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Abstract

In this study, we discuss derivatives, Lie symmetries and invariant solutions of the Black
Scholes equation. We combine the Lie group methods with the Adomian decomposition
method to solve the Black and Scholes equation via the heat equation.

We further discuss several examples to illustrate the theory in this study.
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1 Introduction

In the corporate business world, finance is one of the most rapidly changing and ex-
panding industries. The valuation of options contracts has been a topic of interest to
researchers. There are various types of mathematical models for pricing different kinds
of options. Paul Samuelson wrote an unpublished paper titled “Brownian motion in the
stock market”, in 1955. Many other mathematicians like Sprenkle, Ayes, James Boness
[6] and Chen etc. worked on the valuation of options and developed valuation formulas of
the general form but their formulas were not complete. In the year 1973, F. Black and M.
Scholes developed the original option pricing formula in the paper titled “The pricing of
options and corporate liabilities” [5]. In the same year Black and Scholes transformed the
option pricing problem into a new partial differential equation with variable coefficients.

Partial differential equations (PDEs) play an important role in mathematics and physics,
PDEs falls under both abstract mathematics, in particular operator theory and also un-
der applied sciences, for example in finance. In this study, we focus our attention on
mathematics of finance, we consider a particular type of a PDE called the Black Scholes
equation. The main idea of Black Scholes equation is to construct a risk-less portfolio
taking positions in cash (bonds), options and the underlying stock. The Black Scholes
equation is also utilized in the calculation of the theoretical price of the European style
option (put or call option). This does not consider any dividends paid during the life of
the option. It is only considered at the time of expiration. However, this equation can
be modified to take into account the effects of dividends paid during the option’s lifetime
by determining the ex-dividend date value of the underlying stock. There are various
ways of deriving this equation, using various types of mathematics and different levels of
complexity. Some of the derivations that have been published in literature include the
Capital Asset Pricing Model (CAPM), which was originally due to Cox and Rubinstein
(1985). We also have the Martingale approach and the Nume-raire approach, among
other derivations. Recently, S.Grandville derived the Black Schole equation from basic
principle he assumed no knowledge of stochastic calculus in [20].

It is known that probability theory, Lebesgue’s integration and Ito calculus are the main
ingredients for Black Scholes equation and these rely on set theory analysis and an ax-
iomatic approach to mathematics. The other equation that will be discussed and used
in this study is the Stochastic Differential Equations (SDEs). These equations are very
important in the modelling of evolution, finance, biology and oceanography. The SDEs
can be defined as a differential equation where one or more of the terms is a stochastic
process or is a differential equation whose coefficients are random numbers or random
functions of independent variables [34]. The SDEs contains a variable which is referred
to as a derivative of Brownian Motion. The theory and the study of SDEs was first done
in the 1940s. In particular, K. Ito introduced this theory to study and describe motion
due to random events [27]. Thereafter, many developments of this theory followed, and
recently, M.C Lopez-Diaz and M. Lopez-Diaz [9] studied SDEs in an ordered theoretic
setting. In their case, they considered a partially ordered set (also called a poset). A
partially ordered set P is a non-empty set equipped with a binary relation ≤ satisfying
the following properties,
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1. If x ∈ P , then x ≤ x in P (Reflexive property).

2. If x, y ∈ P , x ≤ y ∈ P and y ≤ x ∈ P, then x = y (Anti-symmetric property).

3. If x, y, z ∈ P , x ≤ y ∈ P and y ≤ z ∈ P , then x ≤ z ∈ P (Transitive Property).

That is, (P, ≤) is a partially ordered set. The theoretical results in [9], can be applied
to the comparison of Maritime areas with respect to chemical component of sea weeds.
They also showed that their results to the search of Maritime areas with values of chemical
components can be applied in Maritime fields. This indicates the importance of the theory
of stochastic differential equations in both abstract and applied settings.
One of the most studied stochastic partial differential equation is the stochastic heat
equation and is represented by

∂u

∂t
= ∆u+ ψ

where ψ is white noise (chaotic behaviour of a solution as t→ ∞) in both space and time
and ∆ is the Laplacian. In this study, we will be focusing on the one dimensional heat
equation, given by

∂u

∂t
=
∂2u

∂x2
.

The heat equation has been well studied in literature. The first person to develop and
solve the heat equation was Joseph Fourier in 1822. This equation has many application
in various branches in the scientific field, for example in the field of financial mathematics
it is used to solve the Black Scholes partial differential equation. D. V Widdder (1976)
[35] list a few methods of generating or producing the solution of the heat equation and
because of the great advancement in computing, numerical solutions of the heat equation
have also been derived (see Anis Zafirah Azmi [3]).

In our discussion of the invariant solutions of the Black Scholes equation, we use the
notion of symmetries. This notion play an important role in solving differential equa-
tions [31]. We discuss both the classical Lie point symmetries and the non-classical
symmetries. The notion can be applied in solving some problems of fluid draining, epi-
demiology of AIDS and meteorology. It is known that for problems that gives rise to a
number of three dimensional non-linear PDEs of Black Scholes type, it is best to reduce
such problems by finding the symmetry of the equation using Lie Group analysis [7]. In
the study of differential equations using symmetries, Nucci [31] showed that the iterations
of the non-classical symmetries method yields new non-linear equations, which inherits
the Lie symmetry algebra of the given equation.

We organise our work as follows:
In Chapter 1, the preliminary results that are needed in our discussion and some basic
assumptions are defined.
In Chapter 2, we present assumptions that must be considered before deriving the Black
Scholes equations. We discuss two different derivations of the Black Scholes equation and
consider some examples, forward contract, Perpetual and Tradeable derivatives.

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



In Chapter 3, we discuss a method of solving nonlinear partial differential equations,
the Adomian Decomposition Method (ADM). We consider examples to demonstrate the
method.
In Chapter 4, we present symmetry analysis of the Black Scholes equation, commutators
are computed for the symmetries of the Black Scholes equation and symmetry transfor-
mation are constructed using the solution of the Lie equation and exponentiation.
In chapter 5, the Black Scholes is transformed into the heat equation. Lie symmetries
of the heat equation are calculated, and the Adomian decomposition method is used to
solve the Heat equation.
In chapter 6 we calculate the invariant solutions of the heat equation and Black Scholes
equation.
In chapter 7, we give a summary of the dissertation and we discuss the future work of
this study.

1.1 Preliminaries

Definitions

In this chapter, we recall some notions that will be used in our study.

1. Option ([33, Definition 2.1 ])
An option is a security that gives its holder the right to buy and sell an asset, within
a specified time frame, subject to certain conditions.
There are two types of options, we have the ”call option”, which is an option that
allows its holder the right to buy the underlying asset at a strike price at some
future time T, and the ”put option” is another type of an option that allows its
holder to sell the underlying asset at a strike price at some future time T.

2. European Option ([33, Definition 2.2.1 ])
An option which cannot be exercised until the expiration date is called an European
option.

3. American Option ([33, Definition 2.2.2 ])
An American option is an option which can be exercised at any time up to and
including the expiration date.

4. Strike Price ([33, Definition 2.5 ])
A price that is determined in advance for an underlying asset is called a strike price.

5. Forward Contract ([23, Chapter 1,Section 1.3 ]) It is an agreement between two
parties to buy or sell an asset at a certain future time for a certain price.

6. Future Contract ([23, Chapter 1,Section 1.4 ]) It is an agreement between two
parties to buy or sell an asset at a certain time in the future for a certain price.

7. Volatility ([23, Chapter 15,Section 15.4 ])
The volatility of the underlying asset is the measure of uncertainty about the returns
provided by the underlying asset over time.
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8. Hedge ([33, Definition 2.6 ])
A transaction that reduce the risk of an investment.

9. Portfolio ([33, Definition 2.7 ])
An investment institution or company’s collection of financial assets, such as stocks,
bonds, and cash equivalents.

10. Delta-hedging ([10, Investopedia])
Delta-hedging is an option’s strategy that aims to reduce, or hedge, the risk asso-
ciated with price movements in the underlying asset, by offsetting long and short
positions. The value of the delta hedge portfolio is

Π = u−∆x where ∆ =
∂u

∂x
.

This portfolio is made up of one position worth u and ∆ units of the underlying
asset worth x.

11. Wiener Process (or Brownian Motion)([23], Chapter 14.2 )
A continuous-time stochastic process with a variable z follows a Wiener process if
it has the properties listed below,

(a) The change dz for a very short amount of time dt is dz = ϵ
√
dt where ϵ

has a standardized Normal distribution ϕ(0, 1) with mean zero and standard
deviation of one.

(b) The values of dz for any two different short intervals of time, dt, are indepen-
dent.

12. Arithmetic Brownian Motion (ABM) ( [29])
An arithmetic Brownian motion is a Brownian motion with drift that is modelled
by a stochastic differential equation of the form.

dx = µdt+ σdz,

where µ is called the drift and σ is called the volatility.

13. Stochastic Differential Equation ([33], Definition 2.10 )
Let (Ω, F, P ) be a probability space and let x(t), t ∈ R+ be a stochastic process
x : Ω×R+ → R. Assume that a(x, t) : Ω×R×R+ → R and b(x, t) : Ω×R×R+ → R
are stochastic-ally integrable functions of t ∈ R+. Then the equation

dx = a(x, t)dt+ b(x, t)dz (1.1.1)

is called Stochastic differential equation. The symbolic notation of the stochastic
integral equation of (1.1.1) is,

x(t) = x(0) +

∫ t

0

a(x(s), s)ds+

∫ t

0

b(x(s), s)dz (1.1.2)

where a(x, t) and b(x, t) are referred to as the drift term and the diffusion term,
respectively.
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14. Geometric Brownian motion (GBM) ([33, Definition 2.8 ])
The Geometric Brownian motion describes a continuous-time stochastic process
where the logarithm of a randomly fluctuating quantity follows a Brownian motion.

dx = A(x, t)xdt+B(x, t)xdz

where A represents the drift and B represents the volatility.

15. Ito’s process ([33, Definition 2.11 ])
A stochastic process x satisfying equation

dx = A(x, t)dt+B(x, t)dz

is considered to be an Ito’s process.

16. Ito’s Lemma ([8, Appendix 10A])
Consider a continuous and differentiable function u of variable x. If dx is a small
change in x and du is the resulting small change in u, then

du ≈ du

dx
dx. (1.1.3)

In other words, du is roughly equivalent to the rate of change of u in relation to x
multiplied by dx. If more precision is required, a Taylor series expansion of du can
be used:

du =
du

dx
dx+

1

2

d2u

dx2
dx2 +

1

6

d3u

dx3
+ ... (1.1.4)

For a continuous and differentiable function u of two variables, x and t, the result
is similar to equation (1.1.3) is

du ≈ ∂u

∂x
dx+

∂u

∂t
dt (1.1.5)

and the Taylor series expansion of du is

du =
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
dx2 +

∂2u

∂x∂t
dxdt+

1

2

∂2u

∂t2
dt2 + ... (1.1.6)

If the limit of dxdt and dt2 tend to zero, equation (1.1.6) yields

du =
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
dx2. (1.1.7)

Now suppose that the value of a variable x follows the Ito’s process

dx = µdt+ σdz,

where dz is a Wiener process. The variable x has a drift rate or expected return of
µ and has a variance of σ2. Substituting dx in equation (1.1.7) yeilds,

du =
∂u

∂x

(
µdt+ σdz

)
+
∂u

∂t
dt+

1

2

∂2u

∂x2
dx2. (1.1.8)

Expanding dx2 gives µ2dt2+µσdtdz+µσdtdz+σ2dt and using Ito’s multiplication
rule,
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× dz dt
dz dt 0
dt 0 0

Equation (1.1.8) reduces to

du =
∂u

∂x

(
µdt+ σdz

)
+
∂u

∂t
dt+

1

2

∂2u

∂x2
σ2dt. (1.1.9)

Simplifying equation (10), we obtain

du =
(∂u
∂x
µ+

∂u

∂t
+

1

2

∂2u

∂x2
σ2
)
dt+

∂u

∂x
σdz.

This is Ito’s Lemma.

Example (Stock prices) [15, Chapter 5, Example 3 ]

Let S(t) represent the stock price at time t. We model the evolution of S(t) in time by

supposing that dS(t)
S(t)

evolves according to the stochastic differential equation

dS(t)

S(t)
= µdt+ σdW

where dW is Wiener process or Brownian motion, µ > 0 (the drift coefficient) and σ
(the volatility) are constants. One needs to realise that “µ” is usually used to model
deterministic trends and “σ” is used to model a set of random events occurring during
this motion. The stochastic differential equation dS(t) = µS(t)dt + σS(t)dW has the
following analytic solution,

S(t) = s0exp
σW (t)+(µ−σ2

2
)t. (1.1.10)

To give details on how the analytical solution was found, we first apply the Ito’s formula
to Ito’s lemma to get

d(ln(S(t))) = (ln(S(t)))′dS(t) +
1

2
(ln(S(t)))′′dS(t)dS(t)

=
dS(t)

S(t)
− 1

2

1

S(t)2
dS(t)dS(t)

= µdt+ σdW − 1

2

1

S(t)2
dS(t)dS(t).

(1.1.11)

But,
dS(t)dS(t) = σ2S(t)2dW 2 + 2σS(t)2µdWdt+ µ2S(t)2dt2

and from the ito’s multiplication table dW 2 = dt, dWdt = 0 and dt2 = 0, Hence,

dS(t)dS(t) = σ2S(t)2dt.
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Thus, equation (1.1.11) becomes,

d(ln(S(t)) = (µ− σ2

2
)dt+ σdt

So the analytical solution is,

S(t) = s0 exp
σW (t)+(µ−σ2

2
)t .

8
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2 Black Scholes Equation

In this chapter, we discuss some derivations of the Black Scholes, but we first recall some
assumptions needed to obtain the derivations.

Assumptions ([23], Chapter 15.5 )
We assume the following,

1. The stock price (x) follows a stochastic process.

2. During the life of the derivative, there are no dividends and transaction expenses
or taxes. (We follow a European style option).

3. There are no risk-less arbitrage opportunities.

4. The trading of securities is continuous.

5. The interest rate remains constant.

6. The stock returns follows a normal distribution, hence volatility remains constant
overtime.

2.1 Derivation of the Black Scholes Equation

In this section, we consider the derivation of the Black Scholes equation. The Black
Sholes model assumes that the percentage changes in the stock price over a short period
of time are normally distributed, where else changes in the stock price at a future time
follows a log-normal distribution (see Figure 1 in the next page) and a variable with a
log-normal distribution can have any value between zero and infinity [23, Chapter 15.11 ].
This motivates us to consider the derivation of the Black Scholes equation via Geometric
Brownian Motion (GBM). However, this does not rule out the possibility of using Arith-
metic Brownian Motion (ABM) to derive the Black Scholes equation. In fact, Marek, in
[30], used the ABM to derive the Black Scholes equation, with the resulting equation

∂u

∂t
+

1

2

∂2u

∂x2
B2 +

∂u

∂x
Cx−Du = 0.

In GBM,
dx = Axdt+Bxdz (2.1.1)

where both A and B are proportional to the underlying asset x. The asset follows a
log-normal random walk. A process like dx is a model usually used to model the price of
a stock and the variable z follows a Wiener process, with properties as in section (1.1).
If we take the squares of the GBM, we obtain,

(dx)2 = (Axdt+Bxdz)2

which can be written as,

dx2 = A2x2dt2 +B2x2dz2 + 2BAx2dtdz (2.1.2)

9
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Figure 1: Log-normal distribution

from stochastic calculus we know that dz2 ≈ dt, dt2 ≈ 0 and dzdt ≈ 0. Therefore,
equation (2.1.2) reduces to,

dx2 = B2x2dt, (2.1.3)

Now suppose that u(x, t) is the price of a call option. From Ito’s lemma,

du =
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
dx2 +

1

2

∂2u

∂t2
dt2 +

∂2u

dtdx
dtdx

=
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
dx2

(2.1.4)

and by substituting the GBM, we get

du =
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
B2x2dt. (2.1.5)

The Wiener process (2.1.1) is the source of uncertain (risk) in the Ito equation (2.1.5).
To eliminate it, we consider a portfolio Π of stock and derivative such

Π = u−∆x, where ∆ =
∂u

∂x
. (2.1.6)

The holder of this portfolio is short an amount ∆ = ∂u
∂x

of shares and long one derivative
(call option). We want to know the change in value of the portfolios, we then take the
derivative of the portfolio to get

dΠ = du−∆dx

dΠ =
∂u

∂x
dx+

∂u

∂t
dt+

1

2

∂2u

∂x2
B2x2dt−∆dx

(2.1.7)

10
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where,

∆dx =
∂u

∂x
dx,

so we obtain,

dΠ =
∂u

∂t
dt+

1

2

∂2u

∂x2
B2x2dt. (2.1.8)

Since there is no longer a source of randomness (z) in equation (2.1.8) then the Π will
earn a risk-free rate, thus dΠ = rΠdt. Hence,

r(u−∆x)dt =
∂u

∂t
dt+

1

2

∂2u

∂x2
B2x2dt. (2.1.9)

Therefore, equation (2.1.9) can be re-written as:

Du(x, t)− ∂u(x, t)

∂x
Cx =

∂u(x, t)

∂t
+

1

2

∂2u(x, t)

∂x2
B2x2, (2.1.10)

where B is the standard deviation, C and D are risk-free interest rate and B,C,D are
constants, x is the current value of the underlying asset (Stock Price) and t represent
time, so equation (2.1.10) can then be re-written as,

∂u(x, t)

∂t
+

1

2

∂2u(x, t)

∂x2
B2x2 +

∂u(x, t)

∂x
Cx−Du(x, t) = 0. (2.1.11)

We will now discuss Grandville Sewell’s derivation of the Black Scholes model from basic
principle. In this derivation, no knowledge of stochastic calculus is assummed.

