,

an error in the heading will occur if the quadcopter is tilted (pitch and roll). To minimise this issue, the

roll(θ ) and pitch(φ ) from the gyroscope can be used [66].

The magnetometer sensor experiences some noise and therefore, the magnetometer sensor has to

be calibrated to improve the accuracy of the sensor. The magnetometer sensor noise consists of hard

iron noise and soft iron noise. Hard iron noise introduced by metals are difficult to magnetise but

stay magnetised for a long period of time [67, 64]. Soft iron noise introduced by metals are easy to

magnetise and do not stay magnetised for a long period of time [67, 64]. To reduce the noise, the

magnetometer sensor is rotated around the pitch and roll axes. The highest value and lowest value for

both the pitch (Xmin, Xmax) and roll (Ymin, Ymax) axes are recorded [68, 64]. The scaling factor is then

calculated by [64]

Xs f =
Ymax −Ymin

Xmax −Xmin
, (3.57)

and

Ys f =
Xmax −Xmin

Ymax −Ymin
. (3.58)

The offset values are then calculated by [64]

Xo f f = Xs f ×
Xmax −Xmin

2−Xmax
, (3.59)

and

Yo f f = Ys f ×
Ymax −Ymin

2−Ymax
. (3.60)

Finally, the calibrated values are calculated by [64]

XH = XH −Xo f f , (3.61)
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and

YH = YH −Yo f f . (3.62)

The final heading is calculated as [66]

Azimuth =



180◦−arctan(Yh
Xh
) Xh < 0

−arctan(Yh
Xh
) Xh > 0,Yh < 0

360◦−arctan(Yh
Xh
) Xh > 0,Yh > 0

90◦ Xh = 0,Yh < 0

270◦ Xh = 0,Yh > 0


. (3.63)

3.4.4 Propellers and battery compensation

The propeller selection is a crucial selection for any quadcopter. The most common type of propellers

being used, is a two-blade propeller. The advantages of a two-blade propeller are that it requires less

power to make a revolution and allows the quadcopter to maneuver faster in the air. The three-blade

propellers provide better stability for the quadcopter but sacrifices maneuverability. The three-blade

propeller improves stability, as it has one extra point of contact on the air when compared to the

two-blade propeller.

Another challenge to resolve is that the quadcopter usually reduces in performance as the LiPo

battery voltage reduces, therefore, a small compensation was necessary to allow the quadcopter to

perform the same, regardless of the battery voltage. The battery compensation was calculated as

throttle+= BCG× (Vmax −Vcurrent), (3.64)

where Vmax is the maximum possible battery voltage, Vcurrent is the current voltage of the battery and

BCG is a predefined battery compensation gain.

3.5 VISION SENSOR

The vision sensor chosen for the real-time image processing applications was a Caddx Ratel First-

Person View (FPV) camera. The Caddx Ratel camera was chosen for being lightweight and small in

size. The Caddx Ratel camera can operate in low light as well and has a FOV of 160◦. The Caddx

Ratel camera was also favourable, as it can be powered using, 5 V and has a low latency of 8 ms. A

summary of the specifications of the Caddx Ratel FPV is listed in Table 3.5.
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Table 3.5. Caddx Ratel FPV camera specifications.

Caddx Ratel FPV camera specifications

Sensor type CMOS

Horizontal resolution 1200 TVL

Lens 2.1 mm

Dimensions 19x19x19 mm

Weight 8 g

Voltage supply DC 5 - 40 V

Image 16:9 or 4:3

FOV 160 ◦

Latency 8 ms

Illumination 0.0001 Lux

The Caddx Ratel camera also provides a wide range of customisation that can be used for image

enhancing such as contrast, sharpness, color gain, day/night mode, brightness and exposure.

To measure the image distortion, the MSE, PSNR and SSIM measurements [29, 30] are used. The

MSE and PSNR are defined, respectively, as

MSE = 10log10

[
1

N ×N

N×N

∑
i=0

(Xi −Yi)
2

]
, (3.65)

and

PSNR = 10log10
(

2552

MSE

)
, (3.66)

where NxN represents the rectangle region and X and Y are the images. A lower MSE indicates that

the image has a small amount of distortion. Since the MSE is in the denominator of the PSNR equation,

a higher PSNR indicates a small amount of distortion in an image.

The SSIM measurement consists of three components, namely: luminance, contrast and similarity

[29, 30]. The luminance, contrast and similarity component are respectively calculated by,

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
, (3.67)

C(x,y) =
2σxσy +C2

σ2
x +µ2

y +C2
, (3.68)

S(x,y) =
σxy +C3

σxσy +C3
. (3.69)
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where x and y are the images, σ is the variance and µ is the mean. The SSIM equation is then calculated

by [29, 30]

SSIM = l(x,y)α ×C(x.y)β ×S(x.y)γ . (3.70)

where α , β and γ are used to adjust the importance of the each component. A SSIM value closer to 1

indicates that the image experiences a smaller amount of distortion.

3.6 TARGET DETECTION

The YOLO method is the state of the art, real-time method that is commonly used for target detection

[39, 40, 49, 50]. Figure 3.10 shows the flowchart of the YOLO method.

Get input image of
size (608, 608, 3).

Pass the input image
through the CNN.

Apply non-
suppression. Output final image.

Figure 3.10. Flowchart for the YOLO target detection.

3.6.1 YOLO network

The YOLO used an input image of (608,608,3). The input image was divided in 19x19 grid cells,

equating to 361 individual cells. The YOLO network consisted of 23 convolutional layers and 5 max

pooling layers. The YOLO network also used batch training; therefore, it was important to use batch

normalisation to maintain the distribution of the training data [49, 50]. Table 3.6 shows a summary of

the YOLO network.

Table 3.6. Summary of YOLO network

Input image size (608,608,3)

Number of convolutional layers 23

Number of pooling layers 5

As mentioned previously, the convolutional layers used an activation function [39, 40, 49, 50]. The

activation function being used in the YOLO network, was the leaky ReLU function. The leaky ReLU
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is a non-linear activation function and prevents the activation function from resulting to zero if the

input is less than zero [69, 70]. The leaky ReLU function is mathematically described by

f (y) =

 x, if x > 0.

ax, otherwise.

 , (3.71)

where a represents a scaling value. The leaky ReLU function is graphically depicted in Figure 3.11,

based on (3.71).

f(x)

x

Figure 3.11. Leaky ReLU function.

As mentioned previously, the YOLO network used max pooling layers [39, 40, 49, 50]. Figure

3.12 shows an example of max pooling with a stride of two and a window size of two. The different

coloured blocks represent the windows. In each window the max value was found and was represented

in the 2x2 block.

Figure 3.12. CNN architecture (Taken from [71], © 2018 IEEE.).

