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Abstract 

Fundamental boolean network modelling 

for genetic regulatory pathways 

by  

Leshi Chen 

A Boolean model is a switch-like behaviour model of which it is easy to ignore any 

effects at the intermediate levels. Boolean modelling has been applied in many areas, 

including mammalian cell cycle networks. However, little effort has been put into the 

consideration of activation, inhibition and protein decay networks to designate the 

direct roles of a gene or a synthesised protein, as an activator or inhibitor of a target 

gene. 

Hence, we proposed to split the conventional Boolean functions at the subfunction 

level into activation and inhibition domains, taking into account the effectiveness of 

protein decay. As a consequence, two novel data-driven Boolean models for genetic 

regulatory pathways, namely the fundamental Boolean model (FBM) and the 

temporal fundamental Boolean model (TFBM), have been proposed to draw insights 

into gene activation, inhibition, and protein decay. The novel Boolean models could 

reveal significant trajectories in genes and provide a new direction on Boolean 

modelling research. The proposed novel Boolean models are fine-grained. 
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A novel network inference methodology named Orchard cube technology has been 

proposed to infer the related networks, namely fundamental Boolean networks (FBNs) 

and temporal fundamental Boolean networks (TFBNs) based on FBM and TFBM 

respectively. As a primary result of this study, an R package, called FBNNet, has been 

developed based on the proposed methodology and has been used to demonstrate 

the FBNs and TFBNs for mammalian cell cycle pathways and acute childhood 

leukaemia pathways respectively. 

Our experimental results show that the proposed FBM and TFBM could be used to 

explicitly reconstruct the internal networks of mammalian cell cycles and acute 

childhood leukaemia. Especially during the study, we produced the fundamental 

Boolean networks on the childhood acute lymphoblastic leukaemia gene expression 

data, which were produced in clinical settings. The pathways may be useful for 

pharmaceutical agents to identify any side effects when applying GC induced 

apoptosis on children. 

Keywords: boolean modelling, boolean networks, data-driven boolean modelling, 

fundamental boolean modelling, fundamental boolean networks, temporal 

fundamental boolean modelling, temporal fundamental boolean networks 
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Chapter 1: Introduction 

Deoxyribonucleic acid (DNA) is a major component of chromosomes. It has the form 

of a double helix, consisting of hydrogen bonds, where adenine (A) binds to thymine 

(T), and cytosine (C) binds to guanine (G) (NIH, 2020a). DNA transports the genetic 

information that triggers the daily activities of living organisms, such as life, death and 

reproduction. DNA contains a multitude of functional segments, namely genes. A 

segment is a gene if it codes for one protein that performs a specific cellular function 

(NIH, 2020b). Proteins are the fundamental unit of all cellular functions. The process 

of gene expression is how a gene initially transcripts into messenger ribonucleic acid 

(mRNA) and then mRNA translates it into the protein (R. Albert, 2004). 

The dominant belief of cellular functions is that a cellular function mainly depends on 

coordinated interactions between genes, RNAs and proteins, to form the foundation 

of genetic regulatory networks (GRNs) (Scitable, 2020). Within GRNs, activators and 

inhibitors play an important role in controlling the patterns of gene expression by 

activating or inhibiting cellular functions (I. Shmulevich, Dougherty, Kim, & Zhang, 

2002a). Hence, interconnected knowledge about gene activation and inhibition is 

essential for uncovering the mechanisms of the apoptosis process with genetic 

regulatory networks (GRNs); these are crucial for cancer therapy today (I. Shmulevich 

et al., 2002a). 
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1.1. Genetic Activators and Inhibitors 

As shown in Figure 1-1, an activator is a transcription factor (TF) type of protein that 

can increase the concentration of a protein through direct binding to the protein or 

the promoter sites of its genes, to increase its genetic activities. The process is termed 

gene activation (Saboury, 2009). 

In contrast, an inhibitor is a repressor that decreases the concentration of the protein 

to reduce its genetic activities. The process is named gene inhibition (Saboury, 2009). 

Genetic inhibitors can be used as pharmaceutical agents in human and veterinary 

medicine as well as being used in herbicides and pesticides (Fontes, Ribeiro, & Sillero, 

2000; Saboury, 2009). 

 

Figure 1-1 Illustration of gene activation and repression 
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1.2. Genetic Regulatory Networks 

The model of GRNs contains nodes and edges where nodes characterise genes, 

proteins, enzymes or other chemical elements, and edges represent their interactions 

(Tušek & Kurtanjek, 2012). GRNs are used to describe complex systems consisting of 

many entities and the relationships among these entities. In systems biology, 

holistically studying GRNs between the functional status of proteins and gene 

expression patterns is critical to understanding the nature of cellular functions, such 

as the complicated gene expression patterns responding to different stressors or 

stimulators (I. Shmulevich et al., 2002a). Moreover, GRNs analysis provides valuable 

information for annotating the genome, uncovering biochemical systems in a cell and 

providing a framework that can derive new ideas to treat diseases, such as cancer 

(Tušek & Kurtanjek, 2012). 

Facilitated by the emergence of biotechnologies, such as Affymetrix™ microarray 

technology, an enormous amount of high-throughput genetic data are being 

generated every day. The generated data enable reverse engineering of unknown 

regulatory networks, such as revealing the relationships among the functional genes 

in the mammalian cell cycle (Faure, Naldi, Chaouiya, & Thieffry, 2006; Ruz, Goles, 

Montalva, & Fogel, 2014) and leukaemia (Campbell & Albert, 2014; Hwang & Lee, 

2010; Saadatpour, Albert, & Reluga, 2013; Saadatpour et al., 2011; Saez-Rodriguez et 

al., 2007; Wittmann et al., 2009; Zanudo & Albert, 2013). It is evident from these 
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examples that analysing massive data sets to understand the coordinated interactions 

among genes is still a significant challenge. 

Different GRN models, such as ordinary differential equations (ODE) (Polyanin & 

Zaitsev, 2003), neural networks (Ling, Samarasinghe, & Kulasiri, 2013), information 

theory model (Z. Wang, Huang, Meng, & Tang, 2013), Bayesian networks (S. Y. Kim, 

Imoto, & Miyano, 2003) and Boolean networks (Akutsu, Miyano, & Kuhara, 1999), 

have been proposed to reconstruct genetic regulatory networks. However, the 

current experimental methods are usually insufficient to identify GRNs due to the lack 

of reproducibility for a large number of genes involved in complex GRNs (Liu, Zhang, 

Guo, Wei, & Chen, 2016). Even so, of the models, Boolean networks still attract much 

interest (H. C. Wu, Zhang, & Chan, 2014). Boolean network models do not need 

information about kinetic parameters (Abou-Jaoude et al., 2016; Barberis, Todd, & van 

der Zee, 2017; S. Liang, Fuhrman, & Somogyi, 1998; Traynard, Tobalina, Eduati, 

Calzone, & Saez-Rodriguez, 2017; Tušek & Kurtanjek, 2012; R. S. Wang, Saadatpour, & 

Albert, 2012) and have explicit regulatory rules when carrying vital information (Yufei, 

2009) and are still complex enough to review non-trivial behaviour among the genes, 

in general (Samuelsson, 2006). 

1.3. Boolean Modelling 

Boolean modelling was initially presented by S. A. Kauffman (1969) after the discovery 

of the primary gene regulatory mechanisms in bacteria (Jacob & Monod, 1961). A 

Boolean model consists of Boolean variables in either of two binary states - On (1) or 
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Off (0) as in digital circuits, denoting gene activation or inhibition, respectively. Each 

Boolean variable in a GRN represents a gene with its next state determined by a 

Boolean function. 

The fundamental premise of the Boolean network is that the genes exhibit switch-like 

behaviour during the regulation of their functional states, ensuring the movement of 

a GRN from one state to another (I. Shmulevich & Dougherty, 2005; I. Shmulevich et 

al., 2002a; Tušek & Kurtanjek, 2012). Hence, within signal processing theory, Boolean 

models can be transformed into electronic circuits to facilitate the study of the rich 

dynamics of Boolean networks (Yufei, 2009). 

 

Figure 1-2 A simple series circuit representing a Boolean model 
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By definition, the conventional Boolean network is wired in the format of a series 

circuit, as shown in Figure 1-2. When there is a perturbation, the control switch could 

be On/Off, which then turns the lamp On/Off. The resistor represents a functional rule 

that controls the light intensity of the lamp, i.e., it controls the expression level of the 

lamp. Because a conventional Boolean model only has two states, it can serve only as 

a series circuit, and the output of the circuit is either expressed or not expressed. 

1.4. Fundamental Boolean Model and Networks 

At present, the leading emerging biological network inference methods to recognise 

functional modules are motivated either by the definition of gene regulatory networks 

or functional networks in which an edge indicates a functional relationship (Lazzarini 

et al., 2016). Functional relationships are also a subset of entities that describe, explain 

or predict a biological process or phenotype (Lazzarini et al., 2016). Minimal effort has 

been made into the construction of activation, inhibition, and protein decay networks 

that could specify the direct roles of a gene or its synthesised protein as an activator 

or an inhibitor, as well as be split into the domains of up-regulatory pathways and 

down-regulatory pathways. This is because the current Boolean networks do not 

provide an intuitive way to detect single activation or inhibition pathways for a target 

gene. For example, a Boolean function combines the effect of the current state of its 

multiple regulators and determines the following gene expression status of gene CycA 

(Hopfensitz, Mussel, Maucher, & Kestler, 2013; Ruz et al., 2014), as shown below: 
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E2F & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10) | CycA & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10) → CycA  

where E2F, Rb, Cdc20, Cdh1or UbcH10 are possible genes combined to regulate gene 

CycA. The Boolean function of CycA combines both activation and inhibition pathways 

that require further investigation to determine their activation and inhibition 

components. As shown in this example, the compressed Boolean function cannot 

intuitively differentiate the characteristics of the gene activators or inhibitors even 

though the compressed rule can divide it into multiple subfunctions. A compressed 

Boolean function is a Boolean formula that contains disjunctions with various 

subfunctions. Hence, a compressed Boolean function can be split into a set of And 

Boolean functions by the disjunction Or. For example, a Boolean function 

𝑃 & 𝑄 | 𝐴 & 𝐵 & 𝐶 & (𝐷 |𝐸) can be divided as follows: 

Ɣ = {𝑃&𝑄, 𝐴&𝐵&𝐶&𝐷, 𝐴&𝐵&𝐶&𝐸}  

where Ɣ  is a set of subfunctions. This weakness can be a significant problem in 

deciphering larger GRNs with many genes and relationships. Furthermore, by the 

definition of Boolean models, a single Boolean function always determines the next 

state of a gene as the behaviour of a series circuit, as illustrated in Figure 1-2. However, 

this may not be biologically true because a gene may remain activated within a period 

of decay time, even though activator/activators do not exist (R. Albert, 2004). The 

conventional Boolean functions that were originally defined by S. A. Kauffman (1969) 

are hard-wired with the hypothesis of biological determinism. However, genetic 

regulations are fundamentally stochastic (Raj & van Oudenaarden, 2008; Yufei, 2009). 
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One reason for this is that the expression of a gene usually incorporates natural 

random biochemical reactions that are involved in the processes of transcription and 

translation of mRNAs and proteins (Raj & van Oudenaarden, 2008). Probability 

Boolean networks (I. Shmulevich & Dougherty, 2005; I. Shmulevich et al., 2002a; I. 

Shmulevich, Dougherty, & Mang, 2002b) are motivated to address this hard-wired 

issue. They introduce stochastic mechanisms in which a gene can link with multiple 

Boolean functions and where each function has a probability indicating the chance 

that the function can impact the target gene (Raj & van Oudenaarden, 2008). The total 

probability for all the functions of a gene sum to 1, which means only one function will 

be selected to determine the next Boolean status of the target gene at a particular 

time. After that, the probability Boolean network model still contains the major 

downside of the conventional Boolean model in which a randomly selected function 

discounts the fact that an unregulated gene may still be in the state of being activated. 

A target gene can also be regulated competitively and concurrently by another rule, 

such as the competitive inhibition as illustrated in Fontes et al. (2000). Finally, the 

current Boolean models that are wired, as shown in Figure 1-2, may not, in reality, be 

able to elucidate biological phenotypes accurately. 

Consequently, to make the conventional Boolean functions clearer, we proposed to 

split the conventional Boolean functions at the subfunction level, into activation and 

inhibition domains, taking into account the effectiveness of protein decay. Since gene 

activation and inhibition are the two most fundamental components of sophisticated 

cellular machinery, we apply the term “fundamental Boolean functions” to represent 
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these subfunctions. A fundamental Boolean function could be regarded as a genetic 

regulatory function or regulatory complex function that determines activation or 

inhibition activity. For example, the Boolean function of CycA can be decomposed 

into six fundamental Boolean functions: with fundamental Boolean functions CycA 

and E2F being TRUE and representing the activation functions, and Rb, Cdc20, (!E2F 

& !CycA) and (Cdh1 and UbcH10) being TRUE and triggering the inactivation functions. 

The fundamental Boolean model can serve as both a series and a parallel circuit, as 

shown in Figure 1-3: 

 

Figure 1-3 Series and parallel circuits representing a fundamental Boolean model 



 

 10 

The activator switch represents a gene activation function that can turn on the target 

gene (the lamp). If any inhibitor exists (one with the inhibitor switched on), the target 

gene will be turned off immediately regardless of the presence of activators. The 

model shown in Figure 1-3 is still a Boolean model as the series circuit shown in Figure 

1-2 because it has the same Boolean output, i.e., expressed or not expressed. However, 

it wires the subfunctions of activation as a parallel circuit and the inhibition 

subfunction as a series circuit. The conceptual theory of fundamental Boolean 

modelling and networks was published in 2018 (Chen, Kulasiri, & Samarasinghe, 2018), 

as a part of the research documented in this study. 

1.5. Motivation and Objectives 

Gene activation and inhibition are the fundamental concepts of the genetic regulatory 

pathways. However, the roles of the gene activation and inhibition in the traditional 

Boolean modelling can not be intuitively understood. Besides, a gene may remain 

activated within a period of decay time when there are no activators present. To 

address the gaps, we proposed to split the conventional Boolean functions at the 

subfunction level, into activation, inhibition domains, and take account of the 

effectiveness of protein decay. Hence, the objectives of this research mainly focus on 

developing a better understanding of the fundamental mechanisms in genetic 

regulatory networks about cancer-related treatments, such as leukaemia networks, 

based on the data extracted from the study by Schmidt et al. (2006). 
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Genetic regulatory networks are essential for scientists in understanding how the 

target genes have been regulated. We chose Boolean modelling as the principal 

method to analyse cancer-related genetic networks. Hence, we ask these questions: 

a) What is the current situation of Boolean modelling for genetic networks? 

b) What is the current treatment of childhood leukaemia? Are there any 

downsides from the treatment? 

c) Can we apply the Boolean model to gain meaningful insights into microarray 

time series data, even though the data are short time series data? 

d) Can the novel Boolean model improve understanding of genetic regulatory 

networks on the induction of leukaemia related apoptosis?  

e) Can we apply the Boolean model to identify down-regulatory pathways as well 

as up-regulatory pathways? 

The literature review in chapter 2 addresses the first two questions. For the remaining 

questions, we address them by demonstrating the proposed novel fundamental 

Boolean modelling on cell cycle and acute childhood leukaemia pathways. 

1.6. Thesis Structure 

This thesis addresses questions within the theory of a novel data-driven network 

model to explore complexity in the fundamental Boolean model and fundamental 

Boolean networks (Chen et al., 2018). The novel data-driven Boolean model, namely, 

the fundamental Boolean model (FBM), aims to encapsulate insights into gene 



 

 12 

activation, inhibition and protein decay (Chen et al., 2018). This novel model provides 

mechanisms to analyse the activation and inhibition pathways intuitively. The new 

structure of the Boolean network facilitates a data mining method to extract the 

fundamental Boolean functions from genetic time series data either as a long time 

series or a short time series. In this research, we aim to illustrate fundamental Boolean 

modelling that can provide direct insights into the genetic activation and inhibition 

networks by demonstrating the application of the proposed novel model using cell 

cycle and leukaemia data. The data for the application of the cell cycle is a synthetic 

long time series while, for childhood leukaemia, we adopt the real data extracted from 

Schmidt et al. (2006) research, which is a short time series. 

Figure 1-4 presents the thesis structure, which starts from the introduction in chapter 

1 and then provides a brief literature review in chapter 2 on current Boolean modelling, 

microarray data analysis and cancer-related research such as cell cycle and leukaemia. 

We then illustrate the theory of the novel Boolean models, i.e., the fundamental 

Boolean model and temporal fundamental Boolean model, in detail in chapter 3. 

Because the concept of the fundamental Boolean modelling proposed in chapter 3 is 

novel, there is no existing methodology to infer the related networks. Hence, we 

proposed a methodology to infer the related networks, discussed in chapter 4. In 

chapters 5 and 6, we present the applications of the novel Boolean modelling on cell 

cycle data and leukaemia data, respectively. Finally, chapter 7 concludes the thesis 

and discuss any interesting points. 
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Figure 1-4 Chapter Organisation of the Thesis 
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Chapter 2: Literature Review 

This research is in the domain of systems biology, which is an approach in biomedical 

research that seeks to understand a broader picture of genetic regulatory systems at 

the cell level, facilitated by Boolean modelling. Therefore, this chapter provides an 

overview of the relevant background knowledge about Boolean modelling, microarray 

expression data and cancer. This research proposed a novel Boolean model, targeting 

time series data, using clinical data for leukaemia. Hence, in section 2.1, we provide 

an extensive review of Boolean network modelling, based on the previous research. 

In section 2.2, we discuss the background knowledge of microarray DNA data and the 

standard approach to normalising the data. Section 2.3 provides background 

knowledge on cell cycles and acute childhood leukaemia. 

2.1. Boolean Network Modelling 

The Boolean model (also called the switching model) is a simple, discrete dynamic 

model that disregards the effects from any intermediate level (Tušek & Kurtanjek, 

2012) and is one of the most interesting in the field of GRNs (P. Li, Zhang, Perkins, 

Gong, & Deng, 2007; Ouyang, Fang, Shen, Dougherty, & Liu, 2014; I. Shmulevich & 

Dougherty, 2005; R. S. Wang et al., 2012; Zhiyuan, Simone, Zhaoyang, & Chao, 2014). 

Boolean network models are predominantly used for qualitatively describing large-

scale system dynamics (R. S. Wang et al., 2012). There is evidence that Boolean models 

can be fruitful in analysing regulatory and signalling networks (Abou-Jaoude et al., 

2016). Dating back to 1961, a group of researchers proposed to apply Boolean algebra 
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to model cellular circuits following the discovery of specific gene regulation 

mechanisms: the first regulatory circuit in bacteria (Jacob & Monod, 1961). (Sugita, 

1963) was then the first to document explicit modelling of bacterial genetic circuits 

with symbolic logic, firming the term molecular automaton. A few years later, 

Kauffman (1969) proposed to use a synchronous Boolean update scheme to analyse 

the dynamic properties of generic Boolean network models, focusing on asymptotic 

properties. Soon afterwards, Thomas (1973) proposed the use of an asynchronous 

Boolean update scheme to address the network controlling lysis-lysogeny decisions in 

the lambda bacteriophage and then, progressively refined the logical formalism with 

the introduction of multi-value variables, threshold values and Boolean parameters 

(Thomas, 1978). In the 1990s, the studies of Kauffman and Thomas led to a conclusion 

that alternative stable states (also named attractors) can be associated with different 

cell types and the logical state transitions can be associated with gene evolution over 

time (S. A. Kauffman, 1993; Thomas & D'Ari, 1990). This conclusion laid the foundation 

for today’s Boolean modelling studies in molecular (Abou-Jaoude et al., 2016) such as 

mitochondrial outer membrane permeabilization (MOMP) regulation (Tokar, Turcan, 

& Ulicny, 2013). The concept of Boolean modelling has been intensively applied in 

modelling gene regulation (Bornholdt, 2005, 2008; M. Davidich & S. Bornholdt, 2008; 

S. A. Kauffman, 1969; Thomas, 1973). 

Boolean networks only have two distinct values: On and Off (1 and 0). According to 

the original definition of by Kauffman (1969), a Boolean network is defined as graph 
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G (V, F), where V annotated with a collection of states 𝑋 = {𝑥𝑖|𝑖 = 1, … , 𝑛}, together 

with a set of Boolean functions F: 

𝐹 = {𝑓𝑖|𝑖 = 1, … , 𝑘},  𝑓𝑖: {0, 1} → {0, 1}                                  (2.1.1)  

where each node  𝑣𝑖  (the ith item) has been associated with a Boolean function 𝑓𝑖, 

with inputs into the states of the nodes connected to 𝑣𝑖. The state of the node 𝑣𝑖  at 

time t is expressed as 𝑣𝑖(𝑡). k delegates the last item. Hence, the state of that node at 

time t+1 is given by: 

𝑣𝑖(𝑡 + 1) =  𝑓𝑖(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘)                                        (2.1.2)  

where 𝑥𝑖𝑗  is the state of the nodes connected to 𝑣𝑖  and k < n denotes the total 

number of genes involved in the Boolean function, 𝑓𝑖. 

Boolean models have been categorised into two main types of schemes based on the 

similarity of timescales for all biological events (Gershenson, 2004; R. S. Wang et al., 

2012): synchronous and asynchronous. In synchronous systems (also called 

deterministic systems) all variables are expected to have similar updating timescales, 

i.e., one unit at a time, and all components will update simultaneously: 

𝜎𝑖
𝑡+1 = 𝐵𝑖(𝜎𝑖1

𝑡 , 𝜎𝑖2

𝑡 , . . . , 𝜎𝑖𝑘𝑖

𝑡 )                                           (2.1.3)  

where 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑛} is a set of Boolean functions (R. S. Wang et al., 2012) and 

𝜎𝑖1
, 𝜎𝑖2

, . . . , 𝜎𝑖𝑘𝑖
 is a set of Boolean variables of size k. In contrast, all variables will 

update non-simultaneously in asynchronous schemes if most of the timescales of the 

biological actions are different, i.e., each component will update at their specific time 

unit. 
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𝜎𝑖
∗ = 𝐵𝑖(𝜎𝑖1

, 𝜎𝑖2
, . . . , 𝜎𝑖𝑘𝑖

)                                             (2.1.4) 

where the asterisk denotes the variable (𝜎𝑖
∗) (i = 1, 2,..., n) is derived from the set of 

inputs 𝜎𝑖1
, 𝜎𝑖2

, . . . , 𝜎𝑖𝑘𝑖
. The inputs can be the gene states from the current or previous 

time point (R. S. Wang et al., 2012). 

Both schemes can map to a directed graph G(V, E), where the node-set 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} corresponds to Boolean variables with size n, and the edge set, E, 

matches the Boolean functions in the model. Each edge has a direction with a sign 

indicating how the input node affects the target node (positively or negatively) (R. S. 

Wang et al., 2012). A vector (𝜎1(𝑡), 𝜎2(𝑡), … , 𝜎𝑖(𝑡), … , 𝜎𝑛(𝑡)) is referred to as the state of 

the system at time t (R. S. Wang et al., 2012). The ith vector variable (𝜎𝑖(𝑡)) denotes 

the state of the node 𝑣𝑖  at time t. Each node can be linked to a gene, a protein or a 

metabolite in order to elucidate the dynamics of biological systems using Boolean 

networks. 

Synchronous Boolean networks embed the hypothesis that a gene state at a given 

time point is determined by the state of a subset of genes at an earlier time point. A 

downside of the synchronous dynamics is that it does not allow the temporal 

separation of multiple regulatory activity changes (Faure et al., 2006). Another 

drawback is that the synchronous Boolean network model cannot measure 

differences in the speed of signal propagation in the context of biological systems and 

that results in differences in the rates of signal propagation between cells (Hwang & 

Lee, 2010). 
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The most popular synchronous Boolean models are random Boolean networks 

(Drossel, 2009; Gershenson, 2002, 2004; S. Kauffman, Peterson, Samuelsson, & 

Troein, 2003; Lynch, 2007; Mc, 2002; Samuelsson, 2006; I. Shmulevich, Lahdesmaki, 

Dougherty, Astola, & Zhang, 2003), temporal Boolean networks (Silvescu & Honavar, 

2001), probabilistic Boolean networks (Dougherty & Shmulevich, 2003; Harri, Harri, 

Ilya, & Ilya, 2006; I. Shmulevich & Dougherty, 2005; I. Shmulevich et al., 2002a; I. 

Shmulevich et al., 2002b; I. Shmulevich, Dougherty, & Zhang, 2002a, 2002b; I. 

Shmulevich, Gluhovsky, Hashimoto, Dougherty, & Zhang, 2003), threshold Boolean 

networks (Higa, Andrade, & Hashimoto, 2013), stochastic Boolean networks (J. Liang 

& Han, 2012; Z. Wang et al., 2008), Petri Boolean models (Berestovsky, Zhou, Nagrath, 

& Nakhleh, 2013; Chaouiya, 2007) and switching Boolean networks (Hwang & Lee, 

2010). 

In the model of the random Boolean network (RBN), the random Boolean functions 

control the state of each node by randomly selecting Boolean functions from the 

22𝑘
possible K input. The randomly selected Boolean functions are then kept fixed 

afterwards. After studying the dynamics of these RBNs, Kauffman (1969) claimed that 

the existence of a phase transition in an RBN of size N depends on the value of 

parameter K (R. Albert, 2004; S. Kauffman et al., 2003; S. A. Kauffman, 1969). If K is 

more than 2, there are approximately N/e (e is the base of the natural logarithm) 

possible cycles of scales that exponentially lengthen to N. If K is equal to 2, both the 

number and duration of the limiting cycles are approximately the square root of the 

network size N, i.e., √𝑁 (R. Albert, 2004). 
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To reveal how the expression level of other genes influences the expression of a gene 

at some state in a process during the stage of the process preceding it in multiple time 

steps. Silvescu and Honavart et al. (2001) introduced temporal Boolean networks 

(TBNs), which extended the works of (Akutsu et al., 1999; S. Liang et al., 1998) on the 

inference of Boolean networks (BN(n, k), where n is the total number of nodes under 

consideration and k is the number of network connections based on n) to handle 

multiple time steps. The model, denoted as TBN(n, k, T) where k << n, enables the 

current state of each gene to be affected by a Boolean function of the states of most 

k genes at times in {t…t-(T-1)} (Silvescu & Honavar, 2001). The temporal Boolean 

networks fundamentally renovated the Boolean networks from a Markov(1) to a 

Markov(T) model, and T referred to the length of the time window during which a 

gene can influence another gene (Silvescu & Honavar, 2001). Markov model, 

particularly the Markov chain model, is a stochastic model used to model the state of 

a system with a random variable that updates through time, and the random variable 

depends only on the distribution of a previous state (Gagniuc, 2017). Silvescu and 

Honavar (2001) demonstrated that the temporal Boolean networks could be inferred 

from time series data. However, the primary obstruction to applying temporal 

Boolean networks to a real system is the lack of sufficiently long time series data. 

Threshold Boolean networks have a Boolean function for each gene so that the output 

value depends only on the sum of its input signals (Hwang & Lee, 2010). The limitation 

of a threshold Boolean network is that it relies entirely on the completion of network 
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information. If the network is incomplete, this results in a modelling anomaly (Hwang 

& Lee, 2010). 

The asynchronous update only allows one gene or component to be updated at a 

random time, resulting in a nondeterministic illustration of the dynamics (Siebert, 

2011), which are very complex and encompass many incompatible or unrealistic 

pathways (Faure et al., 2006). Variations in asynchronous Boolean models, such as 

non-deterministic asynchronous Boolean networks and deterministic asynchronous 

Boolean networks (Gershenson, 2004) have been proposed to address these different 

issues. 

Hybrid models that combine synchronous and asynchronous transitions can 

demonstrate the flexibility of the combination of different updating assumptions 

(Faure et al., 2006). Berestovsky et al. (2013) combined Petri nets, which have been 

developed as a promising tool to analyse from purely qualitative to more complex 

quantitative models (Chaouiya, 2007), and Boolean networks to model integrated 

cellular networks, i.e., the integrated hybrid model (IHM). The hybrid model has 

already been demonstrated on three main cellular biochemical processes: signal 

transduction, transcription regulation and metabolism (Berestovsky et al., 2013; 

Chaouiya, 2007). 

Some conventional approaches have been proposed to infer Boolean functions: 

Symbolic approaches (Batt, de Jong, Page, & Geiselmann, 2008; Langmead & Jha, 

2008; Yoon, 2005), the Best-Fit Extension algorithm (Berestovsky & Nakhleh, 2013), 
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geneFAtt (Zheng et al., 2013), Chi-square test (H. Kim, Lee, & Park, 2007) such as 

Pearson's Chi-square test, and the reverse engineering algorithm (REVEAL) (S. Liang et 

al., 1998) which was later extended to allow for multiple discrete states as well, to let 

the current state depend as a window of the previous states (Hecker, Lambeck, 

Toepfer, van Someren, & Guthke, 2009). Mussel, Hopfensitz et al. (2010) proposed a 

tool named the BoolNet R package for generating, reconstructing and analysing 

Boolean networks from time series using the Best-Fit Extension (Ilya Shmulevich, Yli-

Harja, & Astola, 2002) and REVEAL algorithms (S. Liang et al., 1998). These tools 

provide methods to identify the attractors of synchronous, asynchronous and 

probabilistic Boolean networks. This package has been demonstrated as a tutorial by 

Hopfensitz et al. (2013). The advantage of this package over other existing tools, such 

as GINsim (Gonzalez, Naldi, Sanchez, Thieffry, & Chaouiya, 2006), BooleanNet (I. 

Albert, Thakar, Li, Zhang, & Albert, 2008) and BN/PBN toolbox in Matlab, was that it 

supported all three network types, i.e., the synchronous, asynchronous and 

probabilistic Boolean networks. 

With the facilities of the Boolean modelling tools that have emerged, Boolean 

networks have been successfully applied to yeast (M. I. Davidich & S. Bornholdt, 2008; 

S. Kauffman et al., 2003; Kazemzadeh, Cvijovic, & Petranovic, 2012; F. Li, Long, Lu, 

Ouyang, & Tang, 2004), flower morphogenesis of wall cress, Arabidopsis thaliana 

(Espinosa-Soto, Padilla-Longoria, & Alvarez-Buylla, 2004), Drosophila melanogaster 

(R. Albert & Othmer, 2003; Ghysen & Thomas, 2003; Sanchez & Thieffry, 2001), 

mitochondrial outer membrane permeabilization (MOMP) regulation (Tokar et al., 
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2013), the mammalian cell cycle (Faure et al., 2006; Ruz et al., 2014), light- and carbon-

signalling pathways (Thum, Shasha, Lejay, & Coruzzi, 2003), hepatocyte signal 

networks (Schlatter et al., 2012), apoptosis networks (Kazemzadeh et al., 2012; Mai & 

Liu, 2009; Schlatter et al., 2009; Schleich & Lavrik, 2013), NF-kappaB and IL-6 mediated 

by miRNA (Xue, Xia, & Wenzhong, 2013) and leukaemia (Campbell & Albert, 2014; 

Hwang & Lee, 2010; Saadatpour et al., 2013; Saadatpour et al., 2011; Saez-Rodriguez 

et al., 2007; Wittmann et al., 2009; Zanudo & Albert, 2013). 

In these successful applications, M. I. Davidich and S. Bornholdt (2008) predicted the 

biological cell cycle sequence of fission yeast using a Boolean model in a parameter-

insensitive way, with 47 kinetic constants that were necessary for the ordinary 

differential equations (ODE) approach were eliminated. Faure et al. (2006) studied the 

dynamics of the mammalian cell cycle Boolean model, with synchronous, 

asynchronous or hybrid treatment of the concurrent transitions. Moreover, the signal 

transduction network of abscisic acid has been proven to induce stomatal closure (S. 

Li, Assmann, & Albert, 2006). 
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2.2. Microarray DNA Data Analysis 

Many biologists use Microarray technology to monitor genome-wide expression levels 

of genes in a given organism (Babu, 2004). A microarray is typically referred to a glass 

slide that contains thousands of spots, and each spot may contain a few million copies 

of identical DNA molecules fixed in an orderly manner that uniquely corresponds to a 

gene (Babu, 2004). One of the most popular applications of microarray is to compare 

the expression of a set of genes from a cell maintained in a particular condition to the 

same set of genes from a reference cell maintained under normal conditions (Babu, 

2004). 

The DNA microarray technology, including the design of experiments to extract mRNA 

samples, has been applied to analyse human cancers, such as breast, prostate and 

leukaemia (Russo, Zegar, & Giordano, 2003). mRNA samples are hybridised using a 

gene chip, which contained a strand of all genes in the human genome, such as HG-

U133 Plus 2. Raw gene data are extracted from image analysis by measuring the level 

of hybridisation on the chip. Complementary DNA (cDNA) microarray and 

oligonucleotide chips are the two approaches for manufacturing the microarrays. 

cDNA arrays are fabricated by robotic spotting on glass slides, and oligonucleotide 

arrays are developed by photolithographic chemistry and light-directed chemical 

synthesis on small glass plates (Taub, DeLeo, & Thompson, 1983). 

Gene expression matrices are the product of microarray data analysis, where rows 

denote genes and columns denote samples. Microarray data analysis can be 
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conducted by generating cell intensity (.CEL) files using the Affymetrix GeneChip 

Operating System Software (GCOS). The generated cell intensity files can then be 

converted into gene expression matrices using the R package, affy (Gautier, Cope, 

Bolstad, & Irizarry, 2004). 

Emergent microarray technology using Affymetrix® GeneChip arrays paved a 

significant way to develop a better understanding of cancer prediction and diagnosis, 

and a better method to discover target drugs for the treatment of malignant tumours. 

Affymetrix® GeneChip arrays (http://www.affymetrix.com/index.affx) are high-

density oligonucleotide gene expression arrays that been mainly used in biomedical 

research. Oligonucleotide expression array technology is referred to a system that 

uses oligonucleotides with a length of 25 base pairs (probe genes), in which each gene 

will be represented by 16–20 pairs of oligonucleotides (probe sets) (Irizarry et al., 

2003). Oligonucleotide gene expression arrays treat each gene as 11-20 different 

probe pairs called a ‘probe set’. Each probe consists of 25 nucleotide bases, and each 

probe set has two components: perfect match (PM), which refers to the specific 

sequence, and mismatch (MM), which is used to measure noise caused by non-specific 

binding. The expression level of a gene (i) is then calculated by the average of the 

difference between PM and MM for all probe pairs of the gene, as shown below: 

𝐸𝑖 =  ∑ (𝑃𝑀𝑗 − 𝑀𝑀𝑗)𝑃
𝑗=1                                              (2.2.1)  

where i represents the gene i, p is the total number of the probe pairs of the gene i. j 

is an incremental value and presents as one probe pair. 
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Commonly, an experiment may involve extracting gene expression matrices at 

different time points with the same set of samples. If we reorganise the extracted 

gene expression matrices based on the order of time points, we will yield time series 

expression data. Time series expression data typically contain a series of m microarray 

expression measurements in the order of time points, involving n genes. The gene 

expression data is used to represent an m × n table (Ť ) where m served as columns 

and n as rows (Silvescu & Honavar, 2001). There might be multiple samples, and each 

sample contains the same number of m and n but with different measurements. 

Combining all samples, it becomes a three-dimensional sample data space, Š. Hence, 

the entry, 𝑒𝑖𝑗
𝑠 , in row t and column i of the table Ť𝑠 denotes the expression level of 

gene i in the jth measurement of the sample, s. Most data analysis is undertaken with 

a straightforward table, Ť𝑠 (matrix) such as using cell cycle analyses. However, data 

analysis on a three-dimensional sample data space (Š𝑠) might become more popular 

(Silvescu & Honavar, 2001). 

Meaningful temporal gene expression patterns can be extracted from the time series 

data and genes can be associated with each pattern (gene groups). The relationships 

of gene groups can be modelled and depicted by GRN methods, such as Boolean 

network modelling. Based on the availability of time points that can be extracted from 

experiments, time series data can be categorised into two main groups: short time 

series with the number of time points fewer than eight, and long-time series with the 

number of time points more than eight (Ernst & Bar-Joseph, 2006; Ernst, Nau, & Bar-

Joseph, 2005). 
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Because the expense involved in acquiring genetic data are not economical, about 

80% of published experimental data are short time series (Chaiboonchoe, 2010; Ernst 

et al., 2005). Besides, the period of a patient’s treatment is usually either too short or 

fatal (Z. Wang et al., 2008). Even if the expense is dropped, short time series 

experiments are still important because obtaining large quantities of biological 

material is prohibitive (Ernst et al., 2005). 

Traditional algorithms do not perform well with short time series data due to the lack 

of the required length of the time series, i.e., the required time points are too short 

to fit these algorithms (Tchagang et al., 2012; Z. Wang et al., 2008). The construction 

and validation of traditional models are also complicated (Siebert, 2011). Short time 

series data typically contain an enormous number of genes but only a few 

observations. Knowledge of the kinetic parameters and mechanistic details are unable 

to be inferred consistently from short time series data because the data are very noisy 

and contain various lengths of temporal observational gaps. Valuable information may 

be missing between the sparse observation gaps and; hence, this may lead to incorrect 

conclusions. 

How to choose the most suitable and dependable method to address a particular 

biological question from a specific dataset is a significant research question. One 

criterion is the capability to detect differentially expressed genes in terms of precision 

(specificity/variance) and accuracy (sensitivity/bias) (Irizarry, Wu, & Jaffee, 2006). 
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Differentially expressed genes are highly dependent on the normalisation methods 

that alter how the correction structure from the data impact on the accuracy of the 

inference of cellular networks. Microarray normalisation, typically, involves three 

main steps, and there is a background correction that removes background noise from 

the signal intensities; data normalisation that eliminates non-biological variability 

between arrays and makes distributions across arrays; and summarisation, that 

provides a single expression measure to each probe set in the array. The most 

common normalisation methods are MAS5.0, Robust Multichip Average (RMA) and 

GeneChip RMA (GCRMA). MAS5.0 applies MM probes to adjust the PM probes for 

probe-specific non-specific binding for background correction. MAS5.0 uses a baseline 

array and scales all the other arrays to have the same mean intensity for normalisation 

and uses Tukey’s biweight function for summarisation (Affymetrix, 2002). RMA 

(Irizarry et al., 2003) applies a global correction, quantile normalisation and a median 

polish summarisation. The GCRMA (Z. Wu, Irizarry, Gentleman, Martinez-Murillo, & 

Spencer, 2004) is a method to convert background adjusted probe intensities to 

expression measures using the same normalisation and summarisation approaches as 

RMA and is bias-corrected. 

Gene expression microarray data, which are quantitative and semi-quantitative for 

cell status on a particular condition and time, are the most current data for bio-

scientists to use (Bansal, Belcastro, Ambesi-Impiombato, & di Bernardo, 2007). A new 

discipline of introducing computer technologies into biology using gene expression 

microarray data has been developed in recent years (Tušek & Kurtanjek, 2012). It is 
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now referred to as the foundation of systems biology or computational biology (Tušek 

& Kurtanjek, 2012). The progress in systems biology has led to the development of 

complete genetic regulatory networks of genomes of many organisms (Tušek & 

Kurtanjek, 2012). 

The reconstruction of the dynamics, represented by time and the discrete state 

transition systems to gain insights into the functioning of cell systems, is attracting 

more and more attention (Ay & Arnosti, 2011; Hood, 2013; Lee & Tzou, 2009; Y. Wang, 

Zhang, & Chen, 2011). These dynamics can be used to simulate the perturbations of 

new drugs in silico to reduce the potential risk of applying drugs to human beings. For 

example, Chaiboonchoe (2010) identified new glucocorticoid-regulated genes 

through the inferred GC-regulation networks. The newly identified genes may help 

pharmacists to develop new drugs that contain fewer side effects when applying 

chemotherapy. 

2.3. Cancer 

Molecular species and their cellular circuitries comprise sophisticated cellular 

machinery, while many parts of the machinery are still mysterious. For example, the 

secret of how the modification of one gene affects other genes at the expression level 

is still unknown (Bruce et al., 2012). Besides, whether a particular heritable aberration 

is due to an alteration in the cell’s DNA sequence or a constant change in the pattern 

of gene expression without modification in the DNA sequence, is still an area of 

ongoing dispute (Bruce et al., 2012). Furthermore, it now appears that the abnormal 
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epigenetic silencing of genes is no less critical than mutations in DNA sequences for 

the development of cancers (Bruce et al., 2012). 

Cancer is a significant kind of, often, fatal genetic disease and the primary cause is 

commonly due to aberrant gene regulation, such as mutations in single somatic cells. 

The aberrant gene regulations interrupt the standard control of proliferation that 

continually unregulates the proliferation of cancer cells that invade adjacent healthy 

tissues and organs from other sites (Bruce et al., 2012; Cooper, 2000; Fumia & Martins, 

2013; Hanahan & Weinberg, 2000, 2011; Hodgson & Maher, 1999; Hornberg, 

Bruggeman, Westerhoff, & Lankelma, 2006; Martinez, Taylor Parker, Fultz, Ignatenko, 

& Gerner, 2003; Siegel, Ma, Zou, & Jemal, 2014; Weinberg, 2007). In other words, the 

unexpected changes in gene regulation cause healthy cells to undertake abnormal 

functions and, as a consequence, develop cancers (Frederick, Nolan, Scott, & Slade, 

2003). These changes are commonly attributed to inherited genetic mutations or are 

induced by chronic exposure to carcinogenic environmental factors, such as UV light, 

X-rays, chemicals, tobacco products and viruses (Cooper, 2000; Frederick et al., 2003). 

The abnormal functions, which are usually inhibited in healthy cells, are in cancer cells. 

The abnormal functions are usually caused by the nonfunctioning protein-encoding 

genes that regulate cell division due to genetic mutations. If the cancer cells persist in 

their original site, they are considered benign, such as a common skin wart that 

remains confined to its orginal location, neither invading the surrounding normal 

tissue nor spreading to a distant body site (Cooper, 2000; Frederick et al., 2003). In 

contrast, the malignant cells can metastasise themselves into a different location in 



 

 30 

the body and may form new tumours by invading the surrounding healthy tissue via 

the circulatory or lymphatic systems (Cooper, 2000; Frederick et al., 2003). 

The number of genes that are associated with cancer in the human genome is 

approximately 35,000 and alternations in these genes are typically associated with a 

variety of cancers (Frederick et al., 2003). These malfunctioning genes are usually 

divided into three groups: proto-oncogenes, tumour suppressors and DNA repair 

genes. The genes of proto-oncogenes produce protein products to either enhance cell 

division or repress cell death, and the mutated forms of these genes are named 

oncogenes; in contrast, the genes of tumour suppressors develop protein products 

repressing cell growth or causing cell apoptosis. DNA repair genes make protein 

products to prevent carcinomatous mutations (Frederick et al., 2003). 

The accumulated abnormalities in multiple cell regulatory systems result in the 

generalised loss of growth control as affected by cancer cells (Cooper, 2000). Growth 

control is a domain in the cell cycle. 

2.3.1. Cell Cycle 

The cancer cells in vivo have different proliferating behaviour in cell cultures from 

healthy cells. Healthy cells show density-dependent inhibition of cell proliferation. The 

availability of growth factors in the culture medium (in the form of serum) determines 

a finite cell density that limits the healthy cells’ proliferation (Cooper, 2000). When a 

healthy cell reaches its finite cell density, the cell then ceases proliferating and 



 

 31 

become quiescent and are arrested in the G0 stage of the cell cycle, where the G0 

stage (also named as resting phase) designates a cellular state outside of the 

replicative cell cycle (Cooper, 2000). In contrast, tumor cells are not sensitive to 

density-dependent inhibition and their proliferation is uncontrollable in vivo. As a 

consequence, tumour cells usually remain growing to high cell densities when in 

culture (Cooper, 2000). 

 

Figure 2-1 Cell Cycle. 
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Cells produce and split in an orderly fashion; namely, by the cell cycle. As shown in 

Figure 2-1, the cell cycle occurs in four stages: G1, G2, S (synthesis) and M (mitosis) 

phases. G1 and G2 are the two-gap stages, and in the two stages, no cell division 

happens but is it actively metabolising (Frederick et al., 2003). In the S phase, the 

chromosomes duplicate due to DNA replication. In the M phase, the chromosomes 

separate in the nucleus and the division of the cytoplasm (cytokinesis) occurs, and in 

the M phase itself contains four different sub-phases (prophase, metaphase, 

anaphase, and telophase). There are two checkpoints at the end of G1 and G2 that 

prevent the cell from entering the S or M phases of the cycle, respectively. Cells that 

are not in the process of dividing are in the G0 stage (Frederick et al., 2003). 

2.3.2. Leukaemia 

Blood cells come from the bone marrow, which is a kind of spongy material in found 

bones, as outlined in Figure 2-2. White blood cells are a type of blood cell and act as 

an immune system to defend against certain types of infection in different ways 

(Maton et al., 1997). There are two types of white blood cells based on where they 

developed from lymphocytes and granulocytes (LaFleur-Brooks, 2008). Lymphocytic 

white blood cells develop from lymphoid stem cells, and granulocytes develop from 

myeloid stem cells (LaFleur-Brooks, 2008). The myeloid cells usually fight against 

widespread infection, whereas lymphoid cells are more specific for certain types of 

infection (Stegelmeier et al., 2019). 



 

 33 

 

Figure 2-2 Inner details of bone structure, which is modified from (FBRadmin, 2013). 

Leukaemia is white blood cell-related disease driven by cumulative mutations in 

immature white blood cells from the bone marrow that reduce the number of red 

cells, healthy white cells and platelets (Banjar, Adelson, Brown, & Chaudhri, 2017; 

Hanahan & Weinberg, 2000; Hornberg et al., 2006; Martinez et al., 2003; Weinberg, 

2007). The causes of leukaemia are arguably due to radiation, chemicals/genetic 

problems, and smoke (Banjar et al., 2017; Hanahan & Weinberg, 2000; Hornberg et 

al., 2006; Martinez et al., 2003; Weinberg, 2007). 

As a consequence, the redundant and unhealthy white blood cells enter the 

bloodstream and accumulate in organs, for example, the liver or spleen that may 
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cause many problems (Banjar et al., 2017). Figure 2-3 outlines a sample of a healthy 

vessel (down right) and a leukaemia vessel (up left). The leukaemia vessel accumulates 

too many abnormal lymphocytic white cells and hence, contains fewer erythrocytes 

than healthy ones. 

 

Figure 2-3 Healthy vessels and leukemic vessels 

Nowell and Hungerford (Hodgson & Maher, 1999) identified the first consistent 

Philadelphia chromosome abnormality in chronic myeloid leukaemia in 1960. Since 

then, leukaemia has been categorised into two main groups, childhood and adult. 

Childhood leukaemia can be divided further into two types: acute or chronic. Most 

childhood leukaemia is acute. In this study, we focus on acute childhood leukaemia. 

Acute childhood leukaemia can be divided into two groups: acute lymphoblastic 

leukaemia (ALL) if lymphocytic cells were affected, and acute myelogenous leukaemia 
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(AML) if granulocytic cells were affected. Both groups have two subgroups of ALL: T-

lineage (T-ALL) and B-lineage (B-ALL) (Tissing, Meijerink, den Boer, & Pieters, 2003). 

Currently, there are three phases to treat the ALL of children: induction, 

consolidation/intensification, and maintenance (St. Jude Children's Research Hospital, 

2019). The first phase is trying to kill the leukaemic cells in the blood and bone 

marrow, and the second phase is getting rid of any remaining cells that could cause 

the leukaemia to return. The last phase is to destroy any cancer cells that might have 

escaped from the previous two phases (St. Jude Children's Research Hospital, 2019). 

Four types of treatments may be applied to cure childhood ALL during the three steps 

mentioned above. There is chemotherapy (“chemo”), stem cell transplants, radiation 

therapy, and targeted therapy (St. Jude Children's Research Hospital, 2019). 

Chemotherapy, which can be applied by mouth or injected into the bloodstream (St. 

Jude Children's Research Hospital, 2019), applies strong medicine to introduce 

apoptosis in cancer cells and is the most common treatment for children with ALL. A 

stem cell transplant can replace the damaged blood-forming cells that caused by 

chemotherapy and/or radiation therapy, in the bone marrow with the new blood cells 

coming from a donor’s blood or bone marrow (bone marrow transplants) (St. Jude 

Children's Research Hospital, 2019). Radiation therapy applies powerful X-rays or 

other types of radiation to introduce apoptosis in cancer cells or block them from 

growing (St. Jude Children's Research Hospital, 2019). Targeted therapy focuses on 

specific cancer cells and tries to avoid harming healthy cells and uses medicines or 

other treatments (St. Jude Children's Research Hospital, 2019). 
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Apoptosis is a programmed cell death (PCD) process, also named ordered cellular 

suicide process, which may happen in a multicellular organism as a controlled 

mechanism to maintain the balance of cell multiplication (Green, 2011; Lakna, 2017; 

Schmidt et al., 2004). Another form of cell death is necrosis or accidental cell death 

and this is mainly caused by massive cellular damages or cellular distress (Schmidt et 

al., 2004). There are two significant types of signalling pathways for apoptosis: 

extrinsic, which is initiated directly through the ligand-mediated activation of 

membrane death receptors, and intrinsic, which is controlled by members of the Bcl2 

family and mitochondria-derived proteins (Schmidt et al., 2004). 

Introducing apoptosis in the aberrant white blood cells is a common approach to stop 

cumulative mutations (Green, 2011). The process of apoptosis in cells involves 

multiple biochemical events that lead to characteristic cell changes, such as cell 

shrinkage, blebbing, chromatin condensation, nuclear fragmentation, chromosomal 

DNA fragmentation and death (Green, 2011). Drugs like glucocorticoids are commonly 

applied in chemotherapy. Glucocorticoids are a family of steroid hormones containing 

synthetic products like dexamethasone (Dex), and prednisolone (PRD). Dex is a 

synthetic steroid, which is therapeutically used instead of the natural human 

glucocorticoid, cortisol (Thompson & Johnson, 2003). Glucocorticoids are essential 

steroid types of drugs commonly used to induce apoptosis in the malignant cells of 

childhood acute lymphoblastic leukaemia during the process of chemotherapy, due to 

the ability of these steroids to repress the growth and to cause the apoptotic death of 

these cells (Planey, Abrams, Robertson, & Litwack, 2003; Thompson & Johnson, 2003). 
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However, prolonged use of chemotherapy to introduce apoptosis may result in severe 

short-term or long-term side effects, such as osteoporosis, hypertension, psychosis, 

Cushing’s syndrome and leucopenia (Chaiboonchoe, 2010; Rhen & Cidlowski, 2005; 

Schmidt et al., 2004; Smith & Cidlowski, 2010). An immune overreaction, namely 

cytokine release syndrome, can trigger high fevers, plummeting blood pressure and, 

in severe cases, also causes organ damage. 

The GC enter into the leukaemia cell via a functional glucocorticoid receptor (GR), i.e., 

NR3C1 (Rainer et al., 2012), which is a ligand-activated transcription factor that exerts 

a pivotal role in inducing apoptosis in malignant lymphoid cells. The steroids as located 

in the cytosolic compartment in the absence of ligands (Thompson & Johnson, 2003). 

When GRs bind with ligands on their high-affinity site in the carboxy-terminal portion, 

the GRs translocates to the nucleus and are associated them with other transcription 

factors, to regulate specific sets of genes (Thompson & Johnson, 2003). However, GR 

alone is not sufficient for producing apoptosis. Accumulating evidence suggests that 

many leukaemic cells, which contain abundant quantities of normal GRs, are still 

unaffected by glucocorticoid-evoked apoptosis. For example, the steroid ligands could 

be blocked from passage through the plasma membrane and; hence, are destroyed 

biochemically-conjugated with GRs (Thompson & Johnson, 2003). Besides, the 

resistant cells may have genetically or phenotypically altered the response systems to 

glucocorticoids to resist their lethal effects, such as critical reductions in the quantity 

of one or more transcription factors, development of a dominant-negative form of 

such a factor or improper post-translational modifications of GR or an interactive 
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factor (Thompson & Johnson, 2003). The changes that affect the general pathways for 

apoptosis, such as alterations in the balance of pro- and anti-apoptotic members of 

the Bcl2 family of proteins; the loss of or inactivating mutations in caspases or other 

lethal proteases; changes in one or more critical protease substrates rendering them. 

Resistant; and alternating in specific genes’ abilities to be regulated by ligand-driven 

GR (Thompson & Johnson, 2003). 

Moreover, cellular gene transcription and translation are essential for GR-evoked 

apoptosis of lymphoid cells. There is evidence that blocking cellular transcription or 

translation prevents the advent of the classic morphological and biochemical events 

in the apoptotic pathway (Thompson & Johnson, 2003). 

Currently, the transactivation or transrepression of target genes by GC is still not well 

understood, i.e., the clinical effects of GCs are poorly understood (Yoshida et al., 

2002). For example, the mechanisms of glucocorticoid resistance in the clinical setting 

remain largely unresolved because the findings from the cell line model of 

glucocorticoid resistance in childhood acute lymphoblastic leukaemia (ALL) almost 

invariably exhibit altered glucocorticoid receptor (GR) function are incongruous with 

those using specimens derived directly from a leukaemia patient (Bachmann et al., 

2007). Besides, GC signalling exerts a wide range of physiological actions because of 

the broad distribution of the GR. The actions include positive regulation of metabolism 

in the liver, adipose tissue or the induction of apoptosis and cell cycle arrest, and 

antiinflammatory effects in the immune compartment (Rainer et al., 2012). 
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Alterations in glucose metabolism contribute to cell death and survival decisions, 

especially in the lymphoid lineage (Carlet et al., 2010) in which lymphocyte-dependent 

extracellular signals are transmitted via surface receptors and survival kinases like 

PKB/Akt into cells and influence glucose metabolism. Glucose metabolism can be 

influenced by increasing the expression of glucose transporters and, as a consequence, 

this increases the productivity of glycolysis and ATP (Carlet et al., 2010). Reducing the 

production of glycolytic and ATP/ADP ratios causes a loss of integrity in the 

mitochondria, and this results in Bax-bak dependent cytochrome-C release and cell 

death (Carlet et al., 2010). 