2.2 Derivation of the Black Scholes from basic principle

In this section, we consider another derivation of the Black Scholes equation that was
recently derived by Granville Sewell in [20].
Now, first let K be the strike price and S the price at expiration date. Then the payoff
of the call option value is determined by piecewise function,

P (S) =

{
S −K, if S > K

0, if S < K.

This can be written as,
P (S) = max{0, S −K}. (2.2.1)

Equation (2.2.1) implies that if S < K, then P (S) = 0. Hence, there is no need to
exercise the option, since there is no profit to gain. If K < S, then P (S) = K − S.
Hence, the option can be exercised. Note that if the stock price is zero at some time t,
the option will be given by P (0) = max{0,−K} = 0, when the stock price increases to
infinity, the option can be exercised in a case where K < S, the value of an option is
given by u(S, t) = S−Ke−r(T−t), where t represents time and r the risk-free interest rate.
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The log normal distribution in the logarithm of price variable z = ln(S)− α is

p(t, z) =
1√

2πσ2
1(T − t)

exp
[ −z2

2σ2
1(T − t)

]
, (2.2.2)

where z = ln(S) − α = ln(S) − ln(s) + (1
2
σ2
1 − r)(T − t), and s represents the current

price of the asset and S the final price of the asset, then current value of the option is

u(s, t) = e−r(T−t)

∫ ∞

0

P (S)

S
p(t, z)dS. (2.2.3)

Now,

∂z

∂t
=

∂

∂t

(
ln(S)− ln(s) + (

1

2
σ2
1 − r)(T − t)

)
= r − 1

2
σ2
1

(2.2.4)

and

∂z

∂s
=

∂

∂s

(
ln(S)− ln(s) + (

1

2
σ2
1 − r)(T − t)

)
= −1

s
.

(2.2.5)

The log normal distribution will be at its peak when the original price is the same as
the final price, that is, S = s. When s is not equal to S, then equation (2.2.3) will
not be at its peak. Moreover, z → ∞ when s → ∞ and z → −∞ when s → 0, so
considering equation (2.2.3) and differentiating it with respect to t, in order to derive the
Black Scholes equation we get,

ut = e−r(T−t)r

∫ ∞

0

P (S)

S
p(t, z)dS + e−r(T−t)

∫ ∞

0

P (S)

S

[
pt +

∂z

∂t
pz

]
dS

ut = ru(s, t) + e−r(T−t)

∫ ∞

0

P (S)

S

[
pt + (r − 1

2
σ2
1)pz

]
dS.

(2.2.6)

Now, when we differentiate equation (2.2.3) again with respect to s, we obtain,

us = e−r(T−t)

∫ ∞

0

P (S)

S

[
ps(t, z)(0) + pz

∂z

∂s

]
dS

sus = −e−r(T−t)

∫ ∞

0

P (S)

S
pzdS

s(sus)s = e−r(T−t)

∫ ∞

0

P (S)

S
pzzdS.

(2.2.7)

We shall now multiply the last equation of equation (2.2.7) with σ2
1/2 so that we can be

able to combine the second equation of equation (2.2.6) and the last equation of equation
(2.2.7) to get

ut +
1

2
σ2
1s(sus)s = ru+ e−r(T−t)

∫ ∞

0

P (S)

S

[
pt + (r − 1

2
σ2
1)pz +

1

2
σ2
1pzz

]
dS. (2.2.8)
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Hence,

ut +
1

2
σ2
1s(sus)s = ru+ (r − 1

2
σ2
1)e

−r(T−t)

∫ ∞

0

P (S)

S
pzdS, (2.2.9)

and using equation (2.2.7) we get

ut +
1

2
σ2
1s(sus)s = ru− (r − 1

2
σ2
1)sus, (2.2.10)

since (sus)s = suss + us. Expanding u we get the following

ut +
1

2
σ2
1s

2uss +
1

2
σ2
1sus = ru− rsus +

1

2
σ2
1sus, (2.2.11)

which can simply be written as,

ut +
1

2
σ2
1s

2uss + rsus − ru = 0. (2.2.12)

Equation (2.2.12) is known as the Black Scholes equation. If we consider the assumptions
under section (2.2) then equation (2.2.12) will be the same as equation (2.1.11) provided
s = x, r = C and σ = B.

We discuss an example of a forward contract on a non-dividend paying stock. This
derivative depends on the stock. First recall from [23], a general result, applicable to all
long forward contracts, is

u = (F0 −K)e−rT where F0 is the expected return on the stock. (2.2.13)

This result is applicable to the both contracts on investment assets and those on consump-
tion assets. It is also known that when considering a forward contract on an investment
asset and price S0 that provides no income, we have the following relationship between
F0 and S0,

F0 = S0e
rT . (2.2.14)

For the value of a forward contract on an investment asset that provides no income, we
simply substitute equation (2.2.14) into equation (2.2.13) to obtain,

u = S0 −Ke−rT . (2.2.15)

We are now in a position to consider an example. We want to illustrate the link between
the Black schole equation to fare price and arbitrage free prices of derivatives.

Example 2.2.1 ([23], Example 15.5 )

We consider a forward contract on a non-dividend paying stock. We will use the equation

u = S −Ke−r(T−t), (2.2.16)

for the forward contract u, at time t, given in terms of the stock price S, and K as the
delivery price. Now,

∂u

∂t
= −rKe−r(T−t),

∂u

∂S
= 1,

∂2u

∂S
= 0, (2.2.17)
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so if we substitute into the Black Scholes equation.

ut +
1

2
σ2
1S

2uSS + rSuS − ru = 0. (2.2.18)

We obtain,

−rKe−r(T−t) +
1

2
σ2
1s

2(0) + rS(1)− ru = 0

−rKe−r(T−t) + rS(1)− ru = 0.
(2.2.19)

Therefore the Black Scholes equation is satisfied.

2.3 A Perpetual Derivative

A derivative is a type of a financial contract whose value is dependent on an underlying
asset, group of assets, or benchmark[16]. A perpetual contract is a sort of derivative that
allows you to simply bet on an asset’s price. Consider a perpetual derivative that pays
off a fixed amount Q when the stock price equals H for the first time. This means that
the value of the stock in question does not depend on time, that is

ut +
1

2
σ2
1S

2uSS + rSuS − ru = 0 (2.3.1)

becomes the following ordinary differential equation

1

2
σ2
1S

2uSS + rSuS − ru = 0, since ut = 0. (2.3.2)

Lets assume that S < H, where S is the stock price at time T and H is the stock price
at t = 0. The boundary conditions for the derivative will be

u =

{
0, S = 0

Q, S = H

or
u = max{H − S, 0} when t = T.

We now find the value of the derivative that satisfy the boundary conditions as well

as equation (2.3.1). So, the value of the derivative can be u =
QS

H
, since if S = 0,

u =
(0×Q)

H
= 0 and if S = H, u =

(QH)

H
= Q or u =

(QS)

S
= Q.

Now, if we assume S > H, the boundary conditions will be given by

u =

{
0, S → ∞
Q, S = H

and a function u that satisfies this boundary conditions is,

u = Q
( S
H

)−α

(2.3.3)
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where α is positive and the differential equation (2.3.1) is satisfied when

− rα +
1

2
σ2α(α + 1)− r = 0. (2.3.4)

Hence, the value of the derivative is

u = Q
( S
H

)−2r/σ2

. (2.3.5)

Example 2.3.1( [23], Problem 15.23 )

We consider equation (2.3.5) to determine the value of a perpetual American put option
on a non-dividend paying stock with strike price K if it is exercised.
Solution:
If the perpetual American put option is exercised when S = H, it yields a payoff of
(K −H) and then we obtain its value by setting α = K −H in equation (2.3.5) as,

u = (K −H)
( S
H

)−2r/σ2

= (K −H)
(H
S

)2r/σ2

.

(2.3.6)

Now,

du

dH
=

(H
S

)2r/σ2

+
(K −H

S

)(2r
σ2

)(H
S

) 2r
σ2−1

=
(H
S

) 2r
σ2
(
− 1 +

2r(K −H)

Hσ2

)
d2u

dH2
=

−2rk

H2σ2

(H
S

)2r/σ2

+
(
− 1 +

2r(K −H)

Hσ2

) 2r

σ2s

(H
S

) 2r
r2

−1

(2.3.7)

So du
dH

is zero when, H = 2rk
(2r+σ2)

and the value of the perpetual American put option
is maximised if it is exercised when S equals the value of H. Hence, the value of the
perpetual American put option is given by(

K −H
)( S

H

) r
σ2

when H =
2rK

σ2 + 2r
. (2.3.8)

2.4 Prices of Tradeable Derivatives

Theorem 1. Any function u(S, t) that is a solution of the differential equation

ut +
1

2
σ2
1S

2uSS + rSuS − ru = 0 (2.4.1)

is the theoretical price of a derivative that could be traded. If a derivative with that price
existed, it would not create any arbitrage opportunities. Conversely, if a function u(S, t)
does not satisfy the differential equation (2.4.1), it cannot be the price of a derivative
without creating arbitrage opportunities for traders.

We consider, the demonstration of the theorem above, with the following examples.
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Example 2.4.1

We consider the function u(S, t) = eS, and show that it does not satisfy equation (2.4.1).
If u(S, t) = eS, then

∂u

∂t
= 0,

∂u

∂S
= eS,

∂2u

∂S2
= eS.

(2.4.2)

We now substitute equation (2.4.2) into equation (2.4.1) to get,

rS(eS) +
1

2
σ2(eS) = ru. (2.4.3)

Equation (2.4.3) does not satisfy the differential equation (2.4.1) because when we de-
rive u(S, t) we do not obtain all the terms in equation(2.4.1). This means the function
u(S, t) = eS, cannot be one of the price of a derivative dependent on the stock price. If
an instrument whose price was always eS existed, there would be an arbitrage opportunity.

Example 2.4.2

We consider the function

u(S, t) =
e(σ

2−2r)(T−t)

S
(2.4.4)

and show that it does not satisfy equation (2.4.1).
If u(S, t) = (e(σ

2−2r)(T−t))/S then

∂u

∂t
=
eTσ2−tσ2−2Tr+2tr(−σ2 + 2r)

S
,

∂u

∂S
= −e

(σ2−2r)(T−t)

S2
,

∂2u

∂S2
= 2

e(σ
2−2r)(T−t)

S3
.

(2.4.5)

Substituting in equation (2.4.1) , we obtain

eTσ2−tσ2−2Tr+2tr(−σ2 + 2r)

S
− r

e(σ
2−2r)(T−t)

S
+

1

2
σ2S22

e(σ
2−2r)(T−t)

S
= ru. (2.4.6)

Equation (2.4.4) does not satisfy equation (2.4.1), so in theory, the function u(S, t) =
(e(T−t))

S
is a price of a trade-able security.
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Example 2.4.3 ( [23], Problem 15.12 )

We consider a derivative that pays off Sn
T at future time T , where St is the stock price

at the current time. When the stock pays no dividends and its price follows a geometric
Brownian motion, it can be shown that its price at time t where (t < T ) has the form
h(t, T )Sn, where S is the stock price at time t and h is a function of t and T .
We show the following,

1. We derive a differential equation satisfied by h(t, T ).

2. We find the boundary condition for the differential equation h(t, T ) using the Black
Scholes equation.

3. Show that h(t, T ) = e[0.5σn(n−1)+r(n−1)] where r is the risk-free interest rate and σ is
the stock price volatility.

Solution:
If G(S, t) = h(t, T )Sn, then

∂G

∂t
= htS

n

∂G

∂S
= hnSn−1

∂2G

∂S2
= hn(n− 1)Sn−2,

(2.4.7)

where, ht =
∂h

∂t
. Substituting into equation (2.4.1) we obtain

ht + rhn+
1

2
σ2hn(n− 1) = rh (2.4.8)

The derivative is worth Sn when t = T . The boundary condition for this differential
equation is therefore h(T, T ) = 1. The equation

h(t, T ) = e(0.5σ
2n(n−1)−r(n−1))(T−t) (2.4.9)

satisfies the boundary condition since it reduces to h = 1 when t = T.
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3 Adomian Decomposition Method

In this chapter, we describe the method of solving nonlinear partial differential equations
involving two variables, namely, the Adomian Decomposition Method(ADM). The com-
putational efficiency and the type of solution of the proposed method will be discussed
and analysed with some examples. We will use the Adomian decomposition method later
in our study to solve the heat equation after transforming the Black Schole equation to
the heat equation.

3.1 Description of the Method

3.1.1 The Adomian Decomposition Method

Consider a nonlinear partial differential equation of the form [19, Section 3.1 ]

ux(x, y) + uy(x, y) +R(u(x, y)) +N(u(x, y)) = 0, (3.1.1)

which can be written as,

Lxu(x, y) + Lyu(x, y) +R(u(x, y)) +N(u(x, y)) = 0, (3.1.2)

where,

1. Lx = ∂n

∂xn for n = 1, 2, 3, ... is the highest order in x and the inverse of Lx is given
by L−1

x =
∫
· · ·

∫
(.)dx1 · · · dxn.

2. Ly = ∂n

∂yn
for n = 1, 2, 3, ... is the highest order in y and the inverse of Ly is given

by L−1
y =

∫
· · ·

∫
(.)dx1 · · · dxn.

3. R(u(x, y)) represents lower order terms in x and y.

4. N(u(x, y)) represents nonlinear terms in x and y.

The solutions to u(x, y) from the operators Lx and Ly are called partial solutions, because
either Lx or Ly can be used to get the solution. One can either choose to use the Lx

or the Ly operator at a time. The decision on which operator to use is based on the
following reasons.

1. Which one minimises the size of the computation? (Check the terms that are simple
to evaluate when applying the Lx or the Ly operator)

2. Which one has the best conditions (for example the coefficients of the differential
equation you are given) to evaluate the solution’s components more quickly?

Suppose that Lx meets these two conditions (Ly operator can still be used, even if it does
not meet the conditions, these conditions are just there to try to simplify computations),
then we write Lx as the subject of the formula of equation (3.1.2),

Lxu(x, y) = −Lyu(x, y)−R(u(x, y))−N(u(x, y)) (3.1.3)

and Lx is invertible, that is, L−1
x exists (when dealing with Adomian decomposition

method, it is always assumed that the operator Lx and the operator Ly are invertible)
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and its integral operator is a definite operator defined by, L−1
x =

∫ x

0
(.)dx. Apply the

inverse operator to equation (3.1.3) to get

L−1
x Lxu(x, y) = u(0, y)− L−1

x Lyu(x, y)− L−1
x R(u(x, y))− L−1

x N(u(x, y)), (3.1.4)

where u(0, y) is a constant of integration. Re-writing equation (3.1.4) we get,

u(x, y) = u(0, y)− L−1
x Lyu(x, y)− L−1

x R(u(x, y))− L−1
x N(u(x, y)). (3.1.5)

If L−1
x does not exists, the Adomian decomposition method becomes redundant. Now

lets carry on with the invertible operator Lx. The solution u(x, y) of equation (3.1.5) can
be presented as an infinite series

u(x, y) =
∞∑
n=0

un(x, y). (3.1.6)

Applying equation (3.1.6) to equation (3.1.5) we get,

∞∑
n=0

un(x, y) = u(0, y)−L−1
x Ly

( ∞∑
n=0

un(x, y)
)
−L−1

x

(
R(u(x, y))

∞∑
n=0

un(x, y)
)
−L−1

x

( ∞∑
n=0

An

)
(3.1.7)

where

N(u(x, y)) =
∞∑
n=0

An

where An’s are known as the Adomian polynomials and they depend on u0, u1, ..., un.
The Adomian polynomials are given by the following formula

An =
1

n!

∂n

∂λn
N
[ n∑

j=0

λjuj

]
|λ=0 n = 0, 1, 2, 3, ...

The first few polynomials are defined as follows,

n = 0 A0 =
1

0!

∂0

∂λ0
N
[ 0∑

j=0

λjuj

]
|λ=0=

1

0!
N(λ0u0) = N(u0)

n = 1 A1 =
1

1!

∂1

∂λ1
N
[ 1∑

j=0

λjuj

]
|λ=0=

∂1

∂λ1
N(u0 + λu1) = N ′(u0 + λu1)(0 + u1)|λ=0= N ′(u0)u1,

n = 2 A2 =
1

2!

∂2

∂λ2
N
[ 2∑

j=0

λjuj

]
|λ=0=

1

2!

∂2

∂λ2
N(λ0u0 + λ1u1 + λ2u2)|λ=0= u2N

′(u0) +
u21
2!
N ′′(u0),

n = 3 A3 = u3N
′(u′0) + u1u2N

′′(u0) +
u31
3!
N ′′′(u0).

...

(3.1.8)
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The above equations (3.1.8), were derived by Adomian [1]. Consider (3.1.7) and note that
it is possible to write the components un(x, y), n ≥ 0 of the solution u(x, y) iteratively
by

u0 = u(0, y)

uk+1 = −L−1
x Lyuk(x, y)− L−1

x R(uk(x, y))− L−1
x N(uk(x, y)).