The YOLO algorithm uses max pooling with a stride size of 2 and a window size of 2.
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3.6.2 Non-suppression method

Once the input image had passed through the YOLO network, the output from the YOLO network

was passed through the non-suppression method to reduce the amount of bounding boxes. The first step

was to select a confidence level threshold (pc). Typically, pc is 0.5 and if the pc value was increased,

then some relevant bounding boxes would have been discarded and a too low pc value would retain

unnecessary boxes. Therefore, a pc value of 0.5 was used in the YOLO network. The bounding boxes

with a high confidence level were then kept and the bounding boxes with a small IoU were discarded

[39, 40, 49, 50]. Figure 3.13 shows an example of the IoU, where the grey section represents the

intersection between the green and yellow bounding box. The IoU in Figure 3.13 can be calculated

as

IoU =
x3 × y3

x1 × y1 + x2 × y2
. (3.72)

y1

y2

x2

x1

x3

y3

Figure 3.13. Intersection of union.

3.6.3 Colour classification

The first step for the colour classification algorithm was to segment the shirt and the pants of the

person detected. Once the target tracking algorithm had identified the person and placed a bounding

box around the person of interest, the upper body was assumed to be the top half of the bounding box

and the bottom half of the bounding box was assumed to be the lower body of the person of interest.

Once the upper and lower body had been segmented, the K-Means algorithm was used to classify
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the colours. The K-Means algorithm was set to have a maximum of three clusters. The biggest cluster

would determine the dominant colour in the top half of the image and the bottom half of the image. The

K-Means clusters contained a hex value of the colour. A set of predefined colours were set; however,

in many cases the predefined colours and the dominant colour did not match. To solve the problem, a k

Nearest Neighbour (k-NN) algorithm was used to find the closest predefined colour that matches the

dominant colour. Figure 3.14 is a flowchart for the colour detection algorithm.

Find dominant
colour for lower
body, using K-

means.

Find closest
colour, using k-

NN.

Find closest
colour, using k-

NN.

Output
upper body
dominant

colour.

Output
lower body
dominant

colour.

Person of
interest

segmented
image.

Segment upper
body and lower

body.

Find dominant
colour for upper
body, using K-

means.

Figure 3.14. Colour detection algorithm.
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3.6.4 Distance estimation

To measure the distance between a person or object, the bounding box area from the YOLO

algorithm was used. The area of the bounding box was calculated by

Area = (y2 − y1)× (x2 − x1) (3.73)

where (x1,y1) shows one corner of the bounding box and (x2,y2) shows the opposite corner. It can be

seen that a person with stretched out arms produced a massive change in the area of the bounding

box. Therefore it was easy to discard areas that had a huge increase in the area of the bounding box,

compared to the previous bounding box area.

3.7 COMMUNICATION

There are three main types of communications that are used on the quadcopter:

• Communication from the RC transmitter and the RC receiver,

• Communication from the quadcopter to the base stations,

• Communication from the base station to the quadcopter,

The quadcopter used the FlySky FS-T4B transmitter and receiver to allow the user to gain control

of the quadcopter as a fail-safe mechanism [11]. The RC transmitter was capable of performing yaw,

pitch, roll and throttle commands [11, 57]. The remaining types of communication were responsible

for the communication between the quadcopter and the base station. This was possible by using

the EACHINE TS5828L transmitter and the EACHINE ROTG01 receiver to send images from the

camera to the base station for further processing. To send flight commands from the base station to the

quadcopter, the HC-12 module was used [57]. Those communication devices were carefully chosen

to ensure that there were no overlapping frequency bands, as overlapping frequencies can distort the

signal and cause the quadcopter to experience unpredictable behaviour.

Figure 3.15 shows the low-level representation of the proposed system.
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IMU - Gyroscope and
Accelerometer

(MPU6050)

Barometer sensor
(MS5611)

Image Processing
(Laptop)

Compass
(HMC588L)

GPS Module
(Ublox m8n)

Stability
controller

Altitude 
controller

Position
controller

Communications
(HC-12 + 
EACHINE
ROTG01)

Base station
communication

(HC-12 + EACHINE
TS5828L)

Motor 1

Motor 2

Motor 3

Motor 4

Camera

Flight
Controller(STM32)

RC Receiver
(Flysky IA6B)

RC Transmitter
(Flysky FS-T4B)

IMU - Gyroscope and
Accelerometer

(MPU6050)

Camera

Image Processing
(Laptop)

RC Transmitter
(Flysky FS-T4B)

IMU - Gyroscope
and Accelerometer

(MPU6050)

Camera

Image Processing
(Laptop)

RC Transmitter
(Flysky FS-T4B)

Compass
(HMC588L)

Figure 3.15. Low-level representation of the proposed system.

3.8 CHAPTER SUMMARY

This chapter dealt with the design and implementation of the quadcopter and the real-time image

processing system. A high-level representation of the system was provided and each component

function was described. The stability, position and altitude controllers were designed, implemented

and described in detail with references to the appropriate sensor data. This chapter also discussed the

advantages and disadvantages of the multi-blade propellers and the effects of the available battery

power on the quadcopter performance. The real-time image processing algorithm being used, was

not implemented from first principles; however, the working principles were discussed extensively.

Finally, the communication system was discussed and the low-level representation of the system was

provided.
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CHAPTER 4 RESULTS AND DISCUSSION

4.1 CHAPTER OVERVIEW

This chapter presents the final quadcopter, discusses the test procedure and examine the results

based on the outcome. This chapter was divided into four main sections. In Section 4.2, the physical

built quadcopter is shown. In Section 4.3 the results from the flight controller is presented. This

includes results for the quadcopter using the two-blade propellers, as well as three-blade propellers.

Furthermore, the position and rotational estimation results are presented in Section 4.3.

In Section 4.4, the image processing results are presented, this includes the colour classification,

distance estimation and image distortion tests. The image quality using the two-blade and three-blade

propellers are compared in Section 4.4. Finally, in Section 4.5, the person following system is presented.

4.2 QUADCOPTER PLATFORM

Figure 4.1 shows the Caddx camera that was mounted on the quadcopter to capture images from the

quadcopter.

Figure 4.1. Vision sensor- Ratel FPV Caddx camera.
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Figure 4.2 shows an image of the quadcopter fully-assembled. The results made use of the two-blade

and three-blade propellers.

Figure 4.2. The assembly of the quadcopter.

Table 4.1 lists the components used on the quadcopter and Figure 4.3 shows the top view of

the quadcopter. The IMU sensor (MPU6050) was chosen to be placed close to the middle of the

quadcopter in order to get the most accurate pitch and roll angle of the quadcopter. The barometric

sensor (MS5611) was placed higher than the propellers to prevent unnecessary interference from the

propellers. The battery was chosen to be placed at the bottom of the quadcopter and closer to the

centre of gravity, to prevent unnecessary imbalances. The camera was chosen to be placed in the front

quadcopter and underneath a 3D printed plate to prevent the camera images from being saturated from

the sun’s glare. A step-down regulator was used to reduce the 7.4 V LiPo battery to 5 V to power

the electronic components on the board. The rest of the components were placed to keep the design

compact. Furthermore, to reduce the vibrations on the quadcopter frame four earplugs were placed

between the quadcopter’s frame and the flight controller board. Many different vibration damping

techniques exist; however, the earplugs were easily accessible and reduced the vibrations.
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Figure 4.3. Sensors on the quadcopter.

Table 4.1. Component list on the quadcopter.