Glucocorticoids (GC) can suppress glucose utilisation by reducing both glucose uptake 

and glucose oxidation in two significant tissues, i.e., skeletal muscle and WAT (Kuo, 

McQueen, Chen, & Wang, 2015). The ability of GC has been connected to GC induced 

apoptosis in leukaemia cells, in which GC down-regulates the expression of glucose 

transporter 1 (GLUT1). The down-regulated expression of GLUT1 results in reduced 

glucose uptake into leukaemia cells (Kuo et al., 2015). Hence, GC induced apoptosis 

has physiologic and therapeutic significance in the treatment of lymphoid 

malignancies, particularly childhood acute lymphoblastic leukaemia (ALL) (Carlet et al., 

2010). 

The cognate receptor (GR) is a ligand-activated transcription factor in the massive 

nuclear transcription factor family and was critically essential for GC induced 

apoptosis (Carlet et al., 2010). The levels of GR and the subsequent alterations in gene 
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expression affected the effectiveness of GC treatment. Gene NR3C1 is a glucocorticoid 

receptor (GR) and is a member of the nuclear receptor subfamily 3, group C. Hence, 

NR3C1 was a critical gene to induce apoptosis of leukaemia cells. 

Although the process of how GC-induced lipolysis affected glucose homeostasis was 

not transparent, the fatty acids generated from lipolysis were likely mobilised to 

skeletal muscle and liver and converted into lipid mediators, such as diacylglycerol 

(DAG) and ceramides, that resulted in insulin resistance (Carlet et al., 2010). 

FKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2) was another crucial 

regulator of glycolysis that was induced more than 4-fold in all three T-ALL cases as 

well as in the T-ALL cell line CCRF-CEM (Carlet et al., 2010). 

Research conducted by (Carlet et al., 2010) suggested that the GC response gene, 

PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2) was a kinase 

controlling glucose metabolism, was not a critical upstream regulator of the anti-

leukaemic effects of GC. FKFB2 was induced more than 4-fold in all three T-ALL cases 

as well as in the T-ALL cell line CCRF-CEM (Carlet et al., 2010). 

To understand these drug-related genetic problems scientists try to reconstruct the 

dynamics represented by time and the discrete state transition systems to gain 

insights into the functioning of cell systems (Ay & Arnosti, 2011; Hood, 2013; Lee & 

Tzou, 2009; Y. Wang et al., 2011). These dynamics can be used to simulate the 

perturbations of new drugs in silico to reduce the potential risks of applying drugs to 

human beings. Two common research issues are emerging for GCs: GC regulated 
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genes and the glucocorticoid receptor gene network. Signalling pathways and gene 

networks can be inferred from gene expression data grouped in a time series format. 

2.4. Summary 

In chapter 1, the gaps in the current Boolean modelling has been well discussed. In 

general, a fragment of DNA (gene) will transcribe into mRNA and then translate into 

protein. The fundamental concept of activator and inhibitor are the two critical 

elements in this study. However, the roles of gene activation and inhibition in 

traditional Boolean modelling cannot be intuitively understood. For example, the 

traditional Boolean rule of the cyclin gene CycA depends on a complex Boolean rule; 

in which the roles of activator and inhibitor cannot be identified easily. Besides, a gene 

may remain activated within a period of decay time when there are no activators 

present. To solve the gaps, we reviewed the historical development of Boolean 

modelling and discussed the variants of the conventional Boolean modelling, including 

synchronous, asynchronous and hybrid models in section 2.1 in details. 

The objectives of this research mainly focus on developing a better understanding of 

the fundamental mechanisms in genetic regulatory pathways about cancer-related 

treatments. Hence, we reviewed the current DNA microarray technology, including 

the design of experiments to extract mRNA samples, that has been applied to analyse 

human cancers using the Affymetrix GeneChip Operating System Software (GCOS), in 

section 2.2. The GCOS technology paved a significant way to develop a better 

understanding of cancer prediction and diagnosis for the treatment of malignant 
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tumours. The technology generates microarray gene expression data (CEL files) for 

extracting differentially expressed genes. Differentially expressed genes are highly 

dependent on the normalisation methods, and hence, we reviewed the most common 

normalisation methods, including MAS5.0, RMA and GCRMA. 

The data we used to explore are cell cycle and acute childhood leukaemia, and hence 

we reviewed the background knowledge of cancer, cell cycle and acute childhood 

leukaemia in section 2.3. Cancer is a significant kind of fatal genetic disease due to 

aberrant gene regulation, such as mutations in single somatic cells. The induction of 

apoptosis and cell cycle arrest on cancer cells are common ways for cancer-related 

treatments. 

The following chapters propose a novel data-driven Boolean modelling and its 

extension for genetic regulatory pathways to address the gaps of Boolean modelling. 

.  
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Chapter 3: Fundamental Boolean Modelling 

As discussed in chapter 1 and reviewed in chapter 2, the hypotheses of conventional 

Boolean models do not provide an intuitive technique to separate the individual 

activation and inhibition pathways. The processes of gene activation and inhibition 

are the two fundamental processes of genetic regulation. For example, activation may 

result in substantial drug regulatory effects, such as modifications in the metabolism 

of in vivo substances and vitamins (Barry & Feely, 1990). Likewise, inhibition may 

result in crucial clinical drug interactions being formed by a wide range of drugs (Barry 

& Feely, 1990). Inhibition can be classified into two groups: reversible inhibitors that 

can be easily inverted by dilution or dialysis since the interactions of this group are 

non-covalent with the enzyme surface (Saboury, 2009); and irreversible inhibitors that 

usually persist even during complete protein breakdown due to their sturdy covalent 

bonds on the enzyme surface (Saboury, 2009). 

Hypothetically, under the theory of an enzyme reaction exposed to the action of a 

reversible inhibitor, the degree of inhibition may be modelled as the decreased rate 

of reaction divided by the uninhibited reaction rate (Saboury, 2009): 

𝑖 =
𝑉𝑜−𝑉

𝑉𝑜
                                                           (3.1) 

where V and 𝑉𝑜  represent the rates of the inhibited and uninhibited reactions, 

respectively (Saboury, 2009). The degree of inhibition (𝑖) may present uncertainty into 

the target gene if the value of 𝑖 is lower than 1. Similarly, enzyme activation contains 

the same concept as a reversible type of reaction. Hence, the degree of inhibition can 
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be upgraded to the degree of the enzyme reaction; thus, encapsulating the degrees 

of inhibition and activation. For that reason, we could redefine the degree of the 

enzyme reaction to a conditional probability measure to represent the propensity rate 

of an enzyme reaction towards the target gene. A conditional probability measure is 

the probability of an event that occurs given another event has happened. If the 

conditional probability measure of an inhibitor is 1, the inhibitor is irreversible; 

otherwise, it is reversible. 

Conventional Boolean models do not consider the reversible and irreversible 

behaviour of enzyme reactions. In biology, the disappearance of an activator does not 

preclude the emergence of an inhibitor because the proteins transcripted by a pre-

activated gene might be still in the status of activation. The way we judge whether a 

gene activates or inhibits based solely on the concentration rate of the proteins 

produced by the gene. Therefore, there are logical reasons to separate the general 

Boolean function into the domains of gene activation and inhibition. 

To analyse the Boolean networks for gene activation and inhibition, we propose a 

novel Boolean model for constructing the dynamic activation and inhibition networks, 

based on the abstraction of the features of enzyme activation, inhibition and the long-

term degradation of a specific protein. Chapters 3 and 4 explain the published novel 

model and the related network inference methodology in detail. 
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3.1. Fundamental Boolean Model 

Extending the original definition of a Boolean model, we defined a novel Boolean 

network as a graph G (X, 𝐸𝑎 , 𝐸𝑑 ), where the node collection, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 

corresponds to a group of states, 𝑋 = {𝑥𝑖|𝑖 = 1, … , 𝑛}  of size n. Each node is a 

variable that is only in one of two states: On (1) or Off (0). The general edge set, E, is 

divided into two sets of fundamental Boolean functions, 𝐸𝑎 and 𝐸𝑑, based on their 

regulatory functions, i.e., activation and inhibition, rather than a single function, as in 

all conventional Boolean models. The direction of the edges represents the 

propagation of their effectiveness on the target node, such as the signal flow between 

signalling molecules, genes or protein regulation. 

We conceptualised this graph as a new type of Boolean network, namely the 

fundamental Boolean network (FBN). The two sets of fundamental Boolean functions 

are modelled as: 

Fundamental Boolean functions of activation: 

𝐹𝑎
𝑖 = {𝑓𝑎𝑗

𝑖 |𝑗 = 1, … , 𝑙𝑎(𝑖)} ,  𝑓𝑎𝑗
𝑖 : {0, 1} → {−, 1}                             (3.2.a) 

Fundamental Boolean functions of inhibition: 

𝐹𝑑
𝑖 = {𝑓𝑑𝑘

𝑖 |𝑘 = 1, … , 𝑙𝑑(𝑖)},  𝑓𝑑𝑘

𝑖 : {0, 1} → {−, 0}                             (3.2.b) 

where 𝐹𝑎
𝑖  and 𝐹𝑑

𝑖  denote a set of fundamental Boolean activation and inhibition 

functions of gene i, respectively. Notably, –, here, refers to that the output of the 

function does not affect the target gene. 𝑙𝑎(𝑖)  symbolises the total number of 

fundamental Boolean functions activating the target gene. 𝑙𝑑(𝑖) symbolises the total 
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number of fundamental Boolean functions deactivating the target gene. When the 

output of a Boolean activation function is TRUE, this means that the target gene is to 

be activated and FALSE means that the activation function does not influence the 

target gene, as denoted by –. Similarly, when the output of a Boolean inhibition 

function is TRUE, this means that the target gene is to be repressed and FALSE means 

that the inhibition function does not affect the target gene. The definition of the two 

types of Boolean functions set out the novelty of the proposed Boolean modelling. 

The proposed fundamental Boolean functions have the general assumption that the 

production of each gene at every timestep is either completely activated or wholly 

inhibited when the output of the functions are determined. Based on the treatment 

time, the gene regulation time is embedded in the selected Boolean updating schema, 

i.e., as a synchronous or an asynchronous system. 

The essential biological philosophies behind the fundamental Boolean functions are 

that a fundamental Boolean function can be treated as a simple transition rule. The 

rule takes a minimum required essential gene states as the input and then governs 

their regulation effects on the target gene. In general, a fundamental Boolean function 

is an atomic function that cannot be separated any further. Hereafter, we can treat 

the fundamental Boolean functions as conditions that constrain gene activity, a 

delegation of stereochemical reactions, and a transcription factor complex moulded 

by the transcription factor to proteins or protein to protein bindings. 
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The output of the proposed fundamental Boolean functions is only associated with 

the potential effectiveness of gene regulation on the target gene. For that reason, 

there is a need to calculate the level of confidence by what percentage we can trust 

the regulatory functions in affecting the target gene. As stated previously, the degree 

of enzyme reaction can be substituted by the conditional probability that an enzyme 

reaction can influence the target gene. Hereafter, the concept of conditional 

probability can be used to measure the confidence of the proposed functions. The 

following formulae called confidence measures, model the conditional probability of 

each fundamental Boolean function. 

Confidence measure of activation: 

𝐶𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝐴𝑖
𝑗(𝑡))⌋ = 𝑝(𝜎𝑖

𝑡+1 = 1|𝐴𝑖
𝑗(𝑡) = 1) =

𝑝(𝐴𝑖
𝑗(𝑡)=1 ∩ 𝜎𝑖

𝑡+1=1)

𝑝(𝐴𝑖
𝑗(𝑡)=1)

                     (3.3.a) 

Confidence measure of inhibition: 

𝐶𝑑𝑘

𝑖 ⌊𝑓𝑑𝑘

𝑖 (𝐷𝑖
𝑘(𝑡))⌋ = 𝑝(𝜎𝑖

𝑡+1 = 0|𝐷𝑖
𝑘(𝑡) = 1) =

𝑝(𝐷𝑖
𝑘(𝑡)=1 ∩  𝜎𝑖

𝑡+1=0)

𝑝(𝐷𝑖
𝑘(𝑡)=1)

                (3.3.b) 

where 𝜎𝑖
𝑡  denotes the Boolean state of gene 𝑖 at time t, and 𝜎𝑖

𝑡+1 denotes the 

Boolean state of gene 𝑖  at time t + 1. ∩ refers to a logical And connector. 𝐶𝑎𝑗

𝑖  

𝑎𝑛𝑑 𝐶𝑑𝑘

𝑖  delegate the confidence function with the input of the fundamental Boolean 

functions 𝑓𝑎𝑗

𝑖  and 𝑓𝑑𝑘

𝑖 , respectively. 𝐴𝑖
𝑗
 and 𝐷𝑖

𝑘 denote the set of inputs required 

or the state of the gene functions, 𝑓𝑎𝑗

𝑖  and 𝑓𝑑𝑘

𝑖 , respectively. 𝐴𝑖
𝑗(𝑡) = 1 or 𝐷𝑖

𝑘(𝑡) =

1  mean the required gene input of 𝑓𝑎𝑗

𝑖  or 𝑓𝑑𝑘

𝑖  at time t is satisfied with the 

conditions of affecting the target gene, 𝑖. 



 

 48 

The confidence measures of the activation and inhibition functions can simulate the 

stochastic epigenetic switches of gene regulation in nature, such as chromosomal 

rearrangements, by turning the confidence values up or down, compared with the 

standard example of lac operon (Edwards & Bestor, 2007). Examples of chromosomal 

rearrangements are the effect of variation in Drosophila, the telomere position effect 

in yeasts (Edwards & Bestor, 2007), competition between the OxyR repressor (a 

regulator of antioxidant genes). Dam (DNA adenine methyltransferase) controls the 

activity of the agn43 promoter that causes neither OxyR or Dam to be 100% efficient 

(Edwards & Bestor, 2007). 

There are various debates about mRNA/protein decay times in Boolean models. The 

decay time is the time that allows a gene to remain in the On state when there are no 

activators or inhibitors. R. Albert (2004) assumed that this decay might occur in two 

time steps. To capture the characteristics of protein decay, we induced a function 

𝑓𝑑𝑒𝑐𝑎𝑦 (given below) to fulfil the requirements of protein degradation with input from 

the target gene i at time t: 

𝑓𝑑𝑒𝑐𝑎𝑦(𝜎𝑖
𝑡, 𝜗) = ¬(𝜏 ≤ 𝜗) × 𝜎𝑖

𝑡                                         (3.4) 

where 𝜏 represents an incremental variable presenting the number of time steps 

processed. 𝜏  will be reset to 0 when there is any fundamental Boolean function 

affecting the target gene (i ) at time t + 1. 𝜗 delegates the decay period to reflect the 

fact that the attenuation or enhancement of the expression of mRNA requires time. 

¬ represents a negation operator that changes a Boolean function from TRUE to 
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FALSE or vice versa. × is a logical And operator. The output of the decay function 

𝑓𝑑𝑒𝑐𝑎𝑦 is a Boolean state of On (1) at time t + 1 if the gene state of 𝜎𝑖  of time t is On 

(1) within the endured period or Off (0) at time t + 1 when the tolerated period is 

expired regardless of the gene state of 𝜎𝑖  of time t. 

In this research, we assumed that the tolerated period for protein decay is one 

timestep, i.e., 𝜗 = 1 because 80% of the microarray data are short time series data 

(Ernst et al., 2005). Short time series data contain only a few observations from which 

knowledge of the mechanical details and kinetic parameters cannot be mined 

consistently from the data (Chaiboonchoe, 2010; Ernst et al., 2005; Z. Wang et al., 

2008). 

By combining equations Eq.(3.2a), (3.2.b), (3.3.a), (3.3.b) and (3.4), we now define the 

novel Boolean model (FBM) as: 

𝜎𝑖
𝑡+1 = (𝑓𝑑𝑒𝑐𝑎𝑦(𝜎𝑖

𝑡 , 𝜗) + ⋁ {𝑃 ⟦𝐶𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝐴𝑖
𝑗
(𝑡))⌋⟧}

𝑙𝑎(𝑖)

𝑗=1

)  ×  ¬ ⋁{𝑃⟦𝐶𝑑𝑘

𝑖 ⌊𝑓𝑑𝑘

𝑖 (𝐷𝑖
𝑘(𝑡))⌋⟧}  

𝑙𝑑(𝑖)

𝑘=1

 

                                    (3.5.a) 

where + is a logical Or operator and × is a logical And operator. The decay function 

𝑓𝑑𝑒𝑐𝑎𝑦(𝜎𝑖
𝑡 , 𝜗) in Eq.(3.4) is to ensure the gene state 𝜎𝑖  at time t +1 depends on the 

pre-state of the gene at time t if no activators are present at time t and they are still 

tolerated by the parameter 𝜗, a decay period. 𝑃⟦𝑥⟧ is a Boolean function that takes 

a uniform distributed random number, µ, and an output of 1 if µ < x and 0 otherwise. 

V{ 𝑥} denotes the logical connective function of Or, i.e., V𝑗=1
𝑙𝑎(𝑖){𝐹𝑎

𝑖}= 𝑃 ⟦𝐶𝑎1

𝑖 (𝑓
𝑎1

𝑖 )⟧ +
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𝑃 ⟦ 𝐶𝑎2

𝑖 ( 𝑓
𝑎2

𝑖 )⟧ … + 𝑃 ⟦𝐶𝑎𝑙𝑎(𝑖)
𝑖 (𝑓

𝑎𝑙𝑎(𝑖)

𝑖 )⟧. For example, if the input gene states of 𝑓𝑎1
𝑖  at 

time t are satisfied, i.e., 𝐴𝑖
𝑗
(𝑡) = 1, and 𝐶𝑎1

𝑖  has a confidence of 100% on the function 

𝑓𝑎1
𝑖 , the 𝑃 ⟦𝐶𝑎1

𝑖 (𝑓
𝑎1

𝑖 )⟧  is ON(1); and V𝑗=1
𝑙𝑎(𝑖) {𝐹𝑎

𝑖 } then is ON(1), regardless of other 

activation functions. If V𝑗=1
𝑙𝑎(𝑖)

 is On(1) as well, according to the model defined in 

Eq(3.5a), it will turn the gene state 𝜎𝑖  at time t +1 OFF(0), which means if an inhibitor 

is present and has an effect on the target gene (𝑖), the inhibitor will inhibit the target 

gene, 𝑖. 

Figure 3-1 shows an example of FBN. The left hand side outlines a wiring diagram of 

FBN; the top right hand side shows the Boolean functions in the conventional format; 

the bottom right hand side shows the Boolean functions in the format of a 

fundamental Boolean function. Both groups of functions have identical functionalities 

except that the second set displays the rules separated by the types of activators and 

inhibitors. 



 

 51 

 

Figure 3-1 Example of a fundamental Boolean network. The icon box refers to a 

fundamental Boolean function. The red box refers to an inhibition function, and the 

light green box refers to an activation function. The green circle icon refers to a gene 

or a variable. 

As given in Figure 3-1, the wiring diagram represents the dependencies between 

activation and inhibition, where the expression level of gene 4 at time t + 1 not only 

depends on the value of the activation rule associated with the expression level of 

gene 3 at time t but also depends on the value of the inhibition rule related to the 

expression level of genes 1 and 5 at time t. Hence, the model for gene 4 to be activated 

or inhibited at the next timestep is outlined, below: 
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𝐺𝑒𝑛𝑒4
𝑡+1 = (𝑓𝑑𝑒𝑐𝑎𝑦(𝑔𝑒𝑛𝑒4

𝑡, 1)

+ 𝑃⟦𝐶𝑎1
4 ⌊𝑓𝑎1

4 (𝑔𝑒𝑛𝑒3
𝑡)⌋⟧)  ×  ¬(+ 𝑃⟦𝐶𝑑1

4 ⌊𝑓𝑑1

4 (𝑔𝑒𝑛𝑒1 
𝑡 & 𝑔𝑒𝑛𝑒5 

𝑡 )⌋⟧  

+  𝑃⟦𝐶𝑑2

4 ⌊𝑓𝑑2

4 (! 𝑔𝑒𝑛𝑒3 
𝑡 )⌋⟧) 

If gene state at time t is: gene1=1, gene3=1, gene4=1, gene5=1 and the protein 

decay is 1, the above formula, then, is transferred to: 

𝐺𝑒𝑛𝑒4
𝑡+1 = (1 + 𝑃⟦𝐶𝑎1

4 ⌊0⌋⟧)  ×  ¬(𝑃⟦𝐶𝑑1

4 ⌊1⌋⟧ + 𝑃⟦𝐶𝑑2

4 ⌊0⌋⟧) 

Therefore, the final result of 𝐺𝑒𝑛𝑒4 at time t + 1 can be calculated if 𝐶𝑑1

4 ⌊1⌋ =1 and, 

hence, 𝑃⟦1⟧ = 1 (𝑃⟦0⟧ = 0): 

𝐺𝑒𝑛𝑒4
𝑡+1 = (1 + 0) ×  ¬(1 + 0) = 1 × ¬(1) = 1 ×  0 = 0 

The final result of the above formula is 0, which indicates that gene4 at time t + 1 is 

inhibited. 

Another sample, as shown in Figure 3-2, illustrates how the proposed model (FBM) 

simulates the dynamic equilibrium of gene regulation. There are only two rules in this 

example: Gene A is an activator of gene B, and gene B is an inhibitor of gene A. To 

demonstrate this, we first defined the FBM parameters as the timestep required by 

protein decay is 1; in the timestep where a gene completes its regulatory process it is 

1; the confidence measure of each rule is 1 (100%), and we selected the synchronous 

scheme as the updating schema. The following illustrates four cases: 
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In case 1, Gene B activated by Gene A at timestep 2, then turned Off at timestep 3 due 

to the decay of the protein. Gene A was turned Off after protein decay at the timestep 

2. After that, both genes reach the equilibrium state. 

In case 2, Gene A was suppressed by Gene B at timestep 2. Gene B was repeatedly 

enhanced by Gene A at timestep 2 but decayed at timestep 3. Both genes now reach 

the equilibrium state at timestep 3. 

In case 3, Gene A is repressed by Gene B at timestep 2, and Gene B decayed. Both 

genes now reach the equilibrium state at timestep 2. The gene states remain 

unchanged after timestep 2, and this means they are entrapped into a simple loop, 

i.e., an attractor, due to the lack of activators to perturb the equilibrium state. 

In case 4, this is the same as case 3 at time step 2; hence, all the cases are entrapped 

by the same attractor, i.e., the gene state of {0, 0}. 

 

Figure 3-2 Simulation of the dynamic equilibrium of gene regulation 
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3.2. Temporal Fundamental Boolean Model 

The original FBM we defined in Eq(3.5.a) provides a mechanism to calculate gene state 

𝜎𝑖  at time t + 1 based on the immediately before time t; however, in reality, some 

gene regulations might require more time steps to complete than other genes. For the 

gene at t + 1, its state is not only dependent on the inputs of the immediately before 

t but also t - 1, …, t - m ( m < t but >=1). m here refers to the maximum temporal 

decrement value. We now defined another novel concept by extending the original 

FBN as graph 𝐺(𝑋, 𝑬𝒂, 𝑬𝒅, 𝑇), where T is the best temporal time step for an edge 

function to complete its biochemical reaction. A similar networked concept is the 

temporal Boolean networks, as discussed by Silvescu and Honavar (2001), but we use 

a different definition for the Boolean functions, i.e., 𝑬𝒂, 𝑬𝒅. 

T is the time step, which has a minimum distance between the measurement matrix 

of t - m and the perfect measurement matrix. A perfect measurement matrix contains 

all measures in the best states, such as a confidence value of 1. We denoted this 

extension model as the temporal fundamental Boolean model (TFBM), and its 

network as the temporal fundamental Boolean network (TFBN). TFBN may handle 

short time series better because it employs more timepoints than the initially 

proposed model. Furthermore, it reflects the reality that most biochemical reactions 

are asynchronous since each gene may be updated in different timescales. 

TFBN assumes that the various durations of a fundamental Boolean function may have 

an impact on its target gene. The original FBN is a type of synchronous Boolean model 
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because it updates all gene states at the same time, while the extended FBN is 

asynchronous because its functions could have different time steps, which should be 

driven by data mining. Hence, we defined the extended model as: 

𝜎𝑖
𝑡+1 = (𝑓𝑑𝑒𝑐𝑎𝑦(𝜎𝑖

𝑡 , 𝜗) + ⋁ {𝑃 ⟦𝐶𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝐴𝑖
𝑗
(T𝑖

𝑗
))⌋⟧}

𝑙𝑎(𝑖)

𝑗=1

)  × ¬ ⋁{𝑃⟦𝐶𝑑𝑘

𝑖 ⌊𝑓𝑑𝑘

𝑖 (𝐷𝑖
𝑘(T𝑖

𝑘))⌋⟧}  

𝑙𝑑(𝑖)

𝑘=1

 

                                  (3.5.b) 

where T𝑖
𝑗
 and T𝑖

𝑘 are the best previous time step value for the activation function 

𝑓𝑎𝑗

𝑖  and inhibition function 𝑓𝑑𝑘

𝑖 , respectively, of gene 𝑖. The extended model respects 

the fact that a gene may be affected by a Boolean function at any previous time steps 

rather than its closest previous time step. 

To calculate the best previous time step T𝑖
𝑗
 or T𝑖

𝑘 for the extended model, we need 

to calculate all previous’s measurement matrix that could derive the target gene 𝑖 at 

t + 1 up to 𝑡 − 𝑚 level. Let us define a measurement matrix as Ã𝑖  for the activation 

function 𝐴𝑖
𝑗

, and a perfect matrix Ä𝑖 , which contains the best value of each 

measurement in Ã : 

If we define the measurement matrix as: 

Ã𝑖 =

measurement𝑖
𝑡

1
measurement𝑖

𝑡−1
1

… measurement𝑖
𝑡−𝑚

1

measurement𝑖
𝑡

2
measurement𝑖

𝑡−1
2

… measurement𝑖
𝑡−𝑚

2
…

measurement𝑖
𝑡

𝑒

…
measurement𝑖

𝑡−1
𝑒

… …

… measurement𝑖
𝑡−𝑚

𝑒

 

Where 𝑒 denoted as the element of the measurement matrix, which is a measure of 

how to infer the FBM networks discussed in the following chapter, and the perfect 

matrix as: 
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Ä𝑖 = 𝑏𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (Ã𝑖) 

Then, the best previous time step value of the activation function 𝑓𝑎𝑗

𝑖  is: 

T𝑖
𝑗

= min (dist𝑡
𝑡−𝑚(Ã𝑖,  Ä𝑖))                                            (3.6) 

Eq(3.6) illustrates a simple method to find the best previous time step value where 

dist() is a euclidean distance function, 𝑡 denotes the current time step, and 𝑚 is the 

maximum decrement value that can be supported by the previous time series data. 

However, it is not necessary to set 𝑚 to the value of the total previous time points 

less one as the biological reaction might only need a few time steps to complete. It 

might be common to set the maximum decrement value (m) to two or three because 

about 80% of time series data are short time series data in which the sparse gap 

between each time step might not support the hypotheses that a regulation process 

of a gene might take more than two or three time points to complete. 

3.3. Network Types of Fundamental Boolean Modelling 

The proposed fundamental Boolean model splits the Boolean functions into the 

domain of gene activation and inhibition that facilitates us to analyse the Boolean 

regulatory pathways in different directions. The first FBN type is the general FBN type, 

namely FBNNet_ALL (type 0), that contains up-regulatory and down-regulatory 

pathways, as shown in Figure 3-3. 
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.  

Figure 3-3 An example of FBNNet_ALL (type 0). The legend refers to Figure 1. 
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The second FBN type is a forward network type, namely FBNNet_FAA (type 1), that 

shows the up-regulatory pathways of giving activated genes. The network type 1, 

shown in Figure 3-4, presents an example that the input gene Gene1 is activated, 

which causes the target gene Gene2 to be activated as a downstream effect. 

 

Figure 3-4 An example of FBNNet_FAA (type 1). The legend refers to Figure 1. 

The third FBN type is also a forward network type, namely FBNNet_FAI (type 2), that 

shows the down-regulatory pathways of giving activated genes. The network type 2, 

shown in Figure 3-5, presents an example that the activation of the input genes Gene1 

and Gene5 drives the target gene Gene4 to be inhibited as a downstream effect. 
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Figure 3-5 An example of FBNNet_FAI (type 2). The legend refers to Figure 1. 

The fourth FBN type is similarly a forward network type, namely FBNNet_FIA (type 3), 

that shows the up-regulatory pathways of giving inhibited genes. The network type 3, 

shown in Figure 3-6, presents an example that the input gene Gene1 is inhibited that 

causes the target gene Gene4 to be activated as a downstream effect. 
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Figure 3-6 An example of FBNNet_FIA (type 3). The legend refers to Figure 1. 

The fifth FBN type is the last forward network type, namely FBNNet_FII (type 4), that 

shows the down-regulatory pathways of giving inhibited genes. The network type 4, 

shown in Figure 3-7, presents an example that the input gene Gene1 is inhibited that 

causes the target gene Gene2 to be inhibited as a downstream effect. 
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Figure 3-7 An example of FBNNet_FII (type 4). The legend refers to Figure 1. 

The sixth FBN type is the first backward network type, namely FBNNet_BA (type 5), 

that shows the regulatory pathways that drives a target gene to be activated. The 

network type 5, shown in Figure 3-8, presents an example that the target gene Gene4 

is activated as an upstream effect caused by either Gene3 & Not Gene1 or Gene3 & 

Not Gene5. 
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Figure 3-8 An example of FBNNet_BA (type 5). The legend refers to Figure 1. 

The seventh FBN type is the second backward network type, namely FBNNet_BI (type 

6), that shows the regulatory pathways that drive a target gene to be inhibited. The 

network type 6, shown in Figure 3-9, presents an example that the target gene Gene4 

is inhibited as an upstream effect caused by either Gene5 & Gene1 or Not Gene 3. 
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Figure 3-9 An example of FBNNet_BI (type 6). The legend refers to Figure 1. 

3.4. Summary 

In this chapter, we proposed two novel Boolean models, i.e., the fundamental Boolean 

model and the temporal fundamental Boolean model, to intuitively analyse the 

activation, inhibition and protein decay networks. The type of the proposed models 

are an extension of Boolean network modelling, and seven FBN graphic types have 

been introduced. The possible applications of the mechanism can be applied to 

investigate the drug-related gene regulations because the inhibition pathway of a 
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novel drug can be exposed intuitively through an investigation of the drug-related 

fundamental Boolean networks. The critical challenge is how to extract the knowledge 

network (NK) from the drug-related dataset. The knowledge network, here, is typically 

referred to as the prior knowledge network (PNK) that encapsulates the biological 

knowledge, which is already known, for the main compounds being studied (Traynard 

et al., 2017). For most of the PNKs extracted from the literature, very few have been 

derived from data mining or related technologies. 

The proposed Boolean model is novel, and there is no existing methodology to infer 

the related networks. Hence, we proposed a methodology documented in the 

following chapter to infer the related networks from time series data. 
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Chapter 4: Fundamental Boolean Network Inference 

There are two main steps required to infer fundamental Boolean networks. The initial 

step is to construct a cube type database to store all critical precomputed measures, 

and the second step is to search for the best Boolean functions from the cube. Hence, 

the network inference process is separated from the process of constructing the cube 

and identifying the Boolean rules from the cube. The separation between the network 

extraction and construction of the cube enables further development of scalable 

methods to infer genetic networks effectively and efficiently because a cube has 

comparatively fewer updates although it can be consistently enhanced by feeding it 

more time series data. 

4.1. Measure Matrix 

To illustrate how to infer fundamental Boolean networks, we first explain the 

precomputed measures as follows:  

• Confidence Measures:  

As introduced in Eqs. (3.3.a) and (3.3.b), the confidence measures indicate a 

conditional probability of the input gene states at time t that regulates the 

target gene state at time t + 1. 

• Confidence Counter Measures: 

Similar to confidence measures, confidence counter measures are used to 

indicate the conditional probability of the target gene state at time t that 

regulates the conditional gene states at time t + 1. We denoted the confidence 
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counter measures as 𝐶∀𝑎𝑗

𝑖  and 𝐶∀𝑑𝑘

𝑖 , respectively. 𝑎𝑗  represents the jth 

fundamental Boolean function of activation and 𝑑𝑘  represents the kth 

fundamental Boolean function of deactivation (inhibition): 

Confidence counter measures of activation: 

𝐶∀𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝐴𝑖
𝑗(𝑡 + 1))⌋ = 𝑝(𝐴𝑖

𝑗(𝑡 + 1) = 1|𝜎𝑖
𝑡 = 1) =

𝑝(𝐴𝑖
𝑗(𝑡+1)=1 ∩ 𝜎𝑖

𝑡=1)

𝑝(𝜎𝑖
𝑡=1)

   (4.1.a) 

Confidence counter measures of inhibition: 

𝐶∀𝑑𝑘

𝑖 ⌊𝑓𝑑𝑘

𝑖 (𝐷𝑖
𝑘(𝑡 + 1))⌋ = 𝑝(𝐷𝑖

𝑘(𝑡 + 1) = 1|𝜎𝑖
𝑡 = 0) =

𝑝(𝐷𝑖
𝑘(𝑡+1)=1 ∩ 𝜎𝑖

𝑡=0)

𝑝(𝜎𝑖
𝑡=0)

 (4.1.b) 

Outputs, 𝐶∀𝑎𝑗

𝑖  and 𝐶∀𝑑𝑘

𝑖 , are conditional probabilities, and the range of the 

value is between 0 and 1. 

• Support Measures: 

Support measures refer to the percentage of transactions that contain 

matched rules (𝐴𝑖
𝑗(𝑡) = 1 ∩  𝜎𝑖

𝑡+1 = 1 and 𝐷𝑖
𝑘(𝑡) = 1 ∩   𝜎𝑖

𝑡+1 = 0) over all 

time steps across all samples. 

If we denote the total number of time steps involved as ℵ: 

ℵ = ∑ (𝑡𝑖
𝑠
𝑖=1 − 1)                                              (4.2) 

where 𝑡𝑖 refers to the number of time steps of sample i and s refers to the 

total number of samples. The initial time step of sample i is not included 

because the calculation of the support measures requires at least a minimum 

of two time steps (t and t+1) and; hence, we remove 1 from 𝑡𝑖  . We then 

represent the support measures as 𝑆𝑎𝑗

𝑖  and 𝑆𝑑𝑘

𝑖  for activation and inhibition, 

respectively:  
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Support measure of activation: 

𝑆𝑎𝑗
𝑖 =

𝑐𝑜𝑢𝑛𝑡(𝐴𝑖
𝑗(𝑡)=1 ∩ 𝜎𝑖

𝑡+1=1)

ℵ
                                    (4.3.a) 

Support measure of inhibition: 

𝑆𝑑𝑘

𝑖 =
𝑐𝑜𝑢𝑛𝑡(𝐷𝑖

𝑘(𝑡)=1 ∩  𝜎𝑖
𝑡+1=0)

ℵ
                                   (4.3.b) 

• Conditional Causality Test: 

Some researchers have argued that causality should not be a concept of 

statistics and not be statistically ‘identifiable’ since a secluded causal 

hypothesis cannot be verified using only observational data (Simcha, Younes, 

Aryee, & Geman, 2013). Nevertheless, we consider that the causality between 

the conditional gene and the target gene can be calculated using the following 

formulae: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 𝑡𝑒𝑠𝑡 =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
                (4.4) 

These two types of measures have been deliberated in Eqs.(3.3.a), (3.3.b), 

(4.1.a) and (4.1.b). The proposed conditional causality test formulae in Eq.(4.4) 

is based on plausibility reasoning theory: 

If gene B at time t has been observed to have induced gene A, at time t + 1, 

then the confidence of 𝑝(𝐴𝑡+1 = 1|𝐵𝑡 = 1) is 100%. However, the reasoning 

that gene A at time t regulates gene B at time t +1 may not be as strong as for 

gene A at time t +1 due to a lack of information (observations) to support this 

reasoning. Hence, confidence  𝑝(𝐵𝑡+1 = 1|𝐴𝑡 = 1)  is less than or equal to 

𝑝(𝐴𝑡+1 = 1|𝐵𝑡 = 1) . Hereafter, the ratio 𝑝(𝐴𝑡+1 = 1|𝐵𝑡 = 1)  divided by 
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𝑝(𝐵𝑡+1 = 1|𝐴𝑡 = 1) , can then be used as a causality test to identify the 

direction of the regulation between genes A and B. This test can distinguish 

indirect regulators from direct ones because the indirect regulators usually 

have weaker observations than the direct ones. 

The conditional causality test can be interpreted as follows: 

• If the conditional causality test for target gene A, and conditional gene 

B, is greater than 1, we can conclude that gene A is regulated by gene 

B.  

• If the conditional causality test is equal to 1, we can conclude that 

genes A and B are regulated by each other. 

• If the conditional causality test is lower than 1, we can conclude that 

there is no causal relationship between genes A and B and so reject the 

hypothesis of that gene B regulates gene A. 

4.2. Examples of Measure Matrix 

Suppose we have three time series sample data for genes: CycD, p27, CycE, and E2F, 

as shown in the following table, Table 4-1. The time windows for time t are {1, 2, 3} 

and the time windows for time t +1 are {2, 3, 4}. 
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Table 4-1 Sample discrete time series data for precomputed measures 

 Sample 1 Sample 2 Sample 3 

Timepoint 

Genes 

1 2 3 4 1 2 3 4 1 2 3 4 

CycD 1 0 1 0 1 0 0 1 1 1 1 1 

p27 1 1 1 0 1 1 1 0 0 1 1 1 

CycE 1 0 1 0 0 0 0 0 0 0 0 0 

E2F 1 1 1 1 1 1 1 1 1 1 1 1 

Example of Confidence Measures 

We use the data shown in Table 4-1 to calculate the confidence measure based on the 

hypothesis that p27 activates gene CycD, i.e., the regulatory function 𝑓𝑎𝑗

𝑖 : 𝑝271 →

𝐶𝑦𝑐𝐷1 , so we use the formulae in Eq.(3.3.a). First, we calculate the value for 

𝑝(𝐴𝑖
𝑗(𝑡) = 1), where 𝐴𝑖

𝑗(𝑡): p27=1 at time t = {1, 2, 3}. As shown in Table 4-1, the 

value of 𝑝(𝐴𝑖
𝑗(𝑡) = 1) is equal to 0.8889 (8 divided by 9). Now, we calculate the 

values for 𝑝(𝐴𝑖
𝑗(𝑡) = 1 ∩ 𝜎𝑖

𝑡+1 = 1) . The value for 𝑝(𝐴𝑖
𝑗(𝑡) = 1 ∩ 𝜎𝑖

𝑡+1 = 1)  is 

0.4444 (4 divided by 9). Therefore, the confidence measure for the hypothesis is: 

𝐶𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝑝271(𝑡))⌋ = 𝑝(𝐶𝑦𝑐𝐷1(t + 1) = 1|𝑝271(𝑡) = 1) =
0.4444

0.8889
 ≈ 0.5 
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Examples of Confidence Counter Measures 

Secondly, to calculate the confidence counter measure using the same hypothesis as 

the example above, we can use the formula in Eq. (4.1.a). As shown in Table 4-1, the 

value of 𝑝(𝜎𝑖
𝑡 = 1)  is equal to 0.6667 (6 divided by 9) and the value for 

𝑝(𝐴𝑖
𝑗(𝑡 + 1) = 1 ∩ 𝜎𝑖

𝑡 = 1) is 0.5556 (5 divided by 9). Therefore, the confidence 

counter measure of the activation function is: 

𝐶∀𝑎𝑗
𝑖 ⌊𝑓𝑎𝑗

𝑖 (𝑝271(𝑡 + 1))⌋ = 𝑝(𝑝271(𝑡 + 1) = 1|𝐶𝑦𝑐𝐷1(𝑡) = 1) =
0.5556

0.6667
 ≈ 0.83 

Examples of Support Measures 

We use the same data, as shown in Table 4-1, to calculate the support measure for 

the same hypothesis, we use the formulae in Eq. (4.3.a). First, we calculate the value 

for ℵ , which is 9 in this case. Secondly, we count the event of which  

(𝑝27(𝑡) = 1 ∩  𝐶𝑦𝑐𝐷(𝑡 + 1) = 1)  and the value is 4. Therefore, the support 

measure for the hypothesis is: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
4

9
≈ 0.4444 

Examples of Conditional Causality Test 

To calculate the conditional causality test measure with the same hypothesis as the 

examples, above, we can use the formulae in Eq.(4.4), and the values of the 
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confidence measures and confidence countermeasures are calculated from the 

examples above, to obtain the value of the conditional causality test. 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 𝑡𝑒𝑠𝑡 =
0.5

0.83
≈ 0.6 

4.3. Orchard Cube 

A data cube is a data abstraction providing a mechanism to analyse aggregated data 

from multiple dimensions. A data cube can also be regarded as a collection of identical 

2-D tables stacked one upon the other. Many standard genetic time series data are 

multidimensional and involve the three main dimensions of genes, time steps, and 

samples. Researching multi-dimensional data could entrap performance bottlenecks. 

To release the performance bottlenecks, we can apply scalable mechanisms for quick 

access to the summarised data (Han, Kamber, & Pei, 2012).  

To mine the fundamental Boolean networks, we extend the data mining technique of 

bottom-up computation (BUC) to a prefix tree type of cube; namely, Orchard cube, as 

shown in Figure 4-1. BUC is an algorithm designed for the computation of sparse cubes 

from the Apex cuboid downward (Han et al., 2012). We named this cube as Orchard 

cube because it looks like an orchard containing many fruit trees. 
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Figure 4-1 Illustration of an Orchard cube 

Every branch or link of a tree above ground is referred to as a regulatory function. 

Each node under the first ground contains possible regulatory functions. Due to the 

regulatory functions being the information we are searching for, we call them fruit. 

The gene nodes on the ground are named seeds. The training data are called fertilisers 

as they aid the trees to grow better (more confident and; hence, more satisfied with 

the functions). This type of cube can distribute the computational costs to multiple 

computing nodes in a cloud computing environment because each branch can be 
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calculated independently. Moreover, the pre-computing cube can persist in any 

distributed database, so inferring networks from the cube is straightforward. 

The underground nodes are analytical branches that contain all possible regulatory 

functions and measurements for the target genes. The nodes above ground contain 

the inferred regulatory functions mined from the braches underground. 

Pairwise Dimensions 

 

Figure 4-2 Sample nodes and measurement 

As shown in Figure 4-2, a node comprises four dimensions, i.e., has four major groups 

of measures. Each dimension denotes a potential regulatory function of the target 

gene. The four dimensions are represented as TT, TF, FT and FF are outlined as follows: 
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• TT refers to a case when the target gene state at time t + 1 is TRUE. The current 

combination of the effectiveness of the input gene states at time t is TRUE, and 

all other upstream input gene states are fixed; 

• TF refers to a case when the target gene state at time t + 1 is TRUE. The current 

combination of the effectiveness of the input gene states at time t is FALSE, 

and all other upstream conditional gene states are fixed; 

• FT refers to a case when the target gene state at time t + 1 is FALSE. The current 

combination of the effectiveness of the input gene states at time t is TRUE, and 

all other upstream conditional gene states are fixed; 

• FF refers to a case when the target gene state at time t + 1 is FALSE. The current 

combination of the effectiveness of the input gene states at time t is FALSE, 

and all upstream conditional gene states are static; 

Notably, all nodes under Ground-2 will have prefixed gene states, as shown in Figure 

4-1. For example, node G4 of the target gene, G1, at Ground-3 has its two upstream 

gene states, G1 and G2, fixed, i.e., G1(0) and G2(0). Hence, the four dimensions of the 

node G4 are outlined as TT (G1|!G1&!G2&G4), FT (!G1|!G1&!G2&G4), TF 

(G1|!G1&!G2&!G4), and FF (!G1|!G1&!G2&!G4). 

As shown in Figure 4-2, each dimension has a factor that provides a function 

statement, which is the potential gene regulatory function. The dimensions TT and FT, 

FT and FF, are pairwise, respectively. The minimum confidences between TT and FT, 

FT and FF, are defined as error measures. The pairwise dimensions contain the 

features: P(TT)=1-P(FT) and P(TF)=1-P(FF). 

For the pairwise dimensions, if we define one dimension to be the confidence 

measure, then, the other dimension is referred to as an error measure. 
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Orchard Cube Pruning 

Building the cube entails the construction of an optimal tree-type data structure run 

for all likely combinations of the connected genes up to a maximum depth. Hence, the 

computational cost rises exponentially. This it is endurable because all precomputed 

genes should not go to the next level to avoid redundant computations. For example, 

assume that there are three genes; A, B and C; and the conditional probability that 

gene A and gene B regulate the expression of C, is 𝑝(C|A, B). The branch for pre-

computing 𝑝(C|B, A) is not processed from the main tree; therefore, 𝑝(C|A, B) is 

equal to 𝑝(C|B, A). Hence, the computational cost of constructing the full cube is 

reduced logarithmically. 

Apart from the initial pruning, Pearson’s Chi-square test (Plackett, 1983) could also be 

applied to exam the NULL hypothesis that a target gene is independent of the 

conditional gene. For example, all genes in GRNs will be tested using this criterion to 

remove unrelated genes from Ground-2 if the p-value is over 0.05. This procedure 

reduces unnecessary root branches. The Chi-square test does respond to the question 

of whether or not a conditional gene can be associated with the target gene. However, 

it fails to response the question of whether or not it has a direct or indirect association 

due to the principle of ‘guilt-by-association’ that does not distinguish gene regulation 

from an indirect association (Childs, Davidson, & Buell, 2011). 
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Algorithm to Construct the Orchard Cube 

Initially, we treated all input genes as potential target genes; hence, we placed all the 

input genes as seeds on the level of the first ground and divided them into N trees. N 

is the total number of input genes. Because the construction of the N trees is 

partitioned and can be run in parallel, this algorithm is for one tree only. The output 

result is an Orchard cube type of data structure that contains all precomputed 

measures, as discussed previously. The following steps outline the main algorithm to 

construct an Orchard cube. 

1. With the input target gene i, we first apply the Chi-square test to test the NULL 

hypothesis between the target gene and all potential input genes. Non-related 

genes will be rejected, as discussed previously, so this yields a subset of all 

potential regulatory genes denoted as Ġ. 

2. We ran through all potential regulatory genes, Ġ, and calculated the measures 

of the four dimensions (TT, TF, FT and FF) based on the immediately previous 

time step t for FBN or based on the temporal time steps from t to t-m for TFBN 

where m refers to the maximum temporal decrement value, as discussed 

previously. 

3. If the current level is lower than value maxK, which refers to the maximum 

underground level that the tree can penetrate, all potential regulatory genes 

except for the current gene and the genes that are in higher levels, denoted as 

Ģ, will go to the next lower level.  

4. In the next level, we repeat steps 2 and 3 until the current level is equal to 

maxK or all the related genes (Ġ) are handled. 

5. If all relevant genes (Ġ) are processed, or the current level is equal to maxK, 

then the cube is entirely constructed. 
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4.4. Inferences of Fundamental Boolean Networks 

The second stage is to mine the fundamental Boolean functions from a cube type 

database structure. Figure 4-3 presents a schematic diagram of the fundamental 

Boolean network inferences. 

 

Figure 4-3 Schematic diagram of FBN modelling and network inferences: (1) separate 

expression data into Boolean time series; (2) build an Orchard cube in parallel to 

generate diagnostic data and store all precomputed measures; (3) infer potential 

regulatory rules for all target genes through the Orchard cube, based on some 
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criteria; (4) produce the fundamental Boolean network; (5) apply the generated 

network to renovate the input time series by providing the initial states of all original 

inputs; (6) validate the reconstructed time series with the original series to gain 

confidence in the results. 

As outlined in Figure 4-3, to infer FBNs, all essential measures from a set of training 

data need to be calculated. The precomputed measures then persist in a cube type 

database structure so end users can mine fundamental Boolean functions from the 

cube. For TFBN, only the measures of the best temporal time step will be persisted. 

The excavated FBN / TFBN are then used to reconstruct a time series to validate the 

network by comparing the reconstructed time series data with the original training 

data. 

By working with the proposed Orchard cube, we can extract fundamental Boolean 

functions in the GRNs based on the criteria listed below: 

1. The conditional causality test value ought to be ≥ 1. 

2. Reject the functions if they are matched with the non-essential states, such as: 

 𝑓𝑎𝑗

𝑖 (A&B&𝐂) =   𝑓𝑎𝑗

𝑖 (A&B&! 𝐂) or  𝑓𝑑𝑗

𝑖 (A&B&𝐂) =   𝑓𝑑𝑗

𝑖 (A&B&! 𝐂) 

where the definition of the essential Boolean state 𝑥𝑖  must match the 

requirements of -  

𝑓(𝑥1, … 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) ≠ 𝑓(𝑥1, … 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛)  for all 

𝑥1, … 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛, where 𝑓 is a Boolean function and 𝑥𝑖  is a Boolean 

state (Faure et al., 2006) and the output of 𝑓 is a Boolean value 
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3. The value of the confidence measure should be higher than a threshold ≤ 1, 

e.g., 0.7 if the data contains noise.  

4. Sort all Boolean functions remaining after step 4 by the error measure, the 

support measure and the number of genes input. The reason is to keep the 

rules that have more substantial support value with minimum errors.  

5. The total number of fundamental Boolean functions for each type (activation 

or inhibition) of a gene should be limited to Fn based on different experimental 

requirements such as noise level, length of available time points etc. 

Nevertheless, in this study, we always take Fn to be 5. 

4.5. Reconstruction of the Time Steps  

The formulae of the proposed model and the theory of the Orchard cube represent a 

complete mechanism to compute the next gene state at time t + 1 by providing the 

gene state at time t. Consequently, we can reconstruct the time steps of any length 

by providing the initial gene state at time t=0. The following list gives the primary use 

of applying the model to reconstruct time steps: 

1. Validate the reconstructed time series data against the original time series. If 

the functions are 100% accurate, we should be able to rebuild the time steps 

with the same initial states as in the original time series. If the functions are 

not 100% accurate, they might be caused by the model selection of 

fundamental Boolean modelling, i.e., synchronous (FBM) or asynchronous 

(TFBM), or the data are short time series. 

2. Recreate the hidden layers between the observed time steps. The gaps 

between the observed time steps are quite significant in short time series data. 

We can apply the reconstructed time series to disclose the hidden layers by 

providing the initial Boolean state and continually generating the next time 

step based on the previous time step until the final generated time step is 

identical to the next time step observed. By providing the two observed states 

𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑1
 and 𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑2

, we represent the time series data, as follows: 
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𝑆𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝑆1, 𝑆2 … 𝑆𝑘, 𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑1
= 𝑆1 𝑎𝑛𝑑 𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑2

= 𝑆𝑘 

The states between 𝑆1 and 𝑆𝑘 are then designated as missing time steps or 

hidden layers. This approach can be used to find attractors. 

4.6. Summary 

The concepts of the fundamental Boolean models (FBM and TFBM) discussed in 

chapter 3 is novel, and hence there is no existing methodology to infer the related 

networks. In this chapter, we proposed a novel methodology to infer the related 

networks. To achieve the goal, we studied the main measure matrix for network 

inference and then extended the concept of data mining technique of bottom-up 

computation (BUC) to a prefix tree type of cube; namely, Orchard cube to store all 

critical precomputed measures first and then search the best fundamental Boolean 

functions from the cube. This type of cube can distribute the computational costs to 

multiple computing nodes in a cloud computing environment because each branch 

can be calculated independently. Network inference from the proposed cube is a 

separate process that enables further development of scalable methods to infer 

genetic networks effectively and efficiently. An algorithm for searching fundamental 

Boolean functions from the proposed cube is provided and discussed in section 4.4. 

The following chapter demonstrates FBM with artificial mammalian cell cycle data. 
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Chapter 5: Cell Cycle Application 

There are three main steps to validate the proposed Boolean model: (i) the selection 

of the updating schema for the model; (ii) the specification of the parameters of the 

model; and (iii) inferring the regulatory network. As deliberated briefly in the 

introduction, there is two main Boolean updating schema: synchronous and 

asynchronous, according to the treatment of time. For the sake of simplicity, we select 

the synchronous updating scheme to test the model. The parameter of the protein 

decay is set to 1 time step; the updating time step for each fundamental Boolean 

function is set to 1; the parameter of confidence of each subfunction is inferred using 

the method we proposed. To infer the fundamental Boolean network, we developed 

an unpublished R package, namely FBNNet (a prototype version of an R package for 

investigating the fundamental Boolean networks is available at 

https://github.com/clsdavid/FBNNet_Lincoln) to construct an orchard type cube and 

mine FBNs from the cube. The FBNNet tool can be used to mine the fundamental 

Boolean networks from the time series data, based on whether they are either FBM 

or TFBM models. The following paragraphs discuss the main experiment we 

conducted. 

5.1. Experimental Design and Dataset 

The experiments conducted and described here aim to demonstrate the concept of 

the new Boolean Model, i.e., the FBM. Figure 5-1 outlines the experimental design as 

a benchmark to compare the results generated via BoolNet (Mussel, Hopfensitz, & 

https://github.com/clsdavid/FBNNet_Lincoln
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Kestler, 2010) with those reconstructed from the new R package, FBNNet. The BoolNet 

package was introduced in the tutorial by Hopfensitz et al. (2013) and the study of Ruz, 

Goles et al. (2014). 

 

Figure 5-1 Design of the experiment to evaluate the fundamental Boolean network inference. The 

blue arrows denote the processes using BoolNet; the brown arrows denote the processes using our 

FBNNet tools. The green arrows denote the evaluation process: (A) We apply the BoolNet script, 

loadNetwork.R, to load pre-defined networks from files and then produce time series and networks; 

(B) We apply the time series produced by BoolNet and the new R package, FBNNet, to produce FBNs; 

(C) We rebuild the time series via the FBM; (D) To assess the FBM, we reconstruct the BoolNet type 
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network based on the rebuilt time series; and (E) We assess the FBN inference methods by comparing 

the generated time series with the original time series. 

Many new algorithms can be tested using the simulated datasets resulting from the 

regulatory networks identified, and the outcomes can be compared with other known 

regulatory networks. In this thesis, we applied the mammalian cell cycle network, as 

listed in Figure 5-2, which was well established by Hopfensitz et al. (2013), to generate 

test data. The regulation of the cell cycle has been identified to lead to the replication 

of a cell, either in the synthesis or S phase. The cell division encompasses two daughter 

cells (mitosis, or M phase). The M phase itself comprises four different sub-phases 

(prophase, metaphase, anaphase, and telophase) (Faure et al., 2006). The S and M 

phases comprise two gap phases, specifically, G1 and G2 (Faure et al., 2006). 

