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ABSTRACT We present four Lentisphaerae metagenome-assembled genomes (MAGs)
from the South Atlantic Ocean. The medium-quality genomes, affiliated with the family of
Lentisphaeraceae, ranged from 4.86 to 5.46 Mbp and harbored the genetic capacity to pro-
duce secondary metabolites. This resource provides a basis for investigating the functional
attributes of this phylum.

L entisphaerae is a member of the superphylum PVC (Planctomycetes, Verrucomicrobia, and
Chlamydia) (1), known for their biotechnological importance and capacity to produce trans-

parent exopolymers (2, 3). These constituents mediate the cycling of organic carbon particles
between the euphotic zone and the deep ocean (4–7). Currently, there are only two validly
described orders of this phylum, the Victivallales and the Lentisphaerales, due to difficulties associ-
ated with reproducing the ideal laboratory conditions required to isolate members of this species
(7–10). Metagenome-assembled genomes (MAGs) have provided substantial insights regarding
Lentisphaerae from several ecosystems (11–13). Nevertheless, we lack taxonomic and functional
insights regarding Lentisphaerae from diverse ecosystems, such as the South Atlantic Ocean.

South Atlantic water samples (45 liters) were retrieved from three stations at a 5-m depth
(Table 1), filtered through 0.2-mm polyethersulfone (PES) filter membranes (Merck, Republic
of South Africa), and stored at 280°C until further processing. Metagenomic extractions
were performed as described previously (14, 15) using the DNeasy PowerSoil kit (Qiagen,
Hilden, Germany), and the resultant high-quality DNA was used to construct libraries using
the KAPA HyperPrep kit (KAPA Biosystems, Massachusetts, USA) as detailed by the manufac-
turer. Sequencing was performed using an Illumina HiSeq 2000 platform (2 � 250 bp).
Trimmomatic version 0.36 and PRINSEQ lite version 0.20.4 (-lc_method dust) were used
to remove adaptors and overrepresented and low-quality reads from raw reads, respectively
(16, 17). The resultant reads were assembled into contiguous segments using MegaHIT
version 1.2.3 (18) and binned using MetaBAT 2 (Table 1) (19). CheckM version 1.0.18 was
used to evaluate the completeness and contamination value of each MAG (20). The
Genome Taxonomy Database Toolkit (GTDB-Tk) version 1.6.0 release 89 (P.-A. Chaumeil,
A. J. Mussig, P. Hugenholtz, and D. H. Parks) was used to assign taxonomy, and the relative
abundance of each MAG was determined using CoverM version 0.6.1 (21). Gene annotation
was done using PGAP version 6.1 (22). The protein-encoding regions were identified using
Prodigal version 2.6.3 (23), and the amino acid identities (AAI) of the four Lentisphaerae
MAGs were calculated using AAI calculator (24) against the Lentisphaera araneosa genome
sequence (GCF_0000170755.1), which had the highest similarly as determined using GTDB-
Tk classification. The biosynthetic potentials of the four Lentisphaeraewere determined using
antiSMASH version 5.2 (25), using the strict detection mode option. The default parameters
were used for all software unless otherwise indicated.

The four Lentisphaerae genomes were classified as medium-quality draft genomes,
consistent with criteria established by the Genomic Standards Consortium (26). These genomes
were assigned to the Lentisphaeraceae family based on GTDB-Tk classification. The AAI ranged
from 47.95 to 49.38%, based on the reference genomewith the closest placement (L. araneosa).
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This result suggests that the four genomes belong to the same family as L. araneosa
(GCF_0000170755.1) (Table 1). Interestingly, all the genomes harbored genes for unique
secondary metabolic pathways, including terpene, aryl polyene, Ripp-like, ectoin, and nonribo-
somal peptide synthetase (NRPS) (Table 1).

Data availability. The NCBI BioProject accession number is PRJNA748242, while the
Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank and the accession
numbers are given in Table 1.
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GenBank accession no. KF771565.1 NA NA NA
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a NA, not available.
b AAI, amino acid identity.
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