Colour Component

Brown square GPS M8N + HMC588L compass + Barometer MS5611

Yellow square HC-12 wireless communication

Green square IMU MPU6050

Red square STM32F103C8T6

Blue square Transceiver

Purple square RC receiver

Grey square Step-down voltage

Blue arrow 3s 3300mAh LiPo battery

Red arrow Ratel FPV Caddx camera
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4.3 FLIGHT CONTROLLER

The stability controller results were recorded by measuring the angle response of the quadcopter,

by introducing a pitch or roll angle. The performance of the stability controller was measured by

evaluating or calculating the peak angle, peak time, settling time, rise time and setting angle.

The position controller results were recorded by measuring the angle response of the quadcopter by

setting a position of the quadcopter, based on latitude and longitude coordinates and by measuring how

the quadcopter corrects itself in the air to maintain the desired position. The position estimation was

also evaluated by moving the quadcopter to a number of positions and the Euclidean distance error

was recorded.

The altitude controller results were recorded in a similar fashion as for the position controller.

The height was indirectly set by pressure. The altitude controller’s performance was measured by

measuring how the quadcopter corrects its height in the air in order to maintain the desired height.

4.3.1 PID basic simulation

Figure 4.4 represents a simulation of a basic PID response in python. The blue graph represents the

unit step and the yellow graph represents the PID response.

Figure 4.4. PID basic simulation.
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4.3.2 PID tuning

The PID controllers initially used the PID gains found in [57], which can be seen in Table 4.2; however,

the PID gains found in [57] were not adequate to produce a stable flight controller.

Table 4.2. PID gains from [57].

Kp KI KD

Pitch 8.5 0 4

Roll 8.5 0 4

Yaw 14 0 10

Altitude 40 18 12

The stability controller gains found in [56], were then used, as shown in Table 4.3. The stability

controller gains used in Table 4.3 did not work perfectly; however, it had a better response compared

to [57]. Therefore, the stability controller gains used in [56], were used as a reference point.

Table 4.3. PID gains from [56].

Kp KI KD

Pitch 0.7 0.15 0.035

Roll 0.75 0.20 0.040

Yaw 3.0 0.00 0.00

Once the reference point for the stability controller had been established, the stability controllers were

further improved on a trial and error procedure and based on the stability controller response.

The P gain was first tuned until the quadcopter frame started to overcompensate for the correction

angle errors of the quadcopter. Once the overcompensated value had been found, the P gain was

reduced until the quadcopter had a decent response. The D gain was then tuned and with an

adequate D gain it was possible to safely fly the quadcopter at a higher altitude. The I gain was

finally tuned for minor improvements to the stability controllers’ performance. The altitude and

position controller followed the same procedure. This procedure was then used for both propeller set-up.
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4.3.3 Estimation Kalman filter

This test compared the pitch angle of the quadcopter when the Kalman filter was being used. as well

as when the Kalman filter was not being used. In this test the quadcopter was placed on a flat surface

and the pitch and roll of the quadcopter was recorded. The blue graphs show the variance of the twenty

tests and the red graph shows the average of the twenty tests. Figure 4.5(a) and Figure 4.6(a) show the

raw response from the quadcopter. Figure 4.5(b) and Figure 4.6(b) reflect the filtered response from

the quadcopter.

Table 4.4 shows the Mean Absolute Error (MAE) of the pitch and roll angle.

Table 4.4. Pitch and roll mean absolute error.

MAE Raw angle (◦) Filtered angle (◦)

Pitch 0.821 0.076

Roll 0.653 0.049

(a) Raw sensor pitch data. The blue graphs show the variance of the twenty tests and the red graph shows the

average of the twenty tests.
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(b) Kalman filtered pitch angle. The blue graphs show the variance of the twenty tests and the red graph

shows the average of the twenty tests.

Figure 4.5. Raw sensor pitch data vs. Kalman filtered pitch angle estimation.

(a) Raw sensor roll data. The blue graphs show the variance of the twenty tests and the red graph shows the

average of the twenty tests.
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(b) Kalman filtered roll angle. The blue graphs show the variance of the twenty tests and the red graph shows

the average of the twenty tests.

Figure 4.6. Raw sensor roll data vs. Kalman filtered roll angle estimation.

It was concluded that the Kalman filter would suffice for the quadcopter, as it made a huge

improvement to the quadcopter’s pitch and roll angle and was also less computationally expensive to

other estimation filtering methods, such as the particle filter.

4.3.4 Two-blade propellers

The stability controller proportional gain (P) was set to 0.92, the integral gain (I) was set to 0.04 and

the derivative gain (D) was set to 16.5. The position controller proportional gain (P) was set to 2.8,

the integral gain (I) was set to 0.01 and the derivative gain (D) was set to 4.2. The altitude controller

proportional gain (P) was set to 1.1, the integral gain (I) was set to 0.2 and the derivative gain (D)

was set to 0.95. Table 4.5 summarises the PID gains being used for the stability, position and altitude

controllers.
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Table 4.5. PID gains for the two-blade propellers.

Two-Blade propellers

Stability controller Position controller Altitude controller

Proportional gain (P) 0.92 2.8 1.1

Integral gain (I) 0.04 0.01 0.2

Derivative gain (D) 16.5 4.2 0.95

4.3.4.1 Stability controller

Figure 4.7 shows the pitch angle correction response of the quadcopter. The test was repeated twenty

times and the variance is illustrated by twenty blue graphs. In this tests, the quadcopter was disturbed

by a negative pitch angle. The average of the twenty tests is represented by the red graph. The results

of the average forward pitch angle correction response can be seen in Table 4.6.

Figure 4.7. Pitch forward correction angle response without position mode activated. The blue graphs

show the variance of the twenty tests and the red graph shows the average of the twenty tests.
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Table 4.6. Characteristics of pitch forward correction angle response without position mode activated

graph.

Peak angle (◦) 0.3

Peak time (s) 2.1

Settling time (s) 1.8

Rise time (s) 0.7

Settling angle (◦) 0.2

Figure 4.8 shows the pitch angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a positive pitch angle in this test. The test was repeated twenty times and the variance

is illustrated by twenty blue graphs. The average of the twenty tests is represented by the red graph.

The results of the average backward pitch angle correction response can be seen in Table 4.7.

Figure 4.8. Pitch backward correction angle response without position mode activated. The blue

graphs show the variance of the twenty tests and the red graph shows the average of the twenty tests.
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Table 4.7. Characteristics of pitch backward correction angle response without position mode activated

graph.

Peak angle (◦) -7.2

Peak time (s) 1.39

Settling time (s) 2.3

Rise time (s) 0.75

Settling angle (◦) 0.192

Figure 4.9 shows the roll angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a negative roll angle. The test was repeated twenty times and the variance is illustrated

by twenty blue graphs. The average of the twenty tests is represented by the red graph. The results of

the average left roll angle correction response can be seen in Table 4.8.

Figure 4.9. Roll left correction angle response without position mode activated. The blue graphs show

the variance of the twenty tests and the red graph shows the average of the twenty tests.
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Table 4.8. Characteristics of roll left correction angle response without position mode activated graph.