(3.1.9)

Using the Adomian polynomials An of the nonlinear term N(u(x, y)), the components
un(x, y) are given as,

u0(x, y) = u(0, y)

u1(x, y) = −L−1
x Lyu0(x, y)− L−1

x R(u0(x, y))− L−1
x A0

u2(x, y) = −L−1
x Lyu1(x, y)− L−1

x R(u1(x, y))− L−1
x A1

...

(3.1.10)

As a result, the solution as a series form is as follows,

u0+u1+u2+ ... = u(0, y)−L−1
x Ly

∞∑
n=0

un(x, y)−L−1
x R

∞∑
n=0

un(x, y)−L−1
x

∞∑
n=0

An. (3.1.11)

The solution of u is found as a series that converges rapidly to an accurate solution, that
means when we evaluate the terms we get the exact solution in a very short period of
time. ( [22, Section 2 ] explain these claim in details). [12] proposed a hypothesis that led
us to a theorem that proves that indeed the Adomian decomposition method converges,
and it is absolutely convergent.

3.1.2 Theorem of convergence [12, Section 2 ]

Let us consider the following nonlinear equation

u = N(u) + u0 (3.1.12)

where N and u0 represent an operator and a function given in a suitable space, respec-
tively.

Theorem 2. [12, Section 2 ]
Assume that

1. A series of functions (ui) can be used to express the solution of equation (3.1.12),
where the series is assumed to be absolutely convergent, that is,

∑
|ui|<∞.

2. The nonlinear term N(u) in equation (3.1.12) can be developed on the entire series,
with a convergent radius equal to ∞, that is

N(u) =
∞∑
n=0

Nn
0

un

n!

N(u) = N0
0

u0

0!
+N1

0

u1

1!
+N2

0

u2

2!
+ ...

(3.1.13)

with |u|<∞.
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Then the solution of equation (3.1.12) is the series un =
∑n

i=0 ui, when u satisfy equation
(3.1.10).

Proof. Assumption (2) above assures us that the series
∑
Nn

0
un

n!
converges for any u. Since

u =
∑∞

i=0 ui is absolutely convergent, the equation (3.1.13) can further be expressed as

N(u) =
∞∑
n=0

Nn
0

(
∑∞

i=0 ui)
n

n!
(3.1.14)

and un in equation (3.1.13) is now defined as follows,

un = (
∞∑
i=0

ui)
n = (u0 + u1 + u2...)

n =
∞∑
q=0

Anq(u0, .., uq).

due to u =
∑∞

i=0 ui being absolutely convergent, we then have
∑∞

i=0|ui|= U < ∞ or∑∞
q=0|Anq|≤ Un <∞ as a result. (Anq depends only on u0+u1+u2....). We say equation

(3.1.14) is also, absolutely convergent because

N(u) =
∞∑
n=0

[Nn
0

n!

∞∑
q=0

Anq(u0, ..., uq)
]

=
∞∑
n=0

∞∑
q=0

Nn
0

n!
Anq(u0, ..., uq)

(3.1.15)

so taking the absolute value of N(u), we get that

|N(u)|≤
∞∑
n=0

∣∣∣∣Nn
0

n!

∣∣∣∣Un

where
∑∞

n=0

∣∣∣Nn
0

n!

∣∣∣Un converges as a result of assumption (2). Hence, it indicates that

the equation (3.1.15) is absolutely convergent. Now, taking into account that u(x, y) =∑∞
n=0 un(x, y) and

A0 = N(u0)

A1 = u1N
′(u0),

A2 = u2N
′(u0) +

u21
2!
N ′′(u0),

A3 = u3N
′(u0) + u1u2N

′′(u0) +
u31
3!
N ′′′(u0).

...

(3.1.16)

then equation (3.1.12) becomes,

∞∑
i=0

ui =
∞∑
n=0

An = u0

This completes the proof.
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3.2 Application of the Method

In this section, we discuss some applications of Adomian decomposition method. We first
consider an example of a partial differential equation without initial conditions, and show
that in this case we get a series of solutions.
Example 1. [25, Exercise 4.4.2 ] Solve the following nonlinear equation by Adomian
Decomposition Method

F = pq + xp+ yq − u = 0. (3.2.1)

Solution: Note that equation (3.2.1) is the same as

uxuy + xux + yuy − u = 0 (3.2.2)

since p = ∂u/∂x and q = ∂u/∂y, Writing equation (3.2.2) in an operator form

Lxu(x, y)Lyu(x, y) + xLxu(x, y) + yLyu(x, y)− u(x, y) = 0 (3.2.3)

where Lx = ∂/∂x and Ly = ∂/∂y. Then

xLxu(x, y) = −Lxu(x, y)Lyu(x, y)− yLyu(x, y) + u(x, y)

Lxu(x, y) = −1

x
Lxu(x, y)Lyu(x, y)−

y

x
Lyu(x, y) +

1

x
u(x, y)

(3.2.4)

Applying the inverse operator of L−1
x =

∫ x

0
(.)dx to equation (3.2.4), we get

L−1
x Lxu(x, y) = −1

x
L−1
x Lxu(x, y)Lyu(x, y)−

y

x
L−1
x Lyu(x, y) +

1

x
L−1
x u(x, y)

u(x, y) = u(0, y)− 1

x
u(x, y)Lyu(x, y)−

y

x
L−1
x Lyu(x, y) +

1

x
L−1
x u(x, y)

u(x, y) = u(0, y)− 1

2x
Lyu(x, y)

2 − y

x
L−1
x Lyu(x, y) +

1

x
L−1
x u(x, y)

(3.2.5)

since the Adomian solution u(x, y) has a series form

u(x, y) =
∞∑
n=0

un(x, y)

equation (3.2.5) becomes,

∞∑
n=0

un(x, y) = u(0, y)− 1

2x
Ly

∞∑
n=0

An −
y

x
L−1
x Ly

∞∑
n=0

un(x, y) + L−1
x

1

x

∞∑
n=0

un(x, y) (3.2.6)

where An is the Adomian Polynomial and is evaluated by equation (3.1.8), so our solution
is given as

u0 + u1 + u2 + ... = u(0, y)− 1

2x
Ly(A0 + A1 + A2 + A3 + ...)− y

x
L−1
x Ly(u0 + u1

+ u2 + ...) + L−1
x

1

x
(u0 + u1 + u2 + ...).

(3.2.7)
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Application of the methods for a nonlinear first order initial value
problem

In this section we consider a nonlinear partial differential equation with suitable initial
condition, namely the Inviscid Burgers equation.

uy + uux = 0, (3.2.8)

with initial condition
u(x, 0) = x.

In the case where initial conditions are provided, the Adomian decomposition method
provides exact solution.
Example 2.( [13], Exercise 3.2 ) We solve the above mentioned equation (3.2.8) using
the Adomian Decomposition Method.
Solution: The nonlinear partial differential equation (3.2.8) in an operator form is given
as

Lyu(x, y) + uLxu(x, y) = 0 (3.2.9)

where Lx = ∂
∂x

and Ly =
∂
∂y
. Then

Lyu(x, y) = −u(x, y)Lxu(x, y) = −1

2
Lxu(x, y)

2 (3.2.10)

when we apply the inverse operator L−1
y =

∫ y

0
(.)dy to equation (3.2.10), we get

L−1
y Lyu(x, y) = −1

2
L−1
y Lxu(x, y)

2

u(x, y) = u(x, 0)− 1

2
L−1
y Lxu(x, y)

2,
(3.2.11)

Using the initial condition we get that

u(x, y) = x− 1

2
L−1
y Lxu(x, y)

2 (3.2.12)

since the Adomian solution has a series form

u(x, y) =
∞∑
n=0

un(x, y)

equation (3.2.12) becomes

∞∑
n=0

un(x, y) = x− 1

2
L−1
y Lx

∞∑
n=0

An, (3.2.13)

where
∑∞

n=0An = u(x, y)2. Equation (3.2.13) can be written as

u0 + u1 + u2 + .... = x− 1

2
L−1
y Lx(A0 + A1 + A2 + ...). (3.2.14)
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Evaluating each component of the series solution using equation (3.1.8) and (3.1.10), we
have

u0(x, y) = x

u1(x, y) = −1

2
L−1
y LxA0 = −xy

u2(x, y) = −1

2
L−1
y LxA1 = xy2

u3(x, y) = −1

2
L−1
y LxA1 = −xy3

...

(3.2.15)

Thus,

u(x, y) =
∞∑
n=0

un(x, y) = u0 + u1 + u2 + ... = x− xy + xy2 − xy3 + ..., (3.2.16)

The solution of equation (3.2.8) is

u(x, y) = x(1 + y)−1 =
x

y + 1
. (3.2.17)

Figure 2: This graph represent the solution to equation (3.2.8), u(x,y)=x/y+1
.

Application of the method to first-order ordinary differential
equation with one independent variable

In this section we discuss the solution of a first-order ordinary differential equation using
Adomian decomposition method.
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Example 3.
Solve the following differential equation using the Adomian.

dy(x)

dx
= 1− 2

[
y(x)

]2
, y(0) = 0, 0 ≤ x ≤ 1. (3.2.18)

Solution: Writing the equation (3.2.18) in operator form we get,

Lxy = 1− 2
[
y(x)

]2
. (3.2.19)

Applying the inverse operator L−1
x =

∫ x

0
(.)dx to equation (3.2.18) yields,

y(x) = y0(x) + x− 2L−1
x

[
y(x)

]2
. (3.2.20)

Since the Adomian solution has a series form, then

y(x) =
∞∑
n=0

yn(x)

∞∑
n=0

yn(x) = y0(x) + x− 2L−1

∞∑
n=0

An (3.2.21)

where
∑∞

n=0An =
[
y(x)

]2
, and An are the Adomian polynomial. Expanding equation

(3.2.21) , we have,

y0(x) + y1(x) + y2(x) + ... = x− 2L−1
[
A0 + A1 + A2 + ...

]
. (3.2.22)

Evaluating each component y(x) and using the following

A0 = N(u0)

A1 = u1N
′(u0),

A2 = u2N
′(u0) +

u21
2!
N ′′(u0),

A3 = u3N
′(u0) + u1u2N

′′(u0) +
u31
3!
N ′′′(u0).

...

(3.2.23)

yeilds,

y0(x) = 0

y1(x) = x− 2L−1Ã0 = x− 2L−1(y0)
2 = x

y2(x) = x− 2L−1A1 = x− 2L−1(2y0y1) = x

y3(x) = x− 2L−1A2 = x− 2L−1(2y0y2 + y21) = x− 2

3
x3

y4(x) = x− 2L−1A3 = x− 2L−1(2y0y3 + 2y1y2) = x− 4

3
x3.

(3.2.24)

Therefore the particular solution is,

yx =
∞∑
n=0

yn(x) = y0 + y1 + y3 + ... = 0 + x+ x+ (x− 2

3
x3) + (x− 4

3
x3) + ... (3.2.25)
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Application of the method to second-order partial differential
equation.

In this section we discuss the solution of a second order partial differential equation using
Adomian decomposition method. Consider the following second order partial differential
equation

∂u

∂y
=
∂2u

∂x2
− u(1− u). (3.2.26)

Example 4. Lets consider equation (3.2.26) in this form

F = −uy + uxx − u+ u2 = 0 (3.2.27)

Solution: Equation (3.2.26) in operator form is given as

Lxu(x, y) = Lyu(x, y) +R(u(x, y))−N(u(x, y)2) (3.2.28)

where Lx = ∂2

∂x2 and Ly = ∂
∂y
. Applying the inverse operator L−1

x =
∫ x

0

∫ x

0
(.)dxdx to

equation (3.2.28), we get

L−1
x Lxu(x, y) = L−1

x Lyu(x, y) + L−1
x (u(x, y))− L−1

x u(x, y)2

u(x, y) = u(0, y) + u(0, y)x+ L−1
x Lyu(x, y) + L−1

x (u(x, y))− L−1
x u(x, y)2

(3.2.29)

since the Adomian solution has a series form

u(x, y) =
∞∑
n=0

un(x, y).

Equation (3.2.29) becomes

∞∑
n=0

un(x, y) = u(0, y) + u(0, y)x+ L−1
x Ly

∞∑
n=0

un(x, y) + L−1
x (

∞∑
n=0

un(x, y))

− L−1
x (

∞∑
n=0

An)

(3.2.30)

where An = u(x, y)2 is the Adomian polynomial. Hence, the solution is

u0 + u1 + u2 + ... = u(0, y) + u(0, y)x+ L−1
x Ly(u0 + u1 + u2 + ...)

+ L−1
x (u0 + u1 + u2 + ...)− L−1

x (A0 + A1 + A2 + ...).
(3.2.31)
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4 Symmetries of the Black Scholes equation

4.1 Lie symmetries

The study of Lie symmetries is a branch within the Lie group theory. The Lie Group the-
ory is a mathematical theory developed in the nineteenth century by Sophus Lie to study
the solutions and group symmetries of differential equations. We will start by defining
certain terms that will be useful later in this section.

Definition 4.1: Symmetry ( [4], Section 1 )
A symmetry of a differential equation is a transformation that transforms any solution
of the differential equation to another solution.

We now discuss concept of symmetries. Symmetries in mathematics refers to any object
that is invariant under various transformations, scaling, rotations and reflection.We have
discrete and continuous symmetries. A basic equilateral triangle, is an example of an
object with discrete symmetries, since they do not depend upon continuous parameters
[21]. Consider an equilateral triangle with vertices A,B and C, after rotations of 2π

3
, 2π

3

and 2π about its center and some reflection through any one of the bisection axis, you
will realise that such transformation leaves the triangle unchanged or ”invariant” and we
can conclude it is invariant under such transformation.
Another example of an object with continuous symmetries is a unit circle. A unit circle
will remain invariant if it is rotated by any radians measure about its origin.

Definition 4.2 : Lie point symmetry
A Lie point symmetry is distinguished by an infinitesimal transformation that renders
the specified differential equation invariant under the transformation of all independent
and dependent variables.

Definition 4.3: Commutator( [25], Section 7.3.1)
The commutator of any two operators Xi and Xj is the differential operator [Xi, Xj] of
the first order defined by

[Xi, Xj] = XiXj −XjXi,

or in the following equivalent form

[Xi, Xj] =
n∑

a=1

(
Xi(ξ

a
i )−Xj(ξ

a
j )
) ∂

∂xa
.

It follows from the above definition that the commutator is bi-linear:

[c1X1 + c2X2, X] = c1[X1, X] + c2[X2, X],

[X, c1X1 + c2X2] = c1[X,X1] + c2[X,X2]

skew-symmetric:
[X1, X2] = −[X2, X1],
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and also satisfies the Jacobi identity:

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.

Definition 4.4: Lie Algebra of operators. ( [25], Definition 7.3.1 )

The Lie algebra is a vector space L of operatorsX = ξi(x)
∂

∂xi
with the following property.

If the operators

X1 = ξi1(x)
∂

∂xi
, X2 = ξi2

∂

∂xi
,

are elements of L, then their commutator

[X1, X2] ≡ X1X2 −X2X1 = (X1(ξ
i
1)−X2(ξ

i
2))

∂

∂xi

is also an element of L.

Definition 4.5: Basis of the vector space( [24], Section 1.1)
Let Lr be a finite dimension Lie algebra and suppose that Xα = ξiα(x)

∂
∂xi for α = 1, .., r

be a basis of a vector space Lr. In particular [Xα, Xβ] ∈ L, hence [Xα, Xβ] = Cr
αβXr for

α, β = 1, ...r. The constant coefficients Cr
αβ are called structure constants of the algebra

Lr.

Definition 4.6: A Local Group( [25], Section 7.1.2)
A set G of transformations Ta (x̄ = f(x, a)) in R2 given by x̄i = f i(x, a), i = 1, ..., n.
is called a one parameter local group if there exists a sub-interval U ′ ⊂ U containing a0
such that the function f i(x, a) satisfy the composition rule

f i(f(x, a), b) = f i(x, c), i, ..., n,

for all values a, b, c ∈ U ′.

4.2 Construction of symmetries

In this section, we discuss the symmetries of partial differential equations. Since our aim
is to identify the symmetries of the one-dimensional Black Scholes equation, we limit our
research to second-order equation with t and x as independent variables and u as the
dependent variable. Consider a partial differential equation of second order

F (t, x, u, ut, ux, utt, uxx, utx) = 0.

The infinitesimal generator of the one-parameter group of transformation is defined as
follows,

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (4.2.1)

Then we denote the first prolongation of (4.2.1) as X [1]:

X [1] = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
+ ζ1

∂

∂ux
+ ζ2

∂

∂ut
(4.2.2)
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and the second prolongation is denoted as X [2] and defined below as:

X [2] = X [1] + ζ11
∂

∂uxx
+ ζ12

∂

∂uxt
+ ζ22

∂

∂utt
(4.2.3)

where ζ1, ζ2, ζ11, ζ12, ζ22 are given by

ζ1 = Dx(η)− uxDx(ξ
1)− utDx(ξ

2),

ζ2 = Dt(η)− uxDy(ξ
1)− utDt(ξ

2),

ζ11 = Dx(ζ1)− uxxDx(ξ
1)− uxtDx(ξ

2),

ζ12 = Dt(ζ1)− uxxDt(ξ
1)− uxtDt(ξ

2),

ζ22 = Dt(ζ2)− uxtDy(ξ
1)− uttDt(ξ

2),

(4.2.4)

where D denotes the total derivatives of x and t, represented as Dx and Dt ([25],p.217),
that is,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ ...,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ ...