Initially, to create the experimental data, we used the command loadNetwork, 

provided by the R package BoolNet, to load the cell cycle network, which is specified 

in the text files: cellcycle.txt, as shown in Figure 5-2. Then we used the method 

generateTimeSeries, also provided by BoolNet, to produce 1024 noiseless sample data 

with 43 time steps, all using default settings, i.e., the parameter type is synchronous, 

the parameter noiseLevel is set to 0, and the parameter perturbations are 0. Each 

sample contains the same ten genes of the mammalian cell cycle: CycD, Rb, E2F, CycE, 

CycA, p27, Cdc20, Cdh1, UbcH10 and CycB; the same as the research led by Hopfensitz 

et al. (2013). This produced 1024 sample data (a combination of 210 changes) that 
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are the dataset used for this experiment. Each sample comprises 43 time steps in 

sequence. Hence, the number of genes expressed in each sample is varied. 

 

Figure 5-2 Known mammalian cell cycle networks provided by BoolNet 

Since the proposed Boolean rule definition is novel and different from the 

conventional Boolean rules, i.e., instinctive rules vs compressed rules (not intuitive), 

as discussed in the introduction, this would not be a fair comparison with the 

traditional Boolean networks generated directly by other tools. Hence, the best way 

to estimate the generated FBNs is to apply them to rebuilding the time series data and 

then compare them with the training time series data. Under the synchronous model, 

if the inferred network is correct, it network should yield the same time series data if 

it is provided with the same initial states for each sample. 

The assessment matrices for the time series comparison we adopted were: error rate 

(ER), accurate rate (AR), mismatched rate (MMR) and perfect matched rate (PMR). 

The present definition of the matrix as follows: 
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𝐸𝑅 =
∑ 𝑛𝑢𝑚 𝑜𝑓 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖)𝑛

𝑖=1

𝑛
 

𝐴𝑅 =
∑ 𝑛𝑢𝑚 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖)𝑛

𝑖=1

𝑛
= 1 − 𝐸𝑅 

𝑃𝑀𝑅 =
𝑁𝑢𝑚 𝑜𝑓 100% 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥𝑒𝑠

𝑛
  

𝑀𝑀𝑅 =
𝑁𝑢𝑚 𝑜𝑓 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥𝑒𝑠

𝑛
= 1 − 𝑃𝑀𝑅  

where 𝑛 denotes the total number of samples. The time series data here refer to a 

list of matrices representing the states of samples, and each sample matrix contains 

Boolean gene states. 

5.2. FBN of the Cell Cycle and its Validation 

The extracted FBN for the cell cycle genes via the R package FBNNet is shown in Table 

5-1. 

Table 5-1 Inferred FBN cell cycle network  

Fundamental Boolean Network with 10 genes 

Genes involved: 

CycD, Rb, E2F, CycE, CycA, p27, Cdc20, Cdh1, UbcH10, CycB 

Networks: 

Multiple Transition Functions for CycD with decay value=1: 

CycD_1_Activator: CycD = CycD (Confidence: 1, TimeStep: 1) 

CycD_1_Inhibitor: CycD = !CycD (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for Rb with decay value=1: 

Rb_1_Activator: Rb = !CycD&p27&!CycB (Confidence: 1, TimeStep: 1) 

Rb_2_Activator: Rb = !CycD&!CycE&!CycB&!CycA (Confidence: 1, TimeStep: 1) 

Rb_1_Inhibitor: Rb = CycD (Confidence: 1, TimeStep: 1) 
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Rb_2_Inhibitor: Rb = CycB (Confidence: 1, TimeStep: 1) 

Rb_3_Inhibitor: Rb = CycA&!p27 (Confidence: 1, TimeStep: 1) 

Rb_4_Inhibitor: Rb = CycE&!p27 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for E2F with decay value=1: 

E2F_1_Activator: E2F = !Rb&!CycA&!CycB (Confidence: 1, TimeStep: 1) 

E2F_2_Activator: E2F = !Rb&p27&!CycB (Confidence: 1, TimeStep: 1) 

E2F_1_Inhibitor: E2F = Rb (Confidence: 1, TimeStep: 1) 

E2F_2_Inhibitor: E2F = CycB (Confidence: 1, TimeStep: 1) 

E2F_3_Inhibitor: E2F = CycA&!p27 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CycE with decay value=1: 

CycE_1_Activator: CycE = !Rb&E2F (Confidence: 1, TimeStep: 1) 

CycE_1_Inhibitor: CycE = !E2F (Confidence: 1, TimeStep: 1) 

CycE_2_Inhibitor: CycE = Rb (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CycA with decay value=1: 

CycA_1_Activator: CycA = !Rb&E2F&!Cdc20&!UbcH10 (Confidence: 1, TimeStep: 1) 

CycA_2_Activator: CycA = !Rb&CycA&!Cdc20&!UbcH10 (Confidence: 1, TimeStep: 1) 

CycA_3_Activator: CycA = !Rb&CycA&!Cdc20&!Cdh1 (Confidence: 1, TimeStep: 1) 

CycA_4_Activator: CycA = !Rb&E2F&!Cdc20&!Cdh1 (Confidence: 1, TimeStep: 1) 

CycA_1_Inhibitor: CycA = Rb (Confidence: 1, TimeStep: 1) 

CycA_2_Inhibitor: CycA = Cdc20 (Confidence: 1, TimeStep: 1) 

CycA_3_Inhibitor: CycA = !E2F&!CycA (Confidence: 1, TimeStep: 1) 

CycA_4_Inhibitor: CycA = Cdh1&UbcH10 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for p27 with decay value=1: 

p27_1_Activator: p27 = !CycD&!CycE&!CycB&!CycA (Confidence: 1, TimeStep: 1) 

p27_2_Activator: p27 = !CycD&!CycA&!CycB&p27 (Confidence: 1, TimeStep: 1) 

p27_3_Activator: p27 = !CycD&!CycE&!CycB&p27 (Confidence: 1, TimeStep: 1) 

p27_1_Inhibitor: p27 = CycD (Confidence: 1, TimeStep: 1) 

p27_2_Inhibitor: p27 = CycB (Confidence: 1, TimeStep: 1) 
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p27_3_Inhibitor: p27 = CycA&!p27 (Confidence: 1, TimeStep: 1) 

p27_4_Inhibitor: p27 = CycE&!p27 (Confidence: 1, TimeStep: 1) 

p27_5_Inhibitor: p27 = CycE&CycA (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for Cdc20 with decay value=1: 

Cdc20_1_Activator: Cdc20 = CycB (Confidence: 1, TimeStep: 1) 

Cdc20_2_Inhibitor: Cdc20 = !CycB (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for Cdh1 with decay value=1: 

Cdh1_1_Activator: Cdh1 = Cdc20 (Confidence: 1, TimeStep: 1) 

Cdh1_2_Activator: Cdh1 = !CycA&!CycB (Confidence: 1, TimeStep: 1) 

Cdh1_3_Activator: Cdh1 = p27&!CycB (Confidence: 1, TimeStep: 1) 

Cdh1_1_Inhibitor: Cdh1 = !Cdc20&CycB (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for UbcH10 with decay value=1: 

UbcH10_1_Activator: UbcH10 = !Cdh1 (Confidence: 1, TimeStep: 1) 

UbcH10_2_Activator: UbcH10 = Cdc20&UbcH10 (Confidence: 1, TimeStep: 1) 

UbcH10_3_Activator: UbcH10 = UbcH10&CycB (Confidence: 1, TimeStep: 1) 

UbcH10_4_Activator: UbcH10 = CycA&UbcH10 (Confidence: 1, TimeStep: 1) 

UbcH10_1_Inhibitor: UbcH10 = Cdh1&!UbcH10 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CycB with decay value=1: 

CycB_1_Activator: CycB = !Cdc20&!Cdh1 (Confidence: 1, TimeStep: 1) 

CycB_1_Inhibitor: CycB = Cdh1 (Confidence: 1, TimeStep: 1) 

CycB_2_Inhibitor: CycB = Cdc20 (Confidence: 1, TimeStep: 1) 

As shown in Table 5-1, three primary parameters are bound to this novel FBN: 

confidence, protein decay and time step. The time step was then mined through the 

method discussed in chapter 4 as the best temporal value for this experiment. As the 

test data were generated with time step 1, the value of the parameter timestep, as 

shown in Table 5-1, correctly reflected the test data. The protein decay was manually 
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configured to 1 to match the way we produced the test data via the method 

generateTimeSeries of BoolNet. This function does not offer a configurable parameter 

for protein decay, but it is suspected it might have a default value of 1 (time step) fixed 

inside its logic. 

A noteworthy difference from the existing Boolean models is that the inferred FBN 

intuitively separates the Boolean rules of the mammalian cell cycle into the fields of 

activation and inhibition, as shown in Table 5-1. At the same time, every gene could 

be regulated by multiple activations or inhibition rules. The results in Table 5-1 

illustrate that the uncertainty of the process can be incorporated into the model. All 

FBM functions have a confidence parameter of 1, and the results presented are 

incredibly accurate. To validate the results, we applied the initial states from the 

training time series dataset to rebuild the same sized data set using the novel concept 

of FBM under the synchronous updating schema, which is the same as the schema 

used to generate the training dataset. The redeveloped dataset was then compared 

with the training time series dataset. 

As shown in Table 5-2, all reconstructed time series data from the mammalian cell 

cycle network are identical to the training time series data with a 100% match for both 

AR and PMR. This result indicates that all regenerated time series data are matched 

with the training time series dataset. Therefore, we have confidence that the 

proposed FBM is an alternative way to represent the mammalian cell cycle network 
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but with more information to draw insights into the activation and inhibition pathway 

of the mammalian cell cycle network. 

Table 5-2 Experimental results for reconstructed time series data 

Network Number of 

samples 

Number of 

time steps 

ER AR 

 

PMR MMR 

Cell cycle  1024 43 0 100% 100% 0 

Regarding FBNs, Figures 5-3 presents the regulatory network graph of the cell cycle. 

The graph is generated by integrating the inferred FBNs with the R package 

visNetwork (http://datastorm-open.github.io/visNetwork/). 

.  

http://datastorm-open.github.io/visNetwork/
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Figure 5-3 Cell Cycle FBN (FBNNet_ALL), a static model. The legend refers to Figure 

1. 

As shown in Figure 5-3, the internal relationships between the genes have been 

demonstrated. Hence, we can discover how these genes activated and inhibited other 

genes dynamically by drawing connections between the input genes and the target 

genes. The FBN of cell cycle comprises three types of network influences in the 

domains of gene activation, gene inhibition and protein decay. 

5.3. Attractors 

Attractors refer to the recurrent cycles of the states (Hopfensitz et al., 2013) and are 

of particular interest in Boolean modelling. Once a network reaches an attractor, it is 

entrapped in a cycle that repeats until an external perturbation happens to change 

some of the production of the essential genes of the attractor to let the network come 

out from entrapment. Using the most straightforward synchronous updating schema, 

yielded two attractors, as shown in Figure 5-4. One is a simple attractor, and the other 

is a cycle attractor. The attractors correspond to the findings that have been reported 

by (Faure et al., 2006; Hopfensitz et al., 2013). Therefore, the FBN of the cell cycle can 

construct the same attractors as in the other Boolean models. 
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Figure 5-4 Synchronous attractors of the cell cycle fundamental Boolean model 

The first attractor, as shown in Figure 5-4, is a simple attractor with only Rb, p27 and 

Cdh1 active and this is related to phase G0 or cell quiescence (Faure et al., 2006). CycD 

characterises the whole cdk4/6-Cyclin D complex, and cdk4/6 refers to cyclin-

dependent kinase (cdk) partners. 

One advantage of the proposed model was its dynamic networks, which provided a 

complete trajectory of gene activation, inhibition and protein decay. Figure 5-5 

demonstrates the dynamic trajectories of attractor 2, which explicitly display the 
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internal mechanisms of gene regulation in the domains of gene activation, inhibition 

and protein decay. The existence of CycD leads to seven other stable dynamical cycles. 

Each cycle is constructed from a sequence of seven successive states (attractor 2). The 

secreted pathways of attractor 2 were not explicit in any conventional Boolean model 

or related networks. 

Nevertheless, with the proposed model and type of networks, the pathways of 

attractor 2 have been explicitly demonstrated. For example, in Figure 5-5, CycD 

suppressed Rb and p27. Rb, in turn, then induced E2F, a family of dimeric transcription 

factors. As a result, E2F enhanced CycE and CycA. Activated CycE and CycA then 

continually maintained the inhibition of Rb and p27. 

Furthermore, Cdh1 was another crucial element, it an activator delegating APC, a viral 

E3 ubiquitin ligase. The activated Cdh1 dissociated CycB directly and kept inhibiting 

UbcH10. 

Moreover, Rb phosphorylated E2F, CycA, and CycE, and the promotion of p27 

activated Cdh1. Rb continued to be enhanced without interruption by CycA, CycB, 

CycE, and CycD. The UbcH10 at time step 3 was repressed because of protein decay 

(see the dashed grey arrow line) because none of its activation and inhibition 

functions have an impact on it. 
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Figure 5-5 Dynamic trajectories of attractor 2. The numbers designate the time step 

that the gene was located. The light blue elliptical icons denote genes; the orange 

icons denote inhibition functions, and the light green icons denote activation 

functions. The dark blue arrows denote activation; the dark red arrows denote 

inhibition, and the grey arrows denote protein decay. The legend refers to Figure 1. 

5.4. Conclusion and Summary 

As revealed by the demonstration of the proposed model with the mammalian cell 

cycle, we have proved that we can apply the proposed Orchard cube to infer the GRNs 

of the mammalian cell cycle. This outcome confirmed the hypothesis that if the 

network inferred was 100% correct; the reconstructed time series should be identical 

to the original training dataset. Nevertheless, this assumption was based on the 

degree of completeness of the initial training dataset under the synchronous Boolean 

schema. 

The cell cycle FBN disclosed the internal gene activation, inhibition and protein decay 

mechanisms. The generated new Boolean cell cycle network was very different from 

any other Boolean network, but it still demonstrated the same attractors as 

documented in the study of Faure et al. (2006). This means that the proposed Boolean 

model is a novel extension of other Boolean models. When compared with the 

traditional Boolean cell cycle network as in the study of Hopfensitz et al. (2013), our 

network divides a complex rule into multiple rules under the domains of activation 

and inhibition. It delivers more insights into the dynamics of the pathways. Under the 
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fundamental Boolean model, a node was connected with multiple functions divided 

into the two main kinds of gene regulation (activation and inhibition type). Besides, 

protein decay was also considered as a connection of gene transitions; hence, the FBN 

contained three types of connections: activation, inhibition and protein decay (as 

shown in Figure 5-5). This new feature can enable scientists to develop 

pharmaceutical agents by examining the related fundamental Boolean network and 

simulating perturbations due to drugs. 

We also demonstrated the dynamic trajectories for attractor 2. The main benefit of 

the proposed novel Boolean model was that it revealed connections in the fields of 

activation, inhibition, and protein decay pathways that can facilitate scientists in 

understanding intrinsic genetic regulations. One disadvantage was that the FBN might 

contain too many links. The novel Boolean network might contain abundant rules, but 

all these functions were data-driven with outstanding confidence values. Therefore, 

the FBN of the cell cycle was fine-grained, and the original Boolean network, as shown 

in Figure 5-2, was coarse-grained. We could also limit the number of rules per type 

(activator and inhibitor). However, reducing the number of fundamental Boolean 

functions per type might decrease the correctness of the inferred network. 

The current version of FBNNet was developed as a prototype for the proposed FBM 

using pure R language without any performance optimisation improvements. Hence, 

to generate the experimental results required approximately 200 seconds with 

parallel computing and 530 seconds without parallel computing. However, these 
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figures were recorded from using an earlier version of FBNNet, and its performance 

might have been improved. The machine we used for the experiment was a laptop 

Acer™ Aspire V 17 Nitro model. Notably, the performance of these packages was well 

understood, and they may not provide real parallel power for computing as good as C 

or C++, although they were good enough to demonstrate the idea of the proposed 

novel Boolean model. BoolNet was implemented in C to improve its performance in 

constructing the cell cycle network and, hence, it was faster than the current version 

of FBNNet. 

Moreover, our method can be used to derive the intuitive activation and inhibition 

pathways using the proposed Orchard cube methodology and; hence, may require 

more computational time, i.e. the total time mentioned included the time to construct 

the cube and the time to infer the networks from the cube. The planned Orchard cube 

was also used to maintain all precomputed measures in a database for all possible 

fundamental Boolean functions in case we needed to mine FBN from short time series 

data. Hence, it used a different technology from BoolNet and; therefore, it was not 

necessary to compare the performance between BoolNet and FBNNet. 

Finally, we proposed a method to reconstruct any missing time steps by estimating all 

fundamental Boolean functions’ TRUE or FALSE values that affected the target genes 

by verifying the input states to be corresponding to the requirements of the functions. 

The time interval between time steps is a parameter of the proposed model. It should 

reflect the assumption that all related genes should have finished their biological 
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reactions; for instance, transcription from DNA to mRNA, and translation from mRNA 

to protein. If we set the time interval for all genes, then the FBM, was a synchronic 

Boolean model. When all genes have their time interval defined, the FBM was then an 

asynchronous Boolean model. The proposed Boolean model then can be used to 

reconstruct the missing time steps under synchronic Boolean modelling. However, we 

are not able to use the reconstructed time series to validate the generated output 

correctly under the asynchronous Boolean modelling because the results from the 

asynchronous Boolean model were non-deterministic. 
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Chapter 6: Application for Leukaemia 

To understand normal genetic problems scientists reconstruct the dynamics, as 

represented by time and discrete state transition systems, to gain insights into the 

functioning of cell systems (Ay & Arnosti, 2011; Hood, 2013; Lee & Tzou, 2009; Y. Wang 

et al., 2011). These dynamics can be used to simulate the perturbations of new drugs 

in silico to reduce the potential risks of administrating drugs to humans. Hence, 

inferring gene networks from time series data in clinic settings using discrete 

modelling is a promising approach in cancer research. 

In the previous chapter, we demonstrated how to apply FBM to artificial cell cycle data 

and presented the dynamics of cell cycle networks. This demonstration proved that 

the concept of the novel Boolean model (FBM) could be applied to genetic related 

time series data. The data used in the previous chapter were artificial and produced 

by the R function, provided by BoolNet, based on previous biological knowledge of cell 

cycle networks (Hopfensitz et al., 2013). 

In this chapter, we demonstrate how to apply FBM, primarily TFBM, on a real dataset 

(leukaemia data), which were downloaded from the GenBank. The link of the GenBank 

website is https://www.ncbi.nlm.nih.gov/genbank/. The previous biological 

knowledge of leukaemia is not required for this demonstration, although previous 

biological knowledge still played an essential role in inferring gene networks 

(Chaiboonchoe, 2010). 

 

https://www.ncbi.nlm.nih.gov/genbank/
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6.1. Introduction 

Before the experiment conducted by Schmidt et al. (2006), investigations had led to 

some conflicting attractive hypotheses, which have not yet been tested in a clinical 

setting (Schmidt et al., 2006). Hereafter, Schmidt et al. (2006) generated 13 

comparative whole-genome expression profiles (purified at three time points) using 

lymphoblasts from 13 GC-sensitive children all under therapy for acute lymphoblastic 

leukaemia (ALL) (Schmidt et al., 2006). As a consequence, a substantially complete list 

of GC-regulated candidate genes in clinical settings and experimental systems has 

been generated to facilitate immediate analysis of any gene for its potential 

significance to GC-induced apoptosis (Schmidt et al., 2006). Schmidt’s (2006) study 

identified a small number of novel candidate genes, including a key regulator of 

glucose metabolism (PFKFB2), a putative transcription factor (ZBTB16) and a protein 

kinase implicated in cell cycle regulation(SNF1LK); however, this study was 

inconsistent with most model-based hypotheses such as expression profiling studies 

with sub-genome microarrays in model systems (Schmidt et al., 2006). 

The data generated by Schmidt (2006) in a clinical setting were a short time series, but 

they were still valuable. Researchers have continually analysed the data and proposed 

novel hypotheses or questions, such as the study conducted by (Chaiboonchoe, 

Samarasinghe, & Kulasiri, 2009), in which more novel glucocorticoid-regulated genes 

were identified through inferred GC-regulation networks (Chaiboonchoe, 2010; 

Chaiboonchoe et al., 2009). The newly identified genes may pave the way to develop 
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new chemotherapy drugs that have fewer side effects. However, the models 

Chaiboonchoe (2009) applied were based on the emerging clustering methods, such 

as self-organising maps (SOMs) (Haykin, 1999; Jaakko, 1996; Yin, 2008), emergent self-

organising maps (ESOM) (Ultsch & Herrmann, 2005), the short time series expression 

miner (STEM) (Ernst & Bar-Joseph, 2006) and fuzzy clustering by local approximation 

of membership (FLAME) (Cruz, Vieira, & Vinga, 2015) and the networks Chaiboonchoe 

(2009) presented were based on previous network knowledge. In this chapter, we 

proposed to reanalyse this valuable data with the fundamental Boolean modelling, a 

data-driven model that we discussed in chapters 3 and 4. 

6.2. Methods 

6.2.1 Dataset and Pre-processes 

Schmidt et al. (2006) generated 13 comparative whole-genome expression profiles 

(purified at three time points) using lymphoblasts from 13 GC-sensitive children under 

therapy for glucocorticoid-resistant ALL (Carlet et al., 2010; Schmidt et al., 2006). Raw 

data (GEO Assession code: GSE2677 and GSE2842) in the form of CELL files were 

downloaded online from the website of the National Centre for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/) and were provided by 

Schmidt et al. (2006). The data contained gene expression measurements for 13 

samples, and each sample has three time points: 0 hours (before GC treatment), 6/8 

hours (after GC treatment) and 24 hours (after GC treatment). Among the 13 samples, 

http://www.ncbi.nlm.nih.gov/geo/
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three samples from T-lineage (T-ALL) patients, and the rest were B-lineage (B-ALL) 

patients. 

The common pre-process of analysing gene expression data involves data 

normalisation, selection of differentially expressed genes, and data discretisation. In 

section 2.3, we discuss the methods of normalisation briefly. Regarding gene 

expression, in general, there are two main basic patterns which are called 

underexpression (down-regulation) and overexpression (up-regulation). 

Overexpressed genes are genes that have higher expression values when two samples 

are compared; for example, cancer (target) and healthy. On the other hand, 

underexpressed genes have lower expression values in the target than in reference 

samples (Dubitzky, Granzow, Downes, & Berrar, 2003). Commonly, a gene with more 

than twofold changes is considered significant or differentially expressed. 

This study selected R software as the platform to analyse genetic networks. R 

(http://www.r-project.org) is an open-source platform for statistical computing 

developed by the Bioconductor project (http://www.bioconductor.org) to analyse 

genomic data based on the R programming language. We applied the following tools 

to conduct the experiments described in this chapter. 

• FBNNet, unpublished R package, version 2.0. A package implemented explicitly 

for the fundamental Boolean model (FBM) and the temporal fundamental 

Boolean model (TFBM), as proposed and discussed in this thesis. 

http://www.r-project.org/
http://www.bioconductor.org/
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• BoolNET, an R package for analysing conventional Boolean networks, 

documented in (Mussel et al., 2010). 

• Robust multi-array average (RMA) is a method that converts probe level data 

(CEL files) into a gene expression measure. 

• GeneChip RMA (GCRMA) is an improvement from RMA that uses the probe 

sequence information for background correction and is a bias-corrected (Wu 

& Irizarry, 2004). 

• Gene Annotation via DAVID Bioinformatic Database (Huang, Sherman, & 

Lempicki, 2009a, 2009b). 

Inferring genetic networks from the whole genome is usually very time consuming and 

very difficult to achieve. The biologist or pharmacist needs a small subgroup of 

differentially expressed genes for further experiments. The original dataset contains 

more than 30000 genes/proteins; hence, we need to identify the differentially 

expressed genes and use these genes to construct FBN networks. Since the time and 

scope of this study is relatively limited, we only pick a few critical genes from the 

inferred fundamental Boolean networks to discuss. 

6.2.2 Experimental Methods 

First, we downloaded the CEL files, which are data files created by Affymetrix DNA 

microarray image analysis software, from the Genbank, which is the NIH genetic 

sequence database (Nucleic-Acids-Research, 2013), and normalised them using RMA 
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and GCRMA, respectively. Secondly, we computed the differentially expressed genes 

for the 13 samples (three T-All samples and 10 B-All samples) with the same criteria 

as Schmidt et al. (2006), i.e., the cutoff threshold is 0.7, and the majority value is set 

to 6 out of 13 samples. Three different methodologies on computing the differentially 

expressed genes have been conducted: 

• Re-analyse the M-values and E-values provided by Schmidt (Schmidt et al., 

2006) where the M-values were denoted as regulation values, and the E-values 

were denoted as normalised expression values. 

• Normalise the data using RMA. 

• Normalise the data using GCRMA. 

The cutoff point represented the threshold for fold changes. For example, a cutoff of 

1 means M values of ≥ 1, which represent a two-fold regulation; a cutoff 0.7 means 

a 1.4 fold regulation; and a cutoff of 2 means a four-fold regulation. The majority value 

means the fold regulation happens in at least six out of 13 samples. 

Apart from these experiments, we also computed the differentially expressed genes 

from all 10 B-All samples and all three T-All samples. The common genes from these 

three methods will be the input target genes for the FBNNet process. The training data 

for FBNNet process were the data normalised by GCRMA. The training data were 

filtered by the target genes. All duplicated genes were aggregated by mean, an R 

function to average the data. The training data for constructing an Orchard cube 

contained the data combined from the GEO Assession codes: GSE2677 and GSE2842. 



 

 104 

The data for computing differentially expressed genes are from GEO Assession code: 

GSE2677 and contained data from 13 samples. 

Section 2.2 discussed how to calculate the differentially expressed genes. It was 

straight forward to normalise the raw data using affy.rma and affy.gcrma, provided by 

the Bioconductor project (Bioconductor, 2020) via R. Constructing an Orchard cube 

based on the training data was similar to the way used in the previous chapter for the 

cell cycle data. Different from the experiments conducted on cell cycle data, where 

maxK was 4, we choose maxK = 3 for the sake of simplicity, where maxK defined the 

maximum level of the combinations of genes that could affect the target gene. The 

maximum temporal value (m), which is a value that indicated how many times were 

the steps required to complete the regulation process of a fundamental Boolean 

function, was 2. 

6.3. Results and Discussion 

Table 6-1 presents the results of differentially expressed genes that were identified by 

the three different methods. The figures of Re-analysis M-values were identical to the 

study conducted by (Chaiboonchoe, 2010) because we used the same criteria to select 

the differentially expressed genes. 
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Table 6-1 GC-regulated differentially expressed genes, M>=0.7 (1.4 fold regulation), 

6/13 (majority) 

 0 - 6/8 h 6/8 – 24 h 0 – 24 h Total 

Unique 

 Activated Inhibited Activated Inhibited Activated Inhibited  

Re-analysis 

M-values 

58(44) 66(52) 63(24) 61(49) 212(105) 258(193) 718 

(348) 

Analysis 

with R 3.6.1 

affy::rma 

59(46) 78(62) 61(22) 66(52) 223(115) 268(202) 755(378) 

Analysis 

with R 3.6.1 

affy::gcrma 

117(93) 153(110) 156(59) 121(97) 427(220) 446(346) 1420(665) 

Interestingly, the results from RMA under R version 3.6.2 were different from the Re-

analysis M-value. The M-value was provided by (Schmidt et al., 2006) who also applied 

RMA (provided by an old version of R in 2006) to compute the M-values, as discussed 

in the literature review. The results from GCRMA contained more differentially 

expressed genes than the other two methods. Figure 6-1 visualises the common and 

different figures using a Venn diagram. 
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We were interested in the genes set in the intersections of the results with the three 

methods. Hence, we constructed the FBM cube and extracted the fundamental 

Boolean networks based on the most common genes, i.e., 285 genes. Among the most 

common genes: 34 were induced for 0-6 h; 40 were repressed for 0-6 h; 87 were 

induced for 0-24 h; 180 were repressed for 0-24 h; 17 were induced for 6-24 h, and 34 

were repressed for 6-24 h. Four of genes across all periods were induced, and five 

across all three time spans were repressed. Table 6-2 list the common genes split by 

periods and types of sample (T-ALL and B-ALL). 

 

Figure 6-1 Venn diagram of the differentially expressed genes (glucocorticoid 

induced) across all time points. 
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Table 6-2 Common glucocorticoid induced genes 

Common Results Genes 

Common Genes (285) MS4A4A, CLN8, SNX10, RAB31, SERPINA1, LILRA1, LILRB2, PFKFB2, 

SOCS1, LGALS3, SIK1, SLA, FCGR3B, FGL2, BTNL9, RBMS3, DPEP1, 

MNDA, FKBP5, DDIT4, WFS1, S100A11, ZBTB16, P2RY14, GSN, EPPK1, 

ZFP36L2, FCER1G, FGR, IRAK3, PPBP, MYRIP, PIK3IP1, KIF26A, NUF2, 

ARPP21, ABHD17B, ASPM, PBK, KIF20A, CEP55, PDE4B, HMMR, CDKN3, 

FUS, AURKA, CENPF, POU4F1, PRR11, KIF14, CENPE, CENPA, NEK2, TTK, 

KIF11, GIMAP4, DLGAP5, PTTG1, UBE2C, CDC20, MKI67, CCNB2, BIRC5, 

FAM72C, GBP4, KIF23, NPCDR1, CCNL1, LOC728175, CLEC2B, BCL10, 

TOP2A, TENM4, CCNB1, SNORA21, MDM2, DEPDC1, DEPDC1B, 

GIMAP7, TBXA2R, STAB1, MIR4683, SMIM3, SLC22A23, TMEM100, 

LOC100130872, SESN1, TMEM2, IFNGR1, BIRC3, P2RX5, CDC42EP3, 

METTL7A, IL18RAP, CCR1, SNX29P2, LOC100505650, RHOBTB3, 

BCL2L11, SNTB2, MS4A1, SOS1, TNFSF8, RNASET2, CD53, LY96, SCML4, 

LOC285097, ITGAM, DEFA1, ISG20, DFNA5, MTSS1, IL6ST, MIR6845, 

NEAT1, KLF9, TXNIP, IL18R1, HBB, CELF2, HBG1, S100A8, MPV17L, 

NEDD9, FGD2, BTG1, TUBA4A, RPS6KA2, DENND3, IL27RA, MS4A7, 

SMAP2, RASSF4, BMF, ELL2, TARSL2, SEMA4D, ITGB2-AS1, PPP1R16B, 

CPM, ITPKB, IL1B, MCM10, CDCA3, UBE2T, TCF19, BRIP1, KIF18A, 

KCNK12, HELLS, E2F8, NUSAP1, ECT2, CENPN, SHCBP1, POLQ, KIF15, 

B3GNT2, TIPIN, DSCC1, CENPU, TNFRSF21, ATAD2, HJURP, NCAPG, DTL, 

KIF4A, CKAP2, MSH6, MCM7, LEF1, AKAP12, SKP2, TPX2, CDT1, RRM2, 

BUB1, KIF2C, MDK, ANP32E, CDK1, F13A1, BYSL, HIST4H4, CCNA2, 

MND1, EGR1, PRPS2, SNORD3B-1, HRK, CHEK1, WDR76, IGLL1, RAG1, 

RCC1, POLE2, MCM4, BCAT1, STIL, PSPH, PCNA, RAD51, PLK4, TRIP13, 

MELK, FEN1, WDHD1, BRCA1, SMC2, WASF1, CDC45, RFC3, ZWINT, 

CDC6, BUB1B, MAD2L1, CCDC86, TIMELESS, OIP5, TYMS, DHFR, FOXM1, 

KIAA0101, TK1, FABP5, TRIB1, CKAP2L, CKS1B, CENPH, MTHFD2, NME1, 

PPIF, EMP1, GGH, PAICS, GINS1, AURKB, ASF1B, GINS2, CENPK, IQGAP3, 

ZNF367, PTP4A1, ANLN, C5orf24, SUV39H2, SELENOI, RBM14, 
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HSP90AB1, FH, RAD51AP1, DHX9, TMEM97, NCAPH, FANCI, APITD1-

CORT, RAG2, MCM5, KIF18B, CDCA5, ARRDC3, SQLE, LOC100996643, 

CCDC34, RMI2, CENPV, CDCA2, CENPW, PHF19, E2F7, KNL1, C4orf46, 

CDK6, CRNDE, SERPINB9, PRDM1, ID2, GVINP1, MIR8071-1, CCNE2, ID3, 

IGLC1, LYZ, IGH 

Common Genes from 

B-ALL only via 

affy.rma (213/285), 

for 6/10 samples 

FCER1G, WFS1, SCML4, GSN, SERPINA1, DDIT4, SLA, FCGR3B, MNDA, 

ZBTB16, DPEP1, P2RY14, LILRB2, SIK1, FGR, LGALS3, LILRA1, IRAK3, 

MYRIP, FGD2, RAB31, SNX10, CLN8, MS4A4A, PFKFB2, FGL2, BTNL9, 

KIF26A, EPPK1, RBMS3, TBXA2R, LOC728175, CDKN3, TOP2A, CCNB2, 

CDC20, UBE2C, CDK1, CCNA2, PDE4B, DLGAP5, KIF23, TTK, CENPA, 

CENPE, RAG1, POU4F1, HMMR, CENPF, AURKA, BUB1, MKI67, TENM4, 

CCNB1, MDM2, CEP55, NCAPG, KIF20A, GIMAP4, ASPM, DEPDC1, 

UBE2T, NUF2, FAM72C, GIMAP7, GBP4, NEDD9, ZFP36L2, IFNGR1, 

KLF9, STAB1, FKBP5, CCR1, ITGAM, LY96, IL18R1, IL18RAP, HBB, 

CDC42EP3, SOCS1, P2RX5, IL6ST, DENND3, SNX29P2, SESN1, 

LOC100130872, TMEM100, PIK3IP1, IL27RA, LOC100505650, 

SLC22A23, MS4A7, MIR4683, MIR6845, RASSF4, ELL2, TARSL2, ITGB2-

AS1, RNASET2, PPP1R16B, NEAT1, CPM, TNFSF8, CELF2, ANLN, C5orf24, 

TK1, SUV39H2, TYMS, MAD2L1, HSP90AB1, PAICS, PCNA, PPIF, NME1, 

EGR1, RRM2, CKS1B, BIRC5, TRIB1, FABP5, KIAA0101, DHFR, PTTG1, 

GGH, BYSL, BUB1B, CDC6, ZWINT, TRIP13, CDC45, RFC3, RAD51AP1, 

WASF1, SMC2, KIF11, NEK2, WDHD1, MELK, PLK4, RAD51, IL1B, STIL, 

CHEK1, POLE2, HIST4H4, GINS1, KIF14, RCC1, IGLL1, MCM7, MDK, SQLE, 

KIF2C, AURKB, TPX2, LEF1, MSH6, MCM4, TMEM97, NCAPH, FANCI, 

APITD1-CORT, OIP5, BCAT1, TNFRSF21, RAG2, NUSAP1, ASF1B, CKAP2, 

KIF4A, DTL, HJURP, ATAD2, CENPU, DSCC1, PBK, TIPIN, KIF15, POLQ, 

CENPN, ECT2, E2F8, HELLS, MCM10, KIF18A, GINS2, BRIP1, KIF18B, 

CENPK, TCF19, CDCA3, MND1, CDCA5, CCDC34, CENPW, DEPDC1B, 

AKAP12, E2F7, PRR11, KNL1, IQGAP3, ZNF367, CKAP2L, CENPH, 

C4orf46, CDK6, HRK, WDR76, DEFA1, PRDM1, CCNE2, MIR8071-1 

Common genes from 

B-ALL only via 

CDC42EP3 
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affy.rma (1/285), for 

10/10 samples 

Common genes from 

T-ALL only via 

affy.rma (23/285), for 

3/3 samples 

FKBP5, PFKFB2, MPV17L, SCML4, BTG1, ZFP36L2, DDIT4, RHOBTB3, 

SLA, ISG20, TNFSF8, SNX29P2, PIK3IP1, SMAP2, SNTB2, SEMA4D, 

CDKN3, BCL10, PTTG1, FEN1, MIR8071-1, MCM4, IGLC1 

Common genes from 

B-ALL (6/10) and T-

ALL (3/3) 

SCML4, DDIT4, SLA, PFKFB2, CDKN3, ZFP36L2, FKBP5, SNX29P2, 

PIK3IP1, TNFSF8, PTTG1, MCM4, MIR8071-1 

 

0-6 h common genes 

induced (34) 

MS4A4A, CLN8, SNX10, RAB31, SERPINA1, LILRA1, LILRB2, PFKFB2, 

SOCS1, LGALS3, SIK1, SLA, FCGR3B, FGL2, BTNL9, RBMS3, DPEP1, 

MNDA, FKBP5, DDIT4, WFS1, S100A11, ZBTB16, P2RY14, GSN, EPPK1, 

ZFP36L2, FCER1G, FGR, IRAK3, PPBP, MYRIP, PIK3IP1, KIF26A 

0-6 h common genes 

repressed (40) 

NUF2, ARPP21, ABHD17B, ASPM, PBK, KIF20A, CEP55, PDE4B, HMMR, 

CDKN3, FUS, AURKA, CENPF, POU4F1, KIF14, CENPE, CENPA, TTK, 

GIMAP4, DLGAP5, PTTG1, UBE2C, CDC20, MKI67, CCNB2, BIRC5, 

FAM72C, GBP4, KIF23, NPCDR1, CCNL1, LOC728175, CLEC2B, TOP2A, 

TENM4, CCNB1, SNORA21, MDM2, DEPDC1, GIMAP7 

0-24 h common 

genes induced (87) 

TBXA2R, STAB1, MIR4683, SMIM3, SLC22A23, TMEM100, 

LOC100130872, SESN1, TMEM2, IFNGR1, BIRC3, P2RX5, LILRB2, 

PFKFB2, SOCS1, CDC42EP3, SIK1, METTL7A, IL18RAP, SLA, CCR1, 

SNX29P2, LOC100505650, RHOBTB3, BCL2L11, SNTB2, BTNL9, MS4A1, 

SOS1, TNFSF8, RNASET2, CD53, LY96, DPEP1, SCML4, LOC285097, 

ITGAM, DEFA1, MNDA, ISG20, FKBP5, DFNA5, MTSS1, DDIT4, WFS1, 

IL6ST, MIR6845, NEAT1, KLF9, TXNIP, IL18R1, P2RY14, GSN, HBB, CELF2, 

HBG1, S100A8, NETO1, ZFP36L2, MPV17L, CHPT1, NEDD9, 

LOC102723927, FGD2, EPPK1, BTG1, TUBA4A, RPS6KA2, DENND3, 

IRAK3, PIK3IP1, IL27RA, SNX9, SMAP2, RASSF4, BMF, ELL2, TARSL2, 

SEMA4D, ITGB2-AS1, CLN8, KIF26A, NR3C1, PPP1R16B, GGNBP2, CPM, 

ITPKB 
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0-24 h common 

genes repressed 

(180) 

IL1B, MCM10, NUF2, CDCA3, UBE2T, TCF19, BRIP1, HMGN5, KIF18A, 

KCNK12, HELLS, E2F8, NUSAP1, ASPM, ECT2, CENPN, SHCBP1, POLQ, 

KIF15, B3GNT2, TIPIN, PBK, ARMC8, DSCC1, CENPU, TNFRSF21, ATAD2, 

HJURP, KIF20A, NCAPG, DTL, CEP55, KIF4A, CKAP2, PRC1, MSH6, PDE4B, 

MCM7, LEF1, DDX6, AKAP12, SKP2, BIRC5, TPX2, CDT1, RRM2, HMMR, 

CDKN3, BUB1, KIF2C, CENPF, MDK, ANP32E, AURKA, CDK1, BYSL, 

HIST4H4, CCNA2, MND1, EGR1, PRR11, PRPS2, SNORD3B-1, KIF14, HRK, 

CHEK1, WDR76, IGLL1, RAG1, RCC1, POLE2, MCM4, BCAT1, STIL, PSPH, 

PCNA, CENPE, RAD51, CENPA, PLK4, TRIP13, NEK2, TTK, MELK, POLA1, 

FEN1, WDHD1, BRCA1, KIF11, SMC2, WASF1, CDC45, RFC3, ZWINT, 

CDC6, BUB1B, DLGAP5, PTTG1, MAD2L1, CCDC86, TIMELESS, UBE2C, 

CDC20, MKI67, CCNB2, OIP5, TYMS, DHFR, FOXM1, KIAA0101, RGS1, 

TK1, FABP5, MTHFD1, TRIB1, FAM72C, CKAP2L, CKS1B, CENPH, NET1, 

GBP4, MTHFD2, NME1, SRM, PPIF, EMP1, GGH, KIF23, PAICS, GINS1, 

AURKB, ASF1B, GINS2, CENPK, IQGAP3, ZNF367, PTP4A1, ANLN, 

C5orf24, ZBTB24, SUV39H2, SELENOI, RBM14, ARPP21, GAB1, BCL10, 

HSP90AB1, TOP2A, FH, RAD51AP1, DHX9, TMEM97, NCAPH, FANCI, 

TENM4, APITD1-CORT, CCNB1, RAG2, MCM5, MDM2, KIF18B, DEPDC1, 

CDCA5, ARRDC3, KDELC2, SQLE, LOC100996643, CCDC34, RMI2, 

CENPV, CDCA2, CENPW, DEPDC1B, PHF19, E2F7, KNL1, LOC283454, 

C4orf46, CDK6, CRNDE 

6-24 h common 

genes induced (17) 

SESN1, PFKFB2, IL18RAP, CCR1, BCL2L11, BTNL9, TNFSF8, SERPINB9, 

DEFA1, FKBP5, PRDM1, ID2, P2RY14, S100A8, GVINP1, SCML4, 

CDC42EP3 

6-24 h common 

genes repressed (34) 

MCM10, HELLS, E2F8, DSCC1, ATAD2, DTL, MIR8071-1, RRM2, CDK1, 

F13A1, PRR11, BRIP1, IGLL1, CCNE2, MELK, FEN1, ID3, IGLC1, KIF11, 

CDC45, ZWINT, CDC6, SERPINA1, TYMS, KIAA0101, GGH, GINS1, ASF1B, 

ZNF367, MAD2L1, RAD51AP1, TMEM97, LYZ, IGH 

Common genes for 

all-time span induced 

(4) 

PFKFB2, BTNL9, FKBP5, P2RY14 
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Common genes for 

all-time span 

repressed (5) 

CEP55, MKI67, CCNB2, BIRC5, TOP2A 

As shown in Table 6-2, gene CDC42EP3 was the only one that applied in all B-All 

samples, and genes SCML4, DDIT4, SLA, PFKFB2, CDKN3, ZFP36L2, FKBP5, SNX29P2, 

PIK3IP1, TNFSF8, PTTG1, MCM4, MIR8071-1 were highly expressed in all T-ALL 

samples. The 13 genes may suggest that the T-ALL samples may be more sensitive to 

GC treatment than the B-ALL samples, although B-ALL had 212 common genes in six 

out of the 10 samples. Gene CDC42EP3 may be particularly associated with the GC 

treatment of B-ALL samples. Genes PFKFB2, BTNL9, FKBP5 and P2RY14, which were 

induced across all three time spans, were the set of genes documented in 

(Chaiboonchoe, 2010), and CEP55, MKI67, CCNB2, BIRC5 and TOP2A were repressed 

across all three time spans. This may indicate that GC introduced apoptosis started 

from inducing genes PFKFB2, BTNL9, FKBP5 and P2RY14 and inhibiting genes CEP55, 

MKI67, CCNB2, BIRC5 and TOP2A. 

As discussed in previous chapters, the fundamental Boolean model splits the Boolean 

functions into the domains of gene activation and inhibition. That then facilitated 

analysing the Boolean regulatory network into seven main types of sub-networks, as 

discussed in chapter 3. 

Hence, we started to explore the gene networks by filtering the extracted FBNNet 

networks (Appendix B) and then plotted their network graphs within the six types (We 

skipped the general type as it contains too many nodes). Appendix A shows the 
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common annotated genes for further investigation on the FBN networks of the 

leukaemia data that could facilitate the interpretation of the 285 common genes and 

Appendix B shows fundamental Boolean networks extracted on the 285 common 

genes. Because of the limitation of the scope of the research, we only discussed a few 

genes in the following sections. 

6.4. Networks of CDC42EP3 

As shown in Table 6-2, gene CDC42EP3 was highly expressed in all B-All type samples 

and was a common gene at 0-24 h and 6-24 h. Hence, we are interested in finding out 

what activated this gene and what were the consequences of the activation. 
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Figure 6-2 FBNNet_FAA (type 1) type of fundamental Boolean networks of 

CDC42EP3. The legend refers to Figure 1. 

Figure 6-2 shows that activated CDC42EP3 up-regulates genes EPPK1, F13A1, FGL2, 

LGALS3, NPCDR1, PPBP, PRDM1, RAB31 and STAB1. Five out of nine genes were 

documented in the list of the B-ALL gene network list from Chaiboonchoe (2010): 

EPPK1, FGL2, LGALS3, PRDM1 and STAB1. PPBP was documented in the list of T-ALL 

gene networks list from Chaiboonchoe (2010). The remaining three genes, F13A1, 
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NPCDR1 and RAB31, were new findings that had not been reported before that could 

be up-regulated by CDC42EP3 either in B-All samples or T-All samples. Five out of nine 

genes were associated with B-All samples, which meant that gene CDC42EP3 was 

mainly associated with B-ALL type of patients. F13A1 encoded a protein for 

coagulation factor XIII A chain, which was the last zymogen to become activated in the 

blood coagulation cascade (genecards.org, 2020a). Diseases associated with F13A1 

included Factor Xiii (8), a subunit deficiency of Factor Xiii (8) (genecards.org, 2020a); 

NPCDR1, nasopharyngeal carcinoma, RNA gene and the diseases associated with 

NPCDR1, including nasopharyngeal carcinoma (genecards.org, 2020a); RAB31, a 

member of RAS oncogene family, was associated with diseases including estrogen-

receptor-positive breast cancer (genecards.org, 2020a). Hence, we considered that 

the up-regulation of the three genes F13A1, NPCDR1 and RAB31 could cause side 

effects under GC induced apoptosis. To inhibit them, we may consider disabling their 

conditional genes, such as turning on RHOBTB3 and turning off FGD2, to prevent 

F13A1 from being activated. 



 

 115 

 

Figure 6-3 FBNNet_FAI (type 2) type of fundamental Boolean networks of CDC42EP3. 

The legend refers to Figure 1. 

Figure 6-3 shows that activated CDC42EP3 down-regulates genes CCDC86, CRNDE, 

MDK, MTHFD2, RBM14, and SNORA21. These genes have not been reported in 

previous studies. This could be because down-regulation may be more challenging to 

detect than gene induction (Schmidt et al., 2006). 
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Figure 6-4 FBNNet_BA (type 5) type of fundamental Boolean networks of CDC42EP3. 

The legend refers to Figure 1. 

Figure 6-4 shows the genes that activate CDC42EP3: RAB31, PPBP, LGALS3, and FGL2. 

LGALS3 and FGL2 have been documented in the list of B-ALL gene networks, and PPBP 

has been documented on the list of T-ALL gene networks (Chaiboonchoe, 2010). 

RAB31 was a new finding that has not yet been reported to regulate CDC42EP3 in 

previous studies. New gene regulations, as well as potential side effects, have been 

identified through type 1, 2 and 5 regulatory pathways. 

 



 

 117 

6.5. Networks of Genes Induced Across All Periods 

Genes PFKFB2, BTNL9, FKBP5 and P2RY14 have been reported in Table 6-2 that have 

been induced across the three time spans of 0-6 h, 0-24 h and 6-24 h. Hence, types 1, 

2, and 5 have been applied to analyse them. 

 

Figure 6-5 FBNNet_FAA (type 1) type of fundamental Boolean networks of all 

induced genes across the three time spans that up-regulated their target genes. The 

legend refers to Figure 1. 

As shown in Figure 6-5, the GC related gene PFKFB2 (Carlet et al., 2010; Schmidt et al., 

2006) activated the critical gene, DDIT4 (DNA damage-inducible transcript 4), which 
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was an essential candidate for GC-induced apoptosis. Without the expression of 

MYRIP, PFKFB2 will be self-activated that indicated that the GC treatment turned 

PFKFB2 on by inhibiting gene MYRIP, which coded the myosin VIIA and Rab interacting 

proteins. The MYRIP-related pathway was through peptide hormone metabolism. As 

discussed in the literature review, GC induced apoptosis by influencing hormone 

metabolism. BTNL9 (butyrophilin like 9) was found to be highly expressed in B-ALL 

samples, indicating that its pathway could only affect B-All type patients. BTNL9 

activated EPPK1, and they were turned on by the overexpression of gene BMF and the 

underexpression of BCL2L11. BMF and BCL2L11 both belonged to the BCL2L11 family. 

As documented in Schmidt et al. (2006), genes LDHA, GPR65, MAP2K3, GZMA, MYC, 

NR3C1 and BCL2L11 were the top candidate genes. The BCL2L11 and Bcl-2 rheostat 

were proven to induce GC that led to cell death. The target gene of the activated 

BTNL9 was EPPK1 (its related pathway was cytoskeleton remodelling neurofilaments). 

EPPK1 could be associated with leukaemia healing because EPPK1 can accelerate 

keratinocyte migration during wound healing. Gene FKBP5 activated KCNK12 while 

the GC essential gene SLA was inhibited. The stimulated purinergic receptor (P2RY14) 

activated TUBA4A, which was connected to the diseases of amyotrophic lateral 

sclerosis 22 with or without frontotemporal dementia, Robinow syndrome and 

autosomal dominant 3 (Genecards.org, 2020c). The activated TUBA4A could be the 

side effect of GC-related treatment, but under two conditions where gene TENM4 

must be inhibited and gene, GBP4 must be activated. 
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Figure 6-6 FBNNet_FAI (type 2) type of fundamental Boolean networks of all induced 

genes across the three time spans, that down-regulated their target genes. The 

legend refers to Figure 1. 

As shown in Figure 6-6, among the four induced genes, only P2RY14 and BTNL9 were 

found to inhibit their target genes when activated. 

The networks demonstrated in Figures 6-2, 6-3, 6-4, 6-5 and 6-6, show that the 

fundamental Boolean networks can split into the domain of up-regulation and down-

regulation easily without the need to apply other tools or previous knowledge about 
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networks. Besides, we can find what causes all the genes (induced and repressed) to 

be activated or inhibited by finding their backward regulation. Figure 6-7 shows that 

three out of four induced genes were regulated by genes in the set of common 285 

genes. Only FKBP5 being missed indicated that it could be turned on by other genes 

rather than the common genes. The essential gene, PFKFB2, was turned on by gene 

TNFRSF21, which encoded a protein to activate nuclear factor kappa-B and mitogen-

activated protein kinase 8 and induced cell apoptosis (genecards.org, 2020b). 

 



 

 121 

Figure 6-7 FBNNet_BA (type 5) type of fundamental Boolean networks of the 

backward regulation of all induced genes. The legend refers to Figure 1. 

Figure 6-7 shows the genes to be activated by tracing the backward regulation of the 

four induced genes. 

6.6. Networks of Genes Repressed Across All Periods 

Genes CEP55, MKI67, CCNB2, BIRC5, TOP2A, have been reported in Table 6-2 that 

have been repressed across three time spans; 0-6 h, 0-24 h and 6-24 h. Hence, types 

3, 4, and 6 were applied to analyse them. 
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Figure 6-8 FBNNet_FIA (type 3) type of fundamental Boolean networks of all 

repressed genes across the three time spans that up-regulated their target genes. 

The legend refers to Figure 1. 

Figure 6-8 shows the repressed gene CEP55, which was one of the five repressed genes 

that inhibited across all periods, up-regulates the critical genes of GC-regulated genes 

BTNL9 and DDIT4. 
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Figure 6-9 FBNNet_FII (type 4) type of fundamental Boolean networks of all 

repressed genes across the three time spans, that up-regulated their target genes. 

The legend refers to Figure 1. 

Figure 6-10 shows the three repressed genes (CEP55, CCNB2 and CCNB2) among the 

FICE genes repressed across all periods (CEP55, MKI67, CCNB2, BIRC5 and TOP2Ac). 

This may indicate that the target genes of MKI67 and TOP2Ac were not in the common 

285 genes. 
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Figure 6-10 FBNNet_BI (type 6) type of fundamental Boolean networks of all the 

repressed genes backward regulation. The legend refers to Figure 1. 
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6.7. Primary Candidate Genes for GC-induced Apoptosis 

In this section, we demonstrated how to reveal the nature of the GC-regulated genes 

responsible for the anti-leukemic GC effects via the three top candidates: BCL2L11, 

MYC and NR3C1. To understand BCL2L11, we explored the gene by looking at the 

forward and backward networks caused by the gene (intrinsic pathway) by directly 

regulating the expression of components of the cell death machinery (Schmidt et al., 

2006). To fulfil this task, we reconstruct the Orchard cube based on the highly 

expressed genes with the cutoff >=2 (4-fold), and the majority was two out of 13 

samples. 

 

Figure 6-11 FBNNet_BI type of fundamental Boolean networks reveals the direct 

repression on MYC. The legend refers to Figure 1. 
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As shown in Figure 6-11, the glucocorticoid response gene in ALL, ZBTB16/PLZF, was 

the critical component in the repression of MYC, which matched the evidence shown 

in Wasim et al. (2010). 

 

 

Figure 6-12 FBNNet_FAA type of fundamental Boolean networks reveals the direct 

regulation caused by the activated MYC. The legend refers to Figure 1. 

Both c-Myc and Cdc20 can induce the proliferation of primary glial progenitor cells (Ji 

et al., 2016); however, we now have evidence that Cdc20 was driven by MYC, as shown 
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in Figure 6-12. In other words, MYC was the driver and Cdc20 the passenger, which 

has since been confirmed by the study (Ji et al., 2016). By combining the outputs of 

Figures 6-11 and 6-12, it was very straightforward to discover the intrinsic pathway of 

how GC repression of MYC (c-myc) generates a “conflicting signal”: GC binds with the 

glucocorticoid response gene, which in turn, inhibited MYC and hence, interrupted the 

induction of Cdc20. 

UBE2C, whose alias name is UbcH10, is a protein-coding gene, from among the 

ubiquitin conjugating enzyme E2 gene family. The expression level of UbcH10 was 

deficient in many of the healthy tissues but prominent in the majority of cancerous 

cell lines (Okamoto et al., 2003). UbcH10 contributed to tumourigenesis or the 

progression of the tumor because UbcH10 was used to express at high levels in 

primary tumours, mainly derived from the lung, stomach, uterus, and bladder, 

compared with their corresponding healthy tissues (Okamoto et al., 2003). 
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Figure 6-13 Downregulations of MYC in multiple levels when it has been inhibited. 