Peak angle (◦) 8.21

Peak time (s) 1.75

Settling time (s) 2.5

Rise time (s) 0.73

Settling angle (◦) 0.3

Figure 4.10 shows the roll angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a positive roll angle. The test was repeated twenty times and the variance is illustrated

by twenty blue graphs. The average of the twenty tests is represented by the red graph. The results of

the average right roll angle correction response can be seen in Table 4.9.

Figure 4.10. Roll right correction angle response without position mode activated. The blue graphs

show the variance of the twenty tests and the red graph shows the average of the twenty tests.
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Table 4.9. Characteristics of roll right correction angle response without position mode activated

graph.

Peak angle (◦) -10.2

Peak time (s) 1.8

Settling time (s) 3.1

Rise time (s) 0.79

Settling angle (◦) -0.2

4.3.4.2 Position controller

In this test, the position hold controller was activated at a set position with no physical disturbances.

The roll and pitch angle correction response was then recorded and is represented by Figure 4.11. The

test was repeated twenty times and the variance is illustrated by twenty blue graphs. The average of the

twenty tests is represented by the red graph. The results of the average pitch and roll angle correction

response can be seen in Table 4.10.

(a) Pitch angle correction response with position hold activated. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.
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CHAPTER 4 RESULTS AND DISCUSSION

(b) Roll angle correction response with position hold activated. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.

Figure 4.11. Pitch and roll angle correction response with position mode activated.

Table 4.10. Characteristics of position hold response.

Error (◦)

Min Max

Pitch -1.11 0.62

Roll -1.2 0.78

Figure 4.12 represents the roll and pitch angle correction response for the position controller. The

position hold controller was activated. The quadcopter was physically pulled away from the set position.

The test was repeated twenty times and the variance is illustrated by twenty blue graphs. The average

of the twenty tests is represented by the red graph. The results of the average pitch and roll angle

correction response can be seen in Table 4.11.
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CHAPTER 4 RESULTS AND DISCUSSION

(a) Pitch angle correction response with position hold activated. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.

(b) Roll angle correction response with position hold activated. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.

Figure 4.12. Pitch and roll angle correction response with position mode activated.
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CHAPTER 4 RESULTS AND DISCUSSION

Table 4.11. Characteristics of position hold response.

Degrees (◦)

Peak pitch angle -5.3

Peak roll angle -5.9

Pitch angle error (-1.3, 0)

Roll angle error (-1.58, 0)

4.3.4.3 Altitude controller

The quadcopter was vertically transitioned and was instructed to hold the altitude. Figure 4.13

represents the output pressure of the altitude controller response when the quadcopter was set to hold

the current altitude. The altitude hold test was repeated twenty times and the variance is represented

by the blue graphs and the average of the twenty repeated tests is represented by the red graph. The

results of the average altitude response can be seen in Table 4.12.

Figure 4.13. Pressure readings from the altitude controller. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.
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CHAPTER 4 RESULTS AND DISCUSSION

Table 4.12. Characteristics of the altitude hold response.

Set altitude 86879.2 mbar

Altitude error (-1.1, 0.5) mbar

In this test the quadcopter was vertically transitioned and was instructed to hold the altitude.

Figure 4.14 represents the output pressure of the altitude controller response when the quadcopter was

physically pushed away from the set altitude. This test was repeated twenty times and the variance is

represented by the blue graphs and the average of the twenty repeated tests is represented by the red

graph. The results of the average altitude response can be seen in Table 4.13.

Figure 4.14. Pressure readings from the altitude controller. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.
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Table 4.13. Characteristics of the altitude hold response.

Set altitude 86881.52 mbar

Settling time 5s

Altitude error 0.61 mbar

4.3.5 Three-blade propellers

The stability controller proportional gain (P) was set to 1.5, the integral gain (I) was set to 0.01 and

the derivative gain (D) was set to 8.0. The position controller proportional gain (P) was set to 2.9,

the integral gain (I) was set to 0.00 and the derivative gain (D) was set to 3.0. The altitude controller

proportional gain (P) was set to 1.5, the integral gain (I) was set to 0.12 and the derivative gain (D) was

set to 0.5. Table 4.14 contains a list of the PID gains being used for the stability, position and altitude

controllers.

Table 4.14. PID gains for the three-blade propellers.

Three-blade propellers

Stability controller Position controller Altitude controller

Proportional gain (P) 1.5 2.9 1.5

Integral gain (I) 0.01 0.00 0.12

Derivative gain (D) 8.0 3.0 0.5

4.3.5.1 Stability controller

Figure 4.15 shows the pitch angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a negative pitch angle. The test was repeated twenty times and the variance is

illustrated by twenty blue graphs. The average of the twenty tests is represented by the red graph. The

results of the average forward pitch angle correction response can be seen in Table 4.15.
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CHAPTER 4 RESULTS AND DISCUSSION

Figure 4.15. Pitch forward correction angle response without position mode activated. The blue graphs

show the variance of the twenty tests and the red graph shows the average of the twenty tests.

Table 4.15. Characteristics of pitch forward correction angle response without position mode activated

graph.

Peak angle (◦) 8.2

Peak time (s) 1.81

Settling time (s) 3.1

Rise time (s) 1.1

Settling angle (◦) 0.21

Figure 4.16 shows the pitch angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a positive pitch angle. The test was repeated twenty times and the variance is

illustrated by twenty blue graphs. The average of the twenty tests is represented by the red graph. The

results of the average backward pitch angle correction response can be seen in Table 4.16.
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Figure 4.16. Pitch backward correction angle response without position mode activated. The blue

graphs show the variance of the twenty tests and the red graph shows the average of the twenty tests.

Table 4.16. Characteristics of pitch backward correction angle response without position mode

activated graph.

Peak angle (◦) -5.5

Peak time (s) 2.0

Settling time (s) 2.7

Rise time (s) 0.95

Settling angle (◦) -0.59

Figure 4.17 shows the roll angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a negative roll angle. The test was repeated twenty times and the variance is illustrated
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CHAPTER 4 RESULTS AND DISCUSSION

by twenty blue graphs. The average of the twenty tests is represented by the red graph. The results of

the average left roll angle correction response can be seen in Table 4.17.

Figure 4.17. Roll left correction angle response without position mode activated. The blue graphs

show the variance of the twenty tests and the red graph shows the average of the twenty tests.

Table 4.17. Characteristics of roll left correction angle response without position mode activated

graph.

Peak angle (◦) 6.1

Peak time (s) 1.4

Settling time (s) 2.9

Rise time (s) 1.1

Settling angle (◦) 1.3
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Figure 4.18 shows the roll angle correction response of the quadcopter. In this tests, the quadcopter

was disturbed by a positive roll angle. The test was repeated twenty times and the variance is illustrated

by twenty blue graphs. The average of the twenty tests is represented by the red graph. The results of

the average right roll angle correction response can be seen in Table 4.18.

Figure 4.18. Roll right correction angle response without position mode activated. The blue graphs

show the variance of the twenty tests and the red graph shows the average of the twenty tests.

Table 4.18. Characteristics of roll right correction angle response without position mode activated

graph.