(4.2.5)

substituting equation (4.2.5) into equations(4.2.4) (also known as the prolongation for-
mula’s), one obtains the following:

ζ1 = ηx + uxηu − uxξ
1
x − (ux)

2ξ1u − utξ
2
x − uxutξ

2
u,

ζ2 = ηt + utηu − uxξ
1
t − (ut)

2ξ2u − utξ
2
t − uxutξ

1
u,

ζ11 = ηxx + 2uxηxu + uxxηu + (ux)
2ηuu − 2uxxξ

1
x − uxξ

1
xx − 2(ux)

2ξ1xu
− 3uxuxxξ

1
u − (ux)

3ξ1uu − 2uxtξ
2
x − utξ

2
xx − 2uxutξ

2
xu − (utuxx

+ 2uxuxt)ξ
2
u − (ux)

2uyξ
2
uu,

ζ12 = ηxt + utηxu + uxηtu + utxηu + uxutηuu − uxt(ξ
1
x + ξ2t )− uxξ

1
xt − uxxξ

1
t

− uxut(ξ
1
xu + ξ2tu)− (ux)

2ξ1tu − (2uxuxt + utuxx)ξ
1
u − (ux)

2utξ
1
uu − utξ

2
xt

− uttξ
2
x − (ut)

2ξ2xu − (2utuxt + uxutt)ξ
2
u − ux(ut)

2ξ2uu,

ζ22 = ηtt + 2utηtu + uttηu + (ut)
2ηuu − 2uttξ

2
t − utξ

2
tt − 2(ut)

2ξ2tu
− 3ututtξ

2
u − (ut)

3ξ2uu − 2uxtξ
1
t − uxξ

1
tt − 2uxutξ

1
tu − (uxutt

+ 2utuxt)ξ
1
u − (ut)

2uxξ
1
uu. (4.2.6)

Determining equation

Definition 4.7: Determining equation
A determining equation is a linear system of partial differential equation with unknown
ξ and η with variables x and t.
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4.3 Symmetries analysis of the Black Scholes equation

We now compute the Lie symmetries of the Black Scholes equation. Consider the Black
Scholes equation in the following form:

ut +
1

2
B2x2uxx + Cxux −Du = 0, (4.3.1)

whereB,C andD are constants. The infinitesimal generator of the Black Scholes equation
is as follows,

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, y, u)

∂

∂t
+ η(t, x, u)

∂

∂u

then the determining equation is given below as

ζ2 +
1

2
B2x2ζ11 +

1

2
B2xξ1uxx + Cxζ1 + Cξ1ux − ηC = 0. (4.3.2)

Substituting ζ1, ζ11 and ζ2 as defined in equation (4.3.2), we get the following determining
equations:

[
ηt + utηu − uxξ

1
t − (ut)

2ξ2u − utξ
2
t − uxutξ

1
u

]
+

1

2
B2x2

[
ηxx + 2uxηxu

+ uxxηu + (ux)
2ηuu − 2uxxξ

1
x − uxξ

1
xx − 2(ux)

2ξ1xu − 3uxuxxξ
1
u

− (ux)
3ξ1uu − 2uxtξ

2
x − utξ

2
xx − 2uxutξ

2
xu − (utuxx + 2uxuxt)ξ

2
u

− (ux)
2uyξ

2
uu

]
+

1

2
B2xξ1uxx + Cx

[
ηx + uxηuuxξ

1
x − (ux)

2ξ1u − utξ
2
x

− uxuyξ
2
u

]
+ Cξ1ux − ηC = 0.

(4.3.3)

The following are simplified determining equations derived from equation (4.3.3),

1. Bξ2x = 0, Bξ2u = 0, Bξ2uu = 0, B(−ξ1uu + Cxξ2uu) = 0,

2. B(−2ξ1u + x(2(B2 + C)ξ2u +B2xξ2xu)) = 0,

3. B(2(C −D)ξ2u + ηuu −Duξ2uu − 2ξ1xu + 2Cxξ2xu = 0,

4. B(4ξ1 + x(2Duξ2u + 2ξ2t − 4ξ1x + 4B2xξ2x + 6Cxξ2x +Bx2ξ2xx)) = 0,

5. −2Dη + 2Dηu − 2D2u2ξ2u + 2ηt − 2Duξ2t + 2Dxηx − 2CDuxξ2x +B2x2ηxx
−B2Dux2ξ2xx = 0,

6. 2Cξ1 − 2Duξ1u + 2CDuxξ2u − 2ξ1t + 2Cxξ2t − 2Cxξ1x + 2B2Cx2ξ2x + 2C2x2ξ2x
− 2B2Dx2ξ2x + 2B2x2ηxu − 2B2Dux2ξ2xu −B2x2ξ1xx +B2Cx3ξ2xx = 0.

. (4.3.4)
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We solve the determining equations with “B”, “C” and “D” being non-zero. To obtain
the coefficients of the infinitesimal generator of the Black Scholes equations equation;

ξ1(x, t, u) = x(c4 + tc5) +
1

2
x(c2 + 2tc3)lnx,

ξ2(x, t, u) = c1 + t(c2 + tc3),

η(x, t, u) =
1

8B2
u(B4t(c2 + tc3) + 4Ct(C(c2 + tc3)− 2c5)− 4B2(tc3 + Ct(c2

+ tc3)− 2Dt(c2 + tc3)− tc5 − 2c6) + 2(B2(c2 + 2tc3)− 2C(c2 + 2tc3) + 4c5)

lnx+ 4c3lnx
2) + F1(x, t)),

(4.3.5)

under the following constraint

−2DF1(x, t) + 2F1,t + 2CxF1,x +B2x2F1,xx = 0,

with c1, c2, c3, c4, c5 and c6 as constants. We consider the following symmetries of equation
(4.3.1) obtained using Symbolic package [14];

X1 =
∂

∂t
, X2 = x

∂

∂x
,

X3 = u((B4 + 4C2 − 4B2(C − 2D))t+ 2(B2 − 2C) lnx)
∂

∂u
+ 4B2x lnx

∂

∂x
+ 8B2t

∂

∂t
,

X4 = u((B2 − 2C)t+ 2 lnx)
∂

∂u
+ 2B2tx

∂

∂x
,

X5 = u(t(B4t+ 4C2t− 4B2(1 + Ct− 2Dt)) + 4(B2 − 2C)t lnx+ 4(lnx)2)
∂

∂u

+ 8B2t2
∂

∂t
+ 8B2tx lnx

∂

∂x
,

X6 = u
∂

∂u
, XF∞ = F1.

(4.3.6)

We now consider a known basis of the same Lie Algebra of the Black Scholes symmetries
as derived in ( [17], Section 3.1 ),

Y1 =
∂

∂t
, Y2 = x

∂

∂x
,

Y3 = 2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u
,

Y4 = B2tx
∂

∂x
+ (lnx−Dt)u ∂

∂u
,

Y5 = 2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Ct2 −B2t)u

∂

∂u
,

Y6 = u
∂

∂u
, Yϕ = ϕ(t, x)

∂

∂u
.

(4.3.7)

where D = C − (B2)

2
. We note from our discussion that the basis for Lie algebra of

symmetries of Black Scholes are unique. However, each symmetry of the basis can be
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written as a linear combination of the other basis which means that they span the same
Lie algebra.

Y1 = X1

Y2 = X2

Y3 =
1

4B2
X3 +

D
2B2

Y4 =
B2

2
X4

Y5 =
B2

4
X5

Y6 = X6

Yϕ = F∞.

4.4 Commutators

We have already seen that one set of symmetries can be written as a linear combination
of the other, which means they span the same Lie algebra. We compute the commutators
of the set of operators (4.3.6) and (4.3.7) to further show that the symmetries produced
by the Symbolic package and those derived in the article [17] span the same Lie algebra.

We first consider the commutators of the operators (4.3.7),

1. The commutator between Y1 and Y1 is;

[Y1, Y1] = Y1Y1 − YY1

=
( ∂
∂t

∂

∂t

)
−
( ∂
∂t

∂

∂t

)
= 0.

2. The commutator between Y1 and Y2 is;

[Y1, Y2] = Y1Y2 − Y2Y1

=
( ∂
∂t
x
∂

∂x

)
−
(
x
∂

∂x

∂

∂t

)
= 0.

3. The commutator between Y1 and Y3 is;

[Y1, Y3] = Y1Y3 − Y3Y1

=
( ∂
∂t

(
2t
∂

∂t
+ (lnY +Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x

+ 2Dtu
∂

∂u

) ∂
∂t

)
= 2

∂

∂t
+Dx ∂

∂x
+ 2Du

∂

∂u
= 2Y1 +DY2 + 2DY6.
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4. The commutator between Y1 and Y4 is;

[Y1, Y4] = Y1Y4 − Y4Y1

=
( ∂
∂t

(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

) ∂
∂t

)
= B2x

∂

∂x
−Du ∂

∂u
= B2Y2 −DY6.

5. The commutator between Y1 and Y5 is;

[Y1, Y5] = Y1Y5 − Y5Y1

=
( ∂
∂t

(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Ct2 −B2t)u

∂

∂u

))
−

((
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Ct2 −B2t)u

∂

∂u

) ∂
∂t

)
= 4B2t

∂

∂t
+ 2B2x lnx

∂

∂x
+ 2(lnx−Dt)(−D)u

∂

∂u
+ (4B2Ct)u

∂

∂u
−B2u

∂

∂u

= 2B2
(
2t
∂

∂t
+ x lnx

∂

∂x
+Dtx ∂

∂x
+ 2Ctu

∂

∂u

)
− 2D

((
lnx−Dt

)
u
∂

∂u

+B2tx
∂

∂x

)
− 2B2u

∂

∂u
= 2B2Y3 − 2DY4 − 2B2Y6.

6. The commutator between Y1 and Y6 is;

[Y1, Y6] = Y1Y6 − Y6Y1

= (
∂

∂t
u
∂

∂u
)− (u

∂

∂u

∂

∂t
)

= 0.

7. The commutator between Y1 and Y7 is;

[Y1, Y7] = Y1Y7 − Y7Y1

=
( ∂
∂t
ϕ(t, x)

∂

∂u

)
−
(
ϕ(t, x)

∂

∂u

∂

∂t

)
= ϕ(t, x)t − 0

= ϕ(t, x)t.

8. The commutator between Y2 and Y1 is;

[Y2, Y1] = Y2Y1 − Y1Y2

= (x
∂

∂x

∂

∂t
)− (

∂

∂t

∂

∂x
)

= 0.
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9. The commutator between Y2 and Y2 is;

[Y2, Y2] = Y2Y2 − Y2Y2

= (Y
∂

∂x
x
∂

∂x
)− (x

∂

∂x
x
∂

∂x
)

= 0.

10. The commutator between Y2 and Y3 is;

[Y2, Y3] = Y2Y3 − Y3Y2

=
(
x
∂

∂x

(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x

+ 2Dtu
∂

∂u

)
x
∂

∂x

)
= 0 + x(lnx+ 1)

∂

∂x
+ xDt ∂

∂x
+ 0− 0− (lnx+Dt)x ∂

∂x
− 0

= x lnx
∂

∂x
+ x

∂

∂x
+ xDt ∂

∂x
− x lnx

∂

∂x
− xDt ∂

∂x

= x
∂

∂x
= Y2.

11. The commutator between Y2 and Y4 is;

[Y2, Y4] = Y2Y4 − Y4Y2

=
(
x
∂

∂x

(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
x
∂

∂x

)
= xB2t

∂

∂x
+ u

∂

∂u
− 0−B2tx

∂

∂x
− 0

= u
∂

∂u
= Y6.

12. The commutator between Y2 and Y5 is;

[Y2, Y5] = Y2Y5 − Y5Y2

=
(
x
∂

∂x

(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
−

((
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
x
∂

∂x

)
= x2B2t lnx

∂

∂x
+ x2B2t

∂

∂x
+ 2(lnx−Dt)u ∂

∂u
− 2B2tx lnx

∂

∂x

= x2B2t
∂

∂x
+ 2(lnx−Dt)u ∂

∂u
= 2(B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u
)

= 2Y4.

13. The commutator between Y2 and Y6 is;

[Y2, Y6] = Y2Y6 − Y6Y2

=
(
x
∂

∂x
u
∂

∂u

)
− (u

∂

∂u
x
∂

∂x
)

= 0.
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14. The commutator between Y2 and Y7 is;

[Y2, Y7] = Y2Y7 − Y7Y2

= (x
∂

∂x
ϕ(t, x)

∂

∂u
)− (ϕ(t, x)

∂

∂u
x
∂

∂x
)

= xϕ(t, x)x
∂

∂u
.

15. The commutator between Y3 and Y1 is;

[Y3, Y1] = Y3Y1 − Y1Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

) ∂
∂t

)
−
( ∂
∂t

(
2t
∂

∂t
+ (lnx+Dt)

x
∂

∂x
+ 2Dtu

∂

∂u

))
= −2

∂

∂t
−Dx ∂

∂x
− 2Du

∂

∂u
= −2Y1 −DY2 − 2DY6.

16. The commutator between Y3 and Y2 is;

[Y3, Y2] = Y3Y2 − Y2Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)
x
∂

∂x

)
−
(
x
∂

∂x

(
2t
∂

∂t
+ (lnx+Dt)

x
∂

∂x
+ 2Dtu

∂

∂u

))
= 0 + (lnx+Dt)x ∂

∂x
+ 0− 0− x lnx

∂

∂x
− x

∂

∂x
− xDt ∂

∂x
− 0

= −Y2.

17. The commutator between Y3 and Y3 is;

[Y3, Y3] = Y3Y3 − Y3Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−

((
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
= 0.
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18. The commutator between Y3 and Y4 is;

[Y3, Y4] = Y3Y4 − Y4Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−

((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
= 2tB2x

∂

∂x
− 2tDu ∂

∂u
+ (lnx+Dt)xB2t

∂

∂x
+ (lnx+Dt)u ∂

∂u
+ 0

+ 2Dtu(lnx−Dt) ∂
∂u

−B2tx lnx
∂

∂x
−B2tx

∂

∂x
−B2txDt ∂

∂x
−

− (lnx−Dt)u2Dt ∂
∂u

= B2tx
∂

∂x
− 2tDu ∂

∂u
+ (lnx+Dt)u ∂

∂u

= B2tx
∂

∂x
+ lnxu

∂

∂u
−Dtu ∂

∂u
= Y4.

19. The commutator between Y3 and Y5 is;

[Y3, Y5] = Y3Y5 − Y5Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2

+ 2B2Dt2 −B2t)u
∂

∂u

))
−
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2

−B2t)u
∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
= 8t2B2 ∂

∂t
+ 4tB2x lnx

∂

∂x
− 4Dt lnxu ∂

∂u
+ 4(Dt)2u ∂

∂u
+ 8t2B2Du

∂

∂u
− 2tB2u

∂

∂u

+ 2B2tx(lnx)2
∂

∂x
+ 2B2t2x lnxD + 2B2t(lnx+Dt)x ∂

∂x
+ 2((lnx)2 − (Dt)2)u ∂

∂u

+ 2Dtu((lnx−Dt)2 + 2B2Dt2 −B2t)u
∂

∂u

∂

∂u
− 4B2t2

∂

∂t
− 2B2t2Dx lnx ∂

∂x

− 8B2t2Du
∂

∂u
− 2B2tx(lnx)2

∂

∂x
− 2B2tx lnx

∂

∂x
− 2B2t2x lnxD ∂

∂x

− 2Dtu((lnx−Dt)2 + 2B2Dt2 −B2t)u
∂

∂u

∂

∂u

= 4B2t2
∂

∂t
+ 4B2tx lnx

∂

∂x
+
(
2(lnx)2 − 4Dt lnx+ 2(Dt)2

)
u
∂

∂u
= 2Y5.
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20. The commutator between Y3 and Y6 is;

[Y3, Y6] = Y3Y6 − Y6Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
u
∂

∂u

))
−

(
u
∂

∂u

(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
= 0 + 0 + 2Ctu

∂

∂u
− 0− 0− 0− 2Dtu

∂

∂u
= 0.

21. The commutator between Y3 and Y7 is;

[Y3, Y7] = Y3Y7 − Y7Y3

=
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)
ϕ(t, x)

∂

∂u

)
−

(
ϕ(t, x)

∂

∂u

(
2t
∂

∂t

+ (lnx+Dt)x ∂
∂x

+ 2Dtu
∂

∂u

))
= 2tϕ(t, x)t

∂

∂u
+ (lnx+Dt)xϕ(t, x)x

∂

∂u
− 2ϕ(t, x)Dt

∂

∂u
.

22. The commutator between Y4 and Y1 is;

[Y4, Y1] = Y4Y1 − Y1Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

) ∂
∂t

)
−
( ∂
∂t

(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= 0 + 0−B2x

∂

∂x
+ 0−Du ∂

∂u
= −B2Y2 −DY6.

23. The commutator between Y4 and Y2 is;

[Y4, Y2] = Y4Y2 − Y2Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
x
∂

∂x

)
−
(
x
∂

∂x

(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= B2tx

∂

∂x
+ 0− xB2t

∂

∂x
− u

∂

∂u

= −u ∂
∂u

= −Y6.
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24. The commutator between Y4 and Y3 is;

[Y4, Y3] = Y4Y3 − Y3Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−

((
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= 0 +B2tx lnx

∂

∂x
+B2tx

∂

∂x
+B2txDt ∂

∂x
+ 0 + 0 + 0

+ (lnx−Dt)u2Dt ∂
∂u

− 2tB2x
∂

∂x
− 2tDu ∂

∂u
− (lnx+Dt)xB2t

∂

∂x

− (lnx+Dt)u ∂
∂u

− 0− 2Dtu(lnx−Dt) ∂
∂u

= −Y4.