The legend refers to Figure 1. 
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The repressed MYC also repressed UBE2C, suggesting the natural pathway of GC 

bound with ZBTB16 that then repressed MYC and inhibited MYC, along with the 

induction of ORA75, inhibited the ubiquitin conjugating enzyme E2 gene, 

UBE2C/Ubc10. 

6.8. Summary 

In summary, finding the down-regulatory pathway was difficult (Schmidt et al., 2006) 

but with the novel FBM/TFBM, it was very straightforward. The fundamental Boolean 

modelling concepts and related network inference technology enable scientists to 

analyse genetic regulatory pathways easily with different types of network 

visualisation. For example, potential side effects of GC treatment could be identified 

through the forward and backward regulatory pathways analysis. 

In this chapter, we demonstrated how to apply the temporal fundamental Boolean 

modelling on acute childhood leukaemia data in clinical settings. The generated 

networks have been attached to Appendix B for further research. Due to the time 

constraint, we only discussed a few pathways of the networks in this chapter. 

However, we have found some potential new findings related to the pathways of 

CDC43EP3 such as the three genes, F13A1, NPCDR1 and RAB31, which considered to 

be the potential side effects of GC introduced apoptosis. This chapter provides 

evidence to confirm that the novel Boolean model could improve the understanding 

of genetic regulatory networks on the induction of leukaemia related treatments. 

  



 

 130 

Chapter 7: Summary, Conclusions, Future Directions and 

Contributions 

7.1. Summary 

In this study, we investigated the characteristics of enzyme activation, inhibition and 

protein decay, then proposed two novel data-driven Boolean models, namely, the 

fundamental Boolean model (FBM) and temporal fundamental Boolean model (TFBM), 

to draw insights into gene regulatory pathways. The fundamental Boolean modelling 

can separate the activation and inhibition functions from conventional Boolean 

functions, and this separation could facilitate scientists in seeking answers in such as 

how an amendment of one gene distresses other genes at the expression level. We 

proposed a new data-driven method to infer networks for the proposed fundamental 

Boolean modelling. The new method comprises two different parts: the first part was 

to construct an Orchard cube to persist all precomputed measures for all potential 

fundamental Boolean functions; the second part was to infer FBNs/TFBNs from the 

Orchard cube, by filtering each tree’s underground part. Dynamic FBNs show the 

significant trajectories of genes to reveal how genes regulated each other over a given 

period. This new feature could facilitate further research into drug interactions to 

detect the side effects from the use of a newly proposed drug. The protein decay issue 

was also a function of the proposed model (Eq(3.4)) to capture the characteristics of 

the time that allows a gene to remain in the On state when there are no activators or 

inhibitors. 
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Fundamental Boolean modelling is data-driven Boolean modelling, and the related 

Boolean functions are inferred from a particular type of data cube. Hence, knowledge 

about connectivity among the genes was not needed but can be used to verify the 

results generated. To demonstrate the concepts of the FBM and TFBM, we 

implemented an R package called FBNNet, which successfully demonstrated cell cycle 

and leukaemia pathways. The R package provided a tool to draw FBNs/TFBNs, either 

in the static model, as shown in Figure 5-3, or the dynamic model, as illustrated in 

Figure 5-5. 

The dynamic trajectory of gene activation, inhibition and protein decay activities of 

attractor 2 were deciphered in chapter 5, and this confirmed that the proposed FBM 

could show the internal connections between genes separated by the assembly types 

of activation, inhibition, and protein decay. 

It is a need to search all related genes and to calculate all relevant measures for all the 

associated gene combinations up to in some detail. This downside could end with the 

non-deterministic polynomial acceptable problems (NP-hard problem), i.e., there was 

no known polynomial algorithm to facilitate the time to find a solution grew 

exponentially with predefined problem size, as mentioned in Liu et al. (2016). 

Nevertheless, with the design of the Orchard cube, the cost was manageable because 

the design was embedded within parallel computations. Hence, even large GRNs can 

be derived from the method we proposed. Furthermore, the construction of the 

Orchard cube was detached from the inference of fundamental Boolean networks. 
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We can apply a different strategy to mine the regulatory networks without the need 

to reconstruct the cube. Consequently, the computational cost can be split into two 

parts: the construction of an Orchard cube and the network inference. 

The proposed TFBM can be applied on short time series data because it has been 

designed to employ more previous time steps than FBM, i.e., using the best previous 

time step for its functions. To demonstrate this, we applied the network inference 

methodology on the leukaemia data, supplied by Schmidt et al. (2006). Chapter 6 

documented the experiments and discussed the result. We highlighted the main 

findings below. 

Findings 

In chapter 6, we found there are three genes, F13A1, NPCDR1 and RAB31, which could 

be side effects of GC introduced apoptosis, as activated by CDC42EP3, a gene induced 

across all B-All samples, from 6-24 h and remaining induced from 0-24 h. The activated 

CDC42EP3 down-regulates the genes CCDC86, CRNDE, MDK, MTHFD2, RBM14, and 

SNORA21, and these have not been reported in previous studies. RAB31 is a new 

finding that has not been reported that can regulate CDC42EP3 in previous studies. 

The extracted 285 common differentially expressed genes (Appendix A) were the 

results of the three experimental methods, i.e., re-analysing the M-value from 

Schmidt et al. (2006) research, computed the raw data normalised with RMA and 

GCRMA. The reported 285 genes could be the major gene set that regulated by GC 

induced apoptosis. 
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We also found that ZBTB16/PLZF was the critical component in the repression of MYC 

and confirmed that Cdc20 was driven by MYC. 

7.2. Conclusions 

In this thesis, we proposed the concepts of novel data-driven Boolean modelling (FBM 

and TFBM) to separate the traditional Boolean functions into the domain of gene 

activation and inhibition. As shown in the demonstration of the cell cycle and 

leukaemia networks, the down-regulatory pathways can be detected with the 

facilitation of the novel Boolean modelling easily, as well as up-regulatory pathways. 

With TFBM, the insights of short time series data can be revealed intuitively, as shown 

from the study of childhood leukaemia data. 

In this thesis, the questions raised in chapter 1 have been addressed as follows: 

Can we apply the Boolean model to gain meaningful insights into microarray time 

series data, even though the data are short time series data? 

The applications of cell cycle and leukaemia documented in chapter 5 and 6 confirmed 

that we could apply the fundamental Boolean modelling, which is an extension of 

Boolean modelling, to gain meaningful insights into microarray time series data, even 

though the data are short time series data. 

Can the novel Boolean model improve understanding of genetic regulatory networks 

on the induction of leukaemia related apoptosis? 
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Chapter 6 documented the experiments on leukaemia related apoptosis and provided 

evidence to confirm that the novel Boolean model can improve understanding of 

genetic regulatory networks on the induction of leukaemia related apoptosis. 

Can we apply the Boolean model to identify down-regulatory pathways as well as up-

regulatory pathways? 

The answer has been addressed straightforwardly in previous chapters. The proposed 

Boolean models (FBM, TFBM) enable the related networks to be separated into seven 

subnetwork types, including up-regulatory pathways and down-regulatory pathways. 

Especially during the study, we produced the fundamental Boolean networks on the 

childhood acute lymphoblastic leukaemia gene expression data, which were produced 

in clinical settings. The pathways may be useful for pharmaceutical agents to identify 

any side effects through the subnetwork analysis. 

To sum up, the proposed fundamental Boolean modelling are fine-grained Boolean 

modelling that can provide more insights into genetic regulatory pathways than the 

coarse-grained conventional Boolean modelling. 

7.3. Future Directions 

The proposed concepts of fundamental Boolean modelling (FBM and TFBM) and 

related networks (FBN and TFBN) are novel, and hence, they do need further research 

on how to apply them on clinical data. In this thesis, we only discuss a small set of 

critical genes for Leukaemia, and hence it requires further analysis of the networks 



 

 135 

attached in Appendix B. We only documented a few genes in this thesis and hence, 

remain large regulatory pathways attached in Appendix B for future to analysis.  

The unpublished R package FBNNet (version 1.0, and 2.0) are developed as a 

prototype specifically for this study, and hence, it requires future work to improve the 

package to be publishable. 

7.4. Main Contributions 

In this thesis, we developed two novel theoretical Boolean network modelling 

concepts (FBM and TFBM) for analysing genetic regulatory pathways. The novel 

theoretical Boolean network modelling concepts could reveal significant trajectories 

in genes to explore how genes regulated each other over a given period. This new 

feature could facilitate further research on drug interventions to detect the potential 

side effects of a newly-proposed drug. With the novel modelling, we addressed the 

problem of investigating gene up-regulatory pathways as well as down-regulatory 

pathways under one model which drew insights into gene activation, inhibition and 

protein decay. Besides, we also provided a mechanism to infer the fundamental 

Boolean modelling related networks from time series data, including short time series 

data. 

During the study, we produced the fundamental Boolean networks, as shown in 

Appendix B, on the childhood acute lymphoblastic leukaemia gene expression data, 

which were produced in clinic settings and are short time series data. The networks 

may be useful for pharmaceutical agents to identify any side effects when applying GC 
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induced apoptosis on children. We also pointed out some potential side effects in 

chapter 6 and discussed some new findings. The new findings could be useful for 

pharmaceutical agents to test their drug-related hypotheses. 

Moreover, we developed an R package, namely FBNNet, to facilitate the research on 

the genetic regulatory pathway analysis within the domain of fundamental Boolean 

modelling. The package produces all outcomes documented in this thesis. The 

pathways in Appendix B were the outcome extracted by the package and are valuable 

for further research. 
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Appendix A: Common Annotated Genes 

Common annotated genes 

Probeset Symbol Gene.Name 

241765_at CPM carboxypeptidase M(CPM) 

1565717_s_at FUS FUS RNA binding protein(FUS) 

207216_at TNFSF8 tumour necrosis factor superfamily member 8(TNFSF8) 

222281_s_at LOC100505650 uncharacterszed LOC100505650(LOC100505650) 

1559091_s_at FGD2 FYVE, RhoGEF and PH domain containing 2(FGD2) 

224847_at CDK6 cyclin dependent kinase 6(CDK6) 

232238_at ASPM abnormal spindle microtubule assembly(ASPM) 

230499_at BIRC3 baculoviral IAP repeat containing 3(BIRC3) 

201577_at NME1 NME/NM23 nucleoside diphosphate kinase 1(NME1) 

205967_at HIST4H4 histone cluster 4 H4(HIST4H4) 

202156_s_at CELF2 CUGBP, Elav-like family member 2(CELF2) 

220046_s_at CCNL1 cyclin L1(CCNL1) 

218883_s_at CENPU centromere protein U(CENPU) 

239635_at RBM14 RNA binding motif protein 14(RBM14) 

236641_at KIF14 kinesin family member 14(KIF14) 

1556473_at LOC285097 uncharacterized FLJ38379(LOC285097) 

203541_s_at KLF9 Kruppel like factor 9(KLF9) 

203401_at PRPS2 phosphoribosyl pyrophosphate synthetase 2(PRPS2) 

227062_at NEAT1 nuclear paraspeckle assembly transcript 1 (non-protein coding)(NEAT1) 

208079_s_at AURKA aurora kinase A(AURKA) 

217763_s_at RAB31 RAB31, member RAS oncogene family(RAB31) 

1557910_at HSP90AB1 heat shock protein 90 alpha family class B member 1(HSP90AB1) 

218755_at KIF20A kinesin family member 20A(KIF20A) 

210567_s_at SKP2 S-phase kinase associated protein 2(SKP2) 

1554768_a_at MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)(MAD2L1) 

222962_s_at MCM10 minichromosome maintenance 10 replication initiation factor(MCM10) 



 

 138 

204150_at STAB1 stabilin 1(STAB1) 

204863_s_at IL6ST interleukin 6 signal transducer(IL6ST) 

225160_x_at MDM2 MDM2 proto-oncogene(MDM2) 

1558143_a_at BCL2L11 BCL2 like 11(BCL2L11) 

213454_at APITD1-CORT APITD1-CORT readthrough(APITD1-CORT) 

216277_at BUB1 BUB1 mitotic checkpoint serine/threonine kinase(BUB1) 

1568718_at SLC22A23 solute carrier family 22 member 23(SLC22A23) 

233969_at IGLC1 immunoglobulin lambda constant 1(IGLC1) 

1553106_at C5orf24 chromosome 5 open reading frame 24(C5orf24) 

217418_x_at MS4A1 membrane spanning 4-domains A1(MS4A1) 

202580_x_at FOXM1 forkhead box M1(FOXM1) 

219258_at TIPIN TIMELESS interacting protein(TIPIN) 

219392_x_at PRR11 proline rich 11(PRR11) 

212912_at RPS6KA2 ribosomal protein S6 kinase A2(RPS6KA2) 

1562364_at GVINP1 GTPase, very large interferon inducible pseudogene 1(GVINP1) 

201013_s_at PAICS 

phosphoribosylaminoimidazole carboxylase; 

 phosphoribosylaminoimidazolesuccinocarboxamide  

synthase(PAICS) 

227265_at FGL2 fibrinogen like 2(FGL2) 

214581_x_at TNFRSF21 TNF receptor superfamily member 21(TNFRSF21) 

235574_at GBP4 guanylate binding protein 4(GBP4) 

213253_at SMC2 structural maintenance of chromosomes 2(SMC2) 

222874_s_at CLN8 ceroid-lipofuscinosis, neuronal 8(CLN8) 

238447_at RBMS3 RNA binding motif single stranded interacting protein 3(RBMS3) 

204026_s_at ZWINT ZW10 interacting kinetochore protein(ZWINT) 

204560_at FKBP5 FK506 binding protein 5(FKBP5) 

219555_s_at CENPN centromere protein N(CENPN) 

202975_s_at RHOBTB3 Rho related BTB domain containing 3(RHOBTB3) 

209116_x_at HBB hemoglobin subunit beta(HBB) 

227957_at GSN gelsolin(GSN) 

203612_at BYSL bystin like(BYSL) 

226517_at BCAT1 branched chain amino acid transaminase 1(BCAT1) 
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204698_at ISG20 Interferon stimulated exonuclease gene 20(ISG20) 

1556599_s_at ARPP21 cAMP regulated phosphoprotein 21(ARPP21) 

203033_x_at FH fumarate hydratase(FH) 

212974_at DENND3 DENN domain containing 3(DENND3) 

221436_s_at CDCA3 cell division cycle associated 3(CDCA3) 

223381_at NUF2 NUF2, NDC80 kinetochore complex component(NUF2) 

207931_s_at PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2(PFKFB2) 

1555728_a_at MS4A4A membrane spanning 4-domains A4A(MS4A4A) 

235609_at BRIP1 BRCA1 interacting protein C-terminal helicase 1(BRIP1) 

237241_at ECT2 epithelial cell transforming 2(ECT2) 

228323_at KNL1 kinetochore scaffold 1(KNL1) 

203213_at CDK1 cyclin dependent kinase 1(CDK1) 

205048_s_at PSPH phosphoserine phosphatase(PSPH) 

1556472_s_at SCML4 sex comb on midleg-like 4 (Drosophila)(SCML4) 

221557_s_at LEF1 lymphoid enhancer binding factor 1(LEF1) 

226661_at CDCA2 cell division cycle associated 2(CDCA2) 

203967_at CDC6 cell division cycle 6(CDC6) 

201897_s_at CKS1B CDC28 protein kinase regulatory subunit 1B(CKS1B) 

204007_at FCGR3B Fc fragment of IgG receptor IIIb(FCGR3B) 

206865_at HRK harakiri, BCL2 interacting protein(HRK) 

227212_s_at PHF19 PHD finger protein 19(PHF19) 

1560706_at NEDD9 

neural precursor cell expressed, developmentally down-regulated 

9(NEDD9) 

235102_x_at SNORD3B-1 small nucleolar RNA, C/D box 3B-1(SNORD3B-1) 

226611_s_at CENPV centromere protein V(CENPV) 

205883_at ZBTB16 zinc finger and BTB domain containing 16(ZBTB16) 

1564796_at EMP1 epithelial membrane protein 1(EMP1) 

218346_s_at SESN1 sestrin 1(SESN1) 

202533_s_at DHFR dihydrofolate reductase(DHFR) 

210983_s_at MCM7 minichromosome maintenance complex component 7(MCM7) 

227404_s_at EGR1 early growth response 1(EGR1) 

205909_at POLE2 DNA polymerase epsilon 2, accessory subunit(POLE2) 
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213931_at ID2 inhibitor of DNA binding 2, HLH protein(ID2) 

210052_s_at TPX2 TPX2, microtubule nucleation factor(TPX2) 

204727_at WDHD1 WD repeat and HMG-box DNA binding protein 1(WDHD1) 

205023_at RAD51 RAD51 recombinase(RAD51) 

224797_at ARRDC3 arrestin domain containing 3(ARRDC3) 

206940_s_at POU4F1 POU class 4 homeobox 1(POU4F1) 

211430_s_at MIR8071-1 microRNA 8071-1(MIR8071-1) 

209723_at SERPINB9 serpin family B member 9(SERPINB9) 

214710_s_at CCNB1 cyclin B1(CCNB1) 

1556209_at CLEC2B C-type lectin domain family 2 member B(CLEC2B) 

211428_at SERPINA1 serpin family A member 1(SERPINA1) 

211590_x_at TBXA2R thromboxane A2 receptor(TBXA2R) 

204959_at MNDA myeloid cell nuclear differentiation antigen(MNDA) 

232278_s_at DEPDC1 DEP domain containing 1(DEPDC1) 

228071_at GIMAP7 GTPase, IMAP family member 7(GIMAP7) 

211646_at IGH immunoglobulin heavy locus(IGH) 

227426_at SOS1 SOS Ras/Rac guanine nucleotide exchange factor 1(SOS1) 

200733_s_at PTP4A1 protein tyrosine phosphatase type IVA, member 1(PTP4A1) 

202870_s_at CDC20 cell division cycle 20(CDC20) 

239818_x_at TRIB1 tribbles pseudokinase 1(TRIB1) 

227312_at SNTB2 syntrophin beta 2(SNTB2) 

201009_s_at TXNIP thioredoxin interacting protein(TXNIP) 

213008_at FANCI Fanconi anemia complementation group I(FANCI) 

204531_s_at BRCA1 BRCA1, DNA repair associated(BRCA1) 

1553666_at CCDC34 coiled-coil domain containing 34(CCDC34) 

201761_at MTHFD2 

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, 

methenyltetrahydrofolate cyclohydrolase(MTHFD2) 

1556201_at RNASET2 ribonuclease T2(RNASET2) 

221505_at ANP32E acidic nuclear phosphoprotein 32 family member E(ANP32E) 

228868_x_at CDT1 chromatin licensing and DNA replication factor 1(CDT1) 

228033_at E2F7 E2F transcription factor 7(E2F7) 

202911_at MSH6 mutS homolog 6(MSH6) 
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210660_at LILRA1 leukocyte immunoglobulin like receptor A1(LILRA1) 

213562_s_at SQLE squalene epoxidase(SQLE) 

222848_at CENPK centromere protein K(CENPK) 

222870_s_at B3GNT2 

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 

2(B3GNT2) 

203416_at CD53 CD53 molecule(CD53) 

219978_s_at NUSAP1 nucleolar and spindle associated protein 1(NUSAP1) 

223274_at TCF19 transcription factor 19(TCF19) 

229041_s_at ITGB2-AS1 ITGB2 antisense RNA 1(ITGB2-AS1) 

204962_s_at CENPA centromere protein A(CENPA) 

218662_s_at NCAPG non-SMC condensin I complex subunit G(NCAPG) 

1554899_s_at FCER1G Fc fragment of IgE receptor Ig(FCER1G) 

207826_s_at ID3 inhibitor of DNA binding 3, HLH protein(ID3) 

202345_s_at FABP5 fatty acid binding protein 5(FABP5) 

203764_at DLGAP5 DLG associated protein 5(DLGAP5) 

234366_x_at CKAP2 cytoskeleton associated protein 2(CKAP2) 

203037_s_at MTSS1 MTSS1, I-BAR domain containing(MTSS1) 

211519_s_at KIF2C kinesin family member 2C(KIF2C) 

219148_at PBK PDZ binding kinase(PBK) 

234307_s_at KIF26A kinesin family member 26A(KIF26A) 

204033_at TRIP13 thyroid hormone receptor interactor 13(TRIP13) 

223556_at HELLS helicase, lymphoid-specific(HELLS) 

205263_at BCL10 B-cell CLL/lymphoma 10(BCL10) 

208949_s_at LGALS3 galectin 3(LGALS3) 

228964_at PRDM1 PR/SET domain 1(PRDM1) 

219493_at SHCBP1 SHC binding and spindle associated 1(SHCBP1) 

210448_s_at P2RX5 purinergic receptor P2X 5(P2RX5) 

209709_s_at HMMR hyaluronan mediated motility receptor(HMMR) 

214146_s_at PPBP pro-platelet basic protein(PPBP) 

202094_at BIRC5 baculoviral IAP repeat containing 5(BIRC5) 

238022_at CRNDE 

colorectal neoplasia differentially expressed (non-protein 

coding)(CRNDE) 
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212949_at NCAPH non-SMC condensin I complex subunit H(NCAPH) 

206591_at RAG1 recombination activating 1(RAG1) 

1555274_a_at SELENOI selenoprotein I(SELENOI) 

230992_at BTNL9 butyrophilin like 9(BTNL9) 

205046_at CENPE centromere protein E(CENPE) 

204128_s_at RFC3 replication factor C subunit 3(RFC3) 

210517_s_at AKAP12 A-kinase anchoring protein 12(AKAP12) 

201369_s_at ZFP36L2 ZFP36 ring finger protein like 2(ZFP36L2) 

225282_at SMAP2 small ArfGAP2(SMAP2) 

204444_at KIF11 kinesin family member 11(KIF11) 

211713_x_at KIAA0101 KIAA0101(KIAA0101) 

224753_at CDCA5 cell division cycle associated 5(CDCA5) 

223344_s_at MS4A7 membrane spanning 4-domains A7(MS4A7) 

214445_at ELL2 elongation factor for RNA polymerase II 2(ELL2) 

204822_at TTK TTK protein kinase(TTK) 

225949_at MIR6845 microRNA 6845(MIR6845) 

218355_at KIF4A kinesin family member 4A(KIF4A) 

220285_at ABHD17B abhydrolase domain containing 17B(ABHD17B) 

219306_at KIF15 kinesin family member 15(KIF15) 

201890_at RRM2 ribonucleotide reductase regulatory subunit M2(RRM2) 

206660_at IGLL1 immunoglobulin lambda like polypeptide 1(IGLL1) 

232164_s_at EPPK1 epiplakin 1(EPPK1) 

203723_at ITPKB inositol-trisphosphate 3-kinase B(ITPKB) 

201292_at TOP2A topoisomerase (DNA) II alpha(TOP2A) 

203560_at GGH gamma-glutamyl hydrolase(GGH) 

215117_at RAG2 recombination activating 2(RAG2) 

225685_at CDC42EP3 CDC42 effector protein 3(CDC42EP3) 

205393_s_at CHEK1 checkpoint kinase 1(CHEK1) 

204768_s_at FEN1 flap structure-specific endonuclease 1(FEN1) 

39402_at IL1B interleukin 1 beta(IL1B) 

238015_at C4orf46 chromosome 4 open reading frame 46(C4orf46) 

225834_at FAM72C family with sequence similarity 72 member C(FAM72C) 
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202887_s_at DDIT4 DNA damage inducible transcript 4(DDIT4) 

221521_s_at GINS2 GINS complex subunit 2(GINS2) 

207697_x_at LILRB2 leukocyte immunoglobulin like receptor B2(LILRB2) 

212141_at MCM4 minichromosome maintenance complex component 4(MCM4) 

204165_at WASF1 WAS protein family member 1(WASF1) 

209172_s_at CENPF centromere protein F(CENPF) 

224140_at NPCDR1 nasopharyngeal carcinoma, down-regulated 1(NPCDR1) 

223276_at SMIM3 small integral membrane protein 3(SMIM3) 

203305_at F13A1 coagulation factor XIII A chain(F13A1) 

203418_at CCNA2 cyclin A2(CCNA2) 

218542_at CEP55 centrosomal protein 55(CEP55) 

218404_at SNX10 sorting nexin 10(SNX10) 

208078_s_at SIK1 salt inducible kinase 1(SIK1) 

219000_s_at DSCC1 DNA replication and sister chromatid cohesion 1(DSCC1) 

211088_s_at PLK4 polo like kinase 4(PLK4) 

1554732_at LOC728175 uncharacterized LOC728175(LOC728175) 

211424_x_at METTL7A methyltransferase like 7A(METTL7A) 

202705_at CCNB2 cyclin B2(CCNB2) 

212021_s_at MKI67 marker of proliferation Ki-67(MKI67) 

221757_at PIK3IP1 phosphoinositide-3-kinase interacting protein 1(PIK3IP1) 

211814_s_at CCNE2 cyclin E2(CCNE2) 

215455_at TIMELESS timeless circadian clock(TIMELESS) 

202954_at UBE2C ubiquitin conjugating enzyme E2 C(UBE2C) 

205033_s_at DEFA1 defensin alpha 1(DEFA1) 

205339_at STIL SCL/TAL1 interrupting locus(STIL) 

205098_at CCR1 C-C motif chemokine receptor 1(CCR1) 

209999_x_at SOCS1 suppressor of cytokine signaling 1(SOCS1) 

202338_at TK1 thymidine kinase 1(TK1) 

229610_at CKAP2L cytoskeleton associated protein 2 like(CKAP2L) 

207746_at POLQ DNA polymerase theta(POLQ) 

203708_at PDE4B phosphodiesterase 4B(PDE4B) 

229551_x_at ZNF367 zinc finger protein 367(ZNF367) 
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214744_s_at SNORA21 small nucleolar RNA, H/ACA box 21(SNORA21) 

203528_at SEMA4D semaphorin 4D(SEMA4D) 

206618_at IL18R1 interleukin 18 receptor 1(IL18R1) 

217702_at IL27RA interleukin 27 receptor subunit alpha(IL27RA) 

211080_s_at NEK2 NIMA related kinase 2(NEK2) 

213599_at OIP5 Opa interacting protein 5(OIP5) 

206499_s_at RCC1 regulator of chromosome condensation 1(RCC1) 

219262_at SUV39H2 suppressor of variegation 3-9 homolog 2(SUV39H2) 

201490_s_at PPIF peptidylprolyl isomerase F(PPIF) 

211676_s_at IFNGR1 interferon gamma receptor 1(IFNGR1) 

223700_at MND1 meiotic nuclear divisions 1(MND1) 

204825_at MELK maternal embryonic leucine zipper kinase(MELK) 

213515_x_at HBG1 hemoglobin subunit gamma 1(HBG1) 

219243_at GIMAP4 GTPase, IMAP family member 4(GIMAP4) 

209714_s_at CDKN3 cyclin dependent kinase inhibitor 3(CDKN3) 

49306_at RASSF4 Ras association domain family member 4(RASSF4) 

239680_at WDR76 WD repeat domain 76(WDR76) 

203695_s_at DFNA5 DFNA5, deafness associated tumor suppressor(DFNA5) 

212282_at TMEM97 transmembrane protein 97(TMEM97) 

1555270_a_at WFS1 wolframin ER transmembrane glycoprotein(WFS1) 

203761_at SLA Src-like-adaptor(SLA) 

218585_s_at DTL denticleless E3 ubiquitin protein ligase homolog(DTL) 

226980_at DEPDC1B DEP domain containing 1B(DEPDC1B) 

218726_at HJURP Holliday junction recognition protein(HJURP) 

202589_at TYMS thymidylate synthetase(TYMS) 

218782_s_at ATAD2 ATPase family, AAA domain containing 2(ATAD2) 

231094_s_at LOC100996643 

monofunctional C1-tetrahydrofolate synthase, mitochondrial-

like(LOC100996643) 

233813_at PPP1R16B protein phosphatase 1 regulatory subunit 16B(PPP1R16B) 

222039_at KIF18B kinesin family member 18B(KIF18B) 

1569062_s_at IQGAP3 IQ motif containing GTPase activating protein 3(IQGAP3) 

203755_at BUB1B BUB1 mitotic checkpoint serine/threonine kinase B(BUB1B) 
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1558686_at MPV17L MPV17 mitochondrial inner membrane protein like(MPV17L) 

244615_x_at TARSL2 threonyl-tRNA synthetase like 2(TARSL2) 

204146_at RAD51AP1 RAD51 associated protein 1(RAD51AP1) 

205983_at DPEP1 dipeptidase 1 (renal)(DPEP1) 

1559297_at SNX29P2 sorting nexin 29 pseudogene 2(SNX29P2) 

218113_at TMEM2 transmembrane protein 2(TMEM2) 

239219_at AURKB aurora kinase B(AURKB) 

1568830_at IRAK3 interleukin 1 receptor associated kinase 3(IRAK3) 

226936_at CENPW centromere protein W(CENPW) 

205786_s_at ITGAM integrin subunit alpha M(ITGAM) 

221258_s_at KIF18A kinesin family member 18A(KIF18A) 

200660_at S100A11 S100 calcium binding protein A11(S100A11) 

226530_at BMF Bcl2 modifying factor(BMF) 

231772_x_at CENPH centromere protein H(CENPH) 

213975_s_at LYZ lysozyme(LYZ) 

206102_at GINS1 GINS complex subunit 1(GINS1) 

206637_at P2RY14 purinergic receptor P2Y14(P2RY14) 

206584_at LY96 lymphocyte antigen 96(LY96) 

223229_at UBE2T ubiquitin conjugating enzyme E2 T(UBE2T) 

224325_at MIR4683 microRNA 4683(MIR4683) 

212242_at TUBA4A tubulin alpha 4a(TUBA4A) 

209035_at MDK midkine (neurite growth-promoting factor 2)(MDK) 

203119_at CCDC86 coiled-coil domain containing 86(CCDC86) 

216237_s_at MCM5 minichromosome maintenance complex component 5(MCM5) 

200920_s_at BTG1 BTG anti-proliferation factor 1(BTG1) 

213273_at TENM4 teneurin transmembrane protein 4(TENM4) 

203554_x_at PTTG1 pituitary tumor-transforming 1(PTTG1) 

242730_at MYRIP myosin VIIA and Rab interacting protein(MYRIP) 

204709_s_at KIF23 kinesin family member 23(KIF23) 

207072_at IL18RAP interleukin 18 receptor accessory protein(IL18RAP) 

218115_at ASF1B anti-silencing function 1B histone chaperone(ASF1B) 

1569496_s_at LOC100130872 uncharacterized LOC100130872(LOC100130872) 



 

 146 

201202_at PCNA proliferating cell nuclear antigen(PCNA) 

1552619_a_at ANLN anillin actin binding protein(ANLN) 

220448_at KCNK12 potassium two pore domain channel subfamily K member 12(KCNK12) 

202420_s_at DHX9 DExH-box helicase 9(DHX9) 

204126_s_at CDC45 cell division cycle 45(CDC45) 

219990_at E2F8 E2F transcription factor 8(E2F8) 

202917_s_at S100A8 S100 calcium binding protein A8(S100A8) 

208438_s_at FGR FGR proto-oncogene, Src family tyrosine kinase(FGR) 

226456_at RMI2 RecQ mediated genome instability 2(RMI2) 

219230_at TMEM100 transmembrane protein 100(TMEM100) 
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Appendix B: Fundamental Boolean Networks of Glucocorticoid-

induced Leukaemia 

The fundamental Boolean networks for the common genes listed in Appendix A 

Fundamental Boolean Network with 285 genes 

Genes involved: 

ABHD17B, AKAP12, ANLN, ANP32E, APITD1-CORT, ARPP21, ARRDC3, ASF1B, ASPM, ATAD2, AURKA, AURKB, 

B3GNT2, BCAT1, BCL10, BCL2L11, BIRC3, BIRC5, BMF, BRCA1, BRIP1, BTG1, BTNL9, BUB1, BUB1B, BYSL, C4orf46, 

C5orf24, CCDC34, CCDC86, CCNA2, CCNB1, CCNB2, CCNE2, CCNL1, CCR1, CD53, CDC20, CDC42EP3, CDC45, 

CDC6, CDCA2, CDCA3, CDCA5, CDK1, CDK6, CDKN3, CDT1, CELF2, CENPA, CENPE, CENPF, CENPH, CENPK, CENPN, 

CENPU, CENPV, CENPW, CEP55, CHEK1, CKAP2, CKAP2L, CKS1B, CLEC2B, CLN8, CPM, CRNDE, DDIT4, DEFA1, 

DENND3, DEPDC1, DEPDC1B, DFNA5, DHFR, DHX9, DLGAP5, DPEP1, DSCC1, DTL, E2F7, E2F8, ECT2, EGR1, ELL2, 

EMP1, EPPK1, F13A1, FABP5, FAM72C, FANCI, FCER1G, FCGR3B, FEN1, FGD2, FGL2, FGR, FH, FOXM1, FUS, GBP4, 

GGH, GIMAP4, GIMAP7, GINS1, GINS2, GSN, GVINP1, HBB, HBG1, HELLS, HIST4H4, HJURP, HMMR, HRK, 

HSP90AB1, ID2, ID3, IFNGR1, IGH, IGLC1, IGLL1, IL18R1, IL18RAP, IL1B, IL27RA, IL6ST, IQGAP3, IRAK3, ISG20, 

ITGAM, ITGB2-AS1, ITPKB, KCNK12, KIAA0101, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF23, KIF26A, KIF2C, 

KIF4A, KLF9, KNL1, LEF1, LGALS3, LILRA1, LILRB2, LOC100130872, LOC100505650, LOC100996643, LOC285097, 

LOC728175, LY96, LYZ, MAD2L1, MCM10, MCM4, MCM5, MCM7, MDK, MDM2, MELK, METTL7A, MIR4683, 

MIR6845, MIR8071-1, MKI67, MND1, MNDA, MPV17L, MS4A1, MS4A4A, MS4A7, MSH6, MTHFD2, MTSS1, 

MYRIP, NCAPG, NCAPH, NEAT1, NEDD9, NEK2, NME1, NPCDR1, NUF2, NUSAP1, OIP5, P2RX5, P2RY14, PAICS, 

PBK, PCNA, PDE4B, PFKFB2, PHF19, PIK3IP1, PLK4, POLE2, POLQ, POU4F1, PPBP, PPIF, PPP1R16B, PRDM1, 

PRPS2, PRR11, PSPH, PTP4A1, PTTG1, RAB31, RAD51, RAD51AP1, RAG1, RAG2, RASSF4, RBM14, RBMS3, RCC1, 

RFC3, RHOBTB3, RMI2, RNASET2, RPS6KA2, RRM2, S100A11, S100A8, SCML4, SELENOI, SEMA4D, SERPINA1, 

SERPINB9, SESN1, SHCBP1, SIK1, SKP2, SLA, SLC22A23, SMAP2, SMC2, SMIM3, SNORA21, SNORD3B-1, SNTB2, 

SNX10, SNX29P2, SOCS1, SOS1, SQLE, STAB1, STIL, SUV39H2, TARSL2, TBXA2R, TCF19, TENM4, TIMELESS, TIPIN, 

TK1, TMEM100, TMEM2, TMEM97, TNFRSF21, TNFSF8, TOP2A, TPX2, TRIB1, TRIP13, TTK, TUBA4A, TXNIP, 

TYMS, UBE2C, UBE2T, WASF1, WDHD1, WDR76, WFS1, ZBTB16, ZFP36L2, ZNF367, ZWINT, FKBP5 

Networks: 

Multiple Transition Functions for ABHD17B with decay value = 1: 

ABHD17B_1_Activator: ABHD17B = B3GNT2 (Confidence: 1, TimeStep: 1) 

ABHD17B_2_Activator: ABHD17B = BMF (Confidence: 1, TimeStep: 1) 
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ABHD17B_3_Activator: ABHD17B = ABHD17B&!SEMA4D (Confidence: 1, TimeStep: 1) 

ABHD17B_4_Activator: ABHD17B = DHX9 (Confidence: 1, TimeStep: 2) 

ABHD17B_5_Activator: ABHD17B = HSP90AB1 (Confidence: 1, TimeStep: 2) 

ABHD17B_1_Inhibitor: ABHD17B = !B3GNT2 (Confidence: 1, TimeStep: 2) 

ABHD17B_2_Inhibitor: ABHD17B = !ABHD17B (Confidence: 1, TimeStep: 2) 

ABHD17B_3_Inhibitor: ABHD17B = IL18RAP (Confidence: 1, TimeStep: 2) 

ABHD17B_4_Inhibitor: ABHD17B = SEMA4D (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for AKAP12 with decay value = 1: 

AKAP12_1_Activator: AKAP12 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

AKAP12_2_Activator: AKAP12 = AKAP12&RAG1 (Confidence: 1, TimeStep: 1) 

AKAP12_3_Activator: AKAP12 = AKAP12&TMEM2 (Confidence: 1, TimeStep: 1) 

AKAP12_4_Activator: AKAP12 = IGLL1&IRAK3 (Confidence: 1, TimeStep: 1) 

AKAP12_5_Activator: AKAP12 = !CENPV&DPEP1 (Confidence: 1, TimeStep: 1) 

AKAP12_1_Inhibitor: AKAP12 = !AKAP12 (Confidence: 1, TimeStep: 1) 

AKAP12_2_Inhibitor: AKAP12 = !TMEM2 (Confidence: 1, TimeStep: 1) 

AKAP12_3_Inhibitor: AKAP12 = !IGLL1 (Confidence: 1, TimeStep: 1) 

AKAP12_4_Inhibitor: AKAP12 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

AKAP12_5_Inhibitor: AKAP12 = !RAG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ANLN with decay value = 1: 

ANLN_1_Activator: ANLN = ATAD2 (Confidence: 1, TimeStep: 1) 

ANLN_2_Activator: ANLN = BIRC5 (Confidence: 1, TimeStep: 1) 

ANLN_3_Activator: ANLN = BUB1 (Confidence: 1, TimeStep: 1) 

ANLN_4_Activator: ANLN = CCNA2 (Confidence: 1, TimeStep: 1) 

ANLN_5_Activator: ANLN = CDCA5 (Confidence: 1, TimeStep: 1) 

ANLN_1_Inhibitor: ANLN = !ATAD2 (Confidence: 1, TimeStep: 1) 

ANLN_2_Inhibitor: ANLN = !BIRC5 (Confidence: 1, TimeStep: 1) 

ANLN_3_Inhibitor: ANLN = !BUB1 (Confidence: 1, TimeStep: 1) 

ANLN_4_Inhibitor: ANLN = !CCNA2 (Confidence: 1, TimeStep: 1) 

ANLN_5_Inhibitor: ANLN = !CDCA5 (Confidence: 1, TimeStep: 1) 

 



 

 149 

Multiple Transition Functions for ANP32E with decay value = 1: 

ANP32E_1_Activator: ANP32E = APITD1-CORT (Confidence: 1, TimeStep: 1) 

ANP32E_2_Activator: ANP32E = ASF1B (Confidence: 1, TimeStep: 1) 

ANP32E_3_Activator: ANP32E = AURKA (Confidence: 1, TimeStep: 1) 

ANP32E_4_Activator: ANP32E = !BTG1 (Confidence: 1, TimeStep: 1) 

ANP32E_5_Activator: ANP32E = CCDC34 (Confidence: 1, TimeStep: 1) 

ANP32E_1_Inhibitor: ANP32E = !CENPF (Confidence: 1, TimeStep: 1) 

ANP32E_2_Inhibitor: ANP32E = !DEPDC1B (Confidence: 1, TimeStep: 1) 

ANP32E_3_Inhibitor: ANP32E = !NEK2 (Confidence: 1, TimeStep: 1) 

ANP32E_4_Inhibitor: ANP32E = !ANP32E (Confidence: 1, TimeStep: 1) 

ANP32E_5_Inhibitor: ANP32E = !FH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for APITD1-CORT with decay value = 1: 

APITD1-CORT_1_Activator: APITD1-CORT = APITD1-CORT (Confidence: 1, TimeStep: 1) 

APITD1-CORT_2_Activator: APITD1-CORT = ASF1B (Confidence: 1, TimeStep: 1) 

APITD1-CORT_3_Activator: APITD1-CORT = AURKA (Confidence: 1, TimeStep: 1) 

APITD1-CORT_4_Activator: APITD1-CORT = !BTG1 (Confidence: 1, TimeStep: 1) 

APITD1-CORT_5_Activator: APITD1-CORT = CCDC34 (Confidence: 1, TimeStep: 1) 

APITD1-CORT_1_Inhibitor: APITD1-CORT = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

APITD1-CORT_2_Inhibitor: APITD1-CORT = !ASF1B (Confidence: 1, TimeStep: 1) 

APITD1-CORT_3_Inhibitor: APITD1-CORT = !AURKA (Confidence: 1, TimeStep: 1) 

APITD1-CORT_4_Inhibitor: APITD1-CORT = BTG1 (Confidence: 1, TimeStep: 1) 

APITD1-CORT_5_Inhibitor: APITD1-CORT = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ARPP21 with decay value = 1: 

ARPP21_1_Activator: ARPP21 = AKAP12&P2RY14 (Confidence: 1, TimeStep: 1) 

ARPP21_2_Activator: ARPP21 = ID2&!ITPKB (Confidence: 1, TimeStep: 1) 

ARPP21_3_Activator: ARPP21 = !CENPH&KCNK12 (Confidence: 1, TimeStep: 1) 

ARPP21_4_Activator: ARPP21 = !FH&KCNK12 (Confidence: 1, TimeStep: 1) 

ARPP21_5_Activator: ARPP21 = KCNK12&P2RY14 (Confidence: 1, TimeStep: 1) 

ARPP21_1_Inhibitor: ARPP21 = !RAG1 (Confidence: 1, TimeStep: 1) 

ARPP21_2_Inhibitor: ARPP21 = !AKAP12&!ARPP21 (Confidence: 1, TimeStep: 1) 
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ARPP21_3_Inhibitor: ARPP21 = !BMF&!LOC285097 (Confidence: 1, TimeStep: 1) 

ARPP21_4_Inhibitor: ARPP21 = !LOC285097&!NPCDR1 (Confidence: 1, TimeStep: 1) 

ARPP21_5_Inhibitor: ARPP21 = !AKAP12&!RAG2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ARRDC3 with decay value = 1: 

ARRDC3_1_Activator: ARRDC3 = !B3GNT2&PRDM1 (Confidence: 1, TimeStep: 1) 

ARRDC3_2_Activator: ARRDC3 = !B3GNT2&SOCS1 (Confidence: 1, TimeStep: 1) 

ARRDC3_3_Activator: ARRDC3 = ARRDC3&FGL2 (Confidence: 1, TimeStep: 1) 

ARRDC3_4_Activator: ARRDC3 = ARRDC3&PPBP (Confidence: 1, TimeStep: 1) 

ARRDC3_5_Activator: ARRDC3 = !EMP1&FGL2 (Confidence: 1, TimeStep: 1) 

ARRDC3_1_Inhibitor: ARRDC3 = POU4F1 (Confidence: 1, TimeStep: 1) 

ARRDC3_2_Inhibitor: ARRDC3 = !SNX10 (Confidence: 1, TimeStep: 1) 

ARRDC3_3_Inhibitor: ARRDC3 = !IL18RAP&!TNFSF8 (Confidence: 1, TimeStep: 1) 

ARRDC3_4_Inhibitor: ARRDC3 = ID3&PRPS2 (Confidence: 1, TimeStep: 1) 

ARRDC3_5_Inhibitor: ARRDC3 = !IL18R1&!TNFSF8 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ASF1B with decay value = 1: 

ASF1B_1_Activator: ASF1B = APITD1-CORT (Confidence: 1, TimeStep: 1) 

ASF1B_2_Activator: ASF1B = ASF1B (Confidence: 1, TimeStep: 1) 

ASF1B_3_Activator: ASF1B = AURKA (Confidence: 1, TimeStep: 1) 

ASF1B_4_Activator: ASF1B = !BTG1 (Confidence: 1, TimeStep: 1) 

ASF1B_5_Activator: ASF1B = CCDC34 (Confidence: 1, TimeStep: 1) 

ASF1B_1_Inhibitor: ASF1B = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

ASF1B_2_Inhibitor: ASF1B = !ASF1B (Confidence: 1, TimeStep: 1) 

ASF1B_3_Inhibitor: ASF1B = !AURKA (Confidence: 1, TimeStep: 1) 

ASF1B_4_Inhibitor: ASF1B = BTG1 (Confidence: 1, TimeStep: 1) 

ASF1B_5_Inhibitor: ASF1B = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ASPM with decay value = 1: 

ASPM_1_Activator: ASPM = CENPH (Confidence: 1, TimeStep: 1) 

ASPM_2_Activator: ASPM = APITD1-CORT (Confidence: 1, TimeStep: 1) 

ASPM_3_Activator: ASPM = ASF1B (Confidence: 1, TimeStep: 1) 
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ASPM_4_Activator: ASPM = AURKA (Confidence: 1, TimeStep: 1) 

ASPM_5_Activator: ASPM = !BTG1 (Confidence: 1, TimeStep: 1) 

ASPM_1_Inhibitor: ASPM = !FH (Confidence: 1, TimeStep: 1) 

ASPM_2_Inhibitor: ASPM = !NUSAP1 (Confidence: 1, TimeStep: 1) 

ASPM_3_Inhibitor: ASPM = !RFC3 (Confidence: 1, TimeStep: 1) 

ASPM_4_Inhibitor: ASPM = !NUF2 (Confidence: 1, TimeStep: 1) 

ASPM_5_Inhibitor: ASPM = !KIF11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ATAD2 with decay value = 1: 

ATAD2_1_Activator: ATAD2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

ATAD2_2_Activator: ATAD2 = ASF1B (Confidence: 1, TimeStep: 1) 

ATAD2_3_Activator: ATAD2 = AURKA (Confidence: 1, TimeStep: 1) 

ATAD2_4_Activator: ATAD2 = !BTG1 (Confidence: 1, TimeStep: 1) 

ATAD2_5_Activator: ATAD2 = CCDC34 (Confidence: 1, TimeStep: 1) 

ATAD2_1_Inhibitor: ATAD2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

ATAD2_2_Inhibitor: ATAD2 = !ASF1B (Confidence: 1, TimeStep: 1) 

ATAD2_3_Inhibitor: ATAD2 = !AURKA (Confidence: 1, TimeStep: 1) 

ATAD2_4_Inhibitor: ATAD2 = BTG1 (Confidence: 1, TimeStep: 1) 

ATAD2_5_Inhibitor: ATAD2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for AURKA with decay value = 1: 

AURKA_1_Activator: AURKA = APITD1-CORT (Confidence: 1, TimeStep: 1) 

AURKA_2_Activator: AURKA = ASF1B (Confidence: 1, TimeStep: 1) 

AURKA_3_Activator: AURKA = AURKA (Confidence: 1, TimeStep: 1) 

AURKA_4_Activator: AURKA = !BTG1 (Confidence: 1, TimeStep: 1) 

AURKA_5_Activator: AURKA = CCDC34 (Confidence: 1, TimeStep: 1) 

AURKA_1_Inhibitor: AURKA = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

AURKA_2_Inhibitor: AURKA = !ASF1B (Confidence: 1, TimeStep: 1) 

AURKA_3_Inhibitor: AURKA = !AURKA (Confidence: 1, TimeStep: 1) 

AURKA_4_Inhibitor: AURKA = BTG1 (Confidence: 1, TimeStep: 1) 

AURKA_5_Inhibitor: AURKA = !CCDC34 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for AURKB with decay value = 1: 

AURKB_1_Activator: AURKB = APITD1-CORT (Confidence: 1, TimeStep: 1) 

AURKB_2_Activator: AURKB = ASF1B (Confidence: 1, TimeStep: 1) 

AURKB_3_Activator: AURKB = AURKA (Confidence: 1, TimeStep: 1) 

AURKB_4_Activator: AURKB = !BTG1 (Confidence: 1, TimeStep: 1) 

AURKB_5_Activator: AURKB = CCDC34 (Confidence: 1, TimeStep: 1) 

AURKB_1_Inhibitor: AURKB = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

AURKB_2_Inhibitor: AURKB = !ASF1B (Confidence: 1, TimeStep: 1) 

AURKB_3_Inhibitor: AURKB = !AURKA (Confidence: 1, TimeStep: 1) 

AURKB_4_Inhibitor: AURKB = BTG1 (Confidence: 1, TimeStep: 1) 

AURKB_5_Inhibitor: AURKB = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for B3GNT2 with decay value = 1: 

B3GNT2_1_Activator: B3GNT2 = EMP1 (Confidence: 1, TimeStep: 1) 

B3GNT2_2_Activator: B3GNT2 = B3GNT2&!HBG1 (Confidence: 1, TimeStep: 1) 

B3GNT2_3_Activator: B3GNT2 = CDK6&DENND3 (Confidence: 1, TimeStep: 1) 

B3GNT2_4_Activator: B3GNT2 = DENND3&LEF1 (Confidence: 1, TimeStep: 1) 

B3GNT2_5_Activator: B3GNT2 = B3GNT2&DENND3 (Confidence: 1, TimeStep: 1) 

B3GNT2_1_Inhibitor: B3GNT2 = !ABHD17B (Confidence: 1, TimeStep: 1) 

B3GNT2_2_Inhibitor: B3GNT2 = SEMA4D (Confidence: 1, TimeStep: 1) 

B3GNT2_3_Inhibitor: B3GNT2 = !WASF1 (Confidence: 1, TimeStep: 1) 

B3GNT2_4_Inhibitor: B3GNT2 = !B3GNT2&!HRK (Confidence: 1, TimeStep: 1) 

B3GNT2_5_Inhibitor: B3GNT2 = !EMP1&!MSH6 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BCAT1 with decay value = 1: 

BCAT1_1_Activator: BCAT1 = !TXNIP (Confidence: 1, TimeStep: 1) 

BCAT1_2_Activator: BCAT1 = CKAP2 (Confidence: 1, TimeStep: 1) 

BCAT1_3_Activator: BCAT1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

BCAT1_4_Activator: BCAT1 = ASF1B (Confidence: 1, TimeStep: 1) 

BCAT1_5_Activator: BCAT1 = AURKA (Confidence: 1, TimeStep: 1) 

BCAT1_1_Inhibitor: BCAT1 = !BCAT1 (Confidence: 1, TimeStep: 1) 

BCAT1_2_Inhibitor: BCAT1 = !LOC100996643 (Confidence: 1, TimeStep: 1) 



 

 153 

BCAT1_3_Inhibitor: BCAT1 = !PAICS (Confidence: 1, TimeStep: 1) 

BCAT1_4_Inhibitor: BCAT1 = CCR1 (Confidence: 1, TimeStep: 1) 

BCAT1_5_Inhibitor: BCAT1 = !FABP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BCL10 with decay value = 1: 

BCL10_1_Inhibitor: BCL10 = GIMAP4 (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for BCL2L11 with decay value = 1: 

BCL2L11_1_Activator: BCL2L11 = !CDK6&!IL1B (Confidence: 1, TimeStep: 1) 

BCL2L11_2_Activator: BCL2L11 = !CDK6&!DENND3 (Confidence: 1, TimeStep: 1) 

BCL2L11_3_Activator: BCL2L11 = !ATAD2&BCL2L11 (Confidence: 1, TimeStep: 1) 

BCL2L11_4_Activator: BCL2L11 = !AURKB&BCL2L11 (Confidence: 1, TimeStep: 1) 

BCL2L11_5_Activator: BCL2L11 = BIRC3&CENPU (Confidence: 1, TimeStep: 1) 

BCL2L11_1_Inhibitor: BCL2L11 = !DEPDC1B&!SLA (Confidence: 1, TimeStep: 1) 

BCL2L11_2_Inhibitor: BCL2L11 = !BIRC3&DENND3 (Confidence: 1, TimeStep: 1) 

BCL2L11_3_Inhibitor: BCL2L11 = !BIRC3&IL1B (Confidence: 1, TimeStep: 1) 

BCL2L11_4_Inhibitor: BCL2L11 = !CENPF&!SLA (Confidence: 1, TimeStep: 1) 

BCL2L11_5_Inhibitor: BCL2L11 = !KNL1&!SLA (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BIRC3 with decay value = 1: 

BIRC3_1_Activator: BIRC3 = !EMP1&!SELENOI (Confidence: 1, TimeStep: 1) 

BIRC3_2_Activator: BIRC3 = ARRDC3&SERPINA1 (Confidence: 1, TimeStep: 1) 

BIRC3_3_Activator: BIRC3 = FGR&IGH (Confidence: 1, TimeStep: 1) 

BIRC3_4_Activator: BIRC3 = HBB&!SELENOI (Confidence: 1, TimeStep: 1) 

BIRC3_5_Activator: BIRC3 = !BIRC3&!TYMS (Confidence: 1, TimeStep: 1) 

BIRC3_1_Inhibitor: BIRC3 = LOC728175 (Confidence: 1, TimeStep: 1) 

BIRC3_2_Inhibitor: BIRC3 = !HBG1&MYRIP (Confidence: 1, TimeStep: 1) 

BIRC3_3_Inhibitor: BIRC3 = LOC100996643&MYRIP (Confidence: 1, TimeStep: 1) 

BIRC3_4_Inhibitor: BIRC3 = EMP1&MYRIP (Confidence: 1, TimeStep: 1) 

BIRC3_5_Inhibitor: BIRC3 = !HBB&MYRIP (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BIRC5 with decay value = 1: 
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BIRC5_1_Activator: BIRC5 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

BIRC5_2_Activator: BIRC5 = ASF1B (Confidence: 1, TimeStep: 1) 

BIRC5_3_Activator: BIRC5 = AURKA (Confidence: 1, TimeStep: 1) 

BIRC5_4_Activator: BIRC5 = !BTG1 (Confidence: 1, TimeStep: 1) 

BIRC5_5_Activator: BIRC5 = CCDC34 (Confidence: 1, TimeStep: 1) 

BIRC5_1_Inhibitor: BIRC5 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

BIRC5_2_Inhibitor: BIRC5 = !ASF1B (Confidence: 1, TimeStep: 1) 

BIRC5_3_Inhibitor: BIRC5 = !AURKA (Confidence: 1, TimeStep: 1) 

BIRC5_4_Inhibitor: BIRC5 = BTG1 (Confidence: 1, TimeStep: 1) 