Peak angle (◦) -7.5

Peak time (s) 2.0

Settling time (s) 3.05

Rise time (s) 0.95

Settling angle (◦) -1.0
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4.3.5.2 Position controller

Figure 4.19 represents the roll and pitch angle correction response for the position controller. The

test was repeated twenty times and the variance is illustrated by twenty blue graphs. The average of the

twenty tests is represented by the red graph. The results of the average pitch and roll angle correction

response can be seen in Table 4.19.

(a) Pitch angle correction response with position hold activated. The blue graphs show the variance

of the twenty tests and the red graph shows the average of the twenty tests.

Table 4.19. Characteristics of position hold response.

Error (◦)

Min Max

Pitch -0152 0.291

Roll -0.35 0.44
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(b) Roll angle correction response with position hold activated. The blue graphs show the variance

of the twenty tests and the red graph shows the average of the twenty tests.

Figure 4.19. Pitch and roll angle correction response with position mode activated.

Figure 4.20 represents the roll and pitch angle correction response for the position controller. The

position hold controller was activated. The quadcopter was physically pulled away from the set position.

The test was repeated twenty times and the variance is illustrated by twenty blue graphs. The average

of the twenty tests is represented by the red graph. The results of the average pitch and roll angle

correction response can be seen in Table 4.20.
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CHAPTER 4 RESULTS AND DISCUSSION

(a) Pitch angle correction response with position hold activated. The blue graphs show

the variance of the twenty tests and the red graph shows the average of the twenty tests.

(b) Roll angle correction response with position hold activated. The blue graphs show

the variance of the twenty tests and the red graph shows the average of the twenty tests.

Figure 4.20. Pitch and roll angle correction response with position mode activated.
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The important results are tabulated in Table 4.20.

Table 4.20. Characteristics of position hold response.

Degrees (◦)

Peak pitch angle -5.5

Peak roll angle -9.1

Pitch angle error (-0.35, 0.1)

Roll angle error (-0.2, 0.15)

4.3.5.3 Altitude controller

The quadcopter was vertically transitioned and was instructed to hold the altitude. Figure 4.21

represents the output pressure of the altitude controller response when the quadcopter was set to hold

the current altitude. The altitude hold test was repeated twenty times and the variance is represented

by the blue graphs and the average of the twenty repeated tests is represented by the red graph. The

results of the average altitude response can be seen in Table 4.21.

Figure 4.21. Pressure readings from the Altitude controller. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.
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Table 4.21. Characteristics of the altitude hold response.

Set altitude 86885 mbar

Altitude error (-0.5, 0.3) mbar

In this test the quadcopter was vertically transitioned and was instructed to hold the altitude.

Figure 4.22 represents the output pressure of the altitude controller response when the quadcopter was

physically pushed away from the set altitude. This test was repeated twenty times and the variance is

represented by the blue graphs and the average of the twenty repeated tests is represented by the red

graph. The results of the average altitude response can be seen in Table 4.22.

Figure 4.22. Pressure readings from the altitude controller. The blue graphs show the variance of the

twenty tests and the red graph shows the average of the twenty tests.

The important results are tabulated in Table 4.22.
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Table 4.22. Characteristics of the altitude hold response.

Set altitude 86878.14 mbar

Settling time 6.85

Altitude error 0.40 mbar

4.3.6 Position estimation

Figure 4.23 shows the results of the position estimation experiment. The quadcopter’s point of

reference was set at position (1, 1, 1). The quadcopter was set to move 3 m forward and increase

its altitude by 1 m. That was followed by 3 m to the right and decrease the quadcopter’s altitude by

1 m. Lastly, the quadcopter was instructed to move 3 m backwards and decrease the quadcopter’s

altitude by 0.5 m. The actual position from the reference point is shown by using the green dot and

were marked with landmarks before the experiment could commence. The grey dots show the position

estimate across multiple tests and the coloured dots shows the average of the multiple tests. The

blue dot represents the quadcopter’s estimated position at position (1, 1, 1). The red dot represents

the quadcopter’s estimated position at position (1, 4, 2). The yellow dot represents the quadcopter’s

estimated position at position (4, 4, 0.5). The purple dot represents the quadcopters estimated position

at position (4, 1, 1.5).

Figure 4.23. Position estimation. Grey dots represent the hundred tests and the coloured dots represent

the average of the hundred dots.
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The Euclidean error between the actual error and the estimated error was recorded in Table 4.23. The

Euclidean error was calculated by

e =
√

(x− xestimation)2 +(y− yestimation)2 +(z− zestimation)2, (4.1)

where e represents the Euclidean error. The average error was calculated to be 0.54 m from the actual

position.

Table 4.23. Average Euclidean error of the position estimation.

Actual position (x,y) Average estimate position (x,y) Average Euclidean error (m)

(1, 1, 1) (1.21, 0.74, 0.91) 0.34

(1, 4, 2) (0.75, 3.61, 1.94) 0.47

(4, 4, 0.5) (3.51, 3.19, 0.46) 0.94

(4, 1, 1.5) (4.07, 0.37, 1.55) 0.63

Figure 4.24 shows the position estimation error over twelve minutes as the quadcopter was moving

to various positions. During the first 2.5 minutes (purple oval) the quadcopter had an error between 0.1

m and 0.6 m. During the next 5 minutes (red oval) the quadcopter had an error between 0.6 m and 1.1

m. Finally, during the last 3.5 minutes (green oval) the quadcopter had an error between 0.4 m and 0.7

m.

It was noticed that the quadcopter experienced a higher error when it only received six GPS satellites,

as shown in the red oval. However, when the quadcopter received more than eight satellites, its position

estimation error reduced, as shown in the purple and green ovals.

Figure 4.24. Position estimation Euclidean error over time.
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Figure 4.25 shows the relationship between the standard deviation and the number of satellites

being used for the position estimation algorithm. It can be seen that the standard deviation starts around

2.5 m when only 8 satellites are used and reduces to 0.5 m when 12 satellites are used.

Figure 4.25. Standard deviation vs. number of satellites.

A video of a waypoint test with the quadcopter can be seen at this link.

4.3.7 Rotational estimation

To test the rotation ability of the quadcopter, it was instructed to perform multiple rotational tests when

facing 0◦. Once the quadcopter had completed the required rotation test, the quadcopter was landed

and the change in angle was measured. The rotational estimation test included 30◦, 90◦, -45◦, -90◦ and

180◦ tests and measurements. Each test was repeated twenty times and an average estimated rotation

angle was calculated. Table 4.24 shows the results found in the rotational estimation test.
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Table 4.24. Rotational angle estimation test results.

Instructed rotation (◦) Average estimated rotation angle (◦) Average rotation angle (◦)

30 33 3

90 94 4

-45 -49 4

-90 -88 2

180 177 3

Total estimated error (◦) 3.2

4.3.8 Propeller and controller comparison

4.3.8.1 Stability controller

When comparing the PID gains in Table 4.5 and Table 4.14, it was noticed that the three-blade

propellers require lower gain settings compared to the two-blade propellers. The lower gains conform

to the literature, as the three-blade propellers have three points of contact with the air, whereas the

two-blade propellers only have two points of contact with the air. The extra point of contact helps to

improve the balance of the quadcopter and ultimately results in only a smaller correction required

to keep the quadcopter stable in the air. It was noticed that the three-blade propellers experienced

a lower overall peak angle; however, the rise time was longer for the three-blade propellers. The

percentage overshoot of the three-blade propellers was found to be lower, compared to the two-blade

propellers. This conforms with the literature, as the three-blade propellers required less correction

for the quadcopter to be stable; however, the response time was longer as opposed to the two-blade

propellers.