25. The commutator between Y4 and Y4 is;

[Y4, Y4] = Y4Y4 − Y4Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−

((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= 0.

26. The commutator between Y4 and Y5 is;

[Y4, Y5] = Y4Y5 − Y5Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx

−Dt)2 + 2B2Dt2 −B2t)u
∂

∂u

))
−
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx

−Dt)2 + 2B2Dt2 −B2t)u
∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= 2B4t2x lnx

∂

∂x
+ 2B4t2x

∂

∂x
+ 2B2tu(lnx−Dt) ∂

∂u
+ (lnx−Dt)u((lnx−Dt)2

+ 2B2Dt2 −B2t)
∂

∂u
− 2B4t2x

∂

∂x
+ 2B2tu(lnx−D)

∂

∂u
− 2B4t2x lnx

∂

∂x

− ((lnx−Dt)2 + 2B2Dt2 −B2t)(lnx−Dt)u ∂
∂u

= 0

27. The commutator between Y4 and Y6 is;

[Y4, Y6] = Y4Y6 − Y6Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
u
∂

∂u

)
−
(
u
∂

∂u

(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
= 0 + (lnx−Dt)u ∂

∂u
− u(lnx−Dt) ∂

∂u
= 0
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28. The commutator between Y4 and Y7 is;

[Y4, Y7] = Y4Y7 − Y7Y4

=
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
ϕ(t, x)

∂

∂u

)
−
(
ϕ(t, x)

∂

∂u

(
B2tx

∂

∂x

+ (lnx−Dt)u ∂
∂u

))
= B2txϕ(t, x)x

∂

∂u
+ 0− 0− ϕ(t, x)(lnx−Dt) ∂

∂u

29. The commutator between Y5 and Y1 is;

[Y5, Y1] = Y5Y1 − Y1Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

) ∂
∂t

)
−

( ∂
∂t

(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= −4B2t

∂

∂t
− 2B2x lnx

∂

∂x
+ 2D

(
lnx−Dt

)
u
∂

∂u
− 4B2Dtu

∂

∂u
+B2u

∂

∂u

= −2B2
(
2t
∂

∂t
+ x lnx

∂

∂x
+Dtx ∂

∂x
+ 2Dtu

∂

∂u

)
+ 2D

((
lnx−Dt

)
u
∂

∂u

+B2tx
∂

∂x

)
+ 2B2u

∂

∂u
= −2B2Y3 + 2DY4 +B2Y6

30. The commutator between Y5 and Y2 is;

[Y5, Y2] = Y5Y2 − Y2Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)(
x
∂

∂x

))
−

((
x
∂

∂x

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= −2Y4

31. The commutator between Y5 and Y3 is;

[Y5, Y3] = Y5Y3 − Y3Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−
((

2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)
(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= −4B2t2

∂

∂t
− 4B2tx lnx

∂

∂x
−
(
2(lnx)2 − 4Dt lnx+ 2(Dt)2

)
u
∂

∂u
= −2Y5
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32. The commutator between Y5 and Y4 is;

[Y5, Y4] = Y5Y4 − Y4Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−
((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= −2B4t2x lnx

∂

∂x
− 2B4t2x

∂

∂x
− 2B2tu(lnx−Dt) ∂

∂u
− (lnx−Dt)

u((lnx−Dt)2 + 2B2Dt2 −B2t)
∂

∂u
+ 2B4t2x

∂

∂x
+ 2B2tu(lnx−Dt) ∂

∂u

+ 2B4t2x lnx
∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)(lnx−Dt)u ∂

∂u
= 0

33. The commutator between Y5 and Y5 is;

[Y5, Y5] = Y5Y5 − Y5Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
−

((
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= 0.

34. The commutator between Y5 and Y6 is;

[Y5, Y6] = Y5Y6 − Y6Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

) ∂
∂t

)
−

( ∂
∂t

(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

))
= 0.
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35. The commutator between Y5 and Y7 is;

[Y5, Y7] = Y5Y7 − Y7Y5

=
((

2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
(
ϕ(t, x)

∂

∂u

))
−

((
ϕ(t, x)

∂

∂u

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2

+ 2B2Dt2 −B2t)u
∂

∂u

))
= −ϕ(t, x)((lnx−Dt)2 + 2B2Dt2 −B2t)

∂

∂u
+ 2B2t2ϕ(t, x)t

∂

∂u

+ 2B2tx lnxϕ(t, x)x
∂

∂u
.

36. The commutator between Y6 and Y1 is;

[Y6, Y1] = Y6Y1 − Y1Y6

=
((
u
∂

∂u

)( ∂
∂t

)
−
(( ∂

∂t

)(
u
∂

∂u

)
= 0.

37. The commutator between Y6 and Y2 is;

[Y6, Y2] = Y6Y2 − Y2Y6

=
((
u
∂

∂u

)(
x
∂

∂x

)
−
((
x
∂

∂x

)(
u
∂

∂u

)
= 0.

38. The commutator between Y6 and Y3 is;

[Y6, Y3] = Y6Y3 − Y3Y6

=
((
u
∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)
−

((
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

)(
u
∂

∂u

)
= 0 + 0 + u2Ct

∂

∂u
− 0− 0− 2Dtu

∂

∂u
= 0.

39. The commutator between Y6 and Y4 is;

[Y6, Y4] = Y6Y4 − Y4Y6

=
((
u
∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)
−

((
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

)(
u
∂

∂u

)
= 0 + u(lnx−Dt) ∂

∂u
− 0− (lnx−Dt)u ∂

∂u
= 0.
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40. The commutator between Y6 and Y5 is;

[Y6, Y5] = Y6Y5 − Y5Y6

=
((
u
∂

∂u

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)
−

((
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2 −B2t)u

∂

∂u

)(
u
∂

∂u

)
= u((lnx−Dt)2 + 2B2Dt2 −B2t)

∂

∂u
− ((lnx−Dt)2

+ 2B2Ct2 −B2t)u
∂

∂u
= 0.

41. The commutator between Y6 and Y6 is;

[Y6, Y6] = Y6Y6 − Y6Y6

=
((
u
∂

∂u

)(
u
∂

∂u

)
−
((
u
∂

∂u

)(
u
∂

∂u

))
= 0.

42. The commutator between Y6 and Y7 is;

[Y6, Y7] = Y6Y7 − Y7Y6

=
((
u
∂

∂u

)(
ϕ(t, x)

∂

∂u

)
−
((
ϕ(t, x)

∂

∂u

)(
u
∂

∂u

)
= 0− ϕ(t, x)

∂

∂u
= −Y7.

43. The commutator between Y7 and Y1 is;

[Y7, Y1] = Y7Y1 − Y1Y7

=
((
ϕ(t, x)

∂

∂u

)( ∂
∂t

))
−
(( ∂

∂t

)(
ϕ(t, x)

∂

∂u

))
= −ϕ(t, x)t

∂

∂u
.

44. The commutator between Y7 and Y2 is;

[Y7, Y2] = Y7Y2 − Y2Y7

=
((
ϕ(t, x)

∂

∂u

)(
x
∂

∂x

))
−
((
x
∂

∂x

)(
ϕ(t, x)

∂

∂u

))
= −xϕ(t, x)x

∂

∂u
.
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45. The commutator between Y7 and Y3 is;

[Y7, Y3] = Y7Y3 − Y3Y7

=
((
ϕ(t, x)

∂

∂u

)(
2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u

))
−
((

2t
∂

∂t

+ (lnx+Dt)x ∂
∂x

+ 2dtu
∂

∂u

)(
ϕ(t, x)

∂

∂u

))
= ϕ(t, x)2Dt

∂

∂u
− 2tϕ(t, x)t

∂

∂u
− (lnx+Dt)xϕ(t, x)x

∂

∂u
.

46. The commutator between Y7 and Y4 is;

[Y7, Y4] = Y7Y4 − Y4Y7

=
((
ϕ(t, x)

∂

∂u

)(
B2tx

∂

∂x
+ (lnx−Dt)u ∂

∂u

))
−
((
B2tx

∂

∂x

+ (lnx−Dt)u ∂
∂u

)(
ϕ(t, x)

∂

∂u

))
= ϕ(t, x)(lnx−Dt) ∂

∂u
−B2txϕ(t, x)x

∂

∂u
.

47. The commutator between Y7 and Y5 is;

[Y7, Y5] = Y7Y5 − Y5Y7

=
((
ϕ(t, x)

∂

∂u

)(
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2

−B2t)u
∂

∂u

))
−

((
2B2t2

∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−Dt)2 + 2B2Dt2

−B2t)u
∂

∂u

)(
ϕ(t, x)

∂

∂u

))
= ϕ(t, x)((lnx−Dt)2 + 2B2Dt2 −B2t)

∂

∂u
− 2B2t2ϕ(t, x)t

∂

∂u

− 2B2tx lnxϕ(t, x)x
∂

∂u
.

48. The commutator between Y7 and Y6 is;

[Y7, Y6] = Y7Y6 − Y6Y7

=
((
ϕ(t, x)

∂

∂u

)(
u
∂

∂u

))
−
((
u
∂

∂u

)(
ϕ(t, x)

∂

∂u

))
= ϕ(t, x)

∂

∂u
= Y7.

49. The commutator between Y7 and Y7 is;

[Y7, Y7] = Y7Y7 − Y7Y7

=
((
ϕ(t, x)

∂

∂u

)(
ϕ(t, x)

∂

∂u

))
−
((
ϕ(t, x)

∂

∂u

)(
ϕ(t, x)

∂

∂u

))
= 0.

We present the commutators of the basis of the symmetries of Black Scholes equation,
with two tables below, Table 1 and Table 2.

+
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T
ab

le
1:

C
om

m
u
ta
to
r
ta
b
le

co
rr
es
p
on

d
in
g
to

op
er
at
or
s
(4
.3
.7
)

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
1

0
0

2Y
1
+
D
Y
2

+
2D

Y
6

B
2
Y
2
−
D
Y
6

2B
2
Y
3
−
2
D
Y
4

−
B

2
Y
6

0
ϕ
(t
,x

) t
∂ ∂
u

Y
2

0
0

Y
2

Y
6

2
Y
4

0
x
ϕ
(t
,x

) x
∂ ∂
u

Y
3

−
2Y

1
−
D
Y
2

−
2D

Y
6

−
Y
2

0
Y
4

2
Y
5

0

2
tϕ
(t
,x

) t
∂ ∂
u

+
(l
n
x
+
D
t)
x

ϕ
(t
,x

) x
∂ ∂
u
−

2ϕ
(t
,x

)

C
t
∂ ∂
u

Y
4

−
B

2
Y
2
−
D
Y
6

−
Y
6

−
Y
4

0
0

0
B

2
tx
ϕ
(t
,x

) x
∂ ∂
u

−
ϕ
(t
,x

)(
ln
x

−
D
t)

∂ ∂
u

Y
5

−
2B

2
Y
3
+
2
D
Y
4

+
B

2
Y
6

−
2Y

4
−
2Y

5
0

0
0

−
ϕ
(t
,x

)(
(l
n
x
−

D
t)

2
+
2
B

2
C
t2

−
A

2
t)

∂ ∂
u
+
2
B

2
t2

ϕ
(t
,x

) t
∂ ∂
u

+
2
B

2
tx

ln
x
ϕ
(t
,x

) x
∂ ∂
u

Y
6

0
0

0
0

0
0

−
Y
7

Y
7

−
ϕ
(t
,x

) t
∂ ∂
u

−
x
ϕ
(t
,x

) x
∂ ∂
u

ϕ
(t
,x

)2
D
t
∂ ∂
u

−
2t
ϕ
(t
,x

) t
∂ ∂
u

−
(l
n
x
+
D
t)

x
ϕ
(t
,x

) x
∂ ∂
u

ϕ
(t
,x

)(
ln
x
−

D
t)

∂ ∂
u

−
B

2
tx
ϕ
(t
,x

) x
∂ ∂
u

ϕ
(t
,x

)(
(l
n
x
−
D
t)

2

+
2B

2
D
t2

−
B

2
t)

∂ ∂
u

−
2B

2
t2
ϕ
(t
,x

) t
∂ ∂
u

−
2B

2
tx

ln
x
ϕ
(t
,x

) x
∂ ∂
u

Y
7

0
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T
ab

le
2:

C
om

m
u
ta
to
r
ta
b
le

co
rr
es
p
on

d
in
g
to

op
er
at
or
s
(4
.3
.6
)

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
1

0
0

8B
2
X

1
+
( B

4

+
4C

2
−

4B
2
( C

−
2D

)) X
6

2B
2
X

2
+

( B
2

−
2C

) X
6

2X
3

−
4B

2
X

6
0

F
1
,t

∂ ∂
u

X
2

0
0

4B
2
X

2
+
2
( B

2

−
2C

) X
6

2X
6

4X
4

0
x
F

1
,x

∂ ∂
u

X
3

−
8B

2
X

1
−
( B

4

+
4
C

2
−
4B

2
( C

−
2D

)) X
6

−
4B

2
X

2
−

2
( B

2
−

2
C
) X

6
0

4B
2
X

4
8B

2
X

5
0

( F
1

( −
4
C

2
t
+
B

2

( −
1
+
4
C

−
8
D
) t

−
2( B

2
−

2
C
) ln

x
)

+
4
B

2
( x

ln
x
F

1
,x

+
2
tF

1
,t

)) ∂ ∂
u

X
4

−
2
B

2
X

2
−

( B
2
−
2
C
) X

6
−
2X

6
−
4B

2
X

4
0

0
0

−
F

1

(( B
2
−

2
C
) t

+
2
ln
x
) ∂ ∂

u

+
2
B

2
tx
F

1
,x

X
5

−
2X

3
+
4
B

2
X

6
−
4X

4
−
8B

2
X

5
0

0
0

( −
F

1

( t( B
4
t+

4
C

2
t
−
4
B

2
( 1

+
C
t

−
2
D
t)) +

4
( B

2
−
2
C
)

t
ln

x
+
4
ln
x
2
)

+
8
B

2
t( x

ln
x
F

1
,x
+

tF
1
,t

)) ∂ ∂
u

X
6

0
0

0
0

0
0

−
X

7

X
7

−
F

1
,t

∂ ∂
u

−
x
F

1
,x

∂ ∂
u

( F
1

( 4C
2
t
+

B
2

B
ig
(1

−
4 C

+
8D

)
t
+
2
( B

2
−
2C

)
ln

x
) −

4B
2
( x

ln
x
F

1
,x

+
2t
F

1
,t

)) ∂ ∂
u

F
1

(( B
2
−
2C

) t

+
2
ln
x
) −

2B
2
tx
F

1
,x

∂ ∂
u

( F
1

( t( B
4
t
+
4
C

2
t

−
4B

2
( 1

+
C
t
−
2D

t))
+
4( B

2
−

2C
)

t
ln

x
+
ln

x
2
)

−
8B

2
t( x

ln
x
F

1
,x

+
tF

1
,t

)) ∂ ∂
u

X
7

0
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4.5 Symmetry transformations

In this section we use the solution of the Lie equations and Exponentiation to construct
symmetry transformations of the infinitesimal generators (4.3.7).

4.5.1 Lie Equations

We discuss the theorem for solving the Lie equations.

Theorem 3. ( [25],Section 7.1.5)
Let G be a local group and let x̄i ≈ xi+aξi(x), i = 1, .., n be the infinitesimal transfor-
mation of the group G. The system of first-order ordinary differential equations (known
as Lie equations) is then solved using the function x̄i = f i(x, a).

dx̄i

da
= ξi(x̄), i = 1, ..n (4.5.1)

with the initial condition x̄i|a=0= xi, that is,

dx̄i

da
= ξ(x̄), x̄|a=0= x. (4.5.2)

The corresponding transformations to generators (4.3.7) are:

1. For Y1 =
∂

∂t
, we solve,

dt̄

da1
= 1, with initial condition t̄|a1=0= t, (1)

dx̄

da1
= 0, with initial condition x̄|a1=0= x, (2)

dū

da1
= 0, with initial condition ū|a1=0= u. (3)

From equation (1), t̄ = a1 + c1, then we substitute the initial condition
t̄|a1=0= t, t = 0 + c1 thus, t̄ = a1 + t.
From equation (2), x̄ = c2, substituting the initial condition x̄|a1=0= x,
x = c2 then, x̄ = x.
From equation (3), ū = c3, substituting the initial condition ū|a1=0= u,
u = c3, then, ū = u.

2. For Y2 = x
∂

∂x
, we solve,

dt̄

da2
= 0, with initial condition t̄|a2=0= t, (4)

dx̄

da2
= x̄, with initial condition x̄|a2=0= x, (5)

dū

da2
= 0, with initial condition ū|a2=0= u. (6)
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From equation (4), t̄ = c4, we then substitute the initial condition
t̄|a2=0= t, t = c4 then, t̄ = t.
From equation (5), x̄ = c5 exp{a2}, substituting the initial condition x̄|a2=0= x,
x = c5 then, x̄ = x exp{a2} .
From equation (6), ū = c6, substituting the initial condition ū|a2=0= u,
c6 = u then, ū = u.