BIRC5_5_Inhibitor: BIRC5 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BMF with decay value = 1: 

BMF_1_Activator: BMF = BMF (Confidence: 1, TimeStep: 1) 

BMF_2_Activator: BMF = HRK (Confidence: 1, TimeStep: 1) 

BMF_3_Activator: BMF = MIR4683 (Confidence: 1, TimeStep: 1) 

BMF_4_Activator: BMF = RBMS3 (Confidence: 1, TimeStep: 1) 

BMF_5_Activator: BMF = RPS6KA2 (Confidence: 1, TimeStep: 1) 

BMF_1_Inhibitor: BMF = FOXM1 (Confidence: 1, TimeStep: 1) 

BMF_2_Inhibitor: BMF = STIL (Confidence: 1, TimeStep: 1) 

BMF_3_Inhibitor: BMF = ATAD2 (Confidence: 1, TimeStep: 1) 

BMF_4_Inhibitor: BMF = BIRC5 (Confidence: 1, TimeStep: 1) 

BMF_5_Inhibitor: BMF = BUB1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BRCA1 with decay value = 1: 

BRCA1_1_Activator: BRCA1 = !APITD1-CORT&BRIP1 (Confidence: 1, TimeStep: 1) 

BRCA1_2_Activator: BRCA1 = !APITD1-CORT&CHEK1 (Confidence: 1, TimeStep: 1) 

BRCA1_3_Activator: BRCA1 = !APITD1-CORT&FANCI (Confidence: 1, TimeStep: 1) 

BRCA1_4_Activator: BRCA1 = !APITD1-CORT&TTK (Confidence: 1, TimeStep: 1) 

BRCA1_5_Activator: BRCA1 = !ASF1B&BRIP1 (Confidence: 1, TimeStep: 1) 

BRCA1_1_Inhibitor: BRCA1 = !BRCA1 (Confidence: 1, TimeStep: 1) 

BRCA1_2_Inhibitor: BRCA1 = !BYSL (Confidence: 1, TimeStep: 1) 

BRCA1_3_Inhibitor: BRCA1 = !FABP5 (Confidence: 1, TimeStep: 1) 
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BRCA1_4_Inhibitor: BRCA1 = GVINP1 (Confidence: 1, TimeStep: 1) 

BRCA1_5_Inhibitor: BRCA1 = PRDM1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BRIP1 with decay value = 1: 

BRIP1_1_Activator: BRIP1 = CCNB2&!P2RX5 (Confidence: 1, TimeStep: 1) 

BRIP1_2_Activator: BRIP1 = CDC45&!P2RX5 (Confidence: 1, TimeStep: 1) 

BRIP1_3_Activator: BRIP1 = CENPA&!P2RX5 (Confidence: 1, TimeStep: 1) 

BRIP1_4_Activator: BRIP1 = DLGAP5&!P2RX5 (Confidence: 1, TimeStep: 1) 

BRIP1_5_Activator: BRIP1 = MAD2L1&!P2RX5 (Confidence: 1, TimeStep: 1) 

BRIP1_1_Inhibitor: BRIP1 = !KIF2C (Confidence: 1, TimeStep: 1) 

BRIP1_2_Inhibitor: BRIP1 = !CCNB2 (Confidence: 1, TimeStep: 1) 

BRIP1_3_Inhibitor: BRIP1 = !CDC45 (Confidence: 1, TimeStep: 1) 

BRIP1_4_Inhibitor: BRIP1 = !CENPA (Confidence: 1, TimeStep: 1) 

BRIP1_5_Inhibitor: BRIP1 = !DLGAP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BTG1 with decay value = 1: 

BTG1_1_Activator: BTG1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

BTG1_2_Activator: BTG1 = !ASF1B (Confidence: 1, TimeStep: 1) 

BTG1_3_Activator: BTG1 = !AURKA (Confidence: 1, TimeStep: 1) 

BTG1_4_Activator: BTG1 = BTG1 (Confidence: 1, TimeStep: 1) 

BTG1_5_Activator: BTG1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

BTG1_1_Inhibitor: BTG1 = UBE2C (Confidence: 1, TimeStep: 1) 

BTG1_2_Inhibitor: BTG1 = ANLN&!B3GNT2 (Confidence: 1, TimeStep: 1) 

BTG1_3_Inhibitor: BTG1 = ANP32E&!B3GNT2 (Confidence: 1, TimeStep: 1) 

BTG1_4_Inhibitor: BTG1 = ASPM&!B3GNT2 (Confidence: 1, TimeStep: 1) 

BTG1_5_Inhibitor: BTG1 = !B3GNT2&BIRC5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BTNL9 with decay value = 1: 

BTNL9_1_Activator: BTNL9 = !CEP55&LOC285097 (Confidence: 1, TimeStep: 1) 

BTNL9_2_Activator: BTNL9 = !BCL2L11&BTNL9 (Confidence: 1, TimeStep: 1) 

BTNL9_3_Activator: BTNL9 = BMF&BTNL9 (Confidence: 1, TimeStep: 1) 

BTNL9_4_Activator: BTNL9 = !CEP55&RPS6KA2 (Confidence: 1, TimeStep: 1) 



 

 156 

BTNL9_5_Activator: BTNL9 = !DEPDC1B&RPS6KA2 (Confidence: 1, TimeStep: 1) 

BTNL9_1_Inhibitor: BTNL9 = BCL2L11&!KIF26A (Confidence: 1, TimeStep: 1) 

BTNL9_2_Inhibitor: BTNL9 = BCL2L11&!SIK1 (Confidence: 1, TimeStep: 1) 

BTNL9_3_Inhibitor: BTNL9 = !IL1B&S100A11 (Confidence: 1, TimeStep: 1) 

BTNL9_4_Inhibitor: BTNL9 = !KIF26A&!RNASET2 (Confidence: 1, TimeStep: 1) 

BTNL9_5_Inhibitor: BTNL9 = !RBMS3&S100A11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BUB1 with decay value = 1: 

BUB1_1_Activator: BUB1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

BUB1_2_Activator: BUB1 = ASF1B (Confidence: 1, TimeStep: 1) 

BUB1_3_Activator: BUB1 = AURKA (Confidence: 1, TimeStep: 1) 

BUB1_4_Activator: BUB1 = !BTG1 (Confidence: 1, TimeStep: 1) 

BUB1_5_Activator: BUB1 = CCDC34 (Confidence: 1, TimeStep: 1) 

BUB1_1_Inhibitor: BUB1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

BUB1_2_Inhibitor: BUB1 = !ASF1B (Confidence: 1, TimeStep: 1) 

BUB1_3_Inhibitor: BUB1 = !AURKA (Confidence: 1, TimeStep: 1) 

BUB1_4_Inhibitor: BUB1 = BTG1 (Confidence: 1, TimeStep: 1) 

BUB1_5_Inhibitor: BUB1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BUB1B with decay value = 1: 

BUB1B_1_Activator: BUB1B = CENPH (Confidence: 1, TimeStep: 1) 

BUB1B_2_Activator: BUB1B = APITD1-CORT (Confidence: 1, TimeStep: 1) 

BUB1B_3_Activator: BUB1B = ASF1B (Confidence: 1, TimeStep: 1) 

BUB1B_4_Activator: BUB1B = AURKA (Confidence: 1, TimeStep: 1) 

BUB1B_5_Activator: BUB1B = !BTG1 (Confidence: 1, TimeStep: 1) 

BUB1B_1_Inhibitor: BUB1B = !CENPH (Confidence: 1, TimeStep: 1) 

BUB1B_2_Inhibitor: BUB1B = !CDK1 (Confidence: 1, TimeStep: 1) 

BUB1B_3_Inhibitor: BUB1B = !HMMR (Confidence: 1, TimeStep: 1) 

BUB1B_4_Inhibitor: BUB1B = !KIF14 (Confidence: 1, TimeStep: 1) 

BUB1B_5_Inhibitor: BUB1B = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for BYSL with decay value = 1: 
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BYSL_1_Activator: BYSL = ANLN&!PFKFB2 (Confidence: 1, TimeStep: 1) 

BYSL_2_Activator: BYSL = BRIP1&HIST4H4 (Confidence: 1, TimeStep: 1) 

BYSL_3_Activator: BYSL = BUB1B&HIST4H4 (Confidence: 1, TimeStep: 1) 

BYSL_4_Activator: BYSL = C4orf46&HIST4H4 (Confidence: 1, TimeStep: 1) 

BYSL_5_Activator: BYSL = CDC20&HIST4H4 (Confidence: 1, TimeStep: 1) 

BYSL_1_Inhibitor: BYSL = !BYSL (Confidence: 1, TimeStep: 1) 

BYSL_2_Inhibitor: BYSL = !PAICS (Confidence: 1, TimeStep: 1) 

BYSL_3_Inhibitor: BYSL = !SELENOI (Confidence: 1, TimeStep: 1) 

BYSL_4_Inhibitor: BYSL = !FABP5 (Confidence: 1, TimeStep: 1) 

BYSL_5_Inhibitor: BYSL = GVINP1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for C4orf46 with decay value = 1: 

C4orf46_1_Activator: C4orf46 = TMEM97 (Confidence: 1, TimeStep: 1) 

C4orf46_2_Activator: C4orf46 = WDHD1 (Confidence: 1, TimeStep: 1) 

C4orf46_3_Activator: C4orf46 = CENPH (Confidence: 1, TimeStep: 1) 

C4orf46_4_Activator: C4orf46 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

C4orf46_5_Activator: C4orf46 = ASF1B (Confidence: 1, TimeStep: 1) 

C4orf46_1_Inhibitor: C4orf46 = !TMEM97 (Confidence: 1, TimeStep: 1) 

C4orf46_2_Inhibitor: C4orf46 = !WDHD1 (Confidence: 1, TimeStep: 1) 

C4orf46_3_Inhibitor: C4orf46 = !CCNB1 (Confidence: 1, TimeStep: 1) 

C4orf46_4_Inhibitor: C4orf46 = !IQGAP3 (Confidence: 1, TimeStep: 1) 

C4orf46_5_Inhibitor: C4orf46 = !BUB1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for C5orf24 with decay value = 1: 

C5orf24_1_Activator: C5orf24 = KIF4A (Confidence: 1, TimeStep: 1) 

C5orf24_2_Activator: C5orf24 = CCNB1 (Confidence: 1, TimeStep: 1) 

C5orf24_3_Activator: C5orf24 = CENPF (Confidence: 1, TimeStep: 1) 

C5orf24_4_Activator: C5orf24 = IQGAP3 (Confidence: 1, TimeStep: 1) 

C5orf24_5_Activator: C5orf24 = NEK2 (Confidence: 1, TimeStep: 1) 

C5orf24_1_Inhibitor: C5orf24 = LGALS3 (Confidence: 1, TimeStep: 1) 

C5orf24_2_Inhibitor: C5orf24 = LOC100130872 (Confidence: 1, TimeStep: 1) 

C5orf24_3_Inhibitor: C5orf24 = !CKS1B&!PSPH (Confidence: 1, TimeStep: 1) 
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C5orf24_4_Inhibitor: C5orf24 = !BCAT1&HBB (Confidence: 1, TimeStep: 1) 

C5orf24_5_Inhibitor: C5orf24 = !BCAT1&HBG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCDC34 with decay value = 1: 

CCDC34_1_Activator: CCDC34 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCDC34_2_Activator: CCDC34 = ASF1B (Confidence: 1, TimeStep: 1) 

CCDC34_3_Activator: CCDC34 = AURKA (Confidence: 1, TimeStep: 1) 

CCDC34_4_Activator: CCDC34 = !BTG1 (Confidence: 1, TimeStep: 1) 

CCDC34_5_Activator: CCDC34 = CCDC34 (Confidence: 1, TimeStep: 1) 

CCDC34_1_Inhibitor: CCDC34 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCDC34_2_Inhibitor: CCDC34 = !ASF1B (Confidence: 1, TimeStep: 1) 

CCDC34_3_Inhibitor: CCDC34 = !AURKA (Confidence: 1, TimeStep: 1) 

CCDC34_4_Inhibitor: CCDC34 = BTG1 (Confidence: 1, TimeStep: 1) 

CCDC34_5_Inhibitor: CCDC34 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCDC86 with decay value = 1: 

CCDC86_1_Activator: CCDC86 = KIF2C (Confidence: 1, TimeStep: 1) 

CCDC86_2_Activator: CCDC86 = !TXNIP (Confidence: 1, TimeStep: 1) 

CCDC86_3_Activator: CCDC86 = ATAD2 (Confidence: 1, TimeStep: 1) 

CCDC86_4_Activator: CCDC86 = BIRC5 (Confidence: 1, TimeStep: 1) 

CCDC86_5_Activator: CCDC86 = BUB1 (Confidence: 1, TimeStep: 1) 

CCDC86_1_Inhibitor: CCDC86 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

CCDC86_2_Inhibitor: CCDC86 = !BYSL (Confidence: 1, TimeStep: 1) 

CCDC86_3_Inhibitor: CCDC86 = !PAICS (Confidence: 1, TimeStep: 1) 

CCDC86_4_Inhibitor: CCDC86 = !SELENOI (Confidence: 1, TimeStep: 1) 

CCDC86_5_Inhibitor: CCDC86 = CDC42EP3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCNA2 with decay value = 1: 

CCNA2_1_Activator: CCNA2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNA2_2_Activator: CCNA2 = ASF1B (Confidence: 1, TimeStep: 1) 

CCNA2_3_Activator: CCNA2 = AURKA (Confidence: 1, TimeStep: 1) 

CCNA2_4_Activator: CCNA2 = !BTG1 (Confidence: 1, TimeStep: 1) 
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CCNA2_5_Activator: CCNA2 = CCDC34 (Confidence: 1, TimeStep: 1) 

CCNA2_1_Inhibitor: CCNA2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNA2_2_Inhibitor: CCNA2 = !ASF1B (Confidence: 1, TimeStep: 1) 

CCNA2_3_Inhibitor: CCNA2 = !AURKA (Confidence: 1, TimeStep: 1) 

CCNA2_4_Inhibitor: CCNA2 = BTG1 (Confidence: 1, TimeStep: 1) 

CCNA2_5_Inhibitor: CCNA2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCNB1 with decay value = 1: 

CCNB1_1_Activator: CCNB1 = CENPH (Confidence: 1, TimeStep: 1) 

CCNB1_2_Activator: CCNB1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNB1_3_Activator: CCNB1 = ASF1B (Confidence: 1, TimeStep: 1) 

CCNB1_4_Activator: CCNB1 = AURKA (Confidence: 1, TimeStep: 1) 

CCNB1_5_Activator: CCNB1 = !BTG1 (Confidence: 1, TimeStep: 1) 

CCNB1_1_Inhibitor: CCNB1 = !CENPH (Confidence: 1, TimeStep: 1) 

CCNB1_2_Inhibitor: CCNB1 = !CDK1 (Confidence: 1, TimeStep: 1) 

CCNB1_3_Inhibitor: CCNB1 = !HMMR (Confidence: 1, TimeStep: 1) 

CCNB1_4_Inhibitor: CCNB1 = !KIF14 (Confidence: 1, TimeStep: 1) 

CCNB1_5_Inhibitor: CCNB1 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCNB2 with decay value = 1: 

CCNB2_1_Activator: CCNB2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNB2_2_Activator: CCNB2 = ASF1B (Confidence: 1, TimeStep: 1) 

CCNB2_3_Activator: CCNB2 = AURKA (Confidence: 1, TimeStep: 1) 

CCNB2_4_Activator: CCNB2 = !BTG1 (Confidence: 1, TimeStep: 1) 

CCNB2_5_Activator: CCNB2 = CCDC34 (Confidence: 1, TimeStep: 1) 

CCNB2_1_Inhibitor: CCNB2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNB2_2_Inhibitor: CCNB2 = !ASF1B (Confidence: 1, TimeStep: 1) 

CCNB2_3_Inhibitor: CCNB2 = !AURKA (Confidence: 1, TimeStep: 1) 

CCNB2_4_Inhibitor: CCNB2 = BTG1 (Confidence: 1, TimeStep: 1) 

CCNB2_5_Inhibitor: CCNB2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCNE2 with decay value = 1: 
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CCNE2_1_Activator: CCNE2 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

CCNE2_2_Activator: CCNE2 = CENPV&MDK (Confidence: 1, TimeStep: 1) 

CCNE2_3_Activator: CCNE2 = E2F7&MDK (Confidence: 1, TimeStep: 1) 

CCNE2_4_Activator: CCNE2 = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

CCNE2_5_Activator: CCNE2 = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

CCNE2_1_Inhibitor: CCNE2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CCNE2_2_Inhibitor: CCNE2 = !ASF1B (Confidence: 1, TimeStep: 1) 

CCNE2_3_Inhibitor: CCNE2 = !AURKA (Confidence: 1, TimeStep: 1) 

CCNE2_4_Inhibitor: CCNE2 = BTG1 (Confidence: 1, TimeStep: 1) 

CCNE2_5_Inhibitor: CCNE2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCNL1 with decay value = 1: 

CCNL1_1_Activator: CCNL1 = !BYSL&ELL2 (Confidence: 1, TimeStep: 1) 

CCNL1_2_Activator: CCNL1 = !BYSL&CENPV (Confidence: 1, TimeStep: 1) 

CCNL1_3_Activator: CCNL1 = !BYSL&!IRAK3 (Confidence: 1, TimeStep: 1) 

CCNL1_4_Activator: CCNL1 = GINS2&!PCNA (Confidence: 1, TimeStep: 1) 

CCNL1_5_Activator: CCNL1 = !ITGAM&!PCNA&SOCS1 (Confidence: 1, TimeStep: 1) 

CCNL1_1_Inhibitor: CCNL1 = BRCA1 (Confidence: 1, TimeStep: 1) 

CCNL1_2_Inhibitor: CCNL1 = PCNA (Confidence: 1, TimeStep: 1) 

CCNL1_3_Inhibitor: CCNL1 = ITGAM (Confidence: 1, TimeStep: 1) 

CCNL1_4_Inhibitor: CCNL1 = LOC285097 (Confidence: 1, TimeStep: 1) 

CCNL1_5_Inhibitor: CCNL1 = TK1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CCR1 with decay value = 1: 

CCR1_1_Activator: CCR1 = RAB31 (Confidence: 1, TimeStep: 1) 

CCR1_2_Activator: CCR1 = !ASPM&CCR1 (Confidence: 1, TimeStep: 1) 

CCR1_3_Activator: CCR1 = !ANP32E&MNDA (Confidence: 1, TimeStep: 1) 

CCR1_4_Activator: CCR1 = !ASPM&MNDA (Confidence: 1, TimeStep: 1) 

CCR1_5_Activator: CCR1 = !BYSL&PPBP (Confidence: 1, TimeStep: 1) 

CCR1_1_Inhibitor: CCR1 = !MTSS1 (Confidence: 1, TimeStep: 1) 

CCR1_2_Inhibitor: CCR1 = !SERPINB9 (Confidence: 1, TimeStep: 1) 

CCR1_3_Inhibitor: CCR1 = !IRAK3 (Confidence: 1, TimeStep: 1) 
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CCR1_4_Inhibitor: CCR1 = !LILRB2 (Confidence: 1, TimeStep: 1) 

CCR1_5_Inhibitor: CCR1 = E2F7 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CD53 with decay value = 1: 

CD53_1_Activator: CD53 = SMAP2 (Confidence: 1, TimeStep: 1) 

CD53_2_Activator: CD53 = CD53 (Confidence: 1, TimeStep: 1) 

CD53_3_Activator: CD53 = ISG20 (Confidence: 1, TimeStep: 1) 

CD53_4_Activator: CD53 = LILRB2 (Confidence: 1, TimeStep: 1) 

CD53_5_Activator: CD53 = RNASET2 (Confidence: 1, TimeStep: 1) 

CD53_1_Inhibitor: CD53 = UBE2C (Confidence: 1, TimeStep: 1) 

CD53_2_Inhibitor: CD53 = ANLN&!GSN (Confidence: 1, TimeStep: 1) 

CD53_3_Inhibitor: CD53 = ANLN&!KIF26A (Confidence: 1, TimeStep: 1) 

CD53_4_Inhibitor: CD53 = ANLN&!IL6ST (Confidence: 1, TimeStep: 1) 

CD53_5_Inhibitor: CD53 = ANP32E&!SIK1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDC20 with decay value = 1: 

CDC20_1_Activator: CDC20 = CENPH (Confidence: 1, TimeStep: 1) 

CDC20_2_Activator: CDC20 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDC20_3_Activator: CDC20 = ASF1B (Confidence: 1, TimeStep: 1) 

CDC20_4_Activator: CDC20 = AURKA (Confidence: 1, TimeStep: 1) 

CDC20_5_Activator: CDC20 = !BTG1 (Confidence: 1, TimeStep: 1) 

CDC20_1_Inhibitor: CDC20 = !CENPH (Confidence: 1, TimeStep: 1) 

CDC20_2_Inhibitor: CDC20 = !CDK1 (Confidence: 1, TimeStep: 1) 

CDC20_3_Inhibitor: CDC20 = !HMMR (Confidence: 1, TimeStep: 1) 

CDC20_4_Inhibitor: CDC20 = !KIF14 (Confidence: 1, TimeStep: 1) 

CDC20_5_Inhibitor: CDC20 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDC42EP3 with decay value = 1: 

CDC42EP3_1_Activator: CDC42EP3 = CDC42EP3 (Confidence: 1, TimeStep: 1) 

CDC42EP3_2_Activator: CDC42EP3 = PPBP (Confidence: 1, TimeStep: 1) 

CDC42EP3_3_Activator: CDC42EP3 = FGL2 (Confidence: 1, TimeStep: 1) 

CDC42EP3_4_Activator: CDC42EP3 = LGALS3 (Confidence: 1, TimeStep: 1) 
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CDC42EP3_5_Activator: CDC42EP3 = RAB31 (Confidence: 1, TimeStep: 1) 

CDC42EP3_1_Inhibitor: CDC42EP3 = CKS1B (Confidence: 1, TimeStep: 1) 

CDC42EP3_2_Inhibitor: CDC42EP3 = !GBP4 (Confidence: 1, TimeStep: 1) 

CDC42EP3_3_Inhibitor: CDC42EP3 = KNL1 (Confidence: 1, TimeStep: 1) 

CDC42EP3_4_Inhibitor: CDC42EP3 = CDT1 (Confidence: 1, TimeStep: 1) 

CDC42EP3_5_Inhibitor: CDC42EP3 = !NEAT1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDC45 with decay value = 1: 

CDC45_1_Activator: CDC45 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

CDC45_2_Activator: CDC45 = CENPV&MDK (Confidence: 1, TimeStep: 1) 

CDC45_3_Activator: CDC45 = E2F7&MDK (Confidence: 1, TimeStep: 1) 

CDC45_4_Activator: CDC45 = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

CDC45_5_Activator: CDC45 = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

CDC45_1_Inhibitor: CDC45 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDC45_2_Inhibitor: CDC45 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDC45_3_Inhibitor: CDC45 = !AURKA (Confidence: 1, TimeStep: 1) 

CDC45_4_Inhibitor: CDC45 = BTG1 (Confidence: 1, TimeStep: 1) 

CDC45_5_Inhibitor: CDC45 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDC6 with decay value = 1: 

CDC6_1_Activator: CDC6 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

CDC6_2_Activator: CDC6 = CENPV&MDK (Confidence: 1, TimeStep: 1) 

CDC6_3_Activator: CDC6 = E2F7&MDK (Confidence: 1, TimeStep: 1) 

CDC6_4_Activator: CDC6 = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

CDC6_5_Activator: CDC6 = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

CDC6_1_Inhibitor: CDC6 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDC6_2_Inhibitor: CDC6 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDC6_3_Inhibitor: CDC6 = !AURKA (Confidence: 1, TimeStep: 1) 

CDC6_4_Inhibitor: CDC6 = BTG1 (Confidence: 1, TimeStep: 1) 

CDC6_5_Inhibitor: CDC6 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDCA2 with decay value = 1: 
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CDCA2_1_Activator: CDCA2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA2_2_Activator: CDCA2 = ASF1B (Confidence: 1, TimeStep: 1) 

CDCA2_3_Activator: CDCA2 = AURKA (Confidence: 1, TimeStep: 1) 

CDCA2_4_Activator: CDCA2 = !BTG1 (Confidence: 1, TimeStep: 1) 

CDCA2_5_Activator: CDCA2 = CCDC34 (Confidence: 1, TimeStep: 1) 

CDCA2_1_Inhibitor: CDCA2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA2_2_Inhibitor: CDCA2 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDCA2_3_Inhibitor: CDCA2 = !AURKA (Confidence: 1, TimeStep: 1) 

CDCA2_4_Inhibitor: CDCA2 = BTG1 (Confidence: 1, TimeStep: 1) 

CDCA2_5_Inhibitor: CDCA2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDCA3 with decay value = 1: 

CDCA3_1_Activator: CDCA3 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA3_2_Activator: CDCA3 = ASF1B (Confidence: 1, TimeStep: 1) 

CDCA3_3_Activator: CDCA3 = AURKA (Confidence: 1, TimeStep: 1) 

CDCA3_4_Activator: CDCA3 = !BTG1 (Confidence: 1, TimeStep: 1) 

CDCA3_5_Activator: CDCA3 = CCDC34 (Confidence: 1, TimeStep: 1) 

CDCA3_1_Inhibitor: CDCA3 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA3_2_Inhibitor: CDCA3 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDCA3_3_Inhibitor: CDCA3 = !AURKA (Confidence: 1, TimeStep: 1) 

CDCA3_4_Inhibitor: CDCA3 = BTG1 (Confidence: 1, TimeStep: 1) 

CDCA3_5_Inhibitor: CDCA3 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDCA5 with decay value = 1: 

CDCA5_1_Activator: CDCA5 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA5_2_Activator: CDCA5 = ASF1B (Confidence: 1, TimeStep: 1) 

CDCA5_3_Activator: CDCA5 = AURKA (Confidence: 1, TimeStep: 1) 

CDCA5_4_Activator: CDCA5 = !BTG1 (Confidence: 1, TimeStep: 1) 

CDCA5_5_Activator: CDCA5 = CCDC34 (Confidence: 1, TimeStep: 1) 

CDCA5_1_Inhibitor: CDCA5 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDCA5_2_Inhibitor: CDCA5 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDCA5_3_Inhibitor: CDCA5 = !AURKA (Confidence: 1, TimeStep: 1) 
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CDCA5_4_Inhibitor: CDCA5 = BTG1 (Confidence: 1, TimeStep: 1) 

CDCA5_5_Inhibitor: CDCA5 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDK1 with decay value = 1: 

CDK1_1_Activator: CDK1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDK1_2_Activator: CDK1 = ASF1B (Confidence: 1, TimeStep: 1) 

CDK1_3_Activator: CDK1 = AURKA (Confidence: 1, TimeStep: 1) 

CDK1_4_Activator: CDK1 = !BTG1 (Confidence: 1, TimeStep: 1) 

CDK1_5_Activator: CDK1 = CCDC34 (Confidence: 1, TimeStep: 1) 

CDK1_1_Inhibitor: CDK1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDK1_2_Inhibitor: CDK1 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDK1_3_Inhibitor: CDK1 = !AURKA (Confidence: 1, TimeStep: 1) 

CDK1_4_Inhibitor: CDK1 = BTG1 (Confidence: 1, TimeStep: 1) 

CDK1_5_Inhibitor: CDK1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDK6 with decay value = 1: 

CDK6_1_Activator: CDK6 = LEF1&!SNTB2 (Confidence: 1, TimeStep: 1) 

CDK6_2_Activator: CDK6 = GIMAP4&!KLF9 (Confidence: 1, TimeStep: 1) 

CDK6_3_Activator: CDK6 = !KLF9&!RHOBTB3 (Confidence: 1, TimeStep: 1) 

CDK6_4_Activator: CDK6 = B3GNT2&!KLF9 (Confidence: 1, TimeStep: 1) 

CDK6_5_Activator: CDK6 = !EMP1&!KLF9&!TRIB1 (Confidence: 1, TimeStep: 1) 

CDK6_1_Inhibitor: CDK6 = !LEF1 (Confidence: 1, TimeStep: 1) 

CDK6_2_Inhibitor: CDK6 = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

CDK6_3_Inhibitor: CDK6 = BCL2L11&KLF9 (Confidence: 1, TimeStep: 1) 

CDK6_4_Inhibitor: CDK6 = BCL2L11&!RAG1 (Confidence: 1, TimeStep: 1) 

CDK6_5_Inhibitor: CDK6 = !BCL2L11&!CDK6 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDKN3 with decay value = 1: 

CDKN3_1_Activator: CDKN3 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDKN3_2_Activator: CDKN3 = ASF1B (Confidence: 1, TimeStep: 1) 

CDKN3_3_Activator: CDKN3 = AURKA (Confidence: 1, TimeStep: 1) 

CDKN3_4_Activator: CDKN3 = !BTG1 (Confidence: 1, TimeStep: 1) 
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CDKN3_5_Activator: CDKN3 = CCDC34 (Confidence: 1, TimeStep: 1) 

CDKN3_1_Inhibitor: CDKN3 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CDKN3_2_Inhibitor: CDKN3 = !ASF1B (Confidence: 1, TimeStep: 1) 

CDKN3_3_Inhibitor: CDKN3 = !AURKA (Confidence: 1, TimeStep: 1) 

CDKN3_4_Inhibitor: CDKN3 = BTG1 (Confidence: 1, TimeStep: 1) 

CDKN3_5_Inhibitor: CDKN3 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CDT1 with decay value = 1: 

CDT1_1_Activator: CDT1 = MDK&MKI67 (Confidence: 1, TimeStep: 1) 

CDT1_2_Activator: CDT1 = MDK&NCAPG (Confidence: 1, TimeStep: 1) 

CDT1_3_Activator: CDT1 = MDK&NEK2 (Confidence: 1, TimeStep: 1) 

CDT1_4_Activator: CDT1 = MDK&NUSAP1 (Confidence: 1, TimeStep: 1) 

CDT1_5_Activator: CDT1 = MDK&POLQ (Confidence: 1, TimeStep: 1) 

CDT1_1_Inhibitor: CDT1 = !CCNB2 (Confidence: 1, TimeStep: 1) 

CDT1_2_Inhibitor: CDT1 = !CDC45 (Confidence: 1, TimeStep: 1) 

CDT1_3_Inhibitor: CDT1 = !CENPA (Confidence: 1, TimeStep: 1) 

CDT1_4_Inhibitor: CDT1 = !DLGAP5 (Confidence: 1, TimeStep: 1) 

CDT1_5_Inhibitor: CDT1 = !MAD2L1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CELF2 with decay value = 1: 

CELF2_1_Activator: CELF2 = !CRNDE (Confidence: 1, TimeStep: 1) 

CELF2_2_Activator: CELF2 = !SELENOI (Confidence: 1, TimeStep: 1) 

CELF2_3_Activator: CELF2 = !DHX9 (Confidence: 1, TimeStep: 1) 

CELF2_4_Activator: CELF2 = PPP1R16B (Confidence: 1, TimeStep: 1) 

CELF2_5_Activator: CELF2 = !FABP5 (Confidence: 1, TimeStep: 1) 

CELF2_1_Inhibitor: CELF2 = !CELF2&!DDIT4 (Confidence: 1, TimeStep: 1) 

CELF2_2_Inhibitor: CELF2 = !DDIT4&IQGAP3 (Confidence: 1, TimeStep: 1) 

CELF2_3_Inhibitor: CELF2 = !DDIT4&SHCBP1 (Confidence: 1, TimeStep: 1) 

CELF2_4_Inhibitor: CELF2 = CDK1&!DDIT4 (Confidence: 1, TimeStep: 1) 

CELF2_5_Inhibitor: CELF2 = CKAP2L&!DDIT4 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPA with decay value = 1: 
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CENPA_1_Activator: CENPA = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPA_2_Activator: CENPA = ASF1B (Confidence: 1, TimeStep: 1) 

CENPA_3_Activator: CENPA = AURKA (Confidence: 1, TimeStep: 1) 

CENPA_4_Activator: CENPA = !BTG1 (Confidence: 1, TimeStep: 1) 

CENPA_5_Activator: CENPA = CCDC34 (Confidence: 1, TimeStep: 1) 

CENPA_1_Inhibitor: CENPA = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPA_2_Inhibitor: CENPA = !ASF1B (Confidence: 1, TimeStep: 1) 

CENPA_3_Inhibitor: CENPA = !AURKA (Confidence: 1, TimeStep: 1) 

CENPA_4_Inhibitor: CENPA = BTG1 (Confidence: 1, TimeStep: 1) 

CENPA_5_Inhibitor: CENPA = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPE with decay value = 1: 

CENPE_1_Activator: CENPE = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPE_2_Activator: CENPE = ASF1B (Confidence: 1, TimeStep: 1) 

CENPE_3_Activator: CENPE = AURKA (Confidence: 1, TimeStep: 1) 

CENPE_4_Activator: CENPE = !BTG1 (Confidence: 1, TimeStep: 1) 

CENPE_5_Activator: CENPE = CCDC34 (Confidence: 1, TimeStep: 1) 

CENPE_1_Inhibitor: CENPE = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPE_2_Inhibitor: CENPE = !ASF1B (Confidence: 1, TimeStep: 1) 

CENPE_3_Inhibitor: CENPE = !AURKA (Confidence: 1, TimeStep: 1) 

CENPE_4_Inhibitor: CENPE = BTG1 (Confidence: 1, TimeStep: 1) 

CENPE_5_Inhibitor: CENPE = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPF with decay value = 1: 

CENPF_1_Activator: CENPF = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPF_2_Activator: CENPF = ASF1B (Confidence: 1, TimeStep: 1) 

CENPF_3_Activator: CENPF = AURKA (Confidence: 1, TimeStep: 1) 

CENPF_4_Activator: CENPF = !BTG1 (Confidence: 1, TimeStep: 1) 

CENPF_5_Activator: CENPF = CCDC34 (Confidence: 1, TimeStep: 1) 

CENPF_1_Inhibitor: CENPF = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPF_2_Inhibitor: CENPF = !ASF1B (Confidence: 1, TimeStep: 1) 

CENPF_3_Inhibitor: CENPF = !AURKA (Confidence: 1, TimeStep: 1) 
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CENPF_4_Inhibitor: CENPF = BTG1 (Confidence: 1, TimeStep: 1) 

CENPF_5_Inhibitor: CENPF = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPH with decay value = 1: 

CENPH_1_Activator: CENPH = !BMF&MDK (Confidence: 1, TimeStep: 1) 

CENPH_2_Activator: CENPH = CENPV&MDK (Confidence: 1, TimeStep: 1) 

CENPH_3_Activator: CENPH = E2F7&MDK (Confidence: 1, TimeStep: 1) 

CENPH_4_Activator: CENPH = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

CENPH_5_Activator: CENPH = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

CENPH_1_Inhibitor: CENPH = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPH_2_Inhibitor: CENPH = !ASF1B (Confidence: 1, TimeStep: 1) 

CENPH_3_Inhibitor: CENPH = !AURKA (Confidence: 1, TimeStep: 1) 

CENPH_4_Inhibitor: CENPH = BTG1 (Confidence: 1, TimeStep: 1) 

CENPH_5_Inhibitor: CENPH = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPK with decay value = 1: 

CENPK_1_Activator: CENPK = !CDC42EP3&LOC100505650 (Confidence: 1, TimeStep: 1) 

CENPK_2_Activator: CENPK = !CPM&LOC100505650 (Confidence: 1, TimeStep: 1) 

CENPK_3_Activator: CENPK = CRNDE&LOC100505650 (Confidence: 1, TimeStep: 1) 

CENPK_4_Activator: CENPK = !APITD1-CORT&ECT2 (Confidence: 1, TimeStep: 1) 

CENPK_5_Activator: CENPK = !APITD1-CORT&!METTL7A (Confidence: 1, TimeStep: 1) 

CENPK_1_Inhibitor: CENPK = !ECT2 (Confidence: 1, TimeStep: 1) 

CENPK_2_Inhibitor: CENPK = !CENPK (Confidence: 1, TimeStep: 1) 

CENPK_3_Inhibitor: CENPK = ISG20 (Confidence: 1, TimeStep: 1) 

CENPK_4_Inhibitor: CENPK = GBP4 (Confidence: 1, TimeStep: 1) 

CENPK_5_Inhibitor: CENPK = LILRB2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPN with decay value = 1: 

CENPN_1_Activator: CENPN = CENPH (Confidence: 1, TimeStep: 1) 

CENPN_2_Activator: CENPN = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CENPN_3_Activator: CENPN = ASF1B (Confidence: 1, TimeStep: 1) 

CENPN_4_Activator: CENPN = AURKA (Confidence: 1, TimeStep: 1) 
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CENPN_5_Activator: CENPN = !BTG1 (Confidence: 1, TimeStep: 1) 

CENPN_1_Inhibitor: CENPN = !CENPH (Confidence: 1, TimeStep: 1) 

CENPN_2_Inhibitor: CENPN = !CDK1 (Confidence: 1, TimeStep: 1) 

CENPN_3_Inhibitor: CENPN = !HMMR (Confidence: 1, TimeStep: 1) 

CENPN_4_Inhibitor: CENPN = !KIF14 (Confidence: 1, TimeStep: 1) 

CENPN_5_Inhibitor: CENPN = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPU with decay value = 1: 

CENPU_1_Activator: CENPU = FOXM1 (Confidence: 1, TimeStep: 1) 

CENPU_2_Activator: CENPU = KIF18B (Confidence: 1, TimeStep: 1) 

CENPU_3_Activator: CENPU = STIL (Confidence: 1, TimeStep: 1) 

CENPU_4_Activator: CENPU = UBE2T (Confidence: 1, TimeStep: 1) 

CENPU_5_Activator: CENPU = ATAD2 (Confidence: 1, TimeStep: 1) 

CENPU_1_Inhibitor: CENPU = CLEC2B (Confidence: 1, TimeStep: 1) 

CENPU_2_Inhibitor: CENPU = TARSL2 (Confidence: 1, TimeStep: 1) 

CENPU_3_Inhibitor: CENPU = !BYSL (Confidence: 1, TimeStep: 1) 

CENPU_4_Inhibitor: CENPU = P2RY14 (Confidence: 1, TimeStep: 1) 

CENPU_5_Inhibitor: CENPU = !PAICS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPV with decay value = 1: 

CENPV_1_Activator: CENPV = ECT2 (Confidence: 1, TimeStep: 1) 

CENPV_2_Activator: CENPV = FOXM1 (Confidence: 1, TimeStep: 1) 

CENPV_3_Activator: CENPV = STIL (Confidence: 1, TimeStep: 1) 

CENPV_4_Activator: CENPV = ATAD2 (Confidence: 1, TimeStep: 1) 

CENPV_5_Activator: CENPV = BIRC5 (Confidence: 1, TimeStep: 1) 

CENPV_1_Inhibitor: CENPV = !CENPV (Confidence: 1, TimeStep: 1) 

CENPV_2_Inhibitor: CENPV = ITGAM (Confidence: 1, TimeStep: 1) 

CENPV_3_Inhibitor: CENPV = MIR4683 (Confidence: 1, TimeStep: 1) 

CENPV_4_Inhibitor: CENPV = RBMS3 (Confidence: 1, TimeStep: 1) 

CENPV_5_Inhibitor: CENPV = IL18R1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CENPW with decay value = 1: 
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CENPW_1_Activator: CENPW = CDK1 (Confidence: 1, TimeStep: 1) 

CENPW_2_Activator: CENPW = CKAP2L (Confidence: 1, TimeStep: 1) 

CENPW_3_Activator: CENPW = HMMR (Confidence: 1, TimeStep: 1) 

CENPW_4_Activator: CENPW = KIF14 (Confidence: 1, TimeStep: 1) 

CENPW_5_Activator: CENPW = KIF20A (Confidence: 1, TimeStep: 1) 

CENPW_1_Inhibitor: CENPW = !ANLN (Confidence: 1, TimeStep: 1) 

CENPW_2_Inhibitor: CENPW = !PRR11 (Confidence: 1, TimeStep: 1) 

CENPW_3_Inhibitor: CENPW = !CDC20 (Confidence: 1, TimeStep: 1) 

CENPW_4_Inhibitor: CENPW = !KIF4A (Confidence: 1, TimeStep: 1) 

CENPW_5_Inhibitor: CENPW = !MKI67 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CEP55 with decay value = 1: 

CEP55_1_Activator: CEP55 = ATAD2 (Confidence: 1, TimeStep: 1) 

CEP55_2_Activator: CEP55 = BIRC5 (Confidence: 1, TimeStep: 1) 

CEP55_3_Activator: CEP55 = BUB1 (Confidence: 1, TimeStep: 1) 

CEP55_4_Activator: CEP55 = CCNA2 (Confidence: 1, TimeStep: 1) 

CEP55_5_Activator: CEP55 = CDCA5 (Confidence: 1, TimeStep: 1) 

CEP55_1_Inhibitor: CEP55 = !ATAD2 (Confidence: 1, TimeStep: 1) 

CEP55_2_Inhibitor: CEP55 = !BIRC5 (Confidence: 1, TimeStep: 1) 

CEP55_3_Inhibitor: CEP55 = !BUB1 (Confidence: 1, TimeStep: 1) 

CEP55_4_Inhibitor: CEP55 = !CCNA2 (Confidence: 1, TimeStep: 1) 

CEP55_5_Inhibitor: CEP55 = !CDCA5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CHEK1 with decay value = 1: 

CHEK1_1_Activator: CHEK1 = KIF2C (Confidence: 1, TimeStep: 1) 

CHEK1_2_Activator: CHEK1 = ATAD2 (Confidence: 1, TimeStep: 1) 

CHEK1_3_Activator: CHEK1 = BIRC5 (Confidence: 1, TimeStep: 1) 

CHEK1_4_Activator: CHEK1 = BUB1 (Confidence: 1, TimeStep: 1) 

CHEK1_5_Activator: CHEK1 = CCNA2 (Confidence: 1, TimeStep: 1) 

CHEK1_1_Inhibitor: CHEK1 = !KIF2C (Confidence: 1, TimeStep: 1) 

CHEK1_2_Inhibitor: CHEK1 = !CCNB2 (Confidence: 1, TimeStep: 1) 

CHEK1_3_Inhibitor: CHEK1 = !CDC45 (Confidence: 1, TimeStep: 1) 
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CHEK1_4_Inhibitor: CHEK1 = !CENPA (Confidence: 1, TimeStep: 1) 

CHEK1_5_Inhibitor: CHEK1 = !DLGAP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CKAP2 with decay value = 1: 

CKAP2_1_Activator: CKAP2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CKAP2_2_Activator: CKAP2 = ASF1B (Confidence: 1, TimeStep: 1) 

CKAP2_3_Activator: CKAP2 = AURKA (Confidence: 1, TimeStep: 1) 

CKAP2_4_Activator: CKAP2 = !BTG1 (Confidence: 1, TimeStep: 1) 

CKAP2_5_Activator: CKAP2 = CCDC34 (Confidence: 1, TimeStep: 1) 

CKAP2_1_Inhibitor: CKAP2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CKAP2_2_Inhibitor: CKAP2 = !ASF1B (Confidence: 1, TimeStep: 1) 

CKAP2_3_Inhibitor: CKAP2 = !AURKA (Confidence: 1, TimeStep: 1) 

CKAP2_4_Inhibitor: CKAP2 = BTG1 (Confidence: 1, TimeStep: 1) 

CKAP2_5_Inhibitor: CKAP2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CKAP2L with decay value = 1: 

CKAP2L_1_Activator: CKAP2L = APITD1-CORT (Confidence: 1, TimeStep: 1) 

CKAP2L_2_Activator: CKAP2L = ASF1B (Confidence: 1, TimeStep: 1) 

CKAP2L_3_Activator: CKAP2L = AURKA (Confidence: 1, TimeStep: 1) 

CKAP2L_4_Activator: CKAP2L = !BTG1 (Confidence: 1, TimeStep: 1) 

CKAP2L_5_Activator: CKAP2L = CCDC34 (Confidence: 1, TimeStep: 1) 

CKAP2L_1_Inhibitor: CKAP2L = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

CKAP2L_2_Inhibitor: CKAP2L = !ASF1B (Confidence: 1, TimeStep: 1) 

CKAP2L_3_Inhibitor: CKAP2L = !AURKA (Confidence: 1, TimeStep: 1) 

CKAP2L_4_Inhibitor: CKAP2L = BTG1 (Confidence: 1, TimeStep: 1) 

CKAP2L_5_Inhibitor: CKAP2L = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CKS1B with decay value = 1: 

CKS1B_1_Activator: CKS1B = CCNB1 (Confidence: 1, TimeStep: 1) 

CKS1B_2_Activator: CKS1B = CDK1 (Confidence: 1, TimeStep: 1) 

CKS1B_3_Activator: CKS1B = HMMR (Confidence: 1, TimeStep: 1) 

CKS1B_4_Activator: CKS1B = KIF14 (Confidence: 1, TimeStep: 1) 
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CKS1B_5_Activator: CKS1B = KIF20A (Confidence: 1, TimeStep: 1) 

CKS1B_1_Inhibitor: CKS1B = !CCNB1 (Confidence: 1, TimeStep: 1) 

CKS1B_2_Inhibitor: CKS1B = !BUB1B (Confidence: 1, TimeStep: 1) 

CKS1B_3_Inhibitor: CKS1B = !CENPN (Confidence: 1, TimeStep: 1) 

CKS1B_4_Inhibitor: CKS1B = !KIF15 (Confidence: 1, TimeStep: 1) 

CKS1B_5_Inhibitor: CKS1B = !MCM10 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CLEC2B with decay value = 1: 

CLEC2B_1_Activator: CLEC2B = LILRA1 (Confidence: 1, TimeStep: 1) 

CLEC2B_2_Activator: CLEC2B = !APITD1-CORT&TUBA4A (Confidence: 1, TimeStep: 1) 

CLEC2B_3_Activator: CLEC2B = !ANLN&TUBA4A (Confidence: 1, TimeStep: 1) 

CLEC2B_4_Activator: CLEC2B = !APITD1-CORT&STAB1 (Confidence: 1, TimeStep: 1) 

CLEC2B_5_Activator: CLEC2B = !ANLN&MPV17L (Confidence: 1, TimeStep: 1) 

CLEC2B_1_Inhibitor: CLEC2B = CDT1 (Confidence: 1, TimeStep: 1) 

CLEC2B_2_Inhibitor: CLEC2B = CENPU (Confidence: 1, TimeStep: 1) 

CLEC2B_3_Inhibitor: CLEC2B = BRIP1 (Confidence: 1, TimeStep: 1) 

CLEC2B_4_Inhibitor: CLEC2B = CHEK1 (Confidence: 1, TimeStep: 1) 

CLEC2B_5_Inhibitor: CLEC2B = FANCI (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CLN8 with decay value = 1: 

CLN8_1_Activator: CLN8 = !BMF&CLN8 (Confidence: 1, TimeStep: 1) 

CLN8_1_Inhibitor: CLN8 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

CLN8_2_Inhibitor: CLN8 = !CLN8&!HRK (Confidence: 1, TimeStep: 1) 

CLN8_3_Inhibitor: CLN8 = !BMF&!CLN8 (Confidence: 1, TimeStep: 1) 

CLN8_4_Inhibitor: CLN8 = !BMF&!SMIM3 (Confidence: 1, TimeStep: 1) 

CLN8_5_Inhibitor: CLN8 = !POU4F1&!SMIM3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CPM with decay value = 1: 

CPM_1_Activator: CPM = CPM (Confidence: 1, TimeStep: 1) 

CPM_2_Activator: CPM = !ARRDC3 (Confidence: 1, TimeStep: 2) 

CPM_3_Activator: CPM = !LY96 (Confidence: 1, TimeStep: 2) 

CPM_1_Inhibitor: CPM = !CD53 (Confidence: 1, TimeStep: 1) 
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CPM_2_Inhibitor: CPM = ECT2 (Confidence: 1, TimeStep: 1) 

CPM_3_Inhibitor: CPM = GGH (Confidence: 1, TimeStep: 1) 

CPM_4_Inhibitor: CPM = FOXM1 (Confidence: 1, TimeStep: 1) 

CPM_5_Inhibitor: CPM = KIF2C (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for CRNDE with decay value = 1: 

CRNDE_1_Activator: CRNDE = HELLS (Confidence: 1, TimeStep: 1) 

CRNDE_2_Activator: CRNDE = !TMEM2 (Confidence: 1, TimeStep: 1) 

CRNDE_3_Activator: CRNDE = ANP32E (Confidence: 1, TimeStep: 1) 

CRNDE_4_Activator: CRNDE = ECT2 (Confidence: 1, TimeStep: 1) 

CRNDE_5_Activator: CRNDE = FH (Confidence: 1, TimeStep: 1) 

CRNDE_1_Inhibitor: CRNDE = !CRNDE (Confidence: 1, TimeStep: 1) 

CRNDE_2_Inhibitor: CRNDE = LGALS3 (Confidence: 1, TimeStep: 1) 

CRNDE_3_Inhibitor: CRNDE = RAB31 (Confidence: 1, TimeStep: 1) 

CRNDE_4_Inhibitor: CRNDE = LILRA1 (Confidence: 1, TimeStep: 1) 

CRNDE_5_Inhibitor: CRNDE = CDC42EP3&!LOC100996643 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DDIT4 with decay value = 1: 

DDIT4_1_Activator: DDIT4 = RBMS3 (Confidence: 1, TimeStep: 1) 

DDIT4_2_Activator: DDIT4 = PFKFB2 (Confidence: 1, TimeStep: 1) 

DDIT4_3_Activator: DDIT4 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

DDIT4_4_Activator: DDIT4 = !CEP55&SMIM3 (Confidence: 1, TimeStep: 1) 

DDIT4_5_Activator: DDIT4 = !CKAP2L&SMIM3 (Confidence: 1, TimeStep: 1) 

DDIT4_1_Inhibitor: DDIT4 = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

DDIT4_2_Inhibitor: DDIT4 = HIST4H4&!SMIM3 (Confidence: 1, TimeStep: 1) 

DDIT4_3_Inhibitor: DDIT4 = C4orf46&!SMIM3 (Confidence: 1, TimeStep: 1) 

DDIT4_4_Inhibitor: DDIT4 = MKI67&!SMIM3 (Confidence: 1, TimeStep: 1) 

DDIT4_5_Inhibitor: DDIT4 = PRR11&!SMIM3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DEFA1 with decay value = 1: 

DEFA1_1_Activator: DEFA1 = !FH&LOC100505650 (Confidence: 1, TimeStep: 1) 

DEFA1_2_Activator: DEFA1 = !CKS1B&LOC100505650 (Confidence: 1, TimeStep: 1) 
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DEFA1_3_Activator: DEFA1 = !LGALS3&LOC100130872 (Confidence: 1, TimeStep: 1) 

DEFA1_4_Activator: DEFA1 = !IGH&LOC100130872 (Confidence: 1, TimeStep: 1) 

DEFA1_5_Activator: DEFA1 = CKS1B&!IGLL1 (Confidence: 1, TimeStep: 1) 

DEFA1_1_Inhibitor: DEFA1 = !HBB (Confidence: 1, TimeStep: 1) 

DEFA1_2_Inhibitor: DEFA1 = !S100A8 (Confidence: 1, TimeStep: 1) 

DEFA1_3_Inhibitor: DEFA1 = RFC3 (Confidence: 1, TimeStep: 1) 

DEFA1_4_Inhibitor: DEFA1 = SHCBP1 (Confidence: 1, TimeStep: 1) 

DEFA1_5_Inhibitor: DEFA1 = FH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DENND3 with decay value = 1: 

DENND3_1_Activator: DENND3 = DENND3&IL1B (Confidence: 1, TimeStep: 1) 

DENND3_2_Activator: DENND3 = DENND3&!ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

DENND3_3_Activator: DENND3 = DENND3&!LOC100130872 (Confidence: 1, TimeStep: 1) 

DENND3_4_Activator: DENND3 = DENND3&RAG1 (Confidence: 1, TimeStep: 1) 

DENND3_5_Activator: DENND3 = DENND3&!SEMA4D (Confidence: 1, TimeStep: 1) 

DENND3_1_Inhibitor: DENND3 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

DENND3_2_Inhibitor: DENND3 = LOC100130872 (Confidence: 1, TimeStep: 1) 

DENND3_3_Inhibitor: DENND3 = !METTL7A (Confidence: 1, TimeStep: 1) 

DENND3_4_Inhibitor: DENND3 = SEMA4D (Confidence: 1, TimeStep: 1) 

DENND3_5_Inhibitor: DENND3 = !WASF1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DEPDC1 with decay value = 1: 

DEPDC1_1_Activator: DEPDC1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

DEPDC1_2_Activator: DEPDC1 = ASF1B (Confidence: 1, TimeStep: 1) 

DEPDC1_3_Activator: DEPDC1 = AURKA (Confidence: 1, TimeStep: 1) 

DEPDC1_4_Activator: DEPDC1 = !BTG1 (Confidence: 1, TimeStep: 1) 

DEPDC1_5_Activator: DEPDC1 = CCDC34 (Confidence: 1, TimeStep: 1) 

DEPDC1_1_Inhibitor: DEPDC1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

DEPDC1_2_Inhibitor: DEPDC1 = !ASF1B (Confidence: 1, TimeStep: 1) 

DEPDC1_3_Inhibitor: DEPDC1 = !AURKA (Confidence: 1, TimeStep: 1) 

DEPDC1_4_Inhibitor: DEPDC1 = BTG1 (Confidence: 1, TimeStep: 1) 

DEPDC1_5_Inhibitor: DEPDC1 = !CCDC34 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for DEPDC1B with decay value = 1: 

DEPDC1B_1_Activator: DEPDC1B = APITD1-CORT (Confidence: 1, TimeStep: 1) 

DEPDC1B_2_Activator: DEPDC1B = ASF1B (Confidence: 1, TimeStep: 1) 

DEPDC1B_3_Activator: DEPDC1B = AURKA (Confidence: 1, TimeStep: 1) 

DEPDC1B_4_Activator: DEPDC1B = !BTG1 (Confidence: 1, TimeStep: 1) 

DEPDC1B_5_Activator: DEPDC1B = CCDC34 (Confidence: 1, TimeStep: 1) 

DEPDC1B_1_Inhibitor: DEPDC1B = !CENPF (Confidence: 1, TimeStep: 1) 

DEPDC1B_2_Inhibitor: DEPDC1B = !DEPDC1B (Confidence: 1, TimeStep: 1) 

DEPDC1B_3_Inhibitor: DEPDC1B = !NEK2 (Confidence: 1, TimeStep: 1) 