From previous papers, [11] and [56] achieved an equal roll and pitch error of approximately 0◦

to 3◦ error and ± 4◦, respectively. The stability controller with the two-blade propellers used in this

project, achieved a maximum error of between -1.58◦ and 0.78◦. The stability controller with the

three-blade propellers used in this project achieved a maximum error of between -0.35◦ and 0.44◦. It

can be noted regarding the stability controller with the two-blade propellers, the error was similar to

[11] and it provided a better accuracy compared to the stability controller in [56]. It was also seen

that the stability controller performed better with the three-blade propellers than with the two-blade
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propellers. The settling time for the quadcopter built with the two-blade propellers was slightly faster

to the settling time found in [57]. However, the settling time using the three-blade propellers was

approximately 3 s, which is slightly slower compared to [57]. This was expected, since the three-blade

propellers have a slower response time, as opposed to the two-blade propellers.

4.3.8.2 Position controller

The comparison between the position controllers shows that the two-blade position controller

performed reasonably well. However, the controller had indeed made various corrections for the

quadcopter to maintain the desired position. The three-blade position controller performed better than

the two-blade position controller, as the error in the roll and pitch angle was considerably lower than

the two-blade roll and pitch angle error. It can be seen that both the two-blade position controller and

the three-blade position controller were able to move back to the desired position when the quadcopter

was physically moved away from it’s desired position. The three-blade propeller performed better

than the two-blade propeller, as the error in the roll and pitch angle were considerably lower than the

two-blade roll and pitch angle error. The results confirm that the three-blade propellers provide a better

position controller.

In comparison to results presented in [11], it can be seen that the quadcopter experienced an overall

variation in the horizontal and vertical direction between 0.3048 m and 0.6096 m. This result is an

Euclidean error of approximately 0.43 m to 1.54 m. The results from the quadcopter presented herein

have a slightly better position estimation in some cases, compared to [11], with an Euclidean error

between 0.39 m and 0.83 m. It was found that the yaw average error by the developed system was 3.2◦,

similar to the average error of 3.4◦ found in [72].

4.3.8.3 Altitude controller

The altitude controllers for both the two-blade propellers and the three-blade propellers performed

similarly. The three-blade propellers had slightly better results than the two-blade propellers. The

two-blade propellers did, however, have a faster response time, as opposed to the three-blade

propellers.

The findings also proved that by using the combination of the stability, position and altitude

controller it was possible to implement a quadcopter that can be used for real-time image processing
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applications. The two-blade propellers achieved a settling time of 5 s and the three-blade propellers

achieved a settling time of 6.85 s. The two-blade propellers had a faster settling time than the results

that had been achieved in research paper [57] with a settling time of 6.34 s; however, the three-blade

propellers was closer to the results found in research paper [57].

The stability, position and altitude controller performance can be summarised in the two main points:

The three-blade propeller has a longer response time and it also has a lower percentage overshoot.

By evaluating the results, it can be noted that the three-blade propeller, in combination with

well-tuned controllers, was the better choice for the overall performance, in comparison to a two-blade

propeller system. The three-blade propeller system was better suited for a real-time image processing

application, using a quadcopter. The findings show that the more the points of contact with the air, the

better the overall performance of the quadcopter.

4.4 IMAGE PROCESSING

As previously mentioned, the real-time image processing was not implemented from first principles.

The model available from the official YOLO website [73] was used. The YOLOv2 network was

processed on a laptop with an Nvidia GTX 1050 4GB GPU. The YOLOv2 algorithm could

successfully detect items in the image, such as chairs and people. The YOLOv2 algorithm could

process an image within 0.7 s and the Caddx Ratel camera had a latwentycy of 8 ms. Therefore, the

overall time to capture an image, send the image to the base station and process the image was 0.7008 s.

4.4.1 Two-blade propellers

Figure 4.26(a) - (f) represent images from the quadcopter after the images had been processed by

the YOLOv2 algorithm. The altitude hold and position hold controller were activated in Figure 4.26(a).

Figure 4.26(b) represents the image from the quadcopter when the quadcopter was instructed to move

to a new position. Figure 4.26(c) - (e) show the quadcopter moving to it’s new position and stabilising

itself to maintain the new desired position. Figure 4.26(f) represents the quadcopter when it has settled

in the new desired position. It was also noticed in Figure 4.26(a) - (f), that the Caddx Ratel camera did

experience very little of the jello effect.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.26. Image processing on images from the Caddx Ratel camera, using two-blade propellers.

4.4.2 Three-blade propellers

Figure 4.27(a) - (e) represent images from the quadcopter after the images have been processed by

the YOLOv2 algorithm. The altitude hold and position hold controller were activated in Figure 4.27(a).
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Figure 4.27(b) represents the image from the quadcopter when the quadcopter was instructed to move

to a new position. Figure 4.27(c) and Figure 4.27(d) show the quadcopter moving to the new position

and stabilising itself to maintain the new desired position. Figure 4.27(e) represents the quadcopter

when it has settled in the new desired position. It was also noticed in Figure 4.27(a) - (e), that the

Caddx Ratel camera did experienced very little of the jello effect.

(a) (b)

(c) (d)

(e)

Figure 4.27. Image processing on images from the Caddx Ratel camera, using three-blade propellers.
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It can also be seen that the images being captured while using the three-blade propeller, are more

crisp compared to the two-blade propeller images. The three-blade propellers provide a more stable

flight, resulting in a better quality of images for the YOLOv2 algorithm.

4.4.3 Colour classification test

This test presents the colour classification results. The colours associated with the persons’ shirts

and pants can be seen above the detected person. Furthermore, the font colour used, was the same

colour as the colour classified. Figure 4.28(a) - (e) show the results from the images being captured

from the Caddx Ratel camera and processed on the base station.

(a)

It can be seen that the colour classification algorithm was able to classify the colour of the shirts

and pants correctly.
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(b)

(c)

Figure 4.28. Colour detection results.
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4.4.4 Distance estimation test

This test presents the distance estimation results. The distance test was conducted at 3 m, 4 m

and 5 m from the quadcopter. Figure 4.29(a) - (c) show the results when the person was facing the

quadcopter at a distance of 5 m, 4 m and 3 m, respectively. Figure 4.30(a) show the result when the

person was not facing the quadcopter and Figure 4.30(b) show the result when a person stretches out

his/her hands.

(a) Estimated distance = 4.97 m, Actual distance = 5 m.

(b) Estimated distance = 4.37 m, Actual distance = 4 m.
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(c) Estimated distance = 3.1 m, Actual distance = 3 m.

Figure 4.29. Distance estimation results (Person’s actual height = 1.75 m).