3. For Y3 = 2t
∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Dtu

∂

∂u
, we solve,

dt̄

da3
= 2t̄, with initial condition t̄|a3=0= t, (7)

dx̄

da3
= x̄ ln x̄+Dt̄x̄, with initial condition x̄|a3=0= x, (8)

dū

da3
= 2Dt̄ū, with initial condition ū|a3=0= u. (9)

From equation (7), ln t̄ = 2a3 + c7, t̄ = c7 exp{2a3}, we then substitute the
initial condition t̄|a3=0= t, t = c7 then, t̄ = t exp{2a3}.
From equation (8) and t̄ = t exp{2a3} we let

v = ln x̄+Dt exp{2a3}

dv =
1

x̄
dx̄,

hence, ln v = a3 + c8,v = c8 exp{a3}, and substituting back v we have ln x̄
+ Dt exp{2a3} = c8 exp{a3} substituting the initial condition x̄|a3=0= x, lnx +
Dt = c8 then,

x̄ = exp{(lnx+Dt) exp{a3} − Dt exp{2a3}}
From equation (9) and t̄ = t exp{2a3} ,we let

v = 2a3

dv = 2da3.

Hence ū = c9 exp{(Dt exp{2a3}}), substituting the initial condition ū|a3=0= u,
u exp{−Dt} = c9 then,

ū = u exp{Dt(exp{2a3} − 1)}.

4. For Y4 = B2tx
∂

∂x
+ (lnx−Dt)u ∂

∂u
, we solve,

dt̄

da4
= 0, with initial condition t̄|a4=0= t, (10)

dx̄

da4
= B2t̄x̄, with initial condition x̄|a4=0= x, (11)

dū

da4
= (ln x̄−Dt̄)ū, with initial condition ū|a4=0= u. (12)
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From equation (10), t̄ = c10, we then substitute the initial condition
t̄|a4=0= t, t = c10 then, t̄ = t.
From equation (11) and t̄ = t, ln x̄ = B2ta4 + c11, x̄ = c11 exp{(B2ta4)},
substituting the initial condition x̄|a4=0= x, x = c11 then,

x̄ = x exp
{
(B2ta4)

}
,

From equation (12) and t̄ = t and x̄ = x exp{(B2ta4)}, ln ū = lnxa4
+B2ta24 −Dta4 + c12, ū = c12 exp{lnxa4 +B2ta24 −Dta4}, substituting the
initial condition ū|a4=0= u, u = c12 then,

ū = u exp
{
(lnxa4 +B2ta24 −Dta4)

}
.

5. For Y5 = 2B2t2
∂

∂t
+ 2B2tx lnx

∂

∂x
+ ((lnx−D)2 + 2B2Dt2 −B2t)u

∂

∂u
, we solve,

dt̄

da5
= 2B2t̄2, with initial condition t̄|a5=0= t, (13)

dx̄

da5
= 2B2t̄x̄ ln x̄, with initial condition x̄|a5=0= x, (14)

dū

da5
= ((ln x̄−D)2 + 2B2Dt̄2 −B2t̄)ū, with initial condition ū|a5=0= u. (15)

From equation (13), t̄−1 = −2B2a5 − c13, t̄ =
1

−2B2a5 − c13
, we then

substitute the initial condition t̄|a1=0= t, t =
1

−c13
then,

t̄ =
t

−2B2a5t+ 1
.

From equation (14) and t̄ =
t

−2B2a5t+ 1
, we let

v = ln x̄, u = −2B2ta5 + 1,

dv =
1

x̄
dx̄, du = −2B2tda5,

then ln x̄ = c14

( 1

−2B2ta5 + 1

)
, x̄ = exp

{
c14

1

−2B2ta5 + 1

}
, substituting the ini-

tial condition x̄|a5=0= x, ln x = c14, then,

x̄ = x

( 1

−2B2ta5 + 1

)
.

From equation (15) and t̄ =
t

−2B2a5t+ 1
and x̄ = x

( 1

−2B2ta5 + 1

)
,

ln ū =
− lnx2

−2B2t(−2B2ta5 + 1)
− 2D lnx(ln (−2B2ta5 + 1))

−2B2t
+D2a5 −

Dt

2B2ta5 − 1

− ln−2B2ta5 + 1

−2
+ c15.
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Thus,

ū = c15 exp

{
− lnx2

−2B2t(−2B2ta5 + 1)
− 2D lnx(ln (−2B2ta5 + 1))

−2B2t
+D2a5

}
× exp

{
− Dt

2B2ta5 − 1
− ln−2B2ta5 + 1

−2

}
substituting the initial condition ū|a5=0= u,

u = c15 exp

{
− lnx2

−2B2t
−Dt

}
, c15 = u exp

{
−
(− lnx2

−2B2t
−Dt

)}
,

then

ū = u exp

{
−
(− lnx2

−2B2t
−Dt

)}
exp

{
− lnx2

−2B2t(−2B2ta5 + 1)
− 2D lnx(ln (−2B2ta5 + 1))

−2B2t

}
× exp

{
+D2a5 −

Dt

2B2ta5 − 1
− ln−2B2ta5 + 1

−2

}
(4.5.3)

6. For Y6 = u
∂

∂u
, we solve,

dt̄

da6
= 0, with initial condition t̄|a6=0= t, (16)

dx̄

da6
= 0, with initial condition x̄|a6=0= x, (17)

dū

da6
= ū, with initial condition ū|a6=0= u. (18)

From equation (16), t̄ = c16, we then substitute the initial condition
t̄|a6=0= t, t = c16 then, t̄ = t.
From equation (17), x̄ = c17, substituting the initial condition x̄|a6=0= x,
x = c17 then, x̄ = x.
From equation (18), ū = c18 exp{a6}, substituting the initial condition ū|a6=0= u,
u = c18 then, ū = u exp{a6}.

7. For Yϕ = ϕ(t, x)
∂

∂u
, we solve,

dt̄

da7
= 0, with initial condition t̄|aϕ=0= t, (19)

dx̄

da7
= 0, with initial condition x̄|aϕ=0= x, (20)
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dū

da7
= ϕ(t̄, x̄), with initial condition ū|aϕ=0= u (21)

From equation (19), t̄ = c19, we then substitute the initial condition
t̄|a1=0= t, t = c19 then, t̄ = t.
From equation (20), x̄ = c20, substituting the initial condition x̄|a7=0= x,
x = c20 then, x̄ = x.
From equation (21) and x̄ = x and t̄ = t, ū = ϕ(t, x)a + c21, substituting the initial
condition ū|a7=0= u,u = c21 then, ū = ϕ(t, x)a7 + u.

4.5.2 The Exponential Map

Given a generator Y = ξi(x) ∂
∂xi ,one can obtain the group transformation in the form of

an infinite series by using the exponential map

x̄i = exp{aY }(xi), i = 1, ..., n (4.5.4)

where

exp{aY } = 1 +
a

1!
Y +

a2

2!
Y 2 +

a3

3!
Y 3 + ...+

asu

s!
Y s + ...

Consider the generator Y1 =
∂
∂t
, the corresponding group transformation using exponen-

tial map is given by

t̄ = exp{a1Y }(t), x̄ = exp{a1Y }(x) ū = exp{a1Y }(u) (4.5.5)

so we now calculate Y s(t) for s = 1, 2, ..., Y (t) = 1, Y 2(t) = Y (Y (t))
= Y (1) = 0, Y 3(0) = 0 · · ·Y s(0) = 0

substituting the above expressions into the exponential map formula

exp{a1Y }(t) = t+ a1(1) + a21(0) + · · ·+ as1(0) + · · · = t+ a1 (4.5.6)

calculating Y s(x) and Y s(u) for s = 1, 2, ... we get x̄ = exp{a1Y }(x) = x+ 0 + ... and
ū = exp{aY }(u) = u+ 0 + ..., then,

Y1 : t̄ = t+ a1, x̄ = x, ū = u

For the generator Y2 = x ∂
∂x
, the group transformation using exponential map is x̄ =

exp{a2Y }(x). We compute Y s(x) for s = 1, ... as follows

Y 1(x) = x, Y 2(x) = Y (Y (x)) = Y (x) = x, Y 3(x) = x, .., Y s(x) = x, ..

Substituting all the expressions into the exponential map formula

exp{a2X}(x) = x+
a2x

1!
+
a22x

2!
+
a32x

3!
+ ...+

as2x

s!
+ ...

= x(1 +
a2
1!

+
a22
2!

+
a32
3!

+ ...+
as2
s!

+ ...)

= x exp{a2}
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and now, the group transformation are given as

Y2 : x̄ = x exp{a2}, t̄ = t ū = u

Similarly ,we get

Y3 : x̄ = exp{exp{2a3}Dt+ exp{a3(−Dt+ lnx)}}, t̄ = exp{2a3}t,
ū = u exp{−Dt+D exp{2a3t}};

Y4 : x̄ = x exp
{
B2ta4

}
, t̄ = t, ū = u exp

{(
−Dta4 −

(lnx)2

2B2t
+

(lnx exp{B2ta4})2

2B2t

)}
;

Y5 : x̄ = x

( 1

−2B2ta5 + 1

)
, t̄ =

t

−2B2a5t+ 1
, ū = u exp

(
ln (1− 2B2ta5)

0.5

+
(lnx)2a5 − 2 lnxDta5 +D2t2a5

1− 2B2ta5
+

2B2Dt2a5
1− 2B2ta5

)
;

Y6 : x̄ = x, t̄ = t, ū = exp{a6}u;
YΦ : x̄ = x, t̄ = t, ū = u+ aϕ(t, x).

The exponential map and the solution of Lie equations yields the same transformations
of the generators.
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5 Transformation of the Black Scholes into Heat equa-

tion.

5.1 Symmetry Analysis of the Heat equation

In this section we discuss the Lie symmetries of the Heat equation, which is represented
by the following equation

ut = uxx. (5.1.1)

The invariance condition also referred as the infinitesimal generator is given by:

X = ξ1(x, t, u)
∂

∂t
+ ξ2(x, t, u)

∂

∂x
+ η(x, t, u), (5.1.2)

the coeficient ξ and η that depends on t, x and u will be found from following the deter-
mining equation,

X(ut − uxx)|ut=uxx= ζ1 − ζ22 = 0.

We expand the above equation by substituting the prolongation formulas (see equation
4.2.4) we get:

ηx + uxηu − uxξ
1
x − (ux)

2ξ1u − utξ
2
x − uxutξ

2
u − (ηtt + 2utηtu + uttηu + (ut)

2ηuu

− 2uttξ
2
t − utξ

2
tt − 2(ut)

2ξ2tu − 3ututtξ
2
u − (ut)

3ξ2uu − 2uxtξ
1
t − uxξ

1
tt − 2uxutξ

1
tu

− (uxutt + 2utuxt)ξ
1
u − (ut)

2uxξ
1
uu) = 0.

(5.1.3)

Thereafter, we find the following basis of the Lie algebra of symmetries of the Heat
equation.

P1 =
∂

∂x
, P2 =

∂

∂t
P3 = u

∂

∂u

P4 = 2t
∂

∂t
+ x

∂

∂x

P5 = 2t
∂

∂x
− ux

∂

∂u

P6 = 4t2
∂

∂t
+ 4tx

∂

∂x
− 2tu

∂

∂u
− x2u

∂

∂u

PF = F1(t, x)
∂

∂u
given that F1,xx −F1,t = 0 F1(t, x)

∂

∂u

with F1 as an arbitrary solution of the heat equation.

5.2 Transforming of the Black Scholes equation to the Heat
equation

Any parabolic equations that admits the symmetry group of their highest order can be
reduced to the heat equation, [26]. We present the reduction the Black Scholes problem
to the heat equation since it is also a parabolic equation.
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Consider the Black Scoles equation in the following form,

∂u

∂t
+

1

2
σ2x2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0, (5.2.1)

with 0 ≤ x ≤ ∞, 0 ≤ t ≤ T

where x is the value of the underlying asset, σ represent the volatility (we assume a
constant volatility through out the transformation) and r is a risk-less interest rate. The
boundary condition of u (the price of a call option) is given by,

u(x, T ) = f(x) = max(x−K, 0), (5.2.2)

where K is the strike price of the call option. We consider the following transformations
of the BS to the heat equation,

x = ey, t = T − 2τ

σ2
, (5.2.3)

u(x, t) = v(y, τ) with y = lnx and τ =
σ2

2
(T − t).

The corresponding derivatives of equation (5.2.1) with respect to the new variables

∂u

∂t
=
∂v

∂τ

∂τ

∂t
= −σ

2

2

∂v

∂τ
(5.2.4)

and
∂u

∂x
=
∂v

∂y

∂y

∂x
=

1

x

∂v

∂y

∂2u

∂x2
=

∂

∂x

(∂u
∂x

)
=

∂

∂x

(1
x

∂v

∂y

)
= − 1

x2
∂v

∂y
+

1

x

∂

∂x

∂y

∂x

∂v

∂y

= − 1

x2
∂v

∂y
+

1

x2
∂

∂y

∂v

∂y

= − 1

x2
∂v

∂y
+

1

x2
∂2

∂y2

(5.2.5)

substituting equation (5.2.4) and (5.2.5) into (5.2.1)

−σ
2

2

∂v

∂τ
+

1

2
σ2x2

(
− 1

x2
∂v

∂y
+

1

x2
∂2

∂y2

)
+ rx

(1
x

∂v

∂y

)
− rv = 0

−σ
2

2

∂v

∂τ
+
σ2

2

(
− ∂v

∂y
+

∂2

∂y2

)
+ r

∂v

∂y
− rv = 0

−σ
2

2

∂v

∂τ
− σ2

2

∂v

∂y
+
σ2

2

∂2

∂y2
+ r

∂v

∂y
− rv = 0

−σ
2

2

∂v

∂τ
+
(
− σ2

2
+ r

)∂v
∂y

+
σ2

2

∂2v

∂y2
− rv = 0

(5.2.6)
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rearranging the last equation

∂v

∂τ
=

2

σ2

(
− σ2

2
+ r

)∂v
∂y

+
2

σ2

σ2

2

∂2

∂y2
− 2

σ2
rv

simplifying,
∂v

∂τ
=

(
− 1 +

2r

σ2

)∂v
∂y

+
∂2

∂y2
− 2r

σ2
u (5.2.7)

setting κ =
2r

σ2
to simplify calculation and letting t = τ , then (5.2.1) becomes

∂v

∂τ
=

(
− 1 + κ

)∂v
∂y

+
∂2

∂y2
− κu (5.2.8)

with −∞ ≤ y ≤ ∞ 0 ≤ t ≤ σ2

2
T

and (5.2.2) becomes

v(y, 0) = u(ey, T ) = f(ex) = max(ex −K, 0).

In order to eliminate
(
− 1 +

2r

σ2

)∂v
∂y

and κu in (5.2.8), we need to transform one more

variable
v(y, t) = exp{αy + βt}V (y, t)

where α and β are arbitrary constants. Computing the partial derivatives of V with
respect to y and t, we get

∂v

∂t
= exp{αy + βt}βV + exp{αy + βt}∂V

∂t
(5.2.9)

∂v

∂y
= exp{αy + βt}αV + exp{αy + βt}∂V

∂t

∂2v

∂y2
=

∂

∂y

(
exp{αy + βt}αV + exp{αy + βt}∂V

∂t

)
= exp{αy + βt}α2V + exp{αy + βt}α∂V

∂y
+ exp{αy + βt}α∂V

∂y
+ exp{αy + βt}∂

2V

∂y2

= exp{αy + βt}α2V + 2α exp{αy + βt}∂V
∂y

+ exp{αy + βt}∂
2V

∂y2

(5.2.10)

substituting (5.2.9) and (5.2.10) back into equation (5.2.8)

exp{αy + βt}βV + exp{αy + βt}∂V
∂t

=
(
− 1 + κ

)(
exp{αy + βt}αV + exp{αy + βt}∂V

∂y

)
+ exp{αy + βt}α2V + 2α exp{αy + βt}∂V

∂y

+ exp{αy + βt}∂
2V

∂y2
− κ exp{αy + βt}V
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simplifying and dividing both sides by exp{αy + βt} we get,

βV +
∂V

∂t
= −αV − ∂V

∂y
+ καV + κ

∂V

∂y
+ α2V + 2α

∂V

∂y
+
∂2V

∂y2
− κV

∂V

∂t
=

(
− 1 + κ+ 2α

)∂V
∂y

+
∂2V

∂y2
+
(
− α + κα + α2 − κ− β

) (5.2.11)

since α and β are arbitrary constants, we set

α =
1− κ

2

β = −α + κα+ α2 − κ =
−κ2 − 2κ− 1

4
= −−(κ+ 1)2

4

substituting back into equation (5.2.11), the resulting equation is a heat equation

∂V

∂t
=
∂2V

∂y2
(5.2.12)

with y > 0 and 0 ≤ t ≤ σ2

2
T.

In this chapter and chapter 4, we have determined the Lie symmetries of the Heat equation
and the Black Scholes equation. In the following chapter we will find the invariant
solutions corresponding to the Lie symmetries that where found.
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6 Invariant solutions

In this sections we discuss the invariant solutions of the symmetry generators of the Black
Scholes equation and the Heat equation. Invariant solutions are exact solutions that are
invariant under a subgroup of the full symmetry group.
Definition 6.1( [25], Chapter 9.4 )
Let a system S of differential equations

Fσ(x, u, u(1), ..., u(k)) = 0, σ = 1, ..., s, (1)

where the order k refers to the highest derivatives appearing (1), admit a group G, and
let H be a subgroup of G. A solution of equation (1)

uα = hα(x), α = 1, ...,m, (2)

is called an invariant solution of the system S if (2) is an invariant manifold for H.