DEPDC1B_4_Inhibitor: DEPDC1B = !ANP32E (Confidence: 1, TimeStep: 1) 

DEPDC1B_5_Inhibitor: DEPDC1B = !FH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DFNA5 with decay value = 1: 

DFNA5_1_Activator: DFNA5 = DFNA5 (Confidence: 1, TimeStep: 1) 

DFNA5_2_Activator: DFNA5 = DEPDC1B (Confidence: 1, TimeStep: 1) 

DFNA5_3_Activator: DFNA5 = PTTG1 (Confidence: 1, TimeStep: 1) 

DFNA5_4_Activator: DFNA5 = CKAP2L (Confidence: 1, TimeStep: 1) 

DFNA5_5_Activator: DFNA5 = AURKB (Confidence: 1, TimeStep: 1) 

DFNA5_1_Inhibitor: DFNA5 = !FABP5 (Confidence: 1, TimeStep: 1) 

DFNA5_2_Inhibitor: DFNA5 = !HSP90AB1 (Confidence: 1, TimeStep: 1) 

DFNA5_3_Inhibitor: DFNA5 = MPV17L (Confidence: 1, TimeStep: 1) 

DFNA5_4_Inhibitor: DFNA5 = !IGLL1 (Confidence: 1, TimeStep: 1) 

DFNA5_5_Inhibitor: DFNA5 = LGALS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DHFR with decay value = 1: 

DHFR_1_Activator: DHFR = CDK1 (Confidence: 1, TimeStep: 1) 

DHFR_2_Activator: DHFR = HMMR (Confidence: 1, TimeStep: 1) 

DHFR_3_Activator: DHFR = KIF14 (Confidence: 1, TimeStep: 1) 

DHFR_4_Activator: DHFR = KIF20A (Confidence: 1, TimeStep: 1) 

DHFR_5_Activator: DHFR = POLQ (Confidence: 1, TimeStep: 1) 

DHFR_1_Inhibitor: DHFR = !CDK1 (Confidence: 1, TimeStep: 1) 
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DHFR_2_Inhibitor: DHFR = !HMMR (Confidence: 1, TimeStep: 1) 

DHFR_3_Inhibitor: DHFR = !KIF14 (Confidence: 1, TimeStep: 1) 

DHFR_4_Inhibitor: DHFR = !KIF20A (Confidence: 1, TimeStep: 1) 

DHFR_5_Inhibitor: DHFR = !POLQ (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DHX9 with decay value = 1: 

DHX9_1_Activator: DHX9 = KIF11 (Confidence: 1, TimeStep: 1) 

DHX9_2_Activator: DHX9 = CDC20 (Confidence: 1, TimeStep: 1) 

DHX9_3_Activator: DHX9 = KIF4A (Confidence: 1, TimeStep: 1) 

DHX9_4_Activator: DHX9 = NUSAP1 (Confidence: 1, TimeStep: 1) 

DHX9_5_Activator: DHX9 = ZWINT (Confidence: 1, TimeStep: 1) 

DHX9_1_Inhibitor: DHX9 = LGALS3 (Confidence: 1, TimeStep: 1) 

DHX9_2_Inhibitor: DHX9 = LILRA1 (Confidence: 1, TimeStep: 1) 

DHX9_3_Inhibitor: DHX9 = HBB&!ZNF367 (Confidence: 1, TimeStep: 1) 

DHX9_4_Inhibitor: DHX9 = !DTL&HBB (Confidence: 1, TimeStep: 1) 

DHX9_5_Inhibitor: DHX9 = !GINS2&HBB (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DLGAP5 with decay value = 1: 

DLGAP5_1_Activator: DLGAP5 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

DLGAP5_2_Activator: DLGAP5 = ASF1B (Confidence: 1, TimeStep: 1) 

DLGAP5_3_Activator: DLGAP5 = AURKA (Confidence: 1, TimeStep: 1) 

DLGAP5_4_Activator: DLGAP5 = !BTG1 (Confidence: 1, TimeStep: 1) 

DLGAP5_5_Activator: DLGAP5 = CCDC34 (Confidence: 1, TimeStep: 1) 

DLGAP5_1_Inhibitor: DLGAP5 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

DLGAP5_2_Inhibitor: DLGAP5 = !ASF1B (Confidence: 1, TimeStep: 1) 

DLGAP5_3_Inhibitor: DLGAP5 = !AURKA (Confidence: 1, TimeStep: 1) 

DLGAP5_4_Inhibitor: DLGAP5 = BTG1 (Confidence: 1, TimeStep: 1) 

DLGAP5_5_Inhibitor: DLGAP5 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DPEP1 with decay value = 1: 

DPEP1_1_Activator: DPEP1 = DPEP1 (Confidence: 1, TimeStep: 1) 

DPEP1_2_Activator: DPEP1 = HRK (Confidence: 1, TimeStep: 1) 
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DPEP1_3_Activator: DPEP1 = POU4F1 (Confidence: 1, TimeStep: 1) 

DPEP1_4_Activator: DPEP1 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

DPEP1_5_Activator: DPEP1 = ISG20&!LILRA1 (Confidence: 1, TimeStep: 1) 

DPEP1_1_Inhibitor: DPEP1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

DPEP1_2_Inhibitor: DPEP1 = !METTL7A (Confidence: 1, TimeStep: 1) 

DPEP1_3_Inhibitor: DPEP1 = LILRA1 (Confidence: 1, TimeStep: 1) 

DPEP1_4_Inhibitor: DPEP1 = !ARPP21&!MSH6 (Confidence: 1, TimeStep: 1) 

DPEP1_5_Inhibitor: DPEP1 = !ARPP21&!SIK1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DSCC1 with decay value = 1: 

DSCC1_1_Activator: DSCC1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

DSCC1_2_Activator: DSCC1 = ASF1B (Confidence: 1, TimeStep: 1) 

DSCC1_3_Activator: DSCC1 = AURKA (Confidence: 1, TimeStep: 1) 

DSCC1_4_Activator: DSCC1 = !BTG1 (Confidence: 1, TimeStep: 1) 

DSCC1_5_Activator: DSCC1 = CCDC34 (Confidence: 1, TimeStep: 1) 

DSCC1_1_Inhibitor: DSCC1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

DSCC1_2_Inhibitor: DSCC1 = !ASF1B (Confidence: 1, TimeStep: 1) 

DSCC1_3_Inhibitor: DSCC1 = !AURKA (Confidence: 1, TimeStep: 1) 

DSCC1_4_Inhibitor: DSCC1 = BTG1 (Confidence: 1, TimeStep: 1) 

DSCC1_5_Inhibitor: DSCC1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for DTL with decay value = 1: 

DTL_1_Activator: DTL = ANLN (Confidence: 1, TimeStep: 1) 

DTL_2_Activator: DTL = CEP55 (Confidence: 1, TimeStep: 1) 

DTL_3_Activator: DTL = CCNB2 (Confidence: 1, TimeStep: 1) 

DTL_4_Activator: DTL = CDC45 (Confidence: 1, TimeStep: 1) 

DTL_5_Activator: DTL = CENPA (Confidence: 1, TimeStep: 1) 

DTL_1_Inhibitor: DTL = !ZNF367 (Confidence: 1, TimeStep: 1) 

DTL_2_Inhibitor: DTL = !E2F8 (Confidence: 1, TimeStep: 1) 

DTL_3_Inhibitor: DTL = !GINS2 (Confidence: 1, TimeStep: 1) 

DTL_4_Inhibitor: DTL = !DTL (Confidence: 1, TimeStep: 1) 

DTL_5_Inhibitor: DTL = !MCM7 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for E2F7 with decay value = 1: 

E2F7_1_Activator: E2F7 = ATAD2 (Confidence: 1, TimeStep: 1) 

E2F7_2_Activator: E2F7 = BIRC5 (Confidence: 1, TimeStep: 1) 

E2F7_3_Activator: E2F7 = BUB1 (Confidence: 1, TimeStep: 1) 

E2F7_4_Activator: E2F7 = CCNA2 (Confidence: 1, TimeStep: 1) 

E2F7_5_Activator: E2F7 = CDCA5 (Confidence: 1, TimeStep: 1) 

E2F7_1_Inhibitor: E2F7 = !CKS1B (Confidence: 1, TimeStep: 1) 

E2F7_2_Inhibitor: E2F7 = GIMAP4 (Confidence: 1, TimeStep: 1) 

E2F7_3_Inhibitor: E2F7 = LILRB2 (Confidence: 1, TimeStep: 1) 

E2F7_4_Inhibitor: E2F7 = RNASET2 (Confidence: 1, TimeStep: 1) 

E2F7_5_Inhibitor: E2F7 = !TIMELESS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for E2F8 with decay value = 1: 

E2F8_1_Activator: E2F8 = CKAP2L (Confidence: 1, TimeStep: 1) 

E2F8_2_Activator: E2F8 = KIF18B (Confidence: 1, TimeStep: 1) 

E2F8_3_Activator: E2F8 = UBE2T (Confidence: 1, TimeStep: 1) 

E2F8_4_Activator: E2F8 = ATAD2 (Confidence: 1, TimeStep: 1) 

E2F8_5_Activator: E2F8 = AURKB (Confidence: 1, TimeStep: 1) 

E2F8_1_Inhibitor: E2F8 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

E2F8_2_Inhibitor: E2F8 = !BYSL (Confidence: 1, TimeStep: 1) 

E2F8_3_Inhibitor: E2F8 = !SELENOI (Confidence: 1, TimeStep: 1) 

E2F8_4_Inhibitor: E2F8 = CCR1 (Confidence: 1, TimeStep: 1) 

E2F8_5_Inhibitor: E2F8 = !PTP4A1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ECT2 with decay value = 1: 

ECT2_1_Activator: ECT2 = ECT2 (Confidence: 1, TimeStep: 1) 

ECT2_2_Activator: ECT2 = FOXM1 (Confidence: 1, TimeStep: 1) 

ECT2_3_Activator: ECT2 = STIL (Confidence: 1, TimeStep: 1) 

ECT2_4_Activator: ECT2 = ATAD2 (Confidence: 1, TimeStep: 1) 

ECT2_5_Activator: ECT2 = BIRC5 (Confidence: 1, TimeStep: 1) 

ECT2_1_Inhibitor: ECT2 = !ECT2 (Confidence: 1, TimeStep: 1) 
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ECT2_2_Inhibitor: ECT2 = !CENPK (Confidence: 1, TimeStep: 1) 

ECT2_3_Inhibitor: ECT2 = ISG20 (Confidence: 1, TimeStep: 1) 

ECT2_4_Inhibitor: ECT2 = GBP4 (Confidence: 1, TimeStep: 1) 

ECT2_5_Inhibitor: ECT2 = LILRB2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for EGR1 with decay value = 1: 

EGR1_1_Activator: EGR1 = !DEPDC1B&EGR1&PAICS (Confidence: 1, TimeStep: 1) 

EGR1_2_Activator: EGR1 = !LYZ (Confidence: 1, TimeStep: 2) 

EGR1_3_Activator: EGR1 = GGH (Confidence: 1, TimeStep: 2) 

EGR1_4_Activator: EGR1 = !S100A8 (Confidence: 1, TimeStep: 2) 

EGR1_1_Inhibitor: EGR1 = DEPDC1B (Confidence: 1, TimeStep: 1) 

EGR1_2_Inhibitor: EGR1 = !GGH&LYZ (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for ELL2 with decay value = 1: 

ELL2_1_Activator: ELL2 = ELL2 (Confidence: 1, TimeStep: 1) 

ELL2_2_Activator: ELL2 = KLF9&!NEDD9 (Confidence: 1, TimeStep: 1) 

ELL2_3_Activator: ELL2 = !GIMAP7&KLF9 (Confidence: 1, TimeStep: 1) 

ELL2_4_Activator: ELL2 = !CELF2 (Confidence: 1, TimeStep: 2) 

ELL2_1_Inhibitor: ELL2 = LOC100130872 (Confidence: 1, TimeStep: 1) 

ELL2_2_Inhibitor: ELL2 = CELF2&!KLF9 (Confidence: 1, TimeStep: 1) 

ELL2_3_Inhibitor: ELL2 = CELF2&!ELL2&GIMAP7 (Confidence: 1, TimeStep: 1) 

ELL2_4_Inhibitor: ELL2 = !PAICS (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for EMP1 with decay value = 1: 

EMP1_1_Activator: EMP1 = !BCL2L11&EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_2_Activator: EMP1 = !CENPU&EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_3_Activator: EMP1 = DENND3&EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_4_Activator: EMP1 = !E2F7&EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_5_Activator: EMP1 = !ECT2&EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_1_Inhibitor: EMP1 = !EMP1 (Confidence: 1, TimeStep: 1) 

EMP1_2_Inhibitor: EMP1 = !IL1B (Confidence: 1, TimeStep: 1) 

EMP1_3_Inhibitor: EMP1 = !DENND3 (Confidence: 1, TimeStep: 1) 
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EMP1_4_Inhibitor: EMP1 = !B3GNT2 (Confidence: 1, TimeStep: 1) 

EMP1_5_Inhibitor: EMP1 = BCL2L11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for EPPK1 with decay value = 1: 

EPPK1_1_Activator: EPPK1 = BTNL9&!CRNDE (Confidence: 1, TimeStep: 1) 

EPPK1_2_Activator: EPPK1 = BTNL9&CDC42EP3 (Confidence: 1, TimeStep: 1) 

EPPK1_3_Activator: EPPK1 = CLN8&!SNTB2 (Confidence: 1, TimeStep: 1) 

EPPK1_4_Activator: EPPK1 = !CPM&EPPK1 (Confidence: 1, TimeStep: 1) 

EPPK1_5_Activator: EPPK1 = !CPM&!CRNDE&P2RX5 (Confidence: 1, TimeStep: 1) 

EPPK1_1_Inhibitor: EPPK1 = BCL2L11 (Confidence: 1, TimeStep: 1) 

EPPK1_2_Inhibitor: EPPK1 = !IRAK3 (Confidence: 1, TimeStep: 1) 

EPPK1_3_Inhibitor: EPPK1 = !LILRB2 (Confidence: 1, TimeStep: 1) 

EPPK1_4_Inhibitor: EPPK1 = S100A11 (Confidence: 1, TimeStep: 1) 

EPPK1_5_Inhibitor: EPPK1 = CKS1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for F13A1 with decay value = 1: 

F13A1_1_Activator: F13A1 = F13A1 (Confidence: 1, TimeStep: 1) 

F13A1_2_Activator: F13A1 = !BYSL&FGL2 (Confidence: 1, TimeStep: 1) 

F13A1_3_Activator: F13A1 = CD53&FGL2 (Confidence: 1, TimeStep: 1) 

F13A1_4_Activator: F13A1 = CDC42EP3&FGD2 (Confidence: 1, TimeStep: 1) 

F13A1_5_Activator: F13A1 = CDC42EP3&!RHOBTB3 (Confidence: 1, TimeStep: 1) 

F13A1_1_Inhibitor: F13A1 = !MIR8071-1 (Confidence: 1, TimeStep: 1) 

F13A1_2_Inhibitor: F13A1 = !MTSS1 (Confidence: 1, TimeStep: 1) 

F13A1_3_Inhibitor: F13A1 = !PDE4B (Confidence: 1, TimeStep: 1) 

F13A1_4_Inhibitor: F13A1 = !SERPINB9 (Confidence: 1, TimeStep: 1) 

F13A1_5_Inhibitor: F13A1 = CCDC86 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FABP5 with decay value = 1: 

FABP5_1_Activator: FABP5 = NME1 (Confidence: 1, TimeStep: 1) 

FABP5_2_Activator: FABP5 = KIF11 (Confidence: 1, TimeStep: 1) 

FABP5_3_Activator: FABP5 = MTHFD2 (Confidence: 1, TimeStep: 1) 

FABP5_4_Activator: FABP5 = CDC20 (Confidence: 1, TimeStep: 1) 
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FABP5_5_Activator: FABP5 = KIF4A (Confidence: 1, TimeStep: 1) 

FABP5_1_Inhibitor: FABP5 = LGALS3 (Confidence: 1, TimeStep: 1) 

FABP5_2_Inhibitor: FABP5 = RAB31 (Confidence: 1, TimeStep: 1) 

FABP5_3_Inhibitor: FABP5 = !CCDC86&HBG1 (Confidence: 1, TimeStep: 1) 

FABP5_4_Inhibitor: FABP5 = HBG1&!RBM14 (Confidence: 1, TimeStep: 1) 

FABP5_5_Inhibitor: FABP5 = !BYSL&HBG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FAM72C with decay value = 1: 

FAM72C_1_Activator: FAM72C = APITD1-CORT (Confidence: 1, TimeStep: 1) 

FAM72C_2_Activator: FAM72C = ASF1B (Confidence: 1, TimeStep: 1) 

FAM72C_3_Activator: FAM72C = AURKA (Confidence: 1, TimeStep: 1) 

FAM72C_4_Activator: FAM72C = !BTG1 (Confidence: 1, TimeStep: 1) 

FAM72C_5_Activator: FAM72C = CCDC34 (Confidence: 1, TimeStep: 1) 

FAM72C_1_Inhibitor: FAM72C = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

FAM72C_2_Inhibitor: FAM72C = !ASF1B (Confidence: 1, TimeStep: 1) 

FAM72C_3_Inhibitor: FAM72C = !AURKA (Confidence: 1, TimeStep: 1) 

FAM72C_4_Inhibitor: FAM72C = BTG1 (Confidence: 1, TimeStep: 1) 

FAM72C_5_Inhibitor: FAM72C = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FANCI with decay value = 1: 

FANCI_1_Activator: FANCI = FOXM1 (Confidence: 1, TimeStep: 1) 

FANCI_2_Activator: FANCI = KIF2C (Confidence: 1, TimeStep: 1) 

FANCI_3_Activator: FANCI = STIL (Confidence: 1, TimeStep: 1) 

FANCI_4_Activator: FANCI = ATAD2 (Confidence: 1, TimeStep: 1) 

FANCI_5_Activator: FANCI = BIRC5 (Confidence: 1, TimeStep: 1) 

FANCI_1_Inhibitor: FANCI = !ANLN (Confidence: 1, TimeStep: 1) 

FANCI_2_Inhibitor: FANCI = !BRIP1 (Confidence: 1, TimeStep: 1) 

FANCI_3_Inhibitor: FANCI = !CHEK1 (Confidence: 1, TimeStep: 1) 

FANCI_4_Inhibitor: FANCI = !FANCI (Confidence: 1, TimeStep: 1) 

FANCI_5_Inhibitor: FANCI = !HELLS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FCER1G with decay value = 1: 
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FCER1G_1_Activator: FCER1G = LILRA1 (Confidence: 1, TimeStep: 1) 

FCER1G_2_Activator: FCER1G = GVINP1&IGH (Confidence: 1, TimeStep: 1) 

FCER1G_3_Activator: FCER1G = GVINP1&IL18R1 (Confidence: 1, TimeStep: 1) 

FCER1G_4_Activator: FCER1G = GVINP1&!PRPS2 (Confidence: 1, TimeStep: 1) 

FCER1G_5_Activator: FCER1G = BIRC3&FGL2 (Confidence: 1, TimeStep: 1) 

FCER1G_1_Inhibitor: FCER1G = IQGAP3 (Confidence: 1, TimeStep: 1) 

FCER1G_2_Inhibitor: FCER1G = TMEM97 (Confidence: 1, TimeStep: 1) 

FCER1G_3_Inhibitor: FCER1G = WDHD1 (Confidence: 1, TimeStep: 1) 

FCER1G_4_Inhibitor: FCER1G = CENPH (Confidence: 1, TimeStep: 1) 

FCER1G_5_Inhibitor: FCER1G = APITD1-CORT (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FCGR3B with decay value = 1: 

FCGR3B_1_Activator: FCGR3B = FGL2 (Confidence: 1, TimeStep: 1) 

FCGR3B_2_Activator: FCGR3B = LILRA1 (Confidence: 1, TimeStep: 1) 

FCGR3B_3_Activator: FCGR3B = !E2F7&FCGR3B (Confidence: 1, TimeStep: 1) 

FCGR3B_4_Activator: FCGR3B = FCGR3B&!MTHFD2 (Confidence: 1, TimeStep: 1) 

FCGR3B_5_Activator: FCGR3B = !CCDC86&FCGR3B (Confidence: 1, TimeStep: 1) 

FCGR3B_1_Inhibitor: FCGR3B = IQGAP3 (Confidence: 1, TimeStep: 1) 

FCGR3B_2_Inhibitor: FCGR3B = TMEM97 (Confidence: 1, TimeStep: 1) 

FCGR3B_3_Inhibitor: FCGR3B = WDHD1 (Confidence: 1, TimeStep: 1) 

FCGR3B_4_Inhibitor: FCGR3B = CENPH (Confidence: 1, TimeStep: 1) 

FCGR3B_5_Inhibitor: FCGR3B = APITD1-CORT (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FEN1 with decay value = 1: 

FEN1_1_Activator: FEN1 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

FEN1_2_Activator: FEN1 = CENPV&MDK (Confidence: 1, TimeStep: 1) 

FEN1_3_Activator: FEN1 = E2F7&MDK (Confidence: 1, TimeStep: 1) 

FEN1_4_Activator: FEN1 = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

FEN1_5_Activator: FEN1 = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

FEN1_1_Inhibitor: FEN1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

FEN1_2_Inhibitor: FEN1 = !ASF1B (Confidence: 1, TimeStep: 1) 

FEN1_3_Inhibitor: FEN1 = !AURKA (Confidence: 1, TimeStep: 1) 
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FEN1_4_Inhibitor: FEN1 = BTG1 (Confidence: 1, TimeStep: 1) 

FEN1_5_Inhibitor: FEN1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FGD2 with decay value = 1: 

FGD2_1_Activator: FGD2 = FGD2 (Confidence: 1, TimeStep: 1) 

FGD2_2_Activator: FGD2 = LILRA1 (Confidence: 1, TimeStep: 1) 

FGD2_3_Activator: FGD2 = FCGR3B&IL6ST (Confidence: 1, TimeStep: 1) 

FGD2_4_Activator: FGD2 = !ANLN&F13A1 (Confidence: 1, TimeStep: 1) 

FGD2_5_Activator: FGD2 = !CEP55&F13A1 (Confidence: 1, TimeStep: 1) 

FGD2_1_Inhibitor: FGD2 = !SMAP2 (Confidence: 1, TimeStep: 1) 

FGD2_2_Inhibitor: FGD2 = ECT2 (Confidence: 1, TimeStep: 1) 

FGD2_3_Inhibitor: FGD2 = !MS4A1 (Confidence: 1, TimeStep: 1) 

FGD2_4_Inhibitor: FGD2 = FOXM1 (Confidence: 1, TimeStep: 1) 

FGD2_5_Inhibitor: FGD2 = STIL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FGL2 with decay value = 1: 

FGL2_1_Activator: FGL2 = BIRC3&FGL2 (Confidence: 1, TimeStep: 1) 

FGL2_2_Activator: FGL2 = BIRC3&PPBP (Confidence: 1, TimeStep: 1) 

FGL2_3_Activator: FGL2 = F13A1&!MYRIP (Confidence: 1, TimeStep: 1) 

FGL2_4_Activator: FGL2 = BIRC3&F13A1 (Confidence: 1, TimeStep: 1) 

FGL2_5_Activator: FGL2 = CDC42EP3&!ID3 (Confidence: 1, TimeStep: 1) 

FGL2_1_Inhibitor: FGL2 = !PIK3IP1 (Confidence: 1, TimeStep: 1) 

FGL2_2_Inhibitor: FGL2 = !LYZ (Confidence: 1, TimeStep: 1) 

FGL2_3_Inhibitor: FGL2 = KIF11 (Confidence: 1, TimeStep: 1) 

FGL2_4_Inhibitor: FGL2 = MTHFD2 (Confidence: 1, TimeStep: 1) 

FGL2_5_Inhibitor: FGL2 = NUF2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FGR with decay value = 1: 

FGR_1_Activator: FGR = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

FGR_2_Activator: FGR = LOC100130872 (Confidence: 1, TimeStep: 1) 

FGR_3_Activator: FGR = BCL10 (Confidence: 1, TimeStep: 1) 

FGR_4_Activator: FGR = !ANP32E&TNFSF8 (Confidence: 1, TimeStep: 1) 
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FGR_5_Activator: FGR = !ASPM&TNFSF8 (Confidence: 1, TimeStep: 1) 

FGR_1_Inhibitor: FGR = FH (Confidence: 1, TimeStep: 1) 

FGR_2_Inhibitor: FGR = IQGAP3 (Confidence: 1, TimeStep: 1) 

FGR_3_Inhibitor: FGR = TMEM97 (Confidence: 1, TimeStep: 1) 

FGR_4_Inhibitor: FGR = WDHD1 (Confidence: 1, TimeStep: 1) 

FGR_5_Inhibitor: FGR = CENPH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FH with decay value = 1: 

FH_1_Activator: FH = APITD1-CORT (Confidence: 1, TimeStep: 1) 

FH_2_Activator: FH = ASF1B (Confidence: 1, TimeStep: 1) 

FH_3_Activator: FH = AURKA (Confidence: 1, TimeStep: 1) 

FH_4_Activator: FH = !BTG1 (Confidence: 1, TimeStep: 1) 

FH_5_Activator: FH = CCDC34 (Confidence: 1, TimeStep: 1) 

FH_1_Inhibitor: FH = !DEPDC1B (Confidence: 1, TimeStep: 1) 

FH_2_Inhibitor: FH = !ANP32E (Confidence: 1, TimeStep: 1) 

FH_3_Inhibitor: FH = !FH (Confidence: 1, TimeStep: 1) 

FH_4_Inhibitor: FH = !E2F7 (Confidence: 1, TimeStep: 1) 

FH_5_Inhibitor: FH = NEAT1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for FKBP5 with decay value = 1: 

 

Multiple Transition Functions for FOXM1 with decay value = 1: 

FOXM1_1_Activator: FOXM1 = ATAD2 (Confidence: 1, TimeStep: 1) 

FOXM1_2_Activator: FOXM1 = BIRC5 (Confidence: 1, TimeStep: 1) 

FOXM1_3_Activator: FOXM1 = BUB1 (Confidence: 1, TimeStep: 1) 

FOXM1_4_Activator: FOXM1 = CCNA2 (Confidence: 1, TimeStep: 1) 

FOXM1_5_Activator: FOXM1 = CDCA5 (Confidence: 1, TimeStep: 1) 

FOXM1_1_Inhibitor: FOXM1 = !ATAD2 (Confidence: 1, TimeStep: 1) 

FOXM1_2_Inhibitor: FOXM1 = !BIRC5 (Confidence: 1, TimeStep: 1) 

FOXM1_3_Inhibitor: FOXM1 = !BUB1 (Confidence: 1, TimeStep: 1) 

FOXM1_4_Inhibitor: FOXM1 = !CCNA2 (Confidence: 1, TimeStep: 1) 

FOXM1_5_Inhibitor: FOXM1 = !CDCA5 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for FUS with decay value = 1: 

FUS_1_Activator: FUS = C5orf24&MPV17L (Confidence: 1, TimeStep: 1) 

FUS_2_Activator: FUS = DTL&HBG1 (Confidence: 1, TimeStep: 1) 

FUS_3_Activator: FUS = BRCA1&HBG1 (Confidence: 1, TimeStep: 1) 

FUS_4_Activator: FUS = BYSL&!IGLL1 (Confidence: 1, TimeStep: 1) 

FUS_5_Activator: FUS = !CELF2&GVINP1 (Confidence: 1, TimeStep: 1) 

FUS_1_Inhibitor: FUS = CCNB1 (Confidence: 1, TimeStep: 1) 

FUS_2_Inhibitor: FUS = IQGAP3 (Confidence: 1, TimeStep: 1) 

FUS_3_Inhibitor: FUS = PTTG1 (Confidence: 1, TimeStep: 1) 

FUS_4_Inhibitor: FUS = CDK1 (Confidence: 1, TimeStep: 1) 

FUS_5_Inhibitor: FUS = CKAP2L (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GBP4 with decay value = 1: 

GBP4_1_Activator: GBP4 = !CDT1&DENND3 (Confidence: 1, TimeStep: 1) 

GBP4_2_Activator: GBP4 = DENND3&!KNL1 (Confidence: 1, TimeStep: 1) 

GBP4_3_Activator: GBP4 = !CDT1&IL1B (Confidence: 1, TimeStep: 1) 

GBP4_4_Activator: GBP4 = DENND3&!MCM5 (Confidence: 1, TimeStep: 1) 

GBP4_5_Activator: GBP4 = DENND3&!RAD51 (Confidence: 1, TimeStep: 1) 

GBP4_1_Inhibitor: GBP4 = !GBP4 (Confidence: 1, TimeStep: 1) 

GBP4_2_Inhibitor: GBP4 = KNL1 (Confidence: 1, TimeStep: 1) 

GBP4_3_Inhibitor: GBP4 = CDT1 (Confidence: 1, TimeStep: 1) 

GBP4_4_Inhibitor: GBP4 = BRIP1 (Confidence: 1, TimeStep: 1) 

GBP4_5_Inhibitor: GBP4 = C4orf46 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GGH with decay value = 1: 

GGH_1_Activator: GGH = CENPH (Confidence: 1, TimeStep: 1) 

GGH_2_Activator: GGH = APITD1-CORT (Confidence: 1, TimeStep: 1) 

GGH_3_Activator: GGH = ASF1B (Confidence: 1, TimeStep: 1) 

GGH_4_Activator: GGH = AURKA (Confidence: 1, TimeStep: 1) 

GGH_5_Activator: GGH = !BTG1 (Confidence: 1, TimeStep: 1) 

GGH_1_Inhibitor: GGH = !CENPH (Confidence: 1, TimeStep: 1) 
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GGH_2_Inhibitor: GGH = !CDK1 (Confidence: 1, TimeStep: 1) 

GGH_3_Inhibitor: GGH = !HMMR (Confidence: 1, TimeStep: 1) 

GGH_4_Inhibitor: GGH = !KIF14 (Confidence: 1, TimeStep: 1) 

GGH_5_Inhibitor: GGH = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GIMAP4 with decay value = 1: 

GIMAP4_1_Activator: GIMAP4 = CCR1 (Confidence: 1, TimeStep: 1) 

GIMAP4_2_Activator: GIMAP4 = GVINP1 (Confidence: 1, TimeStep: 1) 

GIMAP4_3_Activator: GIMAP4 = F13A1 (Confidence: 1, TimeStep: 1) 

GIMAP4_4_Activator: GIMAP4 = FGL2 (Confidence: 1, TimeStep: 1) 

GIMAP4_5_Activator: GIMAP4 = !ANP32E&PIK3IP1 (Confidence: 1, TimeStep: 1) 

GIMAP4_1_Inhibitor: GIMAP4 = E2F7 (Confidence: 1, TimeStep: 1) 

GIMAP4_2_Inhibitor: GIMAP4 = DEPDC1B (Confidence: 1, TimeStep: 1) 

GIMAP4_3_Inhibitor: GIMAP4 = FOXM1 (Confidence: 1, TimeStep: 1) 

GIMAP4_4_Inhibitor: GIMAP4 = KIF18B (Confidence: 1, TimeStep: 1) 

GIMAP4_5_Inhibitor: GIMAP4 = STIL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GIMAP7 with decay value = 1: 

GIMAP7_1_Activator: GIMAP7 = GVINP1 (Confidence: 1, TimeStep: 1) 

GIMAP7_2_Activator: GIMAP7 = MPV17L (Confidence: 1, TimeStep: 1) 

GIMAP7_3_Activator: GIMAP7 = F13A1 (Confidence: 1, TimeStep: 1) 

GIMAP7_4_Activator: GIMAP7 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

GIMAP7_5_Activator: GIMAP7 = FGL2 (Confidence: 1, TimeStep: 1) 

GIMAP7_1_Inhibitor: GIMAP7 = DEPDC1B (Confidence: 1, TimeStep: 1) 

GIMAP7_2_Inhibitor: GIMAP7 = PTTG1 (Confidence: 1, TimeStep: 1) 

GIMAP7_3_Inhibitor: GIMAP7 = AURKB (Confidence: 1, TimeStep: 1) 

GIMAP7_4_Inhibitor: GIMAP7 = KIF18A (Confidence: 1, TimeStep: 1) 

GIMAP7_5_Inhibitor: GIMAP7 = OIP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GINS1 with decay value = 1: 

GINS1_1_Activator: GINS1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

GINS1_2_Activator: GINS1 = ASF1B (Confidence: 1, TimeStep: 1) 
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GINS1_3_Activator: GINS1 = AURKA (Confidence: 1, TimeStep: 1) 

GINS1_4_Activator: GINS1 = !BTG1 (Confidence: 1, TimeStep: 1) 

GINS1_5_Activator: GINS1 = CCDC34 (Confidence: 1, TimeStep: 1) 

GINS1_1_Inhibitor: GINS1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

GINS1_2_Inhibitor: GINS1 = !ASF1B (Confidence: 1, TimeStep: 1) 

GINS1_3_Inhibitor: GINS1 = !AURKA (Confidence: 1, TimeStep: 1) 

GINS1_4_Inhibitor: GINS1 = BTG1 (Confidence: 1, TimeStep: 1) 

GINS1_5_Inhibitor: GINS1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GINS2 with decay value = 1: 

GINS2_1_Activator: GINS2 = ANLN (Confidence: 1, TimeStep: 1) 

GINS2_2_Activator: GINS2 = BRIP1 (Confidence: 1, TimeStep: 1) 

GINS2_3_Activator: GINS2 = CHEK1 (Confidence: 1, TimeStep: 1) 

GINS2_4_Activator: GINS2 = FANCI (Confidence: 1, TimeStep: 1) 

GINS2_5_Activator: GINS2 = TTK (Confidence: 1, TimeStep: 1) 

GINS2_1_Inhibitor: GINS2 = !RAD51 (Confidence: 1, TimeStep: 1) 

GINS2_2_Inhibitor: GINS2 = !PCNA (Confidence: 1, TimeStep: 1) 

GINS2_3_Inhibitor: GINS2 = !ZNF367 (Confidence: 1, TimeStep: 1) 

GINS2_4_Inhibitor: GINS2 = !BRCA1 (Confidence: 1, TimeStep: 1) 

GINS2_5_Inhibitor: GINS2 = !GINS2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for GSN with decay value = 1: 

GSN_1_Activator: GSN = SERPINB9 (Confidence: 1, TimeStep: 1) 

GSN_2_Activator: GSN = ITGAM (Confidence: 1, TimeStep: 1) 

GSN_3_Activator: GSN = TBXA2R (Confidence: 1, TimeStep: 1) 

GSN_4_Activator: GSN = CCR1 (Confidence: 1, TimeStep: 1) 

GSN_5_Activator: GSN = RBMS3 (Confidence: 1, TimeStep: 1) 

GSN_1_Inhibitor: GSN = !METTL7A (Confidence: 1, TimeStep: 1) 

GSN_2_Inhibitor: GSN = UBE2C (Confidence: 1, TimeStep: 1) 

GSN_3_Inhibitor: GSN = !AKAP12&!LILRB2 (Confidence: 1, TimeStep: 1) 

GSN_4_Inhibitor: GSN = !AKAP12&!IL6ST (Confidence: 1, TimeStep: 1) 

GSN_5_Inhibitor: GSN = !AKAP12&!KLF9 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for GVINP1 with decay value = 1: 

GVINP1_1_Activator: GVINP1 = PPBP (Confidence: 1, TimeStep: 1) 

GVINP1_2_Activator: GVINP1 = FGL2 (Confidence: 1, TimeStep: 1) 

GVINP1_3_Activator: GVINP1 = LILRA1 (Confidence: 1, TimeStep: 1) 

GVINP1_4_Activator: GVINP1 = !BRCA1&SERPINA1 (Confidence: 1, TimeStep: 1) 

GVINP1_5_Activator: GVINP1 = !BYSL&MS4A7 (Confidence: 1, TimeStep: 1) 

GVINP1_1_Inhibitor: GVINP1 = MCM7 (Confidence: 1, TimeStep: 1) 

GVINP1_2_Inhibitor: GVINP1 = KIF11 (Confidence: 1, TimeStep: 1) 

GVINP1_3_Inhibitor: GVINP1 = KNL1 (Confidence: 1, TimeStep: 1) 

GVINP1_4_Inhibitor: GVINP1 = DHFR (Confidence: 1, TimeStep: 1) 

GVINP1_5_Inhibitor: GVINP1 = MTHFD2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HBB with decay value = 1: 

HBB_1_Activator: HBB = LGALS3 (Confidence: 1, TimeStep: 1) 

HBB_2_Activator: HBB = LOC100130872 (Confidence: 1, TimeStep: 1) 

HBB_3_Activator: HBB = !CENPF&DEFA1 (Confidence: 1, TimeStep: 1) 

HBB_4_Activator: HBB = !CKS1B&!PSPH (Confidence: 1, TimeStep: 1) 

HBB_5_Activator: HBB = HBB&IGH (Confidence: 1, TimeStep: 1) 

HBB_1_Inhibitor: HBB = SHCBP1 (Confidence: 1, TimeStep: 1) 

HBB_2_Inhibitor: HBB = CCNB1 (Confidence: 1, TimeStep: 1) 

HBB_3_Inhibitor: HBB = CENPF (Confidence: 1, TimeStep: 1) 

HBB_4_Inhibitor: HBB = NEK2 (Confidence: 1, TimeStep: 1) 

HBB_5_Inhibitor: HBB = CDK1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HBG1 with decay value = 1: 

HBG1_1_Activator: HBG1 = LGALS3 (Confidence: 1, TimeStep: 1) 

HBG1_2_Activator: HBG1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

HBG1_3_Activator: HBG1 = LILRA1 (Confidence: 1, TimeStep: 1) 

HBG1_4_Activator: HBG1 = !CENPF&DEFA1 (Confidence: 1, TimeStep: 1) 

HBG1_5_Activator: HBG1 = HBB&IGH (Confidence: 1, TimeStep: 1) 

HBG1_1_Inhibitor: HBG1 = !S100A8 (Confidence: 1, TimeStep: 1) 
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HBG1_2_Inhibitor: HBG1 = RFC3 (Confidence: 1, TimeStep: 1) 

HBG1_3_Inhibitor: HBG1 = SHCBP1 (Confidence: 1, TimeStep: 1) 

HBG1_4_Inhibitor: HBG1 = FH (Confidence: 1, TimeStep: 1) 

HBG1_5_Inhibitor: HBG1 = CCNB1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HELLS with decay value = 1: 

HELLS_1_Activator: HELLS = KIF2C (Confidence: 1, TimeStep: 1) 

HELLS_2_Activator: HELLS = ATAD2 (Confidence: 1, TimeStep: 1) 

HELLS_3_Activator: HELLS = BIRC5 (Confidence: 1, TimeStep: 1) 

HELLS_4_Activator: HELLS = BUB1 (Confidence: 1, TimeStep: 1) 

HELLS_5_Activator: HELLS = CCNA2 (Confidence: 1, TimeStep: 1) 

HELLS_1_Inhibitor: HELLS = !KIF2C (Confidence: 1, TimeStep: 1) 

HELLS_2_Inhibitor: HELLS = !CCNB2 (Confidence: 1, TimeStep: 1) 

HELLS_3_Inhibitor: HELLS = !CDC45 (Confidence: 1, TimeStep: 1) 

HELLS_4_Inhibitor: HELLS = !CENPA (Confidence: 1, TimeStep: 1) 

HELLS_5_Inhibitor: HELLS = !DLGAP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HIST4H4 with decay value = 1: 

HIST4H4_1_Activator: HIST4H4 = !TXNIP (Confidence: 1, TimeStep: 1) 

HIST4H4_2_Activator: HIST4H4 = AURKB (Confidence: 1, TimeStep: 1) 

HIST4H4_3_Activator: HIST4H4 = CKAP2 (Confidence: 1, TimeStep: 1) 

HIST4H4_4_Activator: HIST4H4 = KIF18A (Confidence: 1, TimeStep: 1) 

HIST4H4_5_Activator: HIST4H4 = OIP5 (Confidence: 1, TimeStep: 1) 

HIST4H4_1_Inhibitor: HIST4H4 = EMP1 (Confidence: 1, TimeStep: 1) 

HIST4H4_2_Inhibitor: HIST4H4 = !TNFRSF21 (Confidence: 1, TimeStep: 1) 

HIST4H4_3_Inhibitor: HIST4H4 = !C5orf24 (Confidence: 1, TimeStep: 1) 

HIST4H4_4_Inhibitor: HIST4H4 = !BCL2L11&CDK6 (Confidence: 1, TimeStep: 1) 

HIST4H4_5_Inhibitor: HIST4H4 = B3GNT2&!CENPU (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HJURP with decay value = 1: 

HJURP_1_Activator: HJURP = APITD1-CORT (Confidence: 1, TimeStep: 1) 

HJURP_2_Activator: HJURP = ASF1B (Confidence: 1, TimeStep: 1) 
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HJURP_3_Activator: HJURP = AURKA (Confidence: 1, TimeStep: 1) 

HJURP_4_Activator: HJURP = !BTG1 (Confidence: 1, TimeStep: 1) 

HJURP_5_Activator: HJURP = CCDC34 (Confidence: 1, TimeStep: 1) 

HJURP_1_Inhibitor: HJURP = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

HJURP_2_Inhibitor: HJURP = !ASF1B (Confidence: 1, TimeStep: 1) 

HJURP_3_Inhibitor: HJURP = !AURKA (Confidence: 1, TimeStep: 1) 

HJURP_4_Inhibitor: HJURP = BTG1 (Confidence: 1, TimeStep: 1) 

HJURP_5_Inhibitor: HJURP = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HMMR with decay value = 1: 

HMMR_1_Activator: HMMR = APITD1-CORT (Confidence: 1, TimeStep: 1) 

HMMR_2_Activator: HMMR = ASF1B (Confidence: 1, TimeStep: 1) 

HMMR_3_Activator: HMMR = AURKA (Confidence: 1, TimeStep: 1) 

HMMR_4_Activator: HMMR = !BTG1 (Confidence: 1, TimeStep: 1) 

HMMR_5_Activator: HMMR = CCDC34 (Confidence: 1, TimeStep: 1) 

HMMR_1_Inhibitor: HMMR = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

HMMR_2_Inhibitor: HMMR = !ASF1B (Confidence: 1, TimeStep: 1) 

HMMR_3_Inhibitor: HMMR = !AURKA (Confidence: 1, TimeStep: 1) 

HMMR_4_Inhibitor: HMMR = BTG1 (Confidence: 1, TimeStep: 1) 

HMMR_5_Inhibitor: HMMR = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for HRK with decay value = 1: 

HRK_1_Activator: HRK = DPEP1&HRK (Confidence: 1, TimeStep: 1) 

HRK_2_Activator: HRK = DENND3&HRK (Confidence: 1, TimeStep: 1) 

HRK_3_Activator: HRK = !ARRDC3&HRK (Confidence: 1, TimeStep: 1) 

HRK_4_Activator: HRK = DPEP1&!RHOBTB3 (Confidence: 1, TimeStep: 1) 

HRK_5_Activator: HRK = IL1B&!RHOBTB3 (Confidence: 1, TimeStep: 1) 

HRK_1_Inhibitor: HRK = !DPEP1 (Confidence: 1, TimeStep: 1) 

HRK_2_Inhibitor: HRK = !MSH6 (Confidence: 1, TimeStep: 1) 

HRK_3_Inhibitor: HRK = !ISG20 (Confidence: 1, TimeStep: 1) 

HRK_4_Inhibitor: HRK = !SMAP2 (Confidence: 1, TimeStep: 1) 

HRK_5_Inhibitor: HRK = ECT2 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for HSP90AB1 with decay value = 1: 

HSP90AB1_1_Activator: HSP90AB1 = KIF11 (Confidence: 1, TimeStep: 1) 

HSP90AB1_2_Activator: HSP90AB1 = KNL1 (Confidence: 1, TimeStep: 1) 

HSP90AB1_3_Activator: HSP90AB1 = DHFR (Confidence: 1, TimeStep: 1) 

HSP90AB1_4_Activator: HSP90AB1 = RAD51 (Confidence: 1, TimeStep: 1) 

HSP90AB1_5_Activator: HSP90AB1 = !CD53 (Confidence: 1, TimeStep: 1) 

HSP90AB1_1_Inhibitor: HSP90AB1 = ASPM&!CRNDE (Confidence: 1, TimeStep: 1) 

HSP90AB1_2_Inhibitor: HSP90AB1 = ASPM&LGALS3 (Confidence: 1, TimeStep: 1) 

HSP90AB1_3_Inhibitor: HSP90AB1 = ASPM&!TYMS (Confidence: 1, TimeStep: 1) 

HSP90AB1_4_Inhibitor: HSP90AB1 = !ANLN&FABP5&!HSP90AB1 (Confidence: 1, TimeStep: 1) 

HSP90AB1_5_Inhibitor: HSP90AB1 = !ANLN&HSP90AB1&LGALS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ID2 with decay value = 1: 

ID2_1_Activator: ID2 = PRDM1 (Confidence: 1, TimeStep: 1) 

ID2_2_Activator: ID2 = CENPV&ID2 (Confidence: 1, TimeStep: 1) 

ID2_1_Inhibitor: ID2 = !CCNB2&ECT2 (Confidence: 1, TimeStep: 1) 

ID2_2_Inhibitor: ID2 = !CCNB2&!METTL7A (Confidence: 1, TimeStep: 1) 

ID2_3_Inhibitor: ID2 = !CDC45&ECT2 (Confidence: 1, TimeStep: 1) 

ID2_4_Inhibitor: ID2 = !CDC45&!METTL7A (Confidence: 1, TimeStep: 1) 

ID2_5_Inhibitor: ID2 = !CENPA&ECT2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ID3 with decay value = 1: 

ID3_1_Activator: ID3 = HRK (Confidence: 1, TimeStep: 1) 

ID3_2_Activator: ID3 = EMP1 (Confidence: 1, TimeStep: 1) 

ID3_3_Activator: ID3 = MDK (Confidence: 1, TimeStep: 1) 

ID3_4_Activator: ID3 = MDM2 (Confidence: 1, TimeStep: 1) 

ID3_5_Activator: ID3 = ABHD17B&PTP4A1 (Confidence: 1, TimeStep: 1) 

ID3_1_Inhibitor: ID3 = SEMA4D (Confidence: 1, TimeStep: 1) 

ID3_2_Inhibitor: ID3 = !B3GNT2&FGR (Confidence: 1, TimeStep: 1) 

ID3_3_Inhibitor: ID3 = !DTL&!IL1B (Confidence: 1, TimeStep: 1) 

ID3_4_Inhibitor: ID3 = !AKAP12&!TYMS (Confidence: 1, TimeStep: 1) 
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ID3_5_Inhibitor: ID3 = !DHX9&!IL1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IFNGR1 with decay value = 1: 

IFNGR1_1_Activator: IFNGR1 = LILRB2 (Confidence: 1, TimeStep: 1) 

IFNGR1_2_Activator: IFNGR1 = !CENPV (Confidence: 1, TimeStep: 1) 

IFNGR1_3_Activator: IFNGR1 = IRAK3 (Confidence: 1, TimeStep: 1) 

IFNGR1_4_Activator: IFNGR1 = DENND3 (Confidence: 1, TimeStep: 1) 

IFNGR1_5_Activator: IFNGR1 = IFNGR1 (Confidence: 1, TimeStep: 1) 

IFNGR1_1_Inhibitor: IFNGR1 = ECT2 (Confidence: 1, TimeStep: 1) 

IFNGR1_2_Inhibitor: IFNGR1 = FOXM1 (Confidence: 1, TimeStep: 1) 

IFNGR1_3_Inhibitor: IFNGR1 = STIL (Confidence: 1, TimeStep: 1) 

IFNGR1_4_Inhibitor: IFNGR1 = ATAD2 (Confidence: 1, TimeStep: 1) 

IFNGR1_5_Inhibitor: IFNGR1 = BIRC5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IGH with decay value = 1: 

IGH_1_Activator: IGH = LGALS3 (Confidence: 1, TimeStep: 1) 

IGH_2_Activator: IGH = !CCDC86&IGH (Confidence: 1, TimeStep: 1) 

IGH_3_Activator: IGH = IGH&PDE4B (Confidence: 1, TimeStep: 1) 

IGH_4_Activator: IGH = !CCDC86&!PRPS2 (Confidence: 1, TimeStep: 1) 

IGH_5_Activator: IGH = GBP4&IGLC1 (Confidence: 1, TimeStep: 1) 

IGH_1_Inhibitor: IGH = MTHFD2 (Confidence: 1, TimeStep: 1) 

IGH_2_Inhibitor: IGH = !NEAT1 (Confidence: 1, TimeStep: 1) 

IGH_3_Inhibitor: IGH = !MS4A1 (Confidence: 1, TimeStep: 1) 

IGH_4_Inhibitor: IGH = !TXNIP (Confidence: 1, TimeStep: 1) 

IGH_5_Inhibitor: IGH = CKAP2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IGLC1 with decay value = 1: 

IGLC1_1_Activator: IGLC1 = LGALS3 (Confidence: 1, TimeStep: 1) 

IGLC1_2_Activator: IGLC1 = !CCDC86&IGH (Confidence: 1, TimeStep: 1) 

IGLC1_3_Activator: IGLC1 = !CCDC86&IGLC1 (Confidence: 1, TimeStep: 1) 

IGLC1_4_Activator: IGLC1 = IGH&PDE4B (Confidence: 1, TimeStep: 1) 

IGLC1_5_Activator: IGLC1 = !CCDC86&!PRPS2 (Confidence: 1, TimeStep: 1) 
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IGLC1_1_Inhibitor: IGLC1 = !MS4A1 (Confidence: 1, TimeStep: 1) 

IGLC1_2_Inhibitor: IGLC1 = !TXNIP (Confidence: 1, TimeStep: 1) 

IGLC1_3_Inhibitor: IGLC1 = CKAP2 (Confidence: 1, TimeStep: 1) 

IGLC1_4_Inhibitor: IGLC1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

IGLC1_5_Inhibitor: IGLC1 = ASF1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IGLL1 with decay value = 1: 

IGLL1_1_Activator: IGLL1 = IGLL1 (Confidence: 1, TimeStep: 1) 

IGLL1_2_Activator: IGLL1 = AKAP12 (Confidence: 1, TimeStep: 1) 

IGLL1_3_Activator: IGLL1 = !IL27RA (Confidence: 1, TimeStep: 1) 

IGLL1_4_Activator: IGLL1 = BCAT1 (Confidence: 1, TimeStep: 1) 

IGLL1_5_Activator: IGLL1 = !SLA (Confidence: 1, TimeStep: 1) 

IGLL1_1_Inhibitor: IGLL1 = !IGLL1 (Confidence: 1, TimeStep: 1) 

IGLL1_2_Inhibitor: IGLL1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

IGLL1_3_Inhibitor: IGLL1 = !BCAT1&!BMF (Confidence: 1, TimeStep: 1) 

IGLL1_4_Inhibitor: IGLL1 = !AKAP12&!C5orf24 (Confidence: 1, TimeStep: 1) 

IGLL1_5_Inhibitor: IGLL1 = !AKAP12&PPP1R16B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IL18R1 with decay value = 1: 

IL18R1_1_Activator: IL18R1 = IL18R1 (Confidence: 1, TimeStep: 1) 

IL18R1_2_Activator: IL18R1 = IL18RAP (Confidence: 1, TimeStep: 1) 

IL18R1_3_Activator: IL18R1 = RAB31 (Confidence: 1, TimeStep: 1) 

IL18R1_4_Activator: IL18R1 = ID2&PPP1R16B (Confidence: 1, TimeStep: 1) 

IL18R1_5_Activator: IL18R1 = ID2&!PRPS2 (Confidence: 1, TimeStep: 1) 

IL18R1_1_Inhibitor: IL18R1 = CENPV (Confidence: 1, TimeStep: 1) 

IL18R1_2_Inhibitor: IL18R1 = !IRAK3 (Confidence: 1, TimeStep: 1) 

IL18R1_3_Inhibitor: IL18R1 = !TMEM2 (Confidence: 1, TimeStep: 1) 

IL18R1_4_Inhibitor: IL18R1 = ANP32E (Confidence: 1, TimeStep: 1) 

IL18R1_5_Inhibitor: IL18R1 = CEP55 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IL18RAP with decay value = 1: 

IL18RAP_1_Activator: IL18RAP = IL18RAP (Confidence: 1, TimeStep: 1) 
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IL18RAP_2_Activator: IL18RAP = ID2&PPP1R16B (Confidence: 1, TimeStep: 1) 

IL18RAP_3_Activator: IL18RAP = ID2&!PRPS2 (Confidence: 1, TimeStep: 1) 

IL18RAP_4_Activator: IL18RAP = !DHX9&IL18R1 (Confidence: 1, TimeStep: 1) 

IL18RAP_5_Activator: IL18RAP = !DHX9&!LEF1 (Confidence: 1, TimeStep: 1) 

IL18RAP_1_Inhibitor: IL18RAP = CENPV (Confidence: 1, TimeStep: 1) 

IL18RAP_2_Inhibitor: IL18RAP = !IRAK3 (Confidence: 1, TimeStep: 1) 

IL18RAP_3_Inhibitor: IL18RAP = !TMEM2 (Confidence: 1, TimeStep: 1) 

IL18RAP_4_Inhibitor: IL18RAP = ANP32E (Confidence: 1, TimeStep: 1) 

IL18RAP_5_Inhibitor: IL18RAP = CEP55 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IL1B with decay value = 1: 

IL1B_1_Activator: IL1B = GBP4&!HBG1 (Confidence: 1, TimeStep: 1) 

IL1B_2_Activator: IL1B = DENND3&!SLA (Confidence: 1, TimeStep: 1) 

IL1B_3_Activator: IL1B = EMP1&GBP4 (Confidence: 1, TimeStep: 1) 

IL1B_4_Activator: IL1B = EMP1&!SQLE (Confidence: 1, TimeStep: 1) 

IL1B_5_Activator: IL1B = !HBG1&!KNL1 (Confidence: 1, TimeStep: 1) 

IL1B_1_Inhibitor: IL1B = !IL1B (Confidence: 1, TimeStep: 1) 

IL1B_2_Inhibitor: IL1B = !DENND3 (Confidence: 1, TimeStep: 1) 

IL1B_3_Inhibitor: IL1B = !GBP4 (Confidence: 1, TimeStep: 1) 

IL1B_4_Inhibitor: IL1B = TNFSF8 (Confidence: 1, TimeStep: 1) 