(a) Person not facing the quadcopter directly. Estimated distance = 4.41 m,

Actual distance = 4 m.
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(b) Image discarded.

Figure 4.30. Possible distance estimation abnormalities (Person’s actual height = 1.6 m).

Figure 4.31(a) - (c) show a similar distance estimation test performed with a shorter person. Figure

4.32(a) - (b) show the distance abnormalities for a shorter person.

(a) Estimated distance = 4.7 m, Actual distance = 5 m.
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(b) Estimated distance = 4.17 m, Actual distance = 4 m.

(c) Estimated distance = 3.3 m, Actual distance = 3 m.

Figure 4.31. Distance estimation results (Person’s actual height = 1.6 m).
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(a) Person not facing the quadcopter directly. Estimated distance =

3.49 m, Actual distance = 3 m.

(b) Image discarded.

Figure 4.32. Possible distance estimation abnormalities (Person’s actual height = 1.6 m).

It was found that when the person was not directly facing the quadcopter the distance estimation

algorithm introduced error. However, it provided a distance estimation still worth using. It could

be seen that when a person would stretch out his/her arms, the algorithm successfully discarded the
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result. After performing twenty distance estimation tests with a shorter and taller person, the standard

deviation was between 0.3 m and 0.33 m. Table 4.25 shows a summary of the twenty tests performed

with a shorter and taller person.

Table 4.25. Summary of the twenty distance estimation tests.

Actual distance (m) 5m 4m 3m Average estimated error (m)

Taller person (1.75m) 4.79 4.39 3.4 0.33

Shorter person (1.6m) 4.72 4.27 3.35 0.30

4.4.5 Image distortion test

This test was conducted to determine the quality of the images and to quantify the image distortion,

using Python and OpenCV. The reference image was an image taken when the camera was kept still

and the distorted image was an image taken during the flight from the quadcopter. These two images

were compared and evaluated, using the MSE, PSNR and SSIM measurements. This test was repeated

twenty times and was tabulated in Table 4.26.

Table 4.26. Image distortion quality test results.

Image quality assessment

Test Nr. MSE (dB) PSNR (dB) SSIM

1 874.85 18.71 0.744

2 2549.80 14.07 0.705

3 2004.00 15.11 0.731

4 1952.56 15.22 0.649

5 796.51 19.11 0.591

6 1222.57 17.26 0.802

7 1272.27 17.09 0.799

8 1035.20 17.98 0.807

9 2480.81 14.18 0.735

10 407.17 22.03 0.711

Average 1465.12 17.08 0.727
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From the results obtained, the MSE is high which indicating that there was a high level of distortion

in the image. The high MSE can be seen in the PSNR average as well, since the PSNR algorithm

makes use of the MSE average. Despite the high level of distortion indicated by the MSE algorithm,

the SSIM average was 0.727.

The results found in [30] are shown in Table 4.27. The results obtained in the quadcopter image

distortion test show that the MSE, PSNR and SSIM are better in [30]. A possible cause for the image

distortion on the quadcopter could be vibration from the motors, that are propagated through the

frame.

Table 4.27. Average results found in [30].

SSIM MSE PSNR

Average 0.85 648.96 18.55

Figure 4.33(a) shows an image from the quadcopter camera that has a low distortion and Figure

4.33(a) shows an image from the quadcopter camera that has a high distortion. A vertical red line was

drawn on both images to indicate the distortion of the pillar in the image. It can be seen in Figure

4.33(b) that the pillar deviates more from the red line, when compared to Figure 4.33(a).

(a) Low distortion image.
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(b) High distortion image.

Figure 4.33. Comparison of distortion. (a) Low distortion image. (b) High distortion image.

4.5 INTEGRATED SYSTEM

The control, navigation and image processing subsystems were integrated and the results are shown

in this section.

4.5.1 Single person

This test shows the person-tracking ability of the system. The image from the quadcopter’s camera

was sent to the base station for image processing. After the image had been processed an instruction

was sent from the base station to the quadcopter to keep the person in the centre of the image’s frame.

Figure 4.34(a) - (h) show the images from the quadcopter. It is clear that, as the person was moving,

the platform rotated to keep the person in the centre of the frame.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.34. Tracking test - Quadcopter rotates to centre the person in the frame.

The video of person-tracking with a single person test can be seen at this link.

4.5.2 Multiple people

This test shows the person-tracking ability of the system. The image from the quadcopter’s camera

was sent to the base station for image processing. After the image had been processed an instruction

was sent from the base station to the quadcopter to keep the person of interest in the centre of the

frame, as well as to keep a 5 ± 0.5 m distance between the person of interest and the quadcopter. This

test was carried out with four people:

• Person 1 : Blue shirt and blue pants

• Person 2 : Grey shirt and black pants

• Person 3 : Orange shirt and black pants

• Person 4 : Grey shirt and blue pants

The person of interest was set to Person 3 (orange shirt and black pants). It can be seen that Person

2 and Person 3 had the same colour pants but had distinctive colour shirts. The quadcopter was set to

fly slightly higher than head height and the camera was angled slightly downwards to make sure that

the subject’s entire body would be detected in each frame. The quadcopter also detected and measured

the distance to the surrounding people to ensure their safety. Figure 4.35 to Figure 4.38 form part of a
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single complete test; however, the figures were split up for effortless readability.

From Figure 4.35(a) - (c) it can be seen that the quadcopter detected the four people in the images.

It can be seen that the person of interest proceeded to the left of the quadcopter and the quadcopter

rotated on its axis to keep the person of interest in the middle of the frame.

(a) (b)

(c) (d)

(e) (f)

Figure 4.35. Person-tracking (multiple people): Quadcopter rotation test.

In Figure 4.36(a) - (e) a person of non-interest blocked the person of interest. It can be seen that the
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quadcopter did not perform any movements when it could not locate the person of interest in the frame

and did not follow a person of non-interest.

(a) (b)

(c) (d)

(e)

Figure 4.36. Person-tracking (multiple people): Quadcopter could not locate the person of interest.

In Figure 4.37(a) - (d) the person of non-interest walked past the person of interest; therefore

the quadcopter could continue tracking the person of interest. In Figure 4.37(e) - (f) the person of
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interest proceeded to the left of the quadcopter and the quadcopter successfully followed the person of

interest.

(a) (b)

(c) (d)

(e) (f)

Figure 4.37. Person-tracking (multiple people): Quadcopter located the person of interest after being

blocked.

In Figure 4.38(a) - (j) the person of interest proceeded to the right of the quadcopter and the

quadcopter successfully rotated on its axis to follow the person of interest. In Figure 4.38(c) - (g) it
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can be seen that the person of interest had moved away from the quadcopter; therefore the quadcopter

moved forward to keep the person of interest at the predefined distance of 5 ± 0.5 m. Finally, in Figure

4.38(h) - (j) the person of interest moved forward; therefore the quadcopter moved backwards to keep

the person of interest at the predefined distance of 5 ± 0.5 m.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 4.38. Person-tracking - multiple people: Quadcopter translation and rotation to keep the person

of interest at the predefined distance and to keep the person of interest in the centre of the frame.