We start by demonstrating how to get invariant solutions using the heat operators as in
section (5.1).

6.1 Invariant solutions of the Heat question

We recall the symmetries of the heat equation below

P1 =
∂

∂x
, P2 =

∂

∂t
, P3 = u

∂

∂u

P4 = 2t
∂

∂t
+ x

∂

∂x

P5 = 2t
∂

∂x
− ux

∂

∂u

P6 = 4t2
∂

∂t
+ 4tx

∂

∂x
− 2tu

∂

∂u
− x2u

∂

∂u

PF = F1[t, x]
∂

∂u
given that F1,xx −F1,t = 0F1[t, x]

∂

∂u

with F1 as an arbitrary solution of the heat equation.

1. The invariant solutions for the symmetry generator P1 =
∂

∂x
is as follows

The characteristic equation is given by

dx

1
=
dt

0
=
du

0

which can be reduced into two equations as shown below

1.
dx

1
=
dt

0
, 2.

dx

1
=
du

0
.
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We solve equation (1), t =M1 whereM1 is a constant of integration, and the second
equation (2), u =M2. Thus, the invariant solution is given by

M2 = ϕ(M1), that is, u = ϕ(t) (6.1.1)

when we compute the derivatives of equation (6.1.1) with respect to t and x

ut = ϕ′(t), ux = 0 uxx = 0.

Now we substitute these equations into the heat equation (5.3.1), to obtain

ϕ′(t) = 0 −→ dϕ

dt
= 0. (6.1.2)

We now integrate equation (6.1.2) , ϕ = C1. Thus, the invariant solution of P1 is

u = C1, where C is a constant. (6.1.3)

2. We compute the invariant solution of the symmetry generator P2 =
∂

∂t
to obtain

the characteristic equations
dt

1
=
dx

0
=
du

0
.

Therefore, we obtain, x = M1 and u = M2 and expressing M2 in terms of M1, we
obtain

M2 = ϕ(M1) = ϕ(x) −→ u = ϕ(x). (6.1.4)

Taking the derivatives of u with respect to t and x , ut = 0 , ux = ϕ′(x) and
uxx = ϕ′′(x). Substituting back into the heat equation (5.1.1),

ϕ′′(x) = 0. (6.1.5)

Upon integration, ϕ = C1x+ C2, so the invariant solution is

u = C1x+ C2 (6.1.6)

were C1, C2 are constants.

3. For the symmetry generator P3 = 2t
∂

∂t
+ x

∂

∂x
, the characteristic equation of this

generator is,
dt

2t
=
dx

x
=
du

0
.

Then we separately solve

1.
dt

2t
=
dx

x
, 2.

dx

x
=
du

0
.

We considering (1) and integrate

1

2
ln t+M1 = lnx,
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which can be written as
x =M1

√
t. (6.1.7)

We consider equation (2) and integrate to obtain, u = M2. Designating M2 as a
function of M1

M2 = ϕ(M1) −→ M2 = ϕ(
x√
t
).

Then u = ϕ(
x√
t
). Taking the derivatives of u with respect to x and t,

ut = ϕ′(
x√
t
)
(
− x

2t3/2

)
ux = ϕ′(

x√
t
)
( 1√

t

)
uxx = ϕ′′(

x√
t
)
(1
t

)
.

(6.1.8)

Now we substitute the derivatives back into the heat equation (5.1.1)

ϕ′(
x√
t
)
(
− x

2t3/2

)
= ϕ′′(

x√
t
)
(1
t

)
−→ ϕ′′ +

x

2
√
t
ϕ′ = 0, (6.1.9)

this is a second order homogeneous differential equation. Now let ϕ′ = y(M1), then

y′ +
x

2
√
t
y = 0 −→ dy

y
=

x

2
√
t
dM1, (6.1.10)

which yields the following derivation,

ln y =
M1x

2
√
t
+K1 −→ y = K1 exp

(
M1x

2
√
t

)
. (6.1.11)

We substituting back ϕ′, to obtain ϕ′ = K1 exp
(

M1x
2
√
t

)
, thus

dϕ

dM1

= K1 exp

(
M1x

2
√
t

)
−→ dϕ = K1 exp

(
M1x

2
√
t

)
dM1. (6.1.12)

We solve again

ϕ = K1
2
√
t

x
exp

(
M1x

2
√
t

)
+K2. (6.1.13)

We obtain, the invariant solution as

u = K1
2
√
t

x
exp

(
M1x

2
√
t

)
+K2. (6.1.14)

4. We consider invariant solution of the symmetry generator P5 = 2t
∂

∂x
− ux

∂

∂u
We compute the characteristic equation,

dt

0
=
dx

2t
=

du

−ux
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and we separately solve

1.
dt

0
=
dx

2t
, 2.

dx

2t
=

du

−ux
.

We obtain t =M1 from equation (1) and equation (2) yields

− x2

4t
−M2 = lnu −→ u =M2 exp

(
−x

2

4t

)
. (6.1.15)

Now we write M2 as a function of M1, M2 = ϕ(t), thus equation (6.1.15) is written
as,

u = ϕ(t) exp

(
−x

2

4t

)
. (6.1.16)

Then we differentiate u with respect to t and u to obtain

ut = ϕ′(t) exp

(
−x

2

4t

)
+ ϕ(t) exp

(
−x

2

4t

)( x2
4t2

)
ux = ϕ(t) exp

(
−x

2

4t

)(
− 2x

4t

)
uxx = ϕ(t) exp

(
−x

2

4t

)( 4x2

16t2

)
+ ϕ(t) exp

(
−x

2

4t

)(
− 1

2t

) (6.1.17)

we then rewrite equation (5.1.1) in terms of ut and uxx

ϕ′(t) exp

(
−x

2

4t

)
= ϕ(t) exp

(
−x

2

4t

)
4x2

16t2
− ϕ(t) exp

(
−x

2

4t

)
1

2t

+ ϕ(t) exp

(
−x

2

4t

)
x2

4t2
.

(6.1.18)

Thereafter we divide both side of the equation by exp

(
−x

2

4t

)
,

ϕ′(t) + ϕ(t)
x2

4t2
= ϕ(t)

4x2

16t2
− ϕ(t) · 1

2t
(6.1.19)

which becomes,

ϕ′

ϕ
=

( 4x2

16t2
− 1

2t
− x2

4t2

)
dϕ

ϕ
=

(
− 1

2t

)
dt.

(6.1.20)

We then integrate and obtain ϕ = C√
t
, were C is an integration constant. Hence,

the invariant solution of P5 is

u =
C√
t
exp

(
−x

2

4t

)
. (6.1.21)
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5. For the symmetry generator P6 = 4t2
∂

∂t
+4tx

∂

∂x
−2tu

∂

∂u
−x2u ∂

∂u
the characteristic

equation is,
dt

t2
=
dx

tx
=

du

(−1
2
tu− 1

4
x2u)

which can be written separately as

1.
dt

t2
=
dx

tx
, 2.

dx

tx
=

du

(−1
2
t− 1

4
x2)u

.

Solving equation (1) we obtain,

M1 =
x

t

and solving equation (2) we obtain,(
− 1

2x
− x

4t

)
dx =

du

u
.

We then integrate to get u =M2 exp
(
− lnx

2
− x2

8t

)
, then write M2 = ϕ(M1) = ϕ(x

t
),

hence

u = ϕ(
x

t
) exp

(
− lnx

2
− x2

8t

)
= ϕ(

x

t
) · 1√

x
· exp

(
−x

2

8t

)
We differentiate “u” with respect to x and t,

ut = ϕ′
(
−

√
x

t2

)
exp

(
−x

2

8t

)
+ ϕ

(x3/2
8t2

)
exp

(
−x

2

8t

)
ux = ϕ′

( 1

t
√
x

)
exp

(
−x

2

8t

)
− ϕ

(√x
4t

)
exp

(
−x

2

8t

)
− ϕ

( 1

2x3/2

)
exp

(
−x

2

8t

)
uxx = ϕ′′

( 1

t2
√
x

)
exp

(
−x

2

8t

)
+ ϕ′

((
− t

x3/2

)
exp

(
−x

2

8t

)
−
(√x

2

)
exp

(
−x

2

8t

))
+ ϕ

(( 3

4x5/2

)
exp

(
−x

2

8t

)
+

1

4t
√
x · exp

(
−x2

8t

) −
(√x
4t

)
exp

(
−x

2

8t

)
+
(x5/2
16t2

)
exp

(
−x

2

8t

))
.

(6.1.22)

Now we re-write equation (5.1.1) as,

ϕ′′(16x2) + ϕ′(−16tx+ 8x3) + ϕ(12t2 − x4) = 0. (6.1.23)

6.2 Solution of (5.2.12) via the Adomian Decomposition Method

We consider
∂V

∂t
=
∂2V

∂y2
, V (0, y) = V0(y) (6.2.1)

with y > 0 and 0 ≤ t ≤ σ2

2
T.
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The operator form is as follows,

LyV (t, y)− LtV (x, y) = 0 (6.2.2)

where Ly = ∂2

∂y2
and Lt =

∂
∂t

and the inverse operator L−1
y =

∫ y

0

∫ y

0
(.)dydy, applying the

inverse operator we get,

L−1
y LyV (t, y) = V0(y) + L−1

y LtV (x, y) (6.2.3)

simplifying we obtain

V (t, y) = V0(y) + L−1
y LtV (x, y). (6.2.4)

The Adomian solution has a series form

V (x, y) =
∞∑
n=0

Vn(x, y)

so, equation (6.2.4) becomes

∞∑
n=0

Vn(x, y) = V0(y) + L−1
y Lt

∞∑
n=0

Vn(x, y) (6.2.5)

thus equation (6.2.5) is written as

V0 + V1 + V2 + ... = V0(y) + L−1
y Lt(V0 + V1 + V2 + ...) (6.2.6)

which is a sequence of solutions of (6.2.1). The infinite series (6.2.6) will also be a solution
of the heat equation, under appropriate initial or boundary conditions.

6.3 Invariant solutions of the Black Scholes equation

We consider the following symmetries of the Black Scholes equation.

X1 =
∂

∂t
, X2 = x

∂

∂x
,

X3 = u((B4 + 4C2 − 4B2(C − 2D))t+ 2(B2 − 2C) lnx)
∂

∂u
+ 4B2x lnx

∂

∂x
+ 8B2t

∂

∂t
,

X4 = u((B2 − 2C)t+ 2 lnx)
∂

∂u
+ 2B2tx

∂

∂x
,

X5 = u(t(B4t+ 4C2t− 4B2(1 + Ct− 2Dt)) + 4(B2 − 2C)t lnx+ 4(lnx)2)
∂

∂u

+ 8B2t2
∂

∂t
+ 8B2tx lnx

∂

∂x
,

X6 = u
∂

∂u
, XF∞ = F1.
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1. For the symmetry generator X1 =
∂

∂t
the characteristic equations are as follows

dt

1
=
dx

0
=
du

0
.

We separate the above equations into two linear equations

1.
dt

1
=
dx

0
, 2.

dt

1
=
du

0
.

We solve equation (1), x = M1 where M1 is a constant of integration,and solving
(2) yeilds u =M2. Hence, the invariant solution is given by

M2 = ϕ(M1), that is, u = ϕ(x). (6.3.1)

Then now we take the derivatives of equation (6.3.1) with respect to t and x

ut = 0, ux = ϕ
′
(x), uxx = ϕ

′′
(x).

By substituting into the Black Scholes equation (4.3.1), we get,

1

2
B2x2ϕ

′′
(x) + Cxϕ

′
(x)−Dϕ(x) = 0. (6.3.2)

The equation (6.3.2) is known as Cauchy-Euler equation of order 2 and its solution
is

ϕ(x) = c1x

((−i√−16− 2B2

D
+ 8C

D
− 8C2

B2D
+

√
2B√
D

− 2
√
2C

B
√
D
)
√
D

2
√
2B

)

+ c2x

((−i√−16− 2B2

D
+ 8C

D
− 8C2

B2D
+

√
2B√
D

− 2
√
2C

B
√
D
)
√
D

2
√
2B

)
where c1 and c2 are arbitrary constants. Thus, the invariant solution of the Black
Scholes equation under X1 is

u(t, x) = c1x

((−i√−16− 2B2

D
+ 8C

D
− 8C2

B2D
+

√
2B√
D

− 2
√
2C

B
√
D
)
√
D

2
√
2B

)

+ c2x

((−i√−16− 2B2

D
+ 8C

D
− 8C2

B2D
+

√
2B√
D

− 2
√
2C

B
√
D
)
√
D

2
√
2B

)
.

2. For the symmetry generator X2 = x ∂
∂x

the characteristic equations are

dt

0
=
dx

x
=
du

0
,

then we separately solve

1.
dt

0
=
dx

x
, 2.

dx

0
=
du

0
.
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We consider (1) and integrate to get t = M1. We also consider equation (2) and
solve u =M2. Then the invariant solution is

M2 = ϕ(M1), that is, u = ϕ(t). (6.3.3)

Then now we take the derivatives of equation (6.3.3) with respect to t and x

ut = ϕ
′
(t), ux = 0, uxx = 0.

We now substitute into the Black Scholes equation (4.3.1) to obtain

ϕ
′
(t)−Dϕ(t) = 0, (6.3.4)

then
dϕ(t)

dt
= Dϕ(t), −→ dϕ(t)

ϕ(t)
= Ddt,

upon integration
lnϕ = Dt+ c1, then ϕ(t) = c1e

Dt.

So the invariant solution under X2 is

u = c1e
Dt. (6.3.5)

3. For the symmetry generator

X3 = u((B4 + 4C2 − 4B2(C − 2D))t+ 2(B2 − 2C) lnx)
∂

∂u

+ 4B2x lnx
∂

∂x
+ 8B2t

∂

∂t

(6.3.6)

the characteristic equations are,

dt

8B2t
=

dx

4B2x lnx
=

du

u(B4t+ 4C2t− 4CB2t+ 8B2tD + 2B2 lnx− 4C lnx)
.

We start by solving

dt

8B2t
=

dx

4B2x lnx
−→ dt

2t
=

dx

x lnx
, (6.3.7)

before we can integrate, we make the following substitution

v = lnx, dv =
1

x
dx,

thus equation (6.3.7) is written as,

dt

2t
=
dv

v
.

We now integrate the above equation to get M1t
1/2 = v, and finally we have

M1t
1/2 = lnx −→ M1 =

lnx

t1/2
.
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Then now we consider the second pair of equation from the characteristics equation
we computed earlier

dt

8B2t
=

du

u(B4t+ 4C2t− 4CB2t+ 8B2tD + 2B2 lnx− 4C lnx)
. (6.3.8)

This is then written as,

(B4t+ 4C2t− 4CB2t+ 8B2tD + 2B2 lnx− 4C lnx)dt/8B2t =
du

u(B2

8
+

C2

2B2
− C

2
+D +

lnx

4t
− c lnx

2B2t

)
dt =

du

u
.

(6.3.9)

We now integrate equation (6.3.9) ,

B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4
− c lnx ln t

2B2
+M2 = lnu.

We solve for u,

u =M2 exp
(B2t

8
+
C2t

2B2
− Ct

2
+Dt

)(
t
ln x
4

− c ln x
2B2

)
. (6.3.10)

Now we write M2 as a function of M1 ,

M2 = ϕ(M1) = ϕ(
lnx√
t
), (6.3.11)

thus equation (6.3.10) can be written as,

u = ϕ
( lnx√

t

)
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4
− C lnx ln t

2B2

)
. (6.3.12)

We now differentiate equation (6.3.12) with respect to t and x

ut = ϕ′
( lnx√

t

)(− lnx

2t3/2

)
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4

− C lnx ln t

2B2

)
+ ϕ exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4

− C lnx ln t

2B2

)(B2

8
+

c2

2B2
− C

2
+D +

lnx

4t
− c lnx

2B2t

)
,

(6.3.13)

ux = ϕ′
( lnx√

t

)( 1

x
√
t

)
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4

− C lnx ln t

2B2

)
+ ϕ exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4

− C lnx ln t

2B2

)( ln t
4x

− C ln t

2B2x

)
,

(6.3.14)
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uxx = ϕ′′
( lnx√

t

)( 1

tx2

)
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4

− C lnx ln t

2B2

)
+ ϕ′(

lnx√
t
)
( −1

x2
√
t

)
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt

+
lnx ln t

4
− C lnx ln t

2B2

)
+ ϕ′(

lnx√
t
)
( 2

x
√
t

)
exp

(B2t

8
+
C2t

2B2

− Ct

2
+Dt+

lnx ln t

4
− C lnx ln t

2B2

)( ln t
4x

− C ln t

2B2x

)
+ ϕ exp

(B2t

8

+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4
− C lnx ln t

2B2

)( ln t
4x

− C ln t

2B2x

)2

+ ϕ

exp
(B2t

8
+
C2t

2B2
− Ct

2
+Dt+

lnx ln t

4
− C lnx ln t

2B2

)(− ln t

4x2

+
C ln t

2B2x2

)
.