IL1B_5_Inhibitor: IL1B = ECT2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IL27RA with decay value = 1: 

IL27RA_1_Activator: IL27RA = IL27RA (Confidence: 1, TimeStep: 1) 

IL27RA_2_Activator: IL27RA = !IGLL1 (Confidence: 1, TimeStep: 1) 

IL27RA_3_Activator: IL27RA = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

IL27RA_4_Activator: IL27RA = GIMAP7&SLA (Confidence: 1, TimeStep: 1) 

IL27RA_5_Activator: IL27RA = NEAT1&!SIK1 (Confidence: 1, TimeStep: 1) 

IL27RA_1_Inhibitor: IL27RA = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

IL27RA_2_Inhibitor: IL27RA = !IL27RA&RHOBTB3 (Confidence: 1, TimeStep: 1) 

IL27RA_3_Inhibitor: IL27RA = CCDC86&!IL27RA (Confidence: 1, TimeStep: 1) 

IL27RA_4_Inhibitor: IL27RA = !CDK6&!IL27RA (Confidence: 1, TimeStep: 1) 
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IL27RA_5_Inhibitor: IL27RA = !GIMAP4&!IL27RA (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IL6ST with decay value = 1: 

IL6ST_1_Activator: IL6ST = MTSS1 (Confidence: 1, TimeStep: 1) 

IL6ST_2_Activator: IL6ST = ITGAM (Confidence: 1, TimeStep: 1) 

IL6ST_3_Activator: IL6ST = TBXA2R (Confidence: 1, TimeStep: 1) 

IL6ST_4_Activator: IL6ST = FGD2 (Confidence: 1, TimeStep: 1) 

IL6ST_5_Activator: IL6ST = CCR1 (Confidence: 1, TimeStep: 1) 

IL6ST_1_Inhibitor: IL6ST = BCL10 (Confidence: 1, TimeStep: 1) 

IL6ST_2_Inhibitor: IL6ST = !ATAD2&!MS4A1 (Confidence: 1, TimeStep: 1) 

IL6ST_3_Inhibitor: IL6ST = !ATAD2&!SMAP2 (Confidence: 1, TimeStep: 1) 

IL6ST_4_Inhibitor: IL6ST = !ATAD2&ECT2 (Confidence: 1, TimeStep: 1) 

IL6ST_5_Inhibitor: IL6ST = !ATAD2&!METTL7A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IQGAP3 with decay value = 1: 

IQGAP3_1_Activator: IQGAP3 = CENPH (Confidence: 1, TimeStep: 1) 

IQGAP3_2_Activator: IQGAP3 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

IQGAP3_3_Activator: IQGAP3 = ASF1B (Confidence: 1, TimeStep: 1) 

IQGAP3_4_Activator: IQGAP3 = AURKA (Confidence: 1, TimeStep: 1) 

IQGAP3_5_Activator: IQGAP3 = !BTG1 (Confidence: 1, TimeStep: 1) 

IQGAP3_1_Inhibitor: IQGAP3 = !CENPH (Confidence: 1, TimeStep: 1) 

IQGAP3_2_Inhibitor: IQGAP3 = !CDK1 (Confidence: 1, TimeStep: 1) 

IQGAP3_3_Inhibitor: IQGAP3 = !HMMR (Confidence: 1, TimeStep: 1) 

IQGAP3_4_Inhibitor: IQGAP3 = !KIF14 (Confidence: 1, TimeStep: 1) 

IQGAP3_5_Inhibitor: IQGAP3 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for IRAK3 with decay value = 1: 

IRAK3_1_Activator: IRAK3 = IRAK3 (Confidence: 1, TimeStep: 1) 

IRAK3_2_Activator: IRAK3 = MTSS1 (Confidence: 1, TimeStep: 1) 

IRAK3_3_Activator: IRAK3 = PDE4B (Confidence: 1, TimeStep: 1) 

IRAK3_4_Activator: IRAK3 = SERPINB9 (Confidence: 1, TimeStep: 1) 

IRAK3_5_Activator: IRAK3 = !CRNDE (Confidence: 1, TimeStep: 1) 
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IRAK3_1_Inhibitor: IRAK3 = !TMEM2 (Confidence: 1, TimeStep: 1) 

IRAK3_2_Inhibitor: IRAK3 = ECT2 (Confidence: 1, TimeStep: 1) 

IRAK3_3_Inhibitor: IRAK3 = FOXM1 (Confidence: 1, TimeStep: 1) 

IRAK3_4_Inhibitor: IRAK3 = STIL (Confidence: 1, TimeStep: 1) 

IRAK3_5_Inhibitor: IRAK3 = ATAD2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ISG20 with decay value = 1: 

ISG20_1_Activator: ISG20 = !ECT2 (Confidence: 1, TimeStep: 1) 

ISG20_2_Activator: ISG20 = SMAP2 (Confidence: 1, TimeStep: 1) 

ISG20_3_Activator: ISG20 = !CENPK (Confidence: 1, TimeStep: 1) 

ISG20_4_Activator: ISG20 = ISG20 (Confidence: 1, TimeStep: 1) 

ISG20_5_Activator: ISG20 = GBP4 (Confidence: 1, TimeStep: 1) 

ISG20_1_Inhibitor: ISG20 = !APITD1-CORT&ATAD2 (Confidence: 1, TimeStep: 1) 

ISG20_2_Inhibitor: ISG20 = !APITD1-CORT&BIRC5 (Confidence: 1, TimeStep: 1) 

ISG20_3_Inhibitor: ISG20 = !APITD1-CORT&BUB1 (Confidence: 1, TimeStep: 1) 

ISG20_4_Inhibitor: ISG20 = !APITD1-CORT&CCNA2 (Confidence: 1, TimeStep: 1) 

ISG20_5_Inhibitor: ISG20 = !APITD1-CORT&CDCA5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ITGAM with decay value = 1: 

ITGAM_1_Activator: ITGAM = ITGAM (Confidence: 1, TimeStep: 1) 

ITGAM_2_Activator: ITGAM = F13A1 (Confidence: 1, TimeStep: 1) 

ITGAM_3_Activator: ITGAM = RAB31 (Confidence: 1, TimeStep: 1) 

ITGAM_4_Activator: ITGAM = BMF&LOC285097 (Confidence: 1, TimeStep: 1) 

ITGAM_5_Activator: ITGAM = !CCNL1&!PAICS (Confidence: 1, TimeStep: 1) 

ITGAM_1_Inhibitor: ITGAM = !SERPINB9 (Confidence: 1, TimeStep: 1) 

ITGAM_2_Inhibitor: ITGAM = CENPV (Confidence: 1, TimeStep: 1) 

ITGAM_3_Inhibitor: ITGAM = !IRAK3 (Confidence: 1, TimeStep: 1) 

ITGAM_4_Inhibitor: ITGAM = !LILRB2 (Confidence: 1, TimeStep: 1) 

ITGAM_5_Inhibitor: ITGAM = !RNASET2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ITGB2-AS1 with decay value = 1: 

ITGB2-AS1_1_Activator: ITGB2-AS1 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 
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ITGB2-AS1_2_Activator: ITGB2-AS1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_3_Activator: ITGB2-AS1 = LILRA1 (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_4_Activator: ITGB2-AS1 = !AKAP12&HBB (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_5_Activator: ITGB2-AS1 = !AKAP12&FGR (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_1_Inhibitor: ITGB2-AS1 = !HBB (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_2_Inhibitor: ITGB2-AS1 = MSH6 (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_3_Inhibitor: ITGB2-AS1 = AKAP12 (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_4_Inhibitor: ITGB2-AS1 = WFS1 (Confidence: 1, TimeStep: 1) 

ITGB2-AS1_5_Inhibitor: ITGB2-AS1 = !SLA (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ITPKB with decay value = 1: 

ITPKB_1_Activator: ITPKB = LILRA1 (Confidence: 1, TimeStep: 1) 

ITPKB_2_Activator: ITPKB = CELF2&IGLC1 (Confidence: 1, TimeStep: 1) 

ITPKB_3_Activator: ITPKB = CELF2&IGH (Confidence: 1, TimeStep: 1) 

ITPKB_4_Activator: ITPKB = IGLC1&SLA (Confidence: 1, TimeStep: 1) 

ITPKB_5_Activator: ITPKB = ITPKB&MS4A7 (Confidence: 1, TimeStep: 1) 

ITPKB_1_Inhibitor: ITPKB = CDK1 (Confidence: 1, TimeStep: 1) 

ITPKB_2_Inhibitor: ITPKB = CKAP2L (Confidence: 1, TimeStep: 1) 

ITPKB_3_Inhibitor: ITPKB = HMMR (Confidence: 1, TimeStep: 1) 

ITPKB_4_Inhibitor: ITPKB = KIF14 (Confidence: 1, TimeStep: 1) 

ITPKB_5_Inhibitor: ITPKB = KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KCNK12 with decay value = 1: 

KCNK12_1_Activator: KCNK12 = !EGR1&MYRIP (Confidence: 1, TimeStep: 1) 

KCNK12_2_Activator: KCNK12 = !EGR1&MDM2 (Confidence: 1, TimeStep: 1) 

KCNK12_3_Activator: KCNK12 = FKBP5&!SLA (Confidence: 1, TimeStep: 1) 

KCNK12_4_Activator: KCNK12 = AKAP12&LOC728175 (Confidence: 1, TimeStep: 1) 

KCNK12_5_Activator: KCNK12 = !EGR1&LOC728175 (Confidence: 1, TimeStep: 1) 

KCNK12_1_Inhibitor: KCNK12 = !FKBP5&!KCNK12 (Confidence: 1, TimeStep: 1) 

KCNK12_2_Inhibitor: KCNK12 = !FKBP5&!MDM2 (Confidence: 1, TimeStep: 1) 

KCNK12_3_Inhibitor: KCNK12 = !KCNK12 (Confidence: 1, TimeStep: 2) 

KCNK12_4_Inhibitor: KCNK12 = !STAB1 (Confidence: 1, TimeStep: 2) 
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KCNK12_5_Inhibitor: KCNK12 = !TUBA4A (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for KIAA0101 with decay value = 1: 

KIAA0101_1_Activator: KIAA0101 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIAA0101_2_Activator: KIAA0101 = ASF1B (Confidence: 1, TimeStep: 1) 

KIAA0101_3_Activator: KIAA0101 = AURKA (Confidence: 1, TimeStep: 1) 

KIAA0101_4_Activator: KIAA0101 = !BTG1 (Confidence: 1, TimeStep: 1) 

KIAA0101_5_Activator: KIAA0101 = CCDC34 (Confidence: 1, TimeStep: 1) 

KIAA0101_1_Inhibitor: KIAA0101 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIAA0101_2_Inhibitor: KIAA0101 = !ASF1B (Confidence: 1, TimeStep: 1) 

KIAA0101_3_Inhibitor: KIAA0101 = !AURKA (Confidence: 1, TimeStep: 1) 

KIAA0101_4_Inhibitor: KIAA0101 = BTG1 (Confidence: 1, TimeStep: 1) 

KIAA0101_5_Inhibitor: KIAA0101 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF11 with decay value = 1: 

KIF11_1_Activator: KIF11 = CENPH (Confidence: 1, TimeStep: 1) 

KIF11_2_Activator: KIF11 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF11_3_Activator: KIF11 = ASF1B (Confidence: 1, TimeStep: 1) 

KIF11_4_Activator: KIF11 = AURKA (Confidence: 1, TimeStep: 1) 

KIF11_5_Activator: KIF11 = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF11_1_Inhibitor: KIF11 = !CENPF (Confidence: 1, TimeStep: 1) 

KIF11_2_Inhibitor: KIF11 = !NEK2 (Confidence: 1, TimeStep: 1) 

KIF11_3_Inhibitor: KIF11 = !FH (Confidence: 1, TimeStep: 1) 

KIF11_4_Inhibitor: KIF11 = !C4orf46 (Confidence: 1, TimeStep: 1) 

KIF11_5_Inhibitor: KIF11 = !HELLS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF14 with decay value = 1: 

KIF14_1_Activator: KIF14 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF14_2_Activator: KIF14 = ASF1B (Confidence: 1, TimeStep: 1) 

KIF14_3_Activator: KIF14 = AURKA (Confidence: 1, TimeStep: 1) 

KIF14_4_Activator: KIF14 = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF14_5_Activator: KIF14 = CCDC34 (Confidence: 1, TimeStep: 1) 
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KIF14_1_Inhibitor: KIF14 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF14_2_Inhibitor: KIF14 = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF14_3_Inhibitor: KIF14 = !AURKA (Confidence: 1, TimeStep: 1) 

KIF14_4_Inhibitor: KIF14 = BTG1 (Confidence: 1, TimeStep: 1) 

KIF14_5_Inhibitor: KIF14 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF15 with decay value = 1: 

KIF15_1_Activator: KIF15 = CENPH (Confidence: 1, TimeStep: 1) 

KIF15_2_Activator: KIF15 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF15_3_Activator: KIF15 = ASF1B (Confidence: 1, TimeStep: 1) 

KIF15_4_Activator: KIF15 = AURKA (Confidence: 1, TimeStep: 1) 

KIF15_5_Activator: KIF15 = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF15_1_Inhibitor: KIF15 = !CENPH (Confidence: 1, TimeStep: 1) 

KIF15_2_Inhibitor: KIF15 = !CDK1 (Confidence: 1, TimeStep: 1) 

KIF15_3_Inhibitor: KIF15 = !HMMR (Confidence: 1, TimeStep: 1) 

KIF15_4_Inhibitor: KIF15 = !KIF14 (Confidence: 1, TimeStep: 1) 

KIF15_5_Inhibitor: KIF15 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF18A with decay value = 1: 

KIF18A_1_Activator: KIF18A = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF18A_2_Activator: KIF18A = ASF1B (Confidence: 1, TimeStep: 1) 

KIF18A_3_Activator: KIF18A = AURKA (Confidence: 1, TimeStep: 1) 

KIF18A_4_Activator: KIF18A = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF18A_5_Activator: KIF18A = CCDC34 (Confidence: 1, TimeStep: 1) 

KIF18A_1_Inhibitor: KIF18A = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF18A_2_Inhibitor: KIF18A = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF18A_3_Inhibitor: KIF18A = !AURKA (Confidence: 1, TimeStep: 1) 

KIF18A_4_Inhibitor: KIF18A = BTG1 (Confidence: 1, TimeStep: 1) 

KIF18A_5_Inhibitor: KIF18A = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF18B with decay value = 1: 

KIF18B_1_Activator: KIF18B = APITD1-CORT (Confidence: 1, TimeStep: 1) 
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KIF18B_2_Activator: KIF18B = ASF1B (Confidence: 1, TimeStep: 1) 

KIF18B_3_Activator: KIF18B = AURKA (Confidence: 1, TimeStep: 1) 

KIF18B_4_Activator: KIF18B = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF18B_5_Activator: KIF18B = CCDC34 (Confidence: 1, TimeStep: 1) 

KIF18B_1_Inhibitor: KIF18B = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF18B_2_Inhibitor: KIF18B = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF18B_3_Inhibitor: KIF18B = !AURKA (Confidence: 1, TimeStep: 1) 

KIF18B_4_Inhibitor: KIF18B = BTG1 (Confidence: 1, TimeStep: 1) 

KIF18B_5_Inhibitor: KIF18B = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF20A with decay value = 1: 

KIF20A_1_Activator: KIF20A = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF20A_2_Activator: KIF20A = ASF1B (Confidence: 1, TimeStep: 1) 

KIF20A_3_Activator: KIF20A = AURKA (Confidence: 1, TimeStep: 1) 

KIF20A_4_Activator: KIF20A = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF20A_5_Activator: KIF20A = CCDC34 (Confidence: 1, TimeStep: 1) 

KIF20A_1_Inhibitor: KIF20A = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF20A_2_Inhibitor: KIF20A = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF20A_3_Inhibitor: KIF20A = !AURKA (Confidence: 1, TimeStep: 1) 

KIF20A_4_Inhibitor: KIF20A = BTG1 (Confidence: 1, TimeStep: 1) 

KIF20A_5_Inhibitor: KIF20A = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF23 with decay value = 1: 

KIF23_1_Activator: KIF23 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF23_2_Activator: KIF23 = ASF1B (Confidence: 1, TimeStep: 1) 

KIF23_3_Activator: KIF23 = AURKA (Confidence: 1, TimeStep: 1) 

KIF23_4_Activator: KIF23 = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF23_5_Activator: KIF23 = CCDC34 (Confidence: 1, TimeStep: 1) 

KIF23_1_Inhibitor: KIF23 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF23_2_Inhibitor: KIF23 = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF23_3_Inhibitor: KIF23 = !AURKA (Confidence: 1, TimeStep: 1) 

KIF23_4_Inhibitor: KIF23 = BTG1 (Confidence: 1, TimeStep: 1) 
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KIF23_5_Inhibitor: KIF23 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF26A with decay value = 1: 

KIF26A_1_Activator: KIF26A = TENM4 (Confidence: 1, TimeStep: 1) 

KIF26A_2_Activator: KIF26A = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

KIF26A_3_Activator: KIF26A = AKAP12&TRIB1 (Confidence: 1, TimeStep: 1) 

KIF26A_4_Activator: KIF26A = FABP5&IRAK3 (Confidence: 1, TimeStep: 1) 

KIF26A_5_Activator: KIF26A = DPEP1&TRIB1 (Confidence: 1, TimeStep: 1) 

KIF26A_1_Inhibitor: KIF26A = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

KIF26A_2_Inhibitor: KIF26A = !RAG1 (Confidence: 1, TimeStep: 1) 

KIF26A_3_Inhibitor: KIF26A = LOC100130872 (Confidence: 1, TimeStep: 1) 

KIF26A_4_Inhibitor: KIF26A = !METTL7A (Confidence: 1, TimeStep: 1) 

KIF26A_5_Inhibitor: KIF26A = SEMA4D (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF2C with decay value = 1: 

KIF2C_1_Activator: KIF2C = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF2C_2_Activator: KIF2C = ASF1B (Confidence: 1, TimeStep: 1) 

KIF2C_3_Activator: KIF2C = AURKA (Confidence: 1, TimeStep: 1) 

KIF2C_4_Activator: KIF2C = !BTG1 (Confidence: 1, TimeStep: 1) 

KIF2C_5_Activator: KIF2C = CCDC34 (Confidence: 1, TimeStep: 1) 

KIF2C_1_Inhibitor: KIF2C = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF2C_2_Inhibitor: KIF2C = !ASF1B (Confidence: 1, TimeStep: 1) 

KIF2C_3_Inhibitor: KIF2C = !AURKA (Confidence: 1, TimeStep: 1) 

KIF2C_4_Inhibitor: KIF2C = BTG1 (Confidence: 1, TimeStep: 1) 

KIF2C_5_Inhibitor: KIF2C = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KIF4A with decay value = 1: 

KIF4A_1_Activator: KIF4A = CENPH (Confidence: 1, TimeStep: 1) 

KIF4A_2_Activator: KIF4A = APITD1-CORT (Confidence: 1, TimeStep: 1) 

KIF4A_3_Activator: KIF4A = ASF1B (Confidence: 1, TimeStep: 1) 

KIF4A_4_Activator: KIF4A = AURKA (Confidence: 1, TimeStep: 1) 

KIF4A_5_Activator: KIF4A = !BTG1 (Confidence: 1, TimeStep: 1) 
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KIF4A_1_Inhibitor: KIF4A = !CENPH (Confidence: 1, TimeStep: 1) 

KIF4A_2_Inhibitor: KIF4A = !CDK1 (Confidence: 1, TimeStep: 1) 

KIF4A_3_Inhibitor: KIF4A = !HMMR (Confidence: 1, TimeStep: 1) 

KIF4A_4_Inhibitor: KIF4A = !KIF14 (Confidence: 1, TimeStep: 1) 

KIF4A_5_Inhibitor: KIF4A = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KLF9 with decay value = 1: 

KLF9_1_Activator: KLF9 = KLF9 (Confidence: 1, TimeStep: 1) 

KLF9_2_Activator: KLF9 = LGALS3 (Confidence: 1, TimeStep: 1) 

KLF9_3_Activator: KLF9 = RAB31 (Confidence: 1, TimeStep: 1) 

KLF9_4_Activator: KLF9 = !GGH&RBMS3 (Confidence: 1, TimeStep: 1) 

KLF9_5_Activator: KLF9 = !HELLS&RBMS3 (Confidence: 1, TimeStep: 1) 

KLF9_1_Inhibitor: KLF9 = !METTL7A (Confidence: 1, TimeStep: 1) 

KLF9_2_Inhibitor: KLF9 = BCL10 (Confidence: 1, TimeStep: 1) 

KLF9_3_Inhibitor: KLF9 = UBE2C (Confidence: 1, TimeStep: 1) 

KLF9_4_Inhibitor: KLF9 = !KLF9&!RBMS3 (Confidence: 1, TimeStep: 1) 

KLF9_5_Inhibitor: KLF9 = !DDIT4&!KLF9 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for KNL1 with decay value = 1: 

KNL1_1_Activator: KNL1 = CCNB2 (Confidence: 1, TimeStep: 1) 

KNL1_2_Activator: KNL1 = CDC45 (Confidence: 1, TimeStep: 1) 

KNL1_3_Activator: KNL1 = CENPA (Confidence: 1, TimeStep: 1) 

KNL1_4_Activator: KNL1 = CENPF (Confidence: 1, TimeStep: 1) 

KNL1_5_Activator: KNL1 = DLGAP5 (Confidence: 1, TimeStep: 1) 

KNL1_1_Inhibitor: KNL1 = !KNL1 (Confidence: 1, TimeStep: 1) 

KNL1_2_Inhibitor: KNL1 = !ZNF367 (Confidence: 1, TimeStep: 1) 

KNL1_3_Inhibitor: KNL1 = !E2F8 (Confidence: 1, TimeStep: 1) 

KNL1_4_Inhibitor: KNL1 = !GINS2 (Confidence: 1, TimeStep: 1) 

KNL1_5_Inhibitor: KNL1 = !DTL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LEF1 with decay value = 1: 

LEF1_1_Activator: LEF1 = !CD53 (Confidence: 1, TimeStep: 1) 
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LEF1_2_Activator: LEF1 = CDC20 (Confidence: 1, TimeStep: 1) 

LEF1_3_Activator: LEF1 = CENPK (Confidence: 1, TimeStep: 1) 

LEF1_4_Activator: LEF1 = ZWINT (Confidence: 1, TimeStep: 1) 

LEF1_5_Activator: LEF1 = ANLN (Confidence: 1, TimeStep: 1) 

LEF1_1_Inhibitor: LEF1 = !ANLN&!CDK6 (Confidence: 1, TimeStep: 1) 

LEF1_2_Inhibitor: LEF1 = !ANLN&!LEF1 (Confidence: 1, TimeStep: 1) 

LEF1_3_Inhibitor: LEF1 = !BRIP1&!CDK6 (Confidence: 1, TimeStep: 1) 

LEF1_4_Inhibitor: LEF1 = !BRIP1&!LEF1 (Confidence: 1, TimeStep: 1) 

LEF1_5_Inhibitor: LEF1 = !BUB1B&!CDK6 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LGALS3 with decay value = 1: 

LGALS3_1_Activator: LGALS3 = LGALS3 (Confidence: 1, TimeStep: 1) 

LGALS3_2_Activator: LGALS3 = CDC42EP3&PPP1R16B (Confidence: 1, TimeStep: 1) 

LGALS3_3_Activator: LGALS3 = CDC42EP3&!PRPS2 (Confidence: 1, TimeStep: 1) 

LGALS3_4_Activator: LGALS3 = !CRNDE&HBG1 (Confidence: 1, TimeStep: 1) 

LGALS3_5_Activator: LGALS3 = HBB&!PRPS2 (Confidence: 1, TimeStep: 1) 

LGALS3_1_Inhibitor: LGALS3 = !LGALS3 (Confidence: 1, TimeStep: 1) 

LGALS3_2_Inhibitor: LGALS3 = !PPP1R16B (Confidence: 1, TimeStep: 1) 

LGALS3_3_Inhibitor: LGALS3 = PRPS2 (Confidence: 1, TimeStep: 1) 

LGALS3_4_Inhibitor: LGALS3 = !CDC42EP3 (Confidence: 1, TimeStep: 1) 

LGALS3_5_Inhibitor: LGALS3 = !HBG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LILRA1 with decay value = 1: 

LILRA1_1_Activator: LILRA1 = LILRA1 (Confidence: 1, TimeStep: 1) 

LILRA1_2_Activator: LILRA1 = FCER1G&KLF9 (Confidence: 1, TimeStep: 1) 

LILRA1_3_Activator: LILRA1 = !ARPP21&FCER1G (Confidence: 1, TimeStep: 1) 

LILRA1_4_Activator: LILRA1 = FCER1G&ZBTB16 (Confidence: 1, TimeStep: 1) 

LILRA1_5_Activator: LILRA1 = FCGR3B&KLF9 (Confidence: 1, TimeStep: 1) 

LILRA1_1_Inhibitor: LILRA1 = !KLF9 (Confidence: 1, TimeStep: 1) 

LILRA1_2_Inhibitor: LILRA1 = ASPM (Confidence: 1, TimeStep: 1) 

LILRA1_3_Inhibitor: LILRA1 = !LILRB2 (Confidence: 1, TimeStep: 1) 

LILRA1_4_Inhibitor: LILRA1 = !RNASET2 (Confidence: 1, TimeStep: 1) 
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LILRA1_5_Inhibitor: LILRA1 = KIF11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LILRB2 with decay value = 1: 

LILRB2_1_Activator: LILRB2 = ITGAM (Confidence: 1, TimeStep: 1) 

LILRB2_2_Activator: LILRB2 = TBXA2R (Confidence: 1, TimeStep: 1) 

LILRB2_3_Activator: LILRB2 = MIR4683 (Confidence: 1, TimeStep: 1) 

LILRB2_4_Activator: LILRB2 = CCR1 (Confidence: 1, TimeStep: 1) 

LILRB2_5_Activator: LILRB2 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

LILRB2_1_Inhibitor: LILRB2 = ECT2 (Confidence: 1, TimeStep: 1) 

LILRB2_2_Inhibitor: LILRB2 = FOXM1 (Confidence: 1, TimeStep: 1) 

LILRB2_3_Inhibitor: LILRB2 = STIL (Confidence: 1, TimeStep: 1) 

LILRB2_4_Inhibitor: LILRB2 = ATAD2 (Confidence: 1, TimeStep: 1) 

LILRB2_5_Inhibitor: LILRB2 = BIRC5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LOC100130872 with decay value = 1: 

LOC100130872_1_Activator: LOC100130872 = LOC100130872 (Confidence: 1, TimeStep: 1) 

LOC100130872_2_Activator: LOC100130872 = !BCAT1&!MSH6 (Confidence: 1, TimeStep: 1) 

LOC100130872_3_Activator: LOC100130872 = !C5orf24&FGR (Confidence: 1, TimeStep: 1) 

LOC100130872_4_Activator: LOC100130872 = !C5orf24&!HRK (Confidence: 1, TimeStep: 1) 

LOC100130872_5_Activator: LOC100130872 = !C5orf24&PPP1R16B (Confidence: 1, TimeStep: 1) 

LOC100130872_1_Inhibitor: LOC100130872 = !HBG1 (Confidence: 1, TimeStep: 1) 

LOC100130872_2_Inhibitor: LOC100130872 = !HBB (Confidence: 1, TimeStep: 1) 

LOC100130872_3_Inhibitor: LOC100130872 = !SLA (Confidence: 1, TimeStep: 1) 

LOC100130872_4_Inhibitor: LOC100130872 = HRK (Confidence: 1, TimeStep: 1) 

LOC100130872_5_Inhibitor: LOC100130872 = !S100A8 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LOC100505650 with decay value = 1: 

LOC100505650_1_Activator: LOC100505650 = LOC100505650 (Confidence: 1, TimeStep: 1) 

LOC100505650_2_Activator: LOC100505650 = DEFA1&!ID2 (Confidence: 1, TimeStep: 1) 

LOC100505650_3_Activator: LOC100505650 = !C5orf24&ECT2 (Confidence: 1, TimeStep: 1) 

LOC100505650_4_Activator: LOC100505650 = !C5orf24&!ID2 (Confidence: 1, TimeStep: 1) 

LOC100505650_5_Activator: LOC100505650 = !C5orf24&!METTL7A (Confidence: 1, TimeStep: 1) 
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LOC100505650_1_Inhibitor: LOC100505650 = DENND3 (Confidence: 1, TimeStep: 1) 

LOC100505650_2_Inhibitor: LOC100505650 = TARSL2 (Confidence: 1, TimeStep: 1) 

LOC100505650_3_Inhibitor: LOC100505650 = P2RY14 (Confidence: 1, TimeStep: 1) 

LOC100505650_4_Inhibitor: LOC100505650 = SCML4 (Confidence: 1, TimeStep: 1) 

LOC100505650_5_Inhibitor: LOC100505650 = MS4A4A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LOC100996643 with decay value = 1: 

LOC100996643_1_Activator: LOC100996643 = !TXNIP (Confidence: 1, TimeStep: 1) 

LOC100996643_2_Activator: LOC100996643 = CENPH (Confidence: 1, TimeStep: 1) 

LOC100996643_3_Activator: LOC100996643 = CKAP2 (Confidence: 1, TimeStep: 1) 

LOC100996643_4_Activator: LOC100996643 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

LOC100996643_5_Activator: LOC100996643 = ASF1B (Confidence: 1, TimeStep: 1) 

LOC100996643_1_Inhibitor: LOC100996643 = !LOC100996643 (Confidence: 1, TimeStep: 1) 

LOC100996643_2_Inhibitor: LOC100996643 = !BYSL (Confidence: 1, TimeStep: 1) 

LOC100996643_3_Inhibitor: LOC100996643 = FGD2 (Confidence: 1, TimeStep: 1) 

LOC100996643_4_Inhibitor: LOC100996643 = !FABP5 (Confidence: 1, TimeStep: 1) 

LOC100996643_5_Inhibitor: LOC100996643 = SNX29P2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LOC285097 with decay value = 1: 

LOC285097_1_Activator: LOC285097 = LOC285097&!PPIF (Confidence: 1, TimeStep: 1) 

LOC285097_2_Activator: LOC285097 = LOC285097&!SEMA4D (Confidence: 1, TimeStep: 1) 

LOC285097_3_Activator: LOC285097 = AKAP12&LOC285097 (Confidence: 1, TimeStep: 1) 

LOC285097_4_Activator: LOC285097 = ISG20&LOC285097 (Confidence: 1, TimeStep: 1) 

LOC285097_5_Activator: LOC285097 = B3GNT2&LOC285097 (Confidence: 1, TimeStep: 1) 

LOC285097_1_Inhibitor: LOC285097 = SEMA4D (Confidence: 1, TimeStep: 1) 

LOC285097_2_Inhibitor: LOC285097 = AKAP12&!LOC285097 (Confidence: 1, TimeStep: 1) 

LOC285097_3_Inhibitor: LOC285097 = KIF26A&!LOC285097 (Confidence: 1, TimeStep: 1) 

LOC285097_4_Inhibitor: LOC285097 = MSH6&PPIF (Confidence: 1, TimeStep: 1) 

LOC285097_5_Inhibitor: LOC285097 = AKAP12&PPIF (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LOC728175 with decay value = 1: 

LOC728175_1_Activator: LOC728175 = BCAT1&LOC728175 (Confidence: 1, TimeStep: 1) 
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LOC728175_2_Activator: LOC728175 = BCAT1&MYRIP (Confidence: 1, TimeStep: 1) 

LOC728175_3_Activator: LOC728175 = !CELF2&LOC728175 (Confidence: 1, TimeStep: 1) 

LOC728175_4_Activator: LOC728175 = ELL2&LOC728175 (Confidence: 1, TimeStep: 1) 

LOC728175_5_Activator: LOC728175 = MYRIP&PTTG1 (Confidence: 1, TimeStep: 1) 

LOC728175_1_Inhibitor: LOC728175 = !LOC728175 (Confidence: 1, TimeStep: 1) 

LOC728175_2_Inhibitor: LOC728175 = !MYRIP (Confidence: 1, TimeStep: 1) 

LOC728175_3_Inhibitor: LOC728175 = !BCAT1 (Confidence: 1, TimeStep: 1) 

LOC728175_4_Inhibitor: LOC728175 = BIRC3 (Confidence: 1, TimeStep: 1) 

LOC728175_5_Inhibitor: LOC728175 = IL27RA (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LY96 with decay value = 1: 

LY96_1_Activator: LY96 = LY96 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for LYZ with decay value = 1: 

LYZ_1_Activator: LYZ = F13A1 (Confidence: 1, TimeStep: 1) 

LYZ_2_Activator: LYZ = LGALS3 (Confidence: 1, TimeStep: 1) 

LYZ_3_Activator: LYZ = !CCNB1&IGH (Confidence: 1, TimeStep: 1) 

LYZ_4_Activator: LYZ = !CENPV&MIR8071-1 (Confidence: 1, TimeStep: 1) 

LYZ_5_Activator: LYZ = !BUB1B&IGH (Confidence: 1, TimeStep: 1) 

LYZ_1_Inhibitor: LYZ = TMEM97 (Confidence: 1, TimeStep: 1) 

LYZ_2_Inhibitor: LYZ = WDHD1 (Confidence: 1, TimeStep: 1) 

LYZ_3_Inhibitor: LYZ = CENPH (Confidence: 1, TimeStep: 1) 

LYZ_4_Inhibitor: LYZ = APITD1-CORT (Confidence: 1, TimeStep: 1) 

LYZ_5_Inhibitor: LYZ = ASF1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MAD2L1 with decay value = 1: 

MAD2L1_1_Activator: MAD2L1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MAD2L1_2_Activator: MAD2L1 = ASF1B (Confidence: 1, TimeStep: 1) 

MAD2L1_3_Activator: MAD2L1 = AURKA (Confidence: 1, TimeStep: 1) 

MAD2L1_4_Activator: MAD2L1 = !BTG1 (Confidence: 1, TimeStep: 1) 

MAD2L1_5_Activator: MAD2L1 = CCDC34 (Confidence: 1, TimeStep: 1) 

MAD2L1_1_Inhibitor: MAD2L1 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 
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MAD2L1_2_Inhibitor: MAD2L1 = !ASF1B (Confidence: 1, TimeStep: 1) 

MAD2L1_3_Inhibitor: MAD2L1 = !AURKA (Confidence: 1, TimeStep: 1) 

MAD2L1_4_Inhibitor: MAD2L1 = BTG1 (Confidence: 1, TimeStep: 1) 

MAD2L1_5_Inhibitor: MAD2L1 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MCM10 with decay value = 1: 

MCM10_1_Activator: MCM10 = !CD53&MDK (Confidence: 1, TimeStep: 1) 

MCM10_2_Activator: MCM10 = CENPK&MDK (Confidence: 1, TimeStep: 1) 

MCM10_3_Activator: MCM10 = !IGH&MDK (Confidence: 1, TimeStep: 1) 

MCM10_4_Activator: MCM10 = !IGLC1&MDK (Confidence: 1, TimeStep: 1) 

MCM10_5_Activator: MCM10 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

MCM10_1_Inhibitor: MCM10 = !CENPH (Confidence: 1, TimeStep: 1) 

MCM10_2_Inhibitor: MCM10 = !CDK1 (Confidence: 1, TimeStep: 1) 

MCM10_3_Inhibitor: MCM10 = !HMMR (Confidence: 1, TimeStep: 1) 

MCM10_4_Inhibitor: MCM10 = !KIF14 (Confidence: 1, TimeStep: 1) 

MCM10_5_Inhibitor: MCM10 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MCM4 with decay value = 1: 

MCM4_1_Activator: MCM4 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MCM4_2_Activator: MCM4 = ASF1B (Confidence: 1, TimeStep: 1) 

MCM4_3_Activator: MCM4 = AURKA (Confidence: 1, TimeStep: 1) 

MCM4_4_Activator: MCM4 = !BTG1 (Confidence: 1, TimeStep: 1) 

MCM4_5_Activator: MCM4 = CCDC34 (Confidence: 1, TimeStep: 1) 

MCM4_1_Inhibitor: MCM4 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

MCM4_2_Inhibitor: MCM4 = !ASF1B (Confidence: 1, TimeStep: 1) 

MCM4_3_Inhibitor: MCM4 = !AURKA (Confidence: 1, TimeStep: 1) 

MCM4_4_Inhibitor: MCM4 = BTG1 (Confidence: 1, TimeStep: 1) 

MCM4_5_Inhibitor: MCM4 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MCM5 with decay value = 1: 

MCM5_1_Activator: MCM5 = !ANP32E&BUB1B (Confidence: 1, TimeStep: 1) 

MCM5_2_Activator: MCM5 = !ANP32E&C4orf46 (Confidence: 1, TimeStep: 1) 
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MCM5_3_Activator: MCM5 = !ANP32E&CCNB1 (Confidence: 1, TimeStep: 1) 

MCM5_4_Activator: MCM5 = !ANP32E&CENPN (Confidence: 1, TimeStep: 1) 

MCM5_5_Activator: MCM5 = !ANP32E&KIF15 (Confidence: 1, TimeStep: 1) 

MCM5_1_Inhibitor: MCM5 = !CCNB1 (Confidence: 1, TimeStep: 1) 

MCM5_2_Inhibitor: MCM5 = !BUB1B (Confidence: 1, TimeStep: 1) 

MCM5_3_Inhibitor: MCM5 = !CENPN (Confidence: 1, TimeStep: 1) 

MCM5_4_Inhibitor: MCM5 = !KIF15 (Confidence: 1, TimeStep: 1) 

MCM5_5_Inhibitor: MCM5 = !MCM10 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MCM7 with decay value = 1: 

MCM7_1_Activator: MCM7 = !APITD1-CORT&BRIP1 (Confidence: 1, TimeStep: 1) 

MCM7_2_Activator: MCM7 = !APITD1-CORT&CHEK1 (Confidence: 1, TimeStep: 1) 

MCM7_3_Activator: MCM7 = !APITD1-CORT&FANCI (Confidence: 1, TimeStep: 1) 

MCM7_4_Activator: MCM7 = !APITD1-CORT&TTK (Confidence: 1, TimeStep: 1) 

MCM7_5_Activator: MCM7 = !ASF1B&BRIP1 (Confidence: 1, TimeStep: 1) 

MCM7_1_Inhibitor: MCM7 = !BRCA1 (Confidence: 1, TimeStep: 1) 

MCM7_2_Inhibitor: MCM7 = !MCM7 (Confidence: 1, TimeStep: 1) 

MCM7_3_Inhibitor: MCM7 = !BYSL (Confidence: 1, TimeStep: 1) 

MCM7_4_Inhibitor: MCM7 = !PAICS (Confidence: 1, TimeStep: 1) 

MCM7_5_Inhibitor: MCM7 = TBXA2R (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MDK with decay value = 1: 

MDK_1_Activator: MDK = !CCNL1&MDK (Confidence: 1, TimeStep: 1) 

MDK_2_Activator: MDK = BRCA1&MDK (Confidence: 1, TimeStep: 1) 

MDK_3_Activator: MDK = BRIP1&MDK (Confidence: 1, TimeStep: 1) 

MDK_4_Activator: MDK = BUB1B&MDK (Confidence: 1, TimeStep: 1) 

MDK_5_Activator: MDK = C4orf46&MDK (Confidence: 1, TimeStep: 1) 

MDK_1_Inhibitor: MDK = !MDK (Confidence: 1, TimeStep: 1) 

MDK_2_Inhibitor: MDK = CLEC2B (Confidence: 1, TimeStep: 1) 

MDK_3_Inhibitor: MDK = HBB (Confidence: 1, TimeStep: 1) 

MDK_4_Inhibitor: MDK = !RMI2 (Confidence: 1, TimeStep: 1) 

MDK_5_Inhibitor: MDK = CDC42EP3 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for MDM2 with decay value = 1: 

MDM2_1_Activator: MDM2 = !IL6ST&MDM2 (Confidence: 1, TimeStep: 1) 

MDM2_2_Activator: MDM2 = !IL6ST&TENM4 (Confidence: 1, TimeStep: 1) 

MDM2_1_Inhibitor: MDM2 = !TMEM2 (Confidence: 1, TimeStep: 1) 

MDM2_2_Inhibitor: MDM2 = !MDM2&!MYRIP (Confidence: 1, TimeStep: 1) 

MDM2_3_Inhibitor: MDM2 = !KCNK12&!P2RY14 (Confidence: 1, TimeStep: 1) 

MDM2_4_Inhibitor: MDM2 = !MYRIP&!P2RY14 (Confidence: 1, TimeStep: 1) 

MDM2_5_Inhibitor: MDM2 = !P2RY14&!TENM4 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MELK with decay value = 1: 

MELK_1_Activator: MELK = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MELK_2_Activator: MELK = ASF1B (Confidence: 1, TimeStep: 1) 

MELK_3_Activator: MELK = AURKA (Confidence: 1, TimeStep: 1) 

MELK_4_Activator: MELK = !BTG1 (Confidence: 1, TimeStep: 1) 

MELK_5_Activator: MELK = CCDC34 (Confidence: 1, TimeStep: 1) 

MELK_1_Inhibitor: MELK = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

MELK_2_Inhibitor: MELK = !ASF1B (Confidence: 1, TimeStep: 1) 

MELK_3_Inhibitor: MELK = !AURKA (Confidence: 1, TimeStep: 1) 

MELK_4_Inhibitor: MELK = BTG1 (Confidence: 1, TimeStep: 1) 

MELK_5_Inhibitor: MELK = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for METTL7A with decay value = 1: 

METTL7A_1_Activator: METTL7A = METTL7A (Confidence: 1, TimeStep: 1) 

METTL7A_2_Activator: METTL7A = !ECT2 (Confidence: 1, TimeStep: 1) 

METTL7A_3_Activator: METTL7A = TMEM2 (Confidence: 1, TimeStep: 1) 

METTL7A_4_Activator: METTL7A = !CENPK (Confidence: 1, TimeStep: 1) 

METTL7A_5_Activator: METTL7A = ISG20 (Confidence: 1, TimeStep: 1) 

METTL7A_1_Inhibitor: METTL7A = !BMF&!TRIB1 (Confidence: 1, TimeStep: 1) 

METTL7A_2_Inhibitor: METTL7A = !AKAP12&LOC100505650 (Confidence: 1, TimeStep: 1) 

METTL7A_3_Inhibitor: METTL7A = !C5orf24&ECT2 (Confidence: 1, TimeStep: 1) 

METTL7A_4_Inhibitor: METTL7A = !C5orf24&!ID2 (Confidence: 1, TimeStep: 1) 
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METTL7A_5_Inhibitor: METTL7A = !C5orf24&!METTL7A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MIR4683 with decay value = 1: 

MIR4683_1_Activator: MIR4683 = MIR4683 (Confidence: 1, TimeStep: 1) 

MIR4683_2_Activator: MIR4683 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

MIR4683_3_Activator: MIR4683 = BMF&RNASET2 (Confidence: 1, TimeStep: 1) 

MIR4683_4_Activator: MIR4683 = C5orf24&RNASET2 (Confidence: 1, TimeStep: 1) 

MIR4683_5_Activator: MIR4683 = AKAP12&RNASET2 (Confidence: 1, TimeStep: 1) 

MIR4683_1_Inhibitor: MIR4683 = ECT2 (Confidence: 1, TimeStep: 1) 

MIR4683_2_Inhibitor: MIR4683 = PPIF (Confidence: 1, TimeStep: 1) 

MIR4683_3_Inhibitor: MIR4683 = FOXM1 (Confidence: 1, TimeStep: 1) 

MIR4683_4_Inhibitor: MIR4683 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

MIR4683_5_Inhibitor: MIR4683 = !RAG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MIR6845 with decay value = 1: 

MIR6845_1_Activator: MIR6845 = MIR6845 (Confidence: 1, TimeStep: 1) 

MIR6845_2_Activator: MIR6845 = !BYSL (Confidence: 1, TimeStep: 1) 

MIR6845_3_Activator: MIR6845 = !PAICS (Confidence: 1, TimeStep: 1) 

MIR6845_4_Activator: MIR6845 = !CRNDE (Confidence: 1, TimeStep: 1) 

MIR6845_5_Activator: MIR6845 = MIR4683 (Confidence: 1, TimeStep: 1) 

MIR6845_1_Inhibitor: MIR6845 = ATAD2 (Confidence: 1, TimeStep: 1) 

MIR6845_2_Inhibitor: MIR6845 = BIRC5 (Confidence: 1, TimeStep: 1) 

MIR6845_3_Inhibitor: MIR6845 = BUB1 (Confidence: 1, TimeStep: 1) 

MIR6845_4_Inhibitor: MIR6845 = CCNA2 (Confidence: 1, TimeStep: 1) 

MIR6845_5_Inhibitor: MIR6845 = CDCA5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MIR8071-1 with decay value = 1: 

MIR8071-1_1_Activator: MIR8071-1 = MIR8071-1 (Confidence: 1, TimeStep: 1) 

MIR8071-1_2_Activator: MIR8071-1 = F13A1 (Confidence: 1, TimeStep: 1) 

MIR8071-1_3_Activator: MIR8071-1 = LGALS3 (Confidence: 1, TimeStep: 1) 

MIR8071-1_4_Activator: MIR8071-1 = MNDA (Confidence: 1, TimeStep: 1) 

MIR8071-1_5_Activator: MIR8071-1 = IGLC1&!TMEM97 (Confidence: 1, TimeStep: 1) 
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MIR8071-1_1_Inhibitor: MIR8071-1 = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

MIR8071-1_2_Inhibitor: MIR8071-1 = LYZ&!MIR8071-1 (Confidence: 1, TimeStep: 1) 

MIR8071-1_3_Inhibitor: MIR8071-1 = !APITD1-CORT&!MS4A1 (Confidence: 1, TimeStep: 1) 

MIR8071-1_4_Inhibitor: MIR8071-1 = !ASF1B&!MS4A1 (Confidence: 1, TimeStep: 1) 

MIR8071-1_5_Inhibitor: MIR8071-1 = !ATAD2&!MS4A1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MKI67 with decay value = 1: 

MKI67_1_Activator: MKI67 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MKI67_2_Activator: MKI67 = ASF1B (Confidence: 1, TimeStep: 1) 

MKI67_3_Activator: MKI67 = AURKA (Confidence: 1, TimeStep: 1) 

MKI67_4_Activator: MKI67 = !BTG1 (Confidence: 1, TimeStep: 1) 

MKI67_5_Activator: MKI67 = CCDC34 (Confidence: 1, TimeStep: 1) 

MKI67_1_Inhibitor: MKI67 = !RRM2 (Confidence: 1, TimeStep: 1) 

MKI67_2_Inhibitor: MKI67 = !CENPW (Confidence: 1, TimeStep: 1) 

MKI67_3_Inhibitor: MKI67 = !TCF19 (Confidence: 1, TimeStep: 1) 

MKI67_4_Inhibitor: MKI67 = !WDR76 (Confidence: 1, TimeStep: 1) 

MKI67_5_Inhibitor: MKI67 = !DFNA5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MND1 with decay value = 1: 

MND1_1_Activator: MND1 = PTTG1 (Confidence: 1, TimeStep: 1) 

MND1_2_Activator: MND1 = CDK1 (Confidence: 1, TimeStep: 1) 

MND1_3_Activator: MND1 = HMMR (Confidence: 1, TimeStep: 1) 

MND1_4_Activator: MND1 = KIF14 (Confidence: 1, TimeStep: 1) 

MND1_5_Activator: MND1 = KIF20A (Confidence: 1, TimeStep: 1) 

MND1_1_Inhibitor: MND1 = !MND1 (Confidence: 1, TimeStep: 1) 

MND1_2_Inhibitor: MND1 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

MND1_3_Inhibitor: MND1 = !PAICS (Confidence: 1, TimeStep: 1) 

MND1_4_Inhibitor: MND1 = !CRNDE (Confidence: 1, TimeStep: 1) 

MND1_5_Inhibitor: MND1 = !SELENOI (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MNDA with decay value = 1: 

MNDA_1_Activator: MNDA = !C5orf24&!ECT2 (Confidence: 1, TimeStep: 1) 
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MNDA_2_Activator: MNDA = IGLC1&!LEF1 (Confidence: 1, TimeStep: 1) 

MNDA_3_Activator: MNDA = IGLC1&MNDA (Confidence: 1, TimeStep: 1) 

MNDA_4_Activator: MNDA = ITPKB&MNDA (Confidence: 1, TimeStep: 1) 

MNDA_5_Activator: MNDA = !C5orf24&FGD2 (Confidence: 1, TimeStep: 1) 

MNDA_1_Inhibitor: MNDA = LOC100996643 (Confidence: 1, TimeStep: 1) 

MNDA_2_Inhibitor: MNDA = !MIR8071-1 (Confidence: 1, TimeStep: 1) 

MNDA_3_Inhibitor: MNDA = !CD53 (Confidence: 1, TimeStep: 1) 

MNDA_4_Inhibitor: MNDA = ZWINT (Confidence: 1, TimeStep: 1) 

MNDA_5_Inhibitor: MNDA = ANLN (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MPV17L with decay value = 1: 

MPV17L_1_Activator: MPV17L = FABP5&!IGLL1 (Confidence: 1, TimeStep: 1) 

MPV17L_2_Activator: MPV17L = FABP5&SNX29P2 (Confidence: 1, TimeStep: 1) 

MPV17L_3_Activator: MPV17L = BYSL&!IGLL1 (Confidence: 1, TimeStep: 1) 

MPV17L_4_Activator: MPV17L = FABP5&MPV17L (Confidence: 1, TimeStep: 1) 

MPV17L_5_Activator: MPV17L = BYSL&MPV17L (Confidence: 1, TimeStep: 1) 

MPV17L_1_Inhibitor: MPV17L = KIF4A (Confidence: 1, TimeStep: 1) 

MPV17L_2_Inhibitor: MPV17L = RFC3 (Confidence: 1, TimeStep: 1) 

MPV17L_3_Inhibitor: MPV17L = SHCBP1 (Confidence: 1, TimeStep: 1) 

MPV17L_4_Inhibitor: MPV17L = FH (Confidence: 1, TimeStep: 1) 

MPV17L_5_Inhibitor: MPV17L = CCNB1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MS4A1 with decay value = 1: 

MS4A1_1_Activator: MS4A1 = MIR8071-1 (Confidence: 1, TimeStep: 1) 

MS4A1_2_Activator: MS4A1 = MTSS1 (Confidence: 1, TimeStep: 1) 

MS4A1_3_Activator: MS4A1 = SERPINB9 (Confidence: 1, TimeStep: 1) 

MS4A1_4_Activator: MS4A1 = IGLC1 (Confidence: 1, TimeStep: 1) 

MS4A1_5_Activator: MS4A1 = ITGAM (Confidence: 1, TimeStep: 1) 

MS4A1_1_Inhibitor: MS4A1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MS4A1_2_Inhibitor: MS4A1 = ASF1B (Confidence: 1, TimeStep: 1) 

MS4A1_3_Inhibitor: MS4A1 = AURKA (Confidence: 1, TimeStep: 1) 

MS4A1_4_Inhibitor: MS4A1 = !BTG1 (Confidence: 1, TimeStep: 1) 
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MS4A1_5_Inhibitor: MS4A1 = CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MS4A4A with decay value = 1: 

MS4A4A_1_Activator: MS4A4A = !F13A1&FGD2 (Confidence: 1, TimeStep: 1) 

MS4A4A_2_Activator: MS4A4A = !MS4A4A&TARSL2 (Confidence: 1, TimeStep: 1) 

MS4A4A_3_Activator: MS4A4A = !ID2&MTSS1 (Confidence: 1, TimeStep: 1) 

MS4A4A_4_Activator: MS4A4A = !MIR6845&TARSL2 (Confidence: 1, TimeStep: 1) 

MS4A4A_5_Activator: MS4A4A = CENPV&HRK (Confidence: 1, TimeStep: 1) 

MS4A4A_1_Inhibitor: MS4A4A = !SMAP2 (Confidence: 1, TimeStep: 1) 

MS4A4A_2_Inhibitor: MS4A4A = ECT2 (Confidence: 1, TimeStep: 1) 

MS4A4A_3_Inhibitor: MS4A4A = FOXM1 (Confidence: 1, TimeStep: 1) 

MS4A4A_4_Inhibitor: MS4A4A = STIL (Confidence: 1, TimeStep: 1) 

MS4A4A_5_Inhibitor: MS4A4A = ATAD2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MS4A7 with decay value = 1: 

MS4A7_1_Activator: MS4A7 = LILRA1 (Confidence: 1, TimeStep: 1) 

MS4A7_2_Activator: MS4A7 = !E2F7&MS4A7 (Confidence: 1, TimeStep: 1) 

MS4A7_3_Activator: MS4A7 = IL6ST&MS4A7 (Confidence: 1, TimeStep: 1) 

MS4A7_4_Activator: MS4A7 = !CCNL1&FGD2 (Confidence: 1, TimeStep: 1) 

MS4A7_5_Activator: MS4A7 = !CENPV&FGD2 (Confidence: 1, TimeStep: 1) 

MS4A7_1_Inhibitor: MS4A7 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

MS4A7_2_Inhibitor: MS4A7 = ASF1B (Confidence: 1, TimeStep: 1) 

MS4A7_3_Inhibitor: MS4A7 = AURKA (Confidence: 1, TimeStep: 1) 

MS4A7_4_Inhibitor: MS4A7 = !BTG1 (Confidence: 1, TimeStep: 1) 

MS4A7_5_Inhibitor: MS4A7 = CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MSH6 with decay value = 1: 

MSH6_1_Activator: MSH6 = HRK (Confidence: 1, TimeStep: 1) 

MSH6_2_Activator: MSH6 = TENM4 (Confidence: 1, TimeStep: 1) 

MSH6_3_Activator: MSH6 = AKAP12&RMI2 (Confidence: 1, TimeStep: 1) 

MSH6_4_Activator: MSH6 = ABHD17B&!SNX10 (Confidence: 1, TimeStep: 1) 

MSH6_5_Activator: MSH6 = GSN&RMI2 (Confidence: 1, TimeStep: 1) 
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MSH6_1_Inhibitor: MSH6 = !MSH6 (Confidence: 1, TimeStep: 1) 

MSH6_2_Inhibitor: MSH6 = !ID3 (Confidence: 1, TimeStep: 1) 

MSH6_3_Inhibitor: MSH6 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

MSH6_4_Inhibitor: MSH6 = !ABHD17B (Confidence: 1, TimeStep: 1) 