The time of each frame was 0.71 s, since that is the time it takes to capture an image, send it to

the base station, undergo image processing and to send it back to the quadcopter. The distance that

the person had moved, was recorded and the number of frames it took the quadcopter to make the

necessary movements, was recorded. The speed of the person was calculated by :

speed =
distance

time
. (4.2)

After twenty tests had been conducted, it was found that the quadcopter could follow a person at an

average speed of 1.15 m/s. The video of person-tracking with multiple person test can be seen at this

link.
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4.6 CHAPTER SUMMARY

This chapter presented the results found in the experiments that had been performed to demonstrate

the capabilities of the quadcopter. The improvements of the Kalman filter were presented. The stability

controller in the pitch an roll direction was presented and various important aspects were noted, such

as settling time, rise time and overall error was discussed. The altitude controller and the position

controller results were presented and discussed. For each controller the effects of two-blade and

three-blade propellers were discussed. It was found that the pitch and roll angle of the three-blade

propellers had a lower overshoot; however, it had a longer response time compared to the two-blade

propellers. The position estimation algorithm was evaluated by using the Euclidean distance error.

Each controller was compared to previous research papers to evaluate the performance.

The person detection, colour classification and distance estimation algorithms’ results were presen-

ted. An image distortion test was also conducted and measured using various metrics. Finally, the

integrated system was presented. That included the integration of the navigation and control system,

person detection, colour classification and distance estimation algorithms. The application chosen for

the integrated system was a person-tracking system that demonstrated the navigation and control of the

quadcopter to follow a person of interest, based on the colour of his/her shirt and pants. It was found

that real-time image processing algorithms could successfully detect and track a person of interest

without the need for image distortion corrections.

Links to a few videos were added to demonstrate the real-time image processing from the quadcopter

point-of-view.
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5.1 CONCLUSION

The objective of this research has been to develop a stability and navigation controller that can be

used for real-time image processing applications. Most existing quadcopter studies are focused on the

image processing application and use an off-the-shelve stability and navigation controller. While the

real-time image processing application is an intricate system, it will prove to be useless without a

quality stability and navigation controller.

In this dissertation a complete stability and navigation controller for a quadcopter was developed,

with the intent to be used for real-time image processing applications. The stability controller

was responsible for keeping the quadcopter stable and predictable. The navigation controller was

responsible for estimating the quadcopter’s current and next position, as well as manipulating the

motors to carry out the instruction(s) required. Person-tracking was used as an image processing

application to demonstrate the stability and the navigation capabilities.

The stability controller used data from a gyroscope and accelerometer that were combined to

measure pitch, roll and yaw of the quadcopter. The pitch, roll and yaw were used to compute a PID

value to keep the quadcopter stable during flight. The stability controller was intensely tested and was

accompanied by multiple pitch and roll angle correction response graphs, along with multiple tables to

summarise the important information that had been deduced from the graphs. The stability controller

used a PID controller and performed well, in order to provide a stable flight.

The comparison between the two-blade propellers and the three-blade propellers proved to be an

interesting addition to the overall stability of the quadcopter. Both the propellers provided a stable

flight for the quadcopter. The three-blade propellers were advantageous for stability; however, they had

a slightly longer response time. The choice of propellers is primarily dependent on if a fast response

time is required. The stability controller with the two-blade propellers used in this project, achieved a
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maximum error of between -1.58◦ and 0.78◦. The stability controller with the three-blade propellers

used in this project, achieved a maximum error of between -0.35◦ and 0.44◦. The settling time for the

two-blade propellers was slightly faster than [57]. It can be noted that the stability controller with the

two-blade propellers had a similar error to [11] and provided better accuracy compared to the stability

controller in [56]. It was found that the yaw average error found by the developed system was 3.2◦,

which was similar to the average error of 3.4◦ found in [72].

The navigation controller made use of the GPS and accelerometer data that were combined by

using a Kalman filter to provide horizontal position (x-axis, y-axis) estimations, as well as pressure

data to estimate altitude (z-axis). The navigation controllers were accompanied by multiple pitch,

roll and yaw angle response graphs with tables to evaluate the response of the controllers when the

quadcopter was transitioned to a new location, as well as when the quadcopter was moved from its set

position. The position controller successfully managed to maintain the position of the quadcopter with

a reasonable amount of error and allowed the quadcopter to transition between a set of positions.

The altitude controller allowed the quadcopter to hold the desired altitude with a reasonable amount

of error. For the altitude controller, the two-blade propellers achieved a settling time of 5 s and the

three-blade propellers achieved a settling time of 6.85 s. The two-blade propellers had a faster settling

time than the results achieved in research paper [57], with a settling time of 6.34 s; however, the

three-blade propellers was closer to the results that had been found in research paper [57]. By using

the Kalman filter it was possible to combine the GPS data and the accelerometer data to improve the

position estimations. The results from the quadcopter presented herein have a slightly better position

estimation in some cases, as compared to [11], with a Euclidean error between 0.35 m and 0.81 m.

The navigation algorithm was able to perform at a similar standard that had been achieved in related

research and in some case, even better.

The person-tracking application dealt with following a person based on the colour of the shirt and

pants. The person-tracking was made possible by developing three subsystems: person detection,

colour classification and distance estimation. The person-tracking application was evaluated by

including images and by evaluating the accuracy of each subsystem. The time to capture an image,

perform image processing and to send an instruction to the quadcopter was calculated to be 0.7 s. The

distortion of the image was also evaluated by making use of metrics, such as MSE, PSNR and SSIM.

The results obtained from the quadcopter image distortion test showed that the MSE, PSNR and SSIM

in [30] were better. Despite the small amount of distortion present, the platform was able to acquire

reliable and distortless images. The person-tracking application proved that the quadcopter developed,

can be used for image acquisition and can be used for real-time applications.
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The Caddx Ratel camera was also extremely lightweight, which made it favourable to mount on a

quadcopter. Vibrations and unstable behaviour of the quadcopter would have affected the camera

from capturing reasonable quality images, and it should be noted that the stability controller of the

quadcopter was especially important to make the image processing possible. The camera was also

covered with a 3D printed cover, as direct light from the sun would have had a negative effect on the

camera. It was found that the images had some distortion; however, the distortion did not inhibit the

image processing performance.

In conclusion, the research produced a controller that can be used for real-time image processing

applications. The position controller and the altitude controller provided the quadcopter with the

ability to smoothly transverse through a 3D space. The images from the quadcopter were stable and

experienced some distortion; however, the results show that it can function reliably for real-time image

processing applications.

5.2 FUTURE IMPROVEMENTS

For future improvements, it can be recommended to investigate the use of a smaller-size quadcopter

that would slightly reduce the dependence on the controllers, as small errors in the calculations are

more easily noticeable on a larger frame. A smaller frame could also improve maneuverability and

make it safer to navigate in smaller areas, such as indoors. If funds would be more accessible, an

investigation into the use of LiDAR sensors could prove to be beneficial for altitude measurements

and distance estimation, etcetera. Even though the main focus of the quadcopter has not been image

processing, the image processing algorithms could be further improved by using image processing

systems, such as SLAM, for navigation in areas where GPS is unavailable.
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