(6.3.15)

We substitute back into the Black Scholes equation (4.3.1) to obtain,

ϕ′′
(
16B4

√
t
)
+ ϕ′

(
8B4t ln t− 16B4t+ 32B2Ct− 16B2 lnx+ 16Ct ln t

)
+ ϕ

√
t
(
4B4t− 16B2Ct+ 16C2t+ 16C lnx− 4B4t ln t+ 8B2Ct ln t

+B4t(ln t)2 + 8B2 lnx+ 4Ctx ln t(4C +B2 ln t) + 8Ctx(ln t)2

− 8B2Ct ln t
)
= 0.

(6.3.16)

4. For the symmetry generator

X4 = u((B2 − 2C)t+ 2 lnx)
∂

∂u
+ 2B2tx

∂

∂x
, (6.3.17)

the characteristics equation are;

dt

0
=

dx

2B2tx
=

du

u((B2 − 2C)t+ 2 lnx)
.

We separately solve

1.
dt

0
=

dx

2B2tx
and

2.
dx

2B2tx
=

du

u((B2 − 2C)t+ 2 lnx)
.

Upon integration, equation (1), becomes t = M1, where M1 is an integrating con-
stant. Similarly, we solve for equation (2) ,(

(B2 − 2C)t+
2 lnx

2B2tx

)
dx =

du

u
,( B2t

2B2tx
− 2Ct

2B2tx
+

2 lnx

2B2tx

)
dx =

du

u
,
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this can written as,
lnx

2
− C lnx

B2
+

lnx2

2B2t
+M2 = lnu.

We solve again to obtain,

M2 exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)
= u orM2 = u exp

(
− lnx

2
+
C lnx

B2
− lnx2

2B2t

)
.

Hence M2 = ϕ(M1) = ϕ(t), so the invariant solution is

u = ϕ(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)
. (6.3.18)

We now differentiate u with respect to t and x,

ut = ϕ′(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)
+ ϕ(t) exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t

)(
− lnx2

2B2t2

)
,

ux = ϕ(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)( 1

2x
− C

B2x
+

lnx

B2tx

)
,

uxx = ϕ(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)( 1

2x
− C

B2x
+

lnx

B2tx

)2

+ ϕ(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)(
− 1

2x2
+

C

B2x2
+

(1− lnx)

B2tx2

)
,

then we substitute back into the Black scholes equation (4.3.1) to get

ϕ′(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)
+ ϕ(t) exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t

)
(
− lnx2

2B2t2

)
− 1

2
B2x2

[
ϕ(t) exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t

)( 1

2x
− C

B2x

+
lnx

B2tx

)2

+ ϕ(t) exp
( lnx

2
− C lnx

B2
+

lnx2

2B2t

)(
− 1

2x2
+

C

B2x2
+

(1− lnx)

B2tx2

)]
− CxBigg(ϕ(t) exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t

)( 1

2x
− C

B2x
+

lnx

B2tx

))
+D

(
ϕ(t) exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t

))
= 0.
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We then simplify to obtain the following

ϕ′(t)

ϕ(t)
=

(
− lnx2

2B2t2

)
− 1

2
B2x2

[( 1

2x
− C

B2x
+

lnx

B2tx

)2

+
(
− 1

2x2
+

C

B2x2

+
(1− lnx)

B2tx2

)]
− Cx

( 1

2x
− C

B2x
+

lnx

B2tx

)
+D

=
(
− lnx2

2B2t2

)
− 1

2
B2x2

[( 1

4x2
− C

2B2x2
+

lnx

2B2tx2
− C

2B2x2

+
C2

B4x2
− C lnx

B4tx2
+

lnx

2B2tx2
− C lnx

B4tx2
+

lnx2

B4t2x2

)
+
(
− 1

2x2

+
C

B2x2
+

(1− lnx)

B2tx2

)]
− Cx

( 1

2x
− C

B2x
+

lnx

B2tx

)
+D

= − lnx2

2B2t2
− B2

8
+
C

4
− lnx

4t
+
C

4
− C2

2B2
+
C lnx

2B2t
− lnx

4t

+
C lnx

2B2t
+

lnx2

2B2t2
+
B2

4
− C

2
− (1− lnx)

2t
− C

2
+
C2

B2

− C lnx

B2t
+D

=
B2

8
+

C2

2B2
− 1

2t
− C

2
+D.

(6.3.19)

We now have the following equation from (6.3.19) ,

dϕ

ϕ
=

(B2

8
+

C2

2B2
− 1

2t
− C

2
+D

)
dt.

We then obtain the following equation after integrating,

lnϕ =
B2t

8
+
C2t

2B2
− 1

2
ln t− Ct

2
+Dt+K

ϕ =
K√
t
exp

(B2t

8
+
C2t

2B2
− Ct

2
+Dt

)
.

The invariant solution of X4 is

u(x, t) =
K√
t
exp

( lnx
2

− C lnx

B2
+

lnx2

2B2t
+
B2t

8
+
C2t

2B2
− Ct

2
+Dt

)
. (6.3.20)

5. For symmetry generator

X5 = u(t(B4t+ 4C2t− 4B2(1 + Ct− 2Dt)) + 4(B2 − 2C)t lnx

+ 4(lnx)2)
∂

∂u
+ 8B2t2

∂

∂t
+ 8B2tx lnx

∂

∂x

(6.3.21)

the characteristics system of X5 is,

dt/8B2t2 = dx/8B2tx lnx = du/u(B4t2 + 4C2t2 − 4B2t− 4B2Ct2 + 8B2Dt2 + 4B2t lnx− 8Ct lnx+ 4(lnx)2)

which can be written in the same way as,

1.
dt

8B2t2
=

dx

8B2tx lnx
−→ dt

t
=

dx

x lnx
,
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and

2.
dt

8B2t2
=

du

u(B4t2 + 4C2t2 − 4B2t− 4B2Ct2 + 8B2Dt2 + 4B2t lnx− 8Ct lnx+ 4(lnx)2)
.

Taking into account the first equation and making a substitution v = lnx, dv =
1

x
dx,

dt

t
=
dv

v
.

We obtain the following,

M1 + ln t = ln v −→ M1t = lnx −→ M1 =
lnx

t
.

Now, lets take a look at the second equation,(B2

8
+

C2

2B2
− 1

2t
− C

2
+D +

lnx

2t
+
C lnx

B2t
+

(lnx)2

2B2t2

)
dt =

du

u
. (6.3.22)

We then integrate to get,

B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt+

lnx ln t

2
+
C lnx ln t

B2
− (lnx)2

2B2t
+M2 = lnu (6.3.23)

therefore,

u =M2 exp
(B2t

8
+
C2t

2B2
− ln t

2
−Ct

2
+Dt+

lnx ln t

2
+
C lnx ln t

B2
− (lnx)2

2B2t

)
(6.3.24)

expressing M2 as a function of M1, we have that M2 = ϕ(M1) = ϕ( lnx
t
), as a result,

equation (6.3.24) can be rewritten as,

u = ϕ
( lnx

t

)
exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt+

lnx ln t

2
+
C lnx ln t

B2
− (lnx)2

2B2t

)
.

(6.3.25)
We now differentiate u with respect to “t” and “x”,

ut = ϕ′(
lnx

t
)
(
− lnx

t2

)
exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt+

lnx ln t

2

+
C lnx ln t

B2
− (lnx)2

2B2t

)
+ ϕ(

lnx

t
) exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt

+
lnx ln t

2
+
C lnx ln t

B2
− (lnx)2

2B2t

)(B2

8
+

C2

2B2
− 1

2t
− C

2
+D +

lnx

2t

+
C lnx

B2t
+

(lnx)2

2B2t2

)
.

(6.3.26)

ux = ϕ′(
lnx

t
)
( 1

tx

)
exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt+

lnx ln t

2

+
C lnx ln t

B2
− (lnx)2

2B2t

)
+ ϕ(

lnx

t
) exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2

+Dt+
lnx ln t

2
+
C lnx ln t

B2
− (lnx)2

2B2t
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C ln t
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− lnx

B2tx

)
.

(6.3.27)
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+ ϕ(
lnx

t
) exp

(B2t

8
+
C2t

2B2
− ln t

2
− Ct

2
+Dt+

lnx ln t

2

+
C lnx ln t

B2
− (lnx)2

2B2t

)(
− ln t

2x2
− C ln t

B2x2
+
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(6.3.28)

Now we substitute into the Black Scholes-equation (4.3.1) and divide by exp
(

B2t
8

+ C2t
2B2 − ln t

2
− Ct

2
+Dt+ lnx ln t

2
+ C lnx ln t

B2 − (lnx)2

2B2t

)
to obtain,
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t
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t
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( ln t
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Cx−Dϕ(

lnx

t
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(6.3.29)

which is then written as,

ϕ′′(4B4) + ϕ′(−4B4t+ 8B2Ct+ 4B4t ln t− 16B2 lnx+ 8B2Ct ln t)

+ ϕ(−8B2t+B4t2 − 4B2ct2 + 4c2t2 + 8tc lnx− 2B4t2 ln t+ 4B2ct2 ln t

+B4t2(ln t)2 + 8B2t lnx− 8ct lnx− 4B2t ln t lnx+ 8(lnx)2 + 4t ln t(2ct

+B2t ln t− 2 lnx) + 8Ct2x(ln t)2 − 4CB2t2 ln t = 0.

(6.3.30)

Note that operators X6 and Xϕ do not provide invariant solutions because X6 and
Xϕ are independent of the variables t and x.
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7 Conclusion

The research began with a study of the Black Scholes equation, which included a deriva-
tion from basic principles (a derivation that does not require pre-knowledge in calculus).
Then the Adomian Decomposition Method was then introduced as a method for solving
first-order differential equations. The research also shows an unpopular basis (computed
using SYM) that spans the Lie algebra of symmetries of the Black-Scholes equation.
Lastly, we determined the invariant solutions of the Black Scholes equation and the Heat
equation.

For future work, we will construct the optimal system of invariant solutions of the Black
scholes equations and also study the practical and theoretical implications of the optimal
system.

70

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



References

[1] G.Adomian. A review of the the decomposition method and some recent results for
nonlinear equations. Center for applied Mathematics, University of Georgia. Athens.
GA 30602.sec.1-4.

[2] D.J Ariggo. Nonclassical Contact Symmetries and Charpit’s method of compatibil-
ity. Journal of Nonlinear Mathematical Physics. Volume 12, Number 3, pp.321-329,
2005.

[3] A.Z Azmi. Numerical Solutions of the Heat equation. Lecturer notes. Fakulti Sains.
Universiti Teknologi Malaysia, 2009.

[4] G.Baumann. Symmetry Analysis of Differential Equations with Mathematica.
Mathl Comput. Modelling Vol. 25, No. 8/9, pp. 25-37. Copyright©1997 Elsevier
Science Ltd. Printed in Great Britain. All rights reserved.

[5] F.Black and M. Scholes. The Pricing of Options and Corporate Liabilities. The
University of Chicago Press. The Journal of Political Economy, Vol. 81, No. 3 (May
- Jun., 1973), pp. 637-654 London. J.Wiley and Sons Ltd, 1999.

[6] A James Boness A theory and measurement of stock-option value. University of
Chicago. Ph. D. Thesis. 1962

[7] L.A. Bordag and I.P. Yamshchikov. Lie Group Analysis of Nonlinear Black
Scholes Models. Springer International Publishing, 2017.

[8] H.J Buettler. Ito Fundamental PDE-02. http://www.hj-buettler.ch/papers/
12/Ito.

[9] C. Carleos, M.C. Lopez-Diaz and M.A. Lopez-Diaz. Stochastic Order of
Shape Variability with an Application to Cell Nuclei Involved in Mastitis. J Math
Imaging Vis 38, 95–107, 2010.

[10] J.Chen.Delta-Hedging.2019. Available at: https://www.investopedia.com/terms/d/
deltahedging.asp. [Accessed February 2020].

[11] Y.Cherrault. Convergence of the Adomian’s Method. Kybernetes 18(2), 31-38,
1989.

[12] Y.Cherrault and G.Adomian. Decomposition Method: A new Proof of conver-
gence. Mathl. Comput. Modelling Vol. 18, No.12, pp. 103-106, 1993.

[13] C.P Chitalkar-Dhaigude and V.N Bhadgaonkar. Adomian Decomposition
Method Over Charpits Method for solving Nonlinear First Order Partial differential
Equations. Bulletin of the Marathwada Mathematical Society, Vol.18, No.1, pp. 01-
18, 2017

[14] S.Dimas and D.Tsoubelis. SYM: A new symmetry - finding package for Mathe-
matica. In N.H.Ibragimov, C.Sophocleous, and P.A.Damianou, editors, The 10 the
International Conference in Modern Group Analysis, pp. 64-70, Nicosia, 2005.

71

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.hj-buettler.ch/papers/12/Ito.
http://www.hj-buettler.ch/papers/12/Ito.


[15] L.C Evans. An Introduction to Stochastics Differential Equations. Version 1.2.
Department of Mathematics, U.C Berkeley.8

[16] J.Fernando. Derivative. 2021. Available at:https://www.investopedia.com/
terms/d/derivative.asp. [Accessed January 2022].

[17] R.K Gazizov and N.H Ibragimov. Lie Symmetry Analysis of Differential Equa-
tions in Finance. Nonlinear Dynamics 17:387 - 407, 1998.

[18] O.Gonzalez-Gaxiola and R.Bernal-Jaquez. Applying Adomian Decompo-
sition Method to Solve Burgess Equation with a Non-linear Source. International
Journal of Applied and Computational Mathematics pp. 213, 2017.

[19] A. Gorgius. Charpit and Adomian for solving integral equations. Applied mathe-
matics and computations 193. pp. 446-454,2007.

[20] S.Grandville. Derivation of the Black Scholes equation from Basic Principles. The
Mathematical Association of America. The college of mathematics Journal. VOL.49,
No.3 May, 2018.

[21] F.Granstrom. Symmetry method and some nonlinear differential equations. Karl-
stad University, Department of Mathematics and Computer Science, 2017.

[22] M.M Hosseini and H. Nasabzadeh. On the Convergence of the Adomian De-
composition Method. Department of Mathematics,Yazd University , P.O Box 89195-
741,Yazd, Iran.

[23] J.C Hull. Options, Futures, and Other Derivatives. 8th Edition. University of
Toronto. ©2012, Pearson.

[24] Z.Hussain, M.Sulaiman and E.K.E.Sackey. Optimal System of Subalgebras
of Invariant solutions of the Blacks-Scholes Equation.Blekinge Institute of Technol-
ogy School of Engineering. Department of Mathematics and Science. MSc. thesis,
November 2009.

[25] N.H Ibragimov. Elementary Lie Group Analysis and Ordinary Differential Equa-
tions. London. J.Wiley and Sons Ltd, 1999.

[26] N.H Ibragimove (ed). CRC handbook of Lie group Analysis of Differential equa-
tions. Vol.1. 1994,Vol.2, 1995, Vol.3, 1996 CRC Press. Boca Raton FL.

[27] K. Ito On stochastic processes (infinitely divisible laws of probability) (Doctoral
thesis). Japan Journ. Math. XVIII, 261-301.

[28] M.Joshi. The concepts and practice of mathematical finance. Sec.5.6, pp 119-120,
2004.

[29] T.Kardi. Stochastic Process Tutorial.(2017).http://people.revoledu.com/
kardi/tutorial/StochasticProcess/

72

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://www.investopedia.com/terms/d/derivative.asp.
https://www.investopedia.com/terms/d/derivative.asp.
http://people.revoledu.com/kardi/tutorial/StochasticProcess/
http://people.revoledu.com/kardi/tutorial/StochasticProcess/


[30] K.Marek. Black Scholes model under Arithmetic Brownian Motion. University of
Economics. Prague, December 2013.

[31] M.C. Nucci. The Role of Symmetries in Solving Differential Equations. Diparti-
mento di Matematica, Universitk di Perugia.06123 Perugia, Italy. Mathl. Comput.
Modelling Vol. 25, No. 819, pp. 181-193, 1997.

[32] A. Müller and D. Stoyan Comparison Methods for Stochastic Models and Risks.
Wiley Series in Probability and Statistics. Wiley, Chichester, 2002.

[33] A.S Shinde and K.C Takale. Study of Black Scholes Model and its Applications.
1877-7058©2012, Elsevier, Procedia Engineering 38. pp. 270-279, 2012.

[34] N.G Van Kampen. Stochastic Processes in Physics and Chemistry. (Third edition),
2007.

[35] D.V Widder. The Heat Equation. Academic Press. 22 January 1976.

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 


	Introduction
	Preliminaries

	Black Scholes Equation
	Derivation of the Black Scholes Equation
	Derivation of the Black Scholes from basic principle 
	A Perpetual Derivative
	Prices of Tradeable Derivatives

	Adomian Decomposition Method
	Description of the Method
	The Adomian Decomposition Method
	Theorem of convergence [Section 2]Y.Cherrault and G.Adomian

	Application of the Method

	Symmetries of the Black Scholes equation
	Lie symmetries
	Construction of symmetries
	Symmetries analysis of the Black Scholes equation
	Commutators
	Symmetry transformations
	Lie Equations
	The Exponential Map


	Transformation of the Black Scholes into Heat equation.
	Symmetry Analysis of the Heat equation
	Transforming of the Black Scholes equation to the Heat equation 

	Invariant solutions
	Invariant solutions of the Heat question
	Solution of (5.2.12) via the Adomian Decomposition Method
	Invariant solutions of the Black Scholes equation

	Conclusion