MSH6_5_Inhibitor: MSH6 = LOC100130872 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MTHFD2 with decay value = 1: 

MTHFD2_1_Activator: MTHFD2 = !TXNIP (Confidence: 1, TimeStep: 1) 

MTHFD2_2_Activator: MTHFD2 = ATAD2 (Confidence: 1, TimeStep: 1) 

MTHFD2_3_Activator: MTHFD2 = BIRC5 (Confidence: 1, TimeStep: 1) 

MTHFD2_4_Activator: MTHFD2 = BUB1 (Confidence: 1, TimeStep: 1) 

MTHFD2_5_Activator: MTHFD2 = CCNA2 (Confidence: 1, TimeStep: 1) 

MTHFD2_1_Inhibitor: MTHFD2 = !CCDC86 (Confidence: 1, TimeStep: 1) 

MTHFD2_2_Inhibitor: MTHFD2 = !PAICS (Confidence: 1, TimeStep: 1) 

MTHFD2_3_Inhibitor: MTHFD2 = ITGAM (Confidence: 1, TimeStep: 1) 

MTHFD2_4_Inhibitor: MTHFD2 = !SELENOI (Confidence: 1, TimeStep: 1) 

MTHFD2_5_Inhibitor: MTHFD2 = CDC42EP3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MTSS1 with decay value = 1: 

MTSS1_1_Activator: MTSS1 = MTSS1 (Confidence: 1, TimeStep: 1) 

MTSS1_2_Activator: MTSS1 = SERPINB9 (Confidence: 1, TimeStep: 1) 

MTSS1_3_Activator: MTSS1 = ITGAM (Confidence: 1, TimeStep: 1) 

MTSS1_4_Activator: MTSS1 = HRK (Confidence: 1, TimeStep: 1) 

MTSS1_5_Activator: MTSS1 = CCR1 (Confidence: 1, TimeStep: 1) 

MTSS1_1_Inhibitor: MTSS1 = !SMAP2 (Confidence: 1, TimeStep: 1) 

MTSS1_2_Inhibitor: MTSS1 = ECT2 (Confidence: 1, TimeStep: 1) 

MTSS1_3_Inhibitor: MTSS1 = !MS4A1 (Confidence: 1, TimeStep: 1) 

MTSS1_4_Inhibitor: MTSS1 = FOXM1 (Confidence: 1, TimeStep: 1) 

MTSS1_5_Inhibitor: MTSS1 = STIL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for MYRIP with decay value = 1: 

MYRIP_1_Activator: MYRIP = LOC728175 (Confidence: 1, TimeStep: 1) 



 

 214 

MYRIP_2_Activator: MYRIP = !BIRC3&MDM2 (Confidence: 1, TimeStep: 1) 

MYRIP_3_Activator: MYRIP = ELL2&MYRIP (Confidence: 1, TimeStep: 1) 

MYRIP_4_Activator: MYRIP = KCNK12&!SNX10 (Confidence: 1, TimeStep: 1) 

MYRIP_5_Activator: MYRIP = LOC100996643&MDM2 (Confidence: 1, TimeStep: 1) 

MYRIP_1_Inhibitor: MYRIP = FGR (Confidence: 1, TimeStep: 1) 

MYRIP_2_Inhibitor: MYRIP = !PTP4A1 (Confidence: 1, TimeStep: 1) 

MYRIP_3_Inhibitor: MYRIP = !ID3 (Confidence: 1, TimeStep: 1) 

MYRIP_4_Inhibitor: MYRIP = !ELL2&SNX10 (Confidence: 1, TimeStep: 1) 

MYRIP_5_Inhibitor: MYRIP = !IL6ST&!LOC728175 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NCAPG with decay value = 1: 

NCAPG_1_Activator: NCAPG = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NCAPG_2_Activator: NCAPG = ASF1B (Confidence: 1, TimeStep: 1) 

NCAPG_3_Activator: NCAPG = AURKA (Confidence: 1, TimeStep: 1) 

NCAPG_4_Activator: NCAPG = !BTG1 (Confidence: 1, TimeStep: 1) 

NCAPG_5_Activator: NCAPG = CCDC34 (Confidence: 1, TimeStep: 1) 

NCAPG_1_Inhibitor: NCAPG = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

NCAPG_2_Inhibitor: NCAPG = !ASF1B (Confidence: 1, TimeStep: 1) 

NCAPG_3_Inhibitor: NCAPG = !AURKA (Confidence: 1, TimeStep: 1) 

NCAPG_4_Inhibitor: NCAPG = BTG1 (Confidence: 1, TimeStep: 1) 

NCAPG_5_Inhibitor: NCAPG = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NCAPH with decay value = 1: 

NCAPH_1_Activator: NCAPH = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NCAPH_2_Activator: NCAPH = ASF1B (Confidence: 1, TimeStep: 1) 

NCAPH_3_Activator: NCAPH = AURKA (Confidence: 1, TimeStep: 1) 

NCAPH_4_Activator: NCAPH = !BTG1 (Confidence: 1, TimeStep: 1) 

NCAPH_5_Activator: NCAPH = CCDC34 (Confidence: 1, TimeStep: 1) 

NCAPH_1_Inhibitor: NCAPH = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

NCAPH_2_Inhibitor: NCAPH = !ASF1B (Confidence: 1, TimeStep: 1) 

NCAPH_3_Inhibitor: NCAPH = !AURKA (Confidence: 1, TimeStep: 1) 

NCAPH_4_Inhibitor: NCAPH = BTG1 (Confidence: 1, TimeStep: 1) 
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NCAPH_5_Inhibitor: NCAPH = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NEAT1 with decay value = 1: 

NEAT1_1_Activator: NEAT1 = !ANP32E (Confidence: 1, TimeStep: 1) 

NEAT1_2_Activator: NEAT1 = !FH (Confidence: 1, TimeStep: 1) 

NEAT1_3_Activator: NEAT1 = NEAT1 (Confidence: 1, TimeStep: 1) 

NEAT1_4_Activator: NEAT1 = !RFC3 (Confidence: 1, TimeStep: 1) 

NEAT1_5_Activator: NEAT1 = !MTHFD2 (Confidence: 1, TimeStep: 1) 

NEAT1_1_Inhibitor: NEAT1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NEAT1_2_Inhibitor: NEAT1 = ASF1B (Confidence: 1, TimeStep: 1) 

NEAT1_3_Inhibitor: NEAT1 = AURKA (Confidence: 1, TimeStep: 1) 

NEAT1_4_Inhibitor: NEAT1 = !BTG1 (Confidence: 1, TimeStep: 1) 

NEAT1_5_Inhibitor: NEAT1 = CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NEDD9 with decay value = 1: 

NEDD9_1_Activator: NEDD9 = RAB31 (Confidence: 1, TimeStep: 1) 

NEDD9_2_Activator: NEDD9 = !ANLN&ITGAM (Confidence: 1, TimeStep: 1) 

NEDD9_3_Activator: NEDD9 = !BCAT1&NEDD9 (Confidence: 1, TimeStep: 1) 

NEDD9_4_Activator: NEDD9 = !BYSL&NEDD9 (Confidence: 1, TimeStep: 1) 

NEDD9_5_Activator: NEDD9 = !ASPM&ITGAM (Confidence: 1, TimeStep: 1) 

NEDD9_1_Inhibitor: NEDD9 = BYSL&!WFS1 (Confidence: 1, TimeStep: 1) 

NEDD9_2_Inhibitor: NEDD9 = !AURKB&!RNASET2 (Confidence: 1, TimeStep: 1) 

NEDD9_3_Inhibitor: NEDD9 = !ATAD2&!RNASET2 (Confidence: 1, TimeStep: 1) 

NEDD9_4_Inhibitor: NEDD9 = !BIRC5&!RNASET2 (Confidence: 1, TimeStep: 1) 

NEDD9_5_Inhibitor: NEDD9 = !BUB1&!RNASET2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NEK2 with decay value = 1: 

NEK2_1_Activator: NEK2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NEK2_2_Activator: NEK2 = ASF1B (Confidence: 1, TimeStep: 1) 

NEK2_3_Activator: NEK2 = AURKA (Confidence: 1, TimeStep: 1) 

NEK2_4_Activator: NEK2 = !BTG1 (Confidence: 1, TimeStep: 1) 

NEK2_5_Activator: NEK2 = CCDC34 (Confidence: 1, TimeStep: 1) 
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NEK2_1_Inhibitor: NEK2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

NEK2_2_Inhibitor: NEK2 = !ASF1B (Confidence: 1, TimeStep: 1) 

NEK2_3_Inhibitor: NEK2 = !AURKA (Confidence: 1, TimeStep: 1) 

NEK2_4_Inhibitor: NEK2 = BTG1 (Confidence: 1, TimeStep: 1) 

NEK2_5_Inhibitor: NEK2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NME1 with decay value = 1: 

NME1_1_Activator: NME1 = CENPH (Confidence: 1, TimeStep: 1) 

NME1_2_Activator: NME1 = CKAP2 (Confidence: 1, TimeStep: 1) 

NME1_3_Activator: NME1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NME1_4_Activator: NME1 = ASF1B (Confidence: 1, TimeStep: 1) 

NME1_5_Activator: NME1 = AURKA (Confidence: 1, TimeStep: 1) 

NME1_1_Inhibitor: NME1 = LYZ (Confidence: 1, TimeStep: 1) 

NME1_2_Inhibitor: NME1 = !LOC100996643 (Confidence: 1, TimeStep: 1) 

NME1_3_Inhibitor: NME1 = MIR8071-1 (Confidence: 1, TimeStep: 1) 

NME1_4_Inhibitor: NME1 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

NME1_5_Inhibitor: NME1 = !BYSL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NPCDR1 with decay value = 1: 

NPCDR1_1_Activator: NPCDR1 = ABHD17B&CDC42EP3 (Confidence: 1, TimeStep: 1) 

NPCDR1_2_Activator: NPCDR1 = !BCL2L11&CDC42EP3 (Confidence: 1, TimeStep: 1) 

NPCDR1_3_Activator: NPCDR1 = !BCL2L11&!LOC100996643 (Confidence: 1, TimeStep: 1) 

NPCDR1_4_Activator: NPCDR1 = !BCL2L11&!PAICS (Confidence: 1, TimeStep: 1) 

NPCDR1_5_Activator: NPCDR1 = BMF&CDC42EP3 (Confidence: 1, TimeStep: 1) 

NPCDR1_1_Inhibitor: NPCDR1 = CDT1 (Confidence: 1, TimeStep: 1) 

NPCDR1_2_Inhibitor: NPCDR1 = BRIP1 (Confidence: 1, TimeStep: 1) 

NPCDR1_3_Inhibitor: NPCDR1 = CHEK1 (Confidence: 1, TimeStep: 1) 

NPCDR1_4_Inhibitor: NPCDR1 = FANCI (Confidence: 1, TimeStep: 1) 

NPCDR1_5_Inhibitor: NPCDR1 = TTK (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NUF2 with decay value = 1: 

NUF2_1_Activator: NUF2 = CENPH (Confidence: 1, TimeStep: 1) 
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NUF2_2_Activator: NUF2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NUF2_3_Activator: NUF2 = ASF1B (Confidence: 1, TimeStep: 1) 

NUF2_4_Activator: NUF2 = AURKA (Confidence: 1, TimeStep: 1) 

NUF2_5_Activator: NUF2 = !BTG1 (Confidence: 1, TimeStep: 1) 

NUF2_1_Inhibitor: NUF2 = !CENPF (Confidence: 1, TimeStep: 1) 

NUF2_2_Inhibitor: NUF2 = !NEK2 (Confidence: 1, TimeStep: 1) 

NUF2_3_Inhibitor: NUF2 = !FH (Confidence: 1, TimeStep: 1) 

NUF2_4_Inhibitor: NUF2 = !C4orf46 (Confidence: 1, TimeStep: 1) 

NUF2_5_Inhibitor: NUF2 = !HELLS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for NUSAP1 with decay value = 1: 

NUSAP1_1_Activator: NUSAP1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

NUSAP1_2_Activator: NUSAP1 = ASF1B (Confidence: 1, TimeStep: 1) 

NUSAP1_3_Activator: NUSAP1 = AURKA (Confidence: 1, TimeStep: 1) 

NUSAP1_4_Activator: NUSAP1 = !BTG1 (Confidence: 1, TimeStep: 1) 

NUSAP1_5_Activator: NUSAP1 = CCDC34 (Confidence: 1, TimeStep: 1) 

NUSAP1_1_Inhibitor: NUSAP1 = !CENPF (Confidence: 1, TimeStep: 1) 

NUSAP1_2_Inhibitor: NUSAP1 = !DEPDC1B (Confidence: 1, TimeStep: 1) 

NUSAP1_3_Inhibitor: NUSAP1 = !NEK2 (Confidence: 1, TimeStep: 1) 

NUSAP1_4_Inhibitor: NUSAP1 = !ANP32E (Confidence: 1, TimeStep: 1) 

NUSAP1_5_Inhibitor: NUSAP1 = !FH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for OIP5 with decay value = 1: 

OIP5_1_Activator: OIP5 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

OIP5_2_Activator: OIP5 = ASF1B (Confidence: 1, TimeStep: 1) 

OIP5_3_Activator: OIP5 = AURKA (Confidence: 1, TimeStep: 1) 

OIP5_4_Activator: OIP5 = !BTG1 (Confidence: 1, TimeStep: 1) 

OIP5_5_Activator: OIP5 = CCDC34 (Confidence: 1, TimeStep: 1) 

OIP5_1_Inhibitor: OIP5 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

OIP5_2_Inhibitor: OIP5 = !ASF1B (Confidence: 1, TimeStep: 1) 

OIP5_3_Inhibitor: OIP5 = !AURKA (Confidence: 1, TimeStep: 1) 

OIP5_4_Inhibitor: OIP5 = BTG1 (Confidence: 1, TimeStep: 1) 
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OIP5_5_Inhibitor: OIP5 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for P2RX5 with decay value = 1: 

P2RX5_1_Activator: P2RX5 = CRNDE&P2RX5 (Confidence: 1, TimeStep: 1) 

P2RX5_2_Activator: P2RX5 = DFNA5&P2RX5 (Confidence: 1, TimeStep: 1) 

P2RX5_3_Activator: P2RX5 = KIF11&P2RX5 (Confidence: 1, TimeStep: 1) 

P2RX5_4_Activator: P2RX5 = CDC20&P2RX5 (Confidence: 1, TimeStep: 1) 

P2RX5_5_Activator: P2RX5 = KIF4A&P2RX5 (Confidence: 1, TimeStep: 1) 

P2RX5_1_Inhibitor: P2RX5 = !DFNA5&IQGAP3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for P2RY14 with decay value = 1: 

P2RY14_1_Activator: P2RY14 = C5orf24&DENND3 (Confidence: 1, TimeStep: 1) 

P2RY14_2_Activator: P2RY14 = !BCL2L11&DENND3 (Confidence: 1, TimeStep: 1) 

P2RY14_3_Activator: P2RY14 = DPEP1&IL1B (Confidence: 1, TimeStep: 1) 

P2RY14_4_Activator: P2RY14 = BMF&DENND3 (Confidence: 1, TimeStep: 1) 

P2RY14_5_Activator: P2RY14 = DPEP1&PDE4B (Confidence: 1, TimeStep: 1) 

P2RY14_1_Inhibitor: P2RY14 = !METTL7A (Confidence: 1, TimeStep: 1) 

P2RY14_2_Inhibitor: P2RY14 = UBE2C (Confidence: 1, TimeStep: 1) 

P2RY14_3_Inhibitor: P2RY14 = CENPV&!KIF26A (Confidence: 1, TimeStep: 1) 

P2RY14_4_Inhibitor: P2RY14 = !GSN&!IRAK3 (Confidence: 1, TimeStep: 1) 

P2RY14_5_Inhibitor: P2RY14 = !GSN&!PDE4B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PAICS with decay value = 1: 

PAICS_1_Activator: PAICS = !CD53 (Confidence: 1, TimeStep: 1) 

PAICS_2_Activator: PAICS = GGH (Confidence: 1, TimeStep: 1) 

PAICS_3_Activator: PAICS = FOXM1 (Confidence: 1, TimeStep: 1) 

PAICS_4_Activator: PAICS = KIF2C (Confidence: 1, TimeStep: 1) 

PAICS_5_Activator: PAICS = STIL (Confidence: 1, TimeStep: 1) 

PAICS_1_Inhibitor: PAICS = !BYSL (Confidence: 1, TimeStep: 1) 

PAICS_2_Inhibitor: PAICS = !PAICS (Confidence: 1, TimeStep: 1) 

PAICS_3_Inhibitor: PAICS = !FABP5 (Confidence: 1, TimeStep: 1) 

PAICS_4_Inhibitor: PAICS = F13A1 (Confidence: 1, TimeStep: 1) 
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PAICS_5_Inhibitor: PAICS = LGALS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PBK with decay value = 1: 

PBK_1_Activator: PBK = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PBK_2_Activator: PBK = ASF1B (Confidence: 1, TimeStep: 1) 

PBK_3_Activator: PBK = AURKA (Confidence: 1, TimeStep: 1) 

PBK_4_Activator: PBK = !BTG1 (Confidence: 1, TimeStep: 1) 

PBK_5_Activator: PBK = CCDC34 (Confidence: 1, TimeStep: 1) 

PBK_1_Inhibitor: PBK = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

PBK_2_Inhibitor: PBK = !ASF1B (Confidence: 1, TimeStep: 1) 

PBK_3_Inhibitor: PBK = !AURKA (Confidence: 1, TimeStep: 1) 

PBK_4_Inhibitor: PBK = BTG1 (Confidence: 1, TimeStep: 1) 

PBK_5_Inhibitor: PBK = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PCNA with decay value = 1: 

PCNA_1_Activator: PCNA = BUB1B (Confidence: 1, TimeStep: 1) 

PCNA_2_Activator: PCNA = CENPN (Confidence: 1, TimeStep: 1) 

PCNA_3_Activator: PCNA = KIF15 (Confidence: 1, TimeStep: 1) 

PCNA_4_Activator: PCNA = MCM10 (Confidence: 1, TimeStep: 1) 

PCNA_5_Activator: PCNA = PLK4 (Confidence: 1, TimeStep: 1) 

PCNA_1_Inhibitor: PCNA = !CDC20 (Confidence: 1, TimeStep: 1) 

PCNA_2_Inhibitor: PCNA = !CENPW (Confidence: 1, TimeStep: 1) 

PCNA_3_Inhibitor: PCNA = !DHFR (Confidence: 1, TimeStep: 1) 

PCNA_4_Inhibitor: PCNA = !RAD51 (Confidence: 1, TimeStep: 1) 

PCNA_5_Inhibitor: PCNA = !KIF11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PDE4B with decay value = 1: 

PDE4B_1_Activator: PDE4B = IL18R1 (Confidence: 1, TimeStep: 1) 

PDE4B_2_Activator: PDE4B = F13A1 (Confidence: 1, TimeStep: 1) 

PDE4B_3_Activator: PDE4B = IL18RAP (Confidence: 1, TimeStep: 1) 

PDE4B_4_Activator: PDE4B = !ASPM&PDE4B (Confidence: 1, TimeStep: 1) 

PDE4B_5_Activator: PDE4B = !ANP32E&MS4A4A (Confidence: 1, TimeStep: 1) 
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PDE4B_1_Inhibitor: PDE4B = !IRAK3 (Confidence: 1, TimeStep: 1) 

PDE4B_2_Inhibitor: PDE4B = !TMEM2 (Confidence: 1, TimeStep: 1) 

PDE4B_3_Inhibitor: PDE4B = ANP32E (Confidence: 1, TimeStep: 1) 

PDE4B_4_Inhibitor: PDE4B = ECT2 (Confidence: 1, TimeStep: 1) 

PDE4B_5_Inhibitor: PDE4B = FH (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PFKFB2 with decay value = 1: 

PFKFB2_1_Activator: PFKFB2 = !MYRIP&PFKFB2 (Confidence: 1, TimeStep: 1) 

PFKFB2_2_Activator: PFKFB2 = !LOC728175&TNFRSF21 (Confidence: 1, TimeStep: 2) 

PFKFB2_3_Activator: PFKFB2 = !MYRIP&TNFRSF21 (Confidence: 1, TimeStep: 2) 

PFKFB2_1_Inhibitor: PFKFB2 = LOC728175 (Confidence: 1, TimeStep: 1) 

PFKFB2_2_Inhibitor: PFKFB2 = !BIRC3&LOC100996643 (Confidence: 1, TimeStep: 1) 

PFKFB2_3_Inhibitor: PFKFB2 = LOC100996643&MYRIP (Confidence: 1, TimeStep: 1) 

PFKFB2_4_Inhibitor: PFKFB2 = MYRIP&!PFKFB2 (Confidence: 1, TimeStep: 1) 

PFKFB2_5_Inhibitor: PFKFB2 = IL6ST&LOC100996643 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PHF19 with decay value = 1: 

PHF19_1_Activator: PHF19 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PHF19_2_Activator: PHF19 = ASF1B (Confidence: 1, TimeStep: 1) 

PHF19_3_Activator: PHF19 = AURKA (Confidence: 1, TimeStep: 1) 

PHF19_4_Activator: PHF19 = !BTG1 (Confidence: 1, TimeStep: 1) 

PHF19_5_Activator: PHF19 = CCDC34 (Confidence: 1, TimeStep: 1) 

PHF19_1_Inhibitor: PHF19 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

PHF19_2_Inhibitor: PHF19 = !ASF1B (Confidence: 1, TimeStep: 1) 

PHF19_3_Inhibitor: PHF19 = !AURKA (Confidence: 1, TimeStep: 1) 

PHF19_4_Inhibitor: PHF19 = BTG1 (Confidence: 1, TimeStep: 1) 

PHF19_5_Inhibitor: PHF19 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PIK3IP1 with decay value = 1: 

PIK3IP1_1_Activator: PIK3IP1 = !MCM7 (Confidence: 1, TimeStep: 1) 

PIK3IP1_2_Activator: PIK3IP1 = !PAICS (Confidence: 1, TimeStep: 1) 

PIK3IP1_3_Activator: PIK3IP1 = DDIT4 (Confidence: 1, TimeStep: 1) 



 

 221 

PIK3IP1_4_Activator: PIK3IP1 = FGD2 (Confidence: 1, TimeStep: 1) 

PIK3IP1_5_Activator: PIK3IP1 = CCR1 (Confidence: 1, TimeStep: 1) 

PIK3IP1_1_Inhibitor: PIK3IP1 = !ZFP36L2 (Confidence: 1, TimeStep: 1) 

PIK3IP1_2_Inhibitor: PIK3IP1 = BRCA1&!SMIM3 (Confidence: 1, TimeStep: 1) 

PIK3IP1_3_Inhibitor: PIK3IP1 = CENPU&!SMIM3 (Confidence: 1, TimeStep: 1) 

PIK3IP1_4_Inhibitor: PIK3IP1 = BRIP1&!SMIM3 (Confidence: 1, TimeStep: 1) 

PIK3IP1_5_Inhibitor: PIK3IP1 = CDT1&!SMIM3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PLK4 with decay value = 1: 

PLK4_1_Activator: PLK4 = CENPH (Confidence: 1, TimeStep: 1) 

PLK4_2_Activator: PLK4 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PLK4_3_Activator: PLK4 = ASF1B (Confidence: 1, TimeStep: 1) 

PLK4_4_Activator: PLK4 = AURKA (Confidence: 1, TimeStep: 1) 

PLK4_5_Activator: PLK4 = !BTG1 (Confidence: 1, TimeStep: 1) 

PLK4_1_Inhibitor: PLK4 = !CENPH (Confidence: 1, TimeStep: 1) 

PLK4_2_Inhibitor: PLK4 = !CDK1 (Confidence: 1, TimeStep: 1) 

PLK4_3_Inhibitor: PLK4 = !HMMR (Confidence: 1, TimeStep: 1) 

PLK4_4_Inhibitor: PLK4 = !KIF14 (Confidence: 1, TimeStep: 1) 

PLK4_5_Inhibitor: PLK4 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for POLE2 with decay value = 1: 

POLE2_1_Activator: POLE2 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

POLE2_2_Activator: POLE2 = CENPV&MDK (Confidence: 1, TimeStep: 1) 

POLE2_3_Activator: POLE2 = E2F7&MDK (Confidence: 1, TimeStep: 1) 

POLE2_4_Activator: POLE2 = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

POLE2_5_Activator: POLE2 = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

POLE2_1_Inhibitor: POLE2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

POLE2_2_Inhibitor: POLE2 = !ASF1B (Confidence: 1, TimeStep: 1) 

POLE2_3_Inhibitor: POLE2 = !AURKA (Confidence: 1, TimeStep: 1) 

POLE2_4_Inhibitor: POLE2 = BTG1 (Confidence: 1, TimeStep: 1) 

POLE2_5_Inhibitor: POLE2 = !CCDC34 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for POLQ with decay value = 1: 

POLQ_1_Activator: POLQ = !BMF&MDK (Confidence: 1, TimeStep: 1) 

POLQ_2_Activator: POLQ = CENPV&MDK (Confidence: 1, TimeStep: 1) 

POLQ_3_Activator: POLQ = E2F7&MDK (Confidence: 1, TimeStep: 1) 

POLQ_4_Activator: POLQ = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

POLQ_5_Activator: POLQ = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

POLQ_1_Inhibitor: POLQ = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

POLQ_2_Inhibitor: POLQ = !ASF1B (Confidence: 1, TimeStep: 1) 

POLQ_3_Inhibitor: POLQ = !AURKA (Confidence: 1, TimeStep: 1) 

POLQ_4_Inhibitor: POLQ = BTG1 (Confidence: 1, TimeStep: 1) 

POLQ_5_Inhibitor: POLQ = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for POU4F1 with decay value = 1: 

POU4F1_1_Activator: POU4F1 = !BRIP1&POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_2_Activator: POU4F1 = !BUB1B&POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_3_Activator: POU4F1 = CD53&POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_4_Activator: POU4F1 = !CDT1&POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_5_Activator: POU4F1 = !CENPN&POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_1_Inhibitor: POU4F1 = !POU4F1 (Confidence: 1, TimeStep: 1) 

POU4F1_2_Inhibitor: POU4F1 = !ISG20 (Confidence: 1, TimeStep: 1) 

POU4F1_3_Inhibitor: POU4F1 = !CD53 (Confidence: 1, TimeStep: 1) 

POU4F1_4_Inhibitor: POU4F1 = CDT1 (Confidence: 1, TimeStep: 1) 

POU4F1_5_Inhibitor: POU4F1 = ZWINT (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PPBP with decay value = 1: 

PPBP_1_Activator: PPBP = CELF2&F13A1 (Confidence: 1, TimeStep: 1) 

PPBP_2_Activator: PPBP = !C5orf24&PIK3IP1 (Confidence: 1, TimeStep: 1) 

PPBP_3_Activator: PPBP = CCR1&F13A1 (Confidence: 1, TimeStep: 1) 

PPBP_4_Activator: PPBP = CDC42EP3&FGD2 (Confidence: 1, TimeStep: 1) 

PPBP_5_Activator: PPBP = !CRNDE&F13A1 (Confidence: 1, TimeStep: 1) 

PPBP_1_Inhibitor: PPBP = E2F8 (Confidence: 1, TimeStep: 1) 

PPBP_2_Inhibitor: PPBP = !GIMAP7 (Confidence: 1, TimeStep: 1) 
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PPBP_3_Inhibitor: PPBP = !GIMAP4 (Confidence: 1, TimeStep: 1) 

PPBP_4_Inhibitor: PPBP = KIF11 (Confidence: 1, TimeStep: 1) 

PPBP_5_Inhibitor: PPBP = KNL1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PPIF with decay value = 1: 

PPIF_1_Activator: PPIF = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PPIF_2_Activator: PPIF = ASF1B (Confidence: 1, TimeStep: 1) 

PPIF_3_Activator: PPIF = AURKA (Confidence: 1, TimeStep: 1) 

PPIF_4_Activator: PPIF = !BTG1 (Confidence: 1, TimeStep: 1) 

PPIF_5_Activator: PPIF = CCDC34 (Confidence: 1, TimeStep: 1) 

PPIF_1_Inhibitor: PPIF = !BCL2L11 (Confidence: 1, TimeStep: 1) 

PPIF_2_Inhibitor: PPIF = BMF (Confidence: 1, TimeStep: 1) 

PPIF_3_Inhibitor: PPIF = DPEP1 (Confidence: 1, TimeStep: 1) 

PPIF_4_Inhibitor: PPIF = NPCDR1 (Confidence: 1, TimeStep: 1) 

PPIF_5_Inhibitor: PPIF = IL1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PPP1R16B with decay value = 1: 

PPP1R16B_1_Activator: PPP1R16B = PPP1R16B (Confidence: 1, TimeStep: 1) 

PPP1R16B_2_Activator: PPP1R16B = LGALS3 (Confidence: 1, TimeStep: 1) 

PPP1R16B_3_Activator: PPP1R16B = LOC100130872 (Confidence: 1, TimeStep: 1) 

PPP1R16B_4_Activator: PPP1R16B = LILRA1 (Confidence: 1, TimeStep: 1) 

PPP1R16B_5_Activator: PPP1R16B = !DTL&!PSPH (Confidence: 1, TimeStep: 1) 

PPP1R16B_1_Inhibitor: PPP1R16B = RFC3 (Confidence: 1, TimeStep: 1) 

PPP1R16B_2_Inhibitor: PPP1R16B = FH (Confidence: 1, TimeStep: 1) 

PPP1R16B_3_Inhibitor: PPP1R16B = CCNB1 (Confidence: 1, TimeStep: 1) 

PPP1R16B_4_Inhibitor: PPP1R16B = CENPF (Confidence: 1, TimeStep: 1) 

PPP1R16B_5_Inhibitor: PPP1R16B = DEPDC1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PRDM1 with decay value = 1: 

PRDM1_1_Activator: PRDM1 = PPBP (Confidence: 1, TimeStep: 1) 

PRDM1_2_Activator: PRDM1 = FGL2 (Confidence: 1, TimeStep: 1) 

PRDM1_3_Activator: PRDM1 = CDC42EP3&FGR (Confidence: 1, TimeStep: 1) 
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PRDM1_4_Activator: PRDM1 = FCER1G&!RAD51AP1 (Confidence: 1, TimeStep: 1) 

PRDM1_5_Activator: PRDM1 = FCGR3B&!RAD51AP1 (Confidence: 1, TimeStep: 1) 

PRDM1_1_Inhibitor: PRDM1 = RAD51AP1 (Confidence: 1, TimeStep: 1) 

PRDM1_2_Inhibitor: PRDM1 = TOP2A (Confidence: 1, TimeStep: 1) 

PRDM1_3_Inhibitor: PRDM1 = DTL (Confidence: 1, TimeStep: 1) 

PRDM1_4_Inhibitor: PRDM1 = !ID2 (Confidence: 1, TimeStep: 1) 

PRDM1_5_Inhibitor: PRDM1 = MCM7 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PRPS2 with decay value = 1: 

PRPS2_1_Activator: PRPS2 = !IFNGR1 (Confidence: 1, TimeStep: 1) 

PRPS2_2_Activator: PRPS2 = !SERPINB9 (Confidence: 1, TimeStep: 1) 

PRPS2_3_Activator: PRPS2 = CENPV (Confidence: 1, TimeStep: 1) 

PRPS2_4_Activator: PRPS2 = !IRAK3 (Confidence: 1, TimeStep: 1) 

PRPS2_5_Activator: PRPS2 = !LILRB2 (Confidence: 1, TimeStep: 1) 

PRPS2_1_Inhibitor: PRPS2 = !BCAT1&RPS6KA2 (Confidence: 1, TimeStep: 1) 

PRPS2_2_Inhibitor: PRPS2 = FGD2&IGH (Confidence: 1, TimeStep: 1) 

PRPS2_3_Inhibitor: PRPS2 = FGD2&!PRPS2 (Confidence: 1, TimeStep: 1) 

PRPS2_4_Inhibitor: PRPS2 = !BCAT1&BTNL9 (Confidence: 1, TimeStep: 1) 

PRPS2_5_Inhibitor: PRPS2 = CCR1&!PRPS2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PRR11 with decay value = 1: 

PRR11_1_Activator: PRR11 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PRR11_2_Activator: PRR11 = ASF1B (Confidence: 1, TimeStep: 1) 

PRR11_3_Activator: PRR11 = AURKA (Confidence: 1, TimeStep: 1) 

PRR11_4_Activator: PRR11 = !BTG1 (Confidence: 1, TimeStep: 1) 

PRR11_5_Activator: PRR11 = CCDC34 (Confidence: 1, TimeStep: 1) 

PRR11_1_Inhibitor: PRR11 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

PRR11_2_Inhibitor: PRR11 = !ASF1B (Confidence: 1, TimeStep: 1) 

PRR11_3_Inhibitor: PRR11 = !AURKA (Confidence: 1, TimeStep: 1) 

PRR11_4_Inhibitor: PRR11 = BTG1 (Confidence: 1, TimeStep: 1) 

PRR11_5_Inhibitor: PRR11 = !CCDC34 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for PSPH with decay value = 1: 

PSPH_1_Activator: PSPH = CKAP2L (Confidence: 1, TimeStep: 1) 

PSPH_2_Activator: PSPH = KIF18B (Confidence: 1, TimeStep: 1) 

PSPH_3_Activator: PSPH = UBE2T (Confidence: 1, TimeStep: 1) 

PSPH_4_Activator: PSPH = ATAD2 (Confidence: 1, TimeStep: 1) 

PSPH_5_Activator: PSPH = AURKB (Confidence: 1, TimeStep: 1) 

PSPH_1_Inhibitor: PSPH = LGALS3 (Confidence: 1, TimeStep: 1) 

PSPH_2_Inhibitor: PSPH = RAB31 (Confidence: 1, TimeStep: 1) 

PSPH_3_Inhibitor: PSPH = !ANP32E&PPP1R16B (Confidence: 1, TimeStep: 1) 

PSPH_4_Inhibitor: PSPH = !ASPM&!RCC1 (Confidence: 1, TimeStep: 1) 

PSPH_5_Inhibitor: PSPH = !ATAD2&PPP1R16B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PTP4A1 with decay value = 1: 

PTP4A1_1_Activator: PTP4A1 = KIF4A (Confidence: 1, TimeStep: 1) 

PTP4A1_2_Activator: PTP4A1 = RFC3 (Confidence: 1, TimeStep: 1) 

PTP4A1_3_Activator: PTP4A1 = FH (Confidence: 1, TimeStep: 1) 

PTP4A1_4_Activator: PTP4A1 = CCNB1 (Confidence: 1, TimeStep: 1) 

PTP4A1_5_Activator: PTP4A1 = CENPF (Confidence: 1, TimeStep: 1) 

PTP4A1_1_Inhibitor: PTP4A1 = !TYMS (Confidence: 1, TimeStep: 1) 

PTP4A1_2_Inhibitor: PTP4A1 = PPP1R16B (Confidence: 1, TimeStep: 1) 

PTP4A1_3_Inhibitor: PTP4A1 = !PTP4A1 (Confidence: 1, TimeStep: 1) 

PTP4A1_4_Inhibitor: PTP4A1 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

PTP4A1_5_Inhibitor: PTP4A1 = LGALS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for PTTG1 with decay value = 1: 

PTTG1_1_Activator: PTTG1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

PTTG1_2_Activator: PTTG1 = ASF1B (Confidence: 1, TimeStep: 1) 

PTTG1_3_Activator: PTTG1 = AURKA (Confidence: 1, TimeStep: 1) 

PTTG1_4_Activator: PTTG1 = !BTG1 (Confidence: 1, TimeStep: 1) 

PTTG1_5_Activator: PTTG1 = CCDC34 (Confidence: 1, TimeStep: 1) 

PTTG1_1_Inhibitor: PTTG1 = !PTTG1 (Confidence: 1, TimeStep: 1) 

PTTG1_2_Inhibitor: PTTG1 = NEAT1 (Confidence: 1, TimeStep: 1) 
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PTTG1_3_Inhibitor: PTTG1 = GIMAP7 (Confidence: 1, TimeStep: 1) 

PTTG1_4_Inhibitor: PTTG1 = !MND1 (Confidence: 1, TimeStep: 1) 

PTTG1_5_Inhibitor: PTTG1 = IRAK3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RAB31 with decay value = 1: 

RAB31_1_Activator: RAB31 = CDC42EP3&!LEF1 (Confidence: 1, TimeStep: 1) 

RAB31_2_Activator: RAB31 = CDC42EP3&ZBTB16 (Confidence: 1, TimeStep: 1) 

RAB31_3_Activator: RAB31 = CELF2&LGALS3 (Confidence: 1, TimeStep: 1) 

RAB31_4_Activator: RAB31 = !FABP5&ZBTB16 (Confidence: 1, TimeStep: 1) 

RAB31_5_Activator: RAB31 = HBG1&!LEF1 (Confidence: 1, TimeStep: 1) 

RAB31_1_Inhibitor: RAB31 = CRNDE (Confidence: 1, TimeStep: 1) 

RAB31_2_Inhibitor: RAB31 = !KLF9 (Confidence: 1, TimeStep: 1) 

RAB31_3_Inhibitor: RAB31 = RCC1 (Confidence: 1, TimeStep: 1) 

RAB31_4_Inhibitor: RAB31 = !IFNGR1 (Confidence: 1, TimeStep: 1) 

RAB31_5_Inhibitor: RAB31 = LOC100996643 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RAD51 with decay value = 1: 

RAD51_1_Activator: RAD51 = BUB1B (Confidence: 1, TimeStep: 1) 

RAD51_2_Activator: RAD51 = CENPN (Confidence: 1, TimeStep: 1) 

RAD51_3_Activator: RAD51 = KIF15 (Confidence: 1, TimeStep: 1) 

RAD51_4_Activator: RAD51 = MCM10 (Confidence: 1, TimeStep: 1) 

RAD51_5_Activator: RAD51 = PLK4 (Confidence: 1, TimeStep: 1) 

RAD51_1_Inhibitor: RAD51 = !BUB1B (Confidence: 1, TimeStep: 1) 

RAD51_2_Inhibitor: RAD51 = !CENPN (Confidence: 1, TimeStep: 1) 

RAD51_3_Inhibitor: RAD51 = !KIF15 (Confidence: 1, TimeStep: 1) 

RAD51_4_Inhibitor: RAD51 = !MCM10 (Confidence: 1, TimeStep: 1) 

RAD51_5_Inhibitor: RAD51 = !PLK4 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RAD51AP1 with decay value = 1: 

RAD51AP1_1_Activator: RAD51AP1 = CKAP2L (Confidence: 1, TimeStep: 1) 

RAD51AP1_2_Activator: RAD51AP1 = KIF18B (Confidence: 1, TimeStep: 1) 

RAD51AP1_3_Activator: RAD51AP1 = UBE2T (Confidence: 1, TimeStep: 1) 
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RAD51AP1_4_Activator: RAD51AP1 = ATAD2 (Confidence: 1, TimeStep: 1) 

RAD51AP1_5_Activator: RAD51AP1 = AURKB (Confidence: 1, TimeStep: 1) 

RAD51AP1_1_Inhibitor: RAD51AP1 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

RAD51AP1_2_Inhibitor: RAD51AP1 = !BYSL (Confidence: 1, TimeStep: 1) 

RAD51AP1_3_Inhibitor: RAD51AP1 = !PAICS (Confidence: 1, TimeStep: 1) 

RAD51AP1_4_Inhibitor: RAD51AP1 = !SELENOI (Confidence: 1, TimeStep: 1) 

RAD51AP1_5_Inhibitor: RAD51AP1 = CCR1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RAG1 with decay value = 1: 

RAG1_1_Activator: RAG1 = RAG1 (Confidence: 1, TimeStep: 1) 

RAG1_2_Activator: RAG1 = ARPP21 (Confidence: 1, TimeStep: 1) 

RAG1_3_Activator: RAG1 = IL1B (Confidence: 1, TimeStep: 1) 

RAG1_4_Activator: RAG1 = KIF26A (Confidence: 1, TimeStep: 1) 

RAG1_5_Activator: RAG1 = LOC285097 (Confidence: 1, TimeStep: 1) 

RAG1_1_Inhibitor: RAG1 = !BRCA1&!RAG1 (Confidence: 1, TimeStep: 1) 

RAG1_2_Inhibitor: RAG1 = !LOC100996643&!RAG1 (Confidence: 1, TimeStep: 1) 

RAG1_3_Inhibitor: RAG1 = !AKAP12&!PAICS (Confidence: 1, TimeStep: 1) 

RAG1_4_Inhibitor: RAG1 = !BYSL&!RAG1 (Confidence: 1, TimeStep: 1) 

RAG1_5_Inhibitor: RAG1 = !C5orf24&!RAG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RAG2 with decay value = 1: 

RAG2_1_Activator: RAG2 = !CELF2&RAG2 (Confidence: 1, TimeStep: 1) 

RAG2_2_Activator: RAG2 = !CELF2&!IL27RA (Confidence: 1, TimeStep: 1) 

RAG2_3_Activator: RAG2 = !FUS&!IL27RA (Confidence: 1, TimeStep: 1) 

RAG2_4_Activator: RAG2 = ITGB2-AS1&!LOC100130872 (Confidence: 1, TimeStep: 1) 

RAG2_5_Activator: RAG2 = C5orf24&!CCR1&RAG2 (Confidence: 1, TimeStep: 1) 

RAG2_1_Inhibitor: RAG2 = !IGLL1 (Confidence: 1, TimeStep: 1) 

RAG2_2_Inhibitor: RAG2 = LOC100130872 (Confidence: 1, TimeStep: 1) 

RAG2_3_Inhibitor: RAG2 = IL27RA&!RAG2 (Confidence: 1, TimeStep: 1) 

RAG2_4_Inhibitor: RAG2 = !BCAT1&!RAG2 (Confidence: 1, TimeStep: 1) 

RAG2_5_Inhibitor: RAG2 = !AKAP12&!BCAT1 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for RASSF4 with decay value = 1: 

RASSF4_1_Activator: RASSF4 = F13A1 (Confidence: 1, TimeStep: 1) 

RASSF4_2_Activator: RASSF4 = LGALS3 (Confidence: 1, TimeStep: 1) 

RASSF4_3_Activator: RASSF4 = MNDA (Confidence: 1, TimeStep: 1) 

RASSF4_4_Activator: RASSF4 = !CDT1&MIR8071-1 (Confidence: 1, TimeStep: 1) 

RASSF4_5_Activator: RASSF4 = !CENPU&MIR8071-1 (Confidence: 1, TimeStep: 1) 

RASSF4_1_Inhibitor: RASSF4 = BCL10 (Confidence: 1, TimeStep: 1) 

RASSF4_2_Inhibitor: RASSF4 = CLEC2B&!MIR8071-1 (Confidence: 1, TimeStep: 1) 

RASSF4_3_Inhibitor: RASSF4 = CRNDE&!TARSL2 (Confidence: 1, TimeStep: 2) 

RASSF4_4_Inhibitor: RASSF4 = !CENPU&!MIR8071-1 (Confidence: 1, TimeStep: 2) 

RASSF4_5_Inhibitor: RASSF4 = !BCL10&!MIR8071-1 (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for RBM14 with decay value = 1: 

RBM14_1_Activator: RBM14 = UBE2C (Confidence: 1, TimeStep: 1) 

RBM14_2_Activator: RBM14 = MCM5&NME1 (Confidence: 1, TimeStep: 1) 

RBM14_3_Activator: RBM14 = CCDC86&MCM5 (Confidence: 1, TimeStep: 1) 

RBM14_4_Activator: RBM14 = !CELF2&MCM5 (Confidence: 1, TimeStep: 1) 

RBM14_5_Activator: RBM14 = CEP55&MCM5 (Confidence: 1, TimeStep: 1) 

RBM14_1_Inhibitor: RBM14 = CDC42EP3 (Confidence: 1, TimeStep: 1) 

RBM14_2_Inhibitor: RBM14 = !DHX9 (Confidence: 1, TimeStep: 1) 

RBM14_3_Inhibitor: RBM14 = !PTP4A1 (Confidence: 1, TimeStep: 1) 

RBM14_4_Inhibitor: RBM14 = !FABP5 (Confidence: 1, TimeStep: 1) 

RBM14_5_Inhibitor: RBM14 = !HSP90AB1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RBMS3 with decay value = 1: 

RBMS3_1_Activator: RBMS3 = !PRPS2&!S100A11 (Confidence: 1, TimeStep: 1) 

RBMS3_2_Activator: RBMS3 = DDIT4&SNORD3B-1 (Confidence: 1, TimeStep: 1) 

RBMS3_3_Activator: RBMS3 = !E2F7&TMEM100 (Confidence: 1, TimeStep: 1) 

RBMS3_4_Activator: RBMS3 = LILRB2&TMEM100 (Confidence: 1, TimeStep: 1) 

RBMS3_5_Activator: RBMS3 = MIR6845&TMEM100 (Confidence: 1, TimeStep: 1) 

RBMS3_1_Inhibitor: RBMS3 = !GSN (Confidence: 1, TimeStep: 1) 

RBMS3_2_Inhibitor: RBMS3 = CENPV (Confidence: 1, TimeStep: 1) 
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RBMS3_3_Inhibitor: RBMS3 = !LILRB2 (Confidence: 1, TimeStep: 1) 

RBMS3_4_Inhibitor: RBMS3 = ECT2 (Confidence: 1, TimeStep: 1) 

RBMS3_5_Inhibitor: RBMS3 = !ID3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RCC1 with decay value = 1: 

RCC1_1_Activator: RCC1 = FOXM1 (Confidence: 1, TimeStep: 1) 

RCC1_2_Activator: RCC1 = STIL (Confidence: 1, TimeStep: 1) 

RCC1_3_Activator: RCC1 = ATAD2 (Confidence: 1, TimeStep: 1) 

RCC1_4_Activator: RCC1 = BIRC5 (Confidence: 1, TimeStep: 1) 

RCC1_5_Activator: RCC1 = BUB1 (Confidence: 1, TimeStep: 1) 

RCC1_1_Inhibitor: RCC1 = IL18R1 (Confidence: 1, TimeStep: 1) 

RCC1_2_Inhibitor: RCC1 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

RCC1_3_Inhibitor: RCC1 = PRDM1 (Confidence: 1, TimeStep: 1) 

RCC1_4_Inhibitor: RCC1 = IL18RAP (Confidence: 1, TimeStep: 1) 

RCC1_5_Inhibitor: RCC1 = LGALS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RFC3 with decay value = 1: 

RFC3_1_Activator: RFC3 = CENPH (Confidence: 1, TimeStep: 1) 

RFC3_2_Activator: RFC3 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

RFC3_3_Activator: RFC3 = ASF1B (Confidence: 1, TimeStep: 1) 

RFC3_4_Activator: RFC3 = AURKA (Confidence: 1, TimeStep: 1) 

RFC3_5_Activator: RFC3 = !BTG1 (Confidence: 1, TimeStep: 1) 

RFC3_1_Inhibitor: RFC3 = !FH (Confidence: 1, TimeStep: 1) 

RFC3_2_Inhibitor: RFC3 = !NUSAP1 (Confidence: 1, TimeStep: 1) 

RFC3_3_Inhibitor: RFC3 = !RFC3 (Confidence: 1, TimeStep: 1) 

RFC3_4_Inhibitor: RFC3 = !NUF2 (Confidence: 1, TimeStep: 1) 

RFC3_5_Inhibitor: RFC3 = !KIF11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RHOBTB3 with decay value = 1: 

RHOBTB3_1_Activator: RHOBTB3 = DEPDC1B (Confidence: 1, TimeStep: 1) 

RHOBTB3_2_Activator: RHOBTB3 = PTTG1 (Confidence: 1, TimeStep: 1) 

RHOBTB3_3_Activator: RHOBTB3 = !TXNIP (Confidence: 1, TimeStep: 1) 
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RHOBTB3_4_Activator: RHOBTB3 = AURKB (Confidence: 1, TimeStep: 1) 

RHOBTB3_5_Activator: RHOBTB3 = CKAP2 (Confidence: 1, TimeStep: 1) 

RHOBTB3_1_Inhibitor: RHOBTB3 = !BCAT1&EMP1 (Confidence: 1, TimeStep: 1) 

RHOBTB3_2_Inhibitor: RHOBTB3 = B3GNT2&F13A1 (Confidence: 1, TimeStep: 1) 

RHOBTB3_3_Inhibitor: RHOBTB3 = !CCR1&F13A1 (Confidence: 1, TimeStep: 1) 

RHOBTB3_4_Inhibitor: RHOBTB3 = BCAT1&F13A1 (Confidence: 1, TimeStep: 1) 

RHOBTB3_5_Inhibitor: RHOBTB3 = !AURKB&EMP1&!RHOBTB3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RMI2 with decay value = 1: 

RMI2_1_Activator: RMI2 = DFNA5&!P2RX5 (Confidence: 1, TimeStep: 1) 

RMI2_2_Activator: RMI2 = E2F8&!P2RX5 (Confidence: 1, TimeStep: 1) 

RMI2_3_Activator: RMI2 = CENPV&!P2RX5 (Confidence: 1, TimeStep: 1) 

RMI2_4_Activator: RMI2 = !LILRB2&!P2RX5 (Confidence: 1, TimeStep: 1) 

RMI2_5_Activator: RMI2 = !CD53&!P2RX5 (Confidence: 1, TimeStep: 1) 

RMI2_1_Inhibitor: RMI2 = !FABP5 (Confidence: 1, TimeStep: 1) 

RMI2_2_Inhibitor: RMI2 = IL18RAP (Confidence: 1, TimeStep: 1) 

RMI2_3_Inhibitor: RMI2 = LGALS3 (Confidence: 1, TimeStep: 1) 

RMI2_4_Inhibitor: RMI2 = RAB31 (Confidence: 1, TimeStep: 1) 

RMI2_5_Inhibitor: RMI2 = !DFNA5&!DTL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RNASET2 with decay value = 1: 

RNASET2_1_Activator: RNASET2 = LILRB2 (Confidence: 1, TimeStep: 1) 

RNASET2_2_Activator: RNASET2 = RNASET2 (Confidence: 1, TimeStep: 1) 

RNASET2_3_Activator: RNASET2 = !CENPV (Confidence: 1, TimeStep: 1) 

RNASET2_4_Activator: RNASET2 = IRAK3 (Confidence: 1, TimeStep: 1) 

RNASET2_5_Activator: RNASET2 = GSN (Confidence: 1, TimeStep: 1) 

RNASET2_1_Inhibitor: RNASET2 = UBE2C (Confidence: 1, TimeStep: 1) 

RNASET2_2_Inhibitor: RNASET2 = !CD53&!KIF26A (Confidence: 1, TimeStep: 1) 

RNASET2_3_Inhibitor: RNASET2 = DFNA5&!GSN (Confidence: 1, TimeStep: 1) 

RNASET2_4_Inhibitor: RNASET2 = DFNA5&!KIF26A (Confidence: 1, TimeStep: 1) 

RNASET2_5_Inhibitor: RNASET2 = DTL&!GSN (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for RPS6KA2 with decay value = 1: 

RPS6KA2_1_Activator: RPS6KA2 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_2_Activator: RPS6KA2 = AKAP12&RBMS3 (Confidence: 1, TimeStep: 1) 

RPS6KA2_3_Activator: RPS6KA2 = ID3&!PRPS2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_4_Activator: RPS6KA2 = RBMS3&SERPINB9 (Confidence: 1, TimeStep: 1) 

RPS6KA2_5_Activator: RPS6KA2 = AKAP12&!PRPS2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_1_Inhibitor: RPS6KA2 = !AKAP12&!PFKFB2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_2_Inhibitor: RPS6KA2 = !GSN&!PFKFB2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_3_Inhibitor: RPS6KA2 = !MSH6&!PFKFB2 (Confidence: 1, TimeStep: 1) 

RPS6KA2_4_Inhibitor: RPS6KA2 = !LOC285097&S100A11 (Confidence: 1, TimeStep: 1) 

RPS6KA2_5_Inhibitor: RPS6KA2 = !PFKFB2&S100A11 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for RRM2 with decay value = 1: 

RRM2_1_Activator: RRM2 = CKAP2L (Confidence: 1, TimeStep: 1) 

RRM2_2_Activator: RRM2 = KIF18B (Confidence: 1, TimeStep: 1) 

RRM2_3_Activator: RRM2 = UBE2T (Confidence: 1, TimeStep: 1) 

RRM2_4_Activator: RRM2 = ATAD2 (Confidence: 1, TimeStep: 1) 

RRM2_5_Activator: RRM2 = AURKB (Confidence: 1, TimeStep: 1) 

RRM2_1_Inhibitor: RRM2 = !RRM2 (Confidence: 1, TimeStep: 1) 

RRM2_2_Inhibitor: RRM2 = !CENPW (Confidence: 1, TimeStep: 1) 

RRM2_3_Inhibitor: RRM2 = !TCF19 (Confidence: 1, TimeStep: 1) 

RRM2_4_Inhibitor: RRM2 = !WDR76 (Confidence: 1, TimeStep: 1) 

RRM2_5_Inhibitor: RRM2 = !TK1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for S100A11 with decay value = 1: 

S100A11_1_Activator: S100A11 = !WASF1 (Confidence: 1, TimeStep: 1) 

S100A11_2_Activator: S100A11 = LILRA1 (Confidence: 1, TimeStep: 1) 

S100A11_3_Activator: S100A11 = UBE2C (Confidence: 1, TimeStep: 1) 

S100A11_4_Activator: S100A11 = FCER1G&!POU4F1 (Confidence: 1, TimeStep: 1) 

S100A11_5_Activator: S100A11 = SLA&TUBA4A (Confidence: 1, TimeStep: 1) 

S100A11_1_Inhibitor: S100A11 = !KIF26A&MSH6 (Confidence: 1, TimeStep: 1) 

S100A11_2_Inhibitor: S100A11 = !HRK&MSH6 (Confidence: 1, TimeStep: 1) 
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S100A11_3_Inhibitor: S100A11 = !IL1B&MSH6 (Confidence: 1, TimeStep: 1) 

S100A11_4_Inhibitor: S100A11 = !SIK1&!SLA (Confidence: 1, TimeStep: 1) 

S100A11_5_Inhibitor: S100A11 = !HRK&!SNX10 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for S100A8 with decay value = 1: 

S100A8_1_Activator: S100A8 = F13A1 (Confidence: 1, TimeStep: 1) 

S100A8_2_Activator: S100A8 = !BCAT1&!KIF11 (Confidence: 1, TimeStep: 1) 

S100A8_3_Activator: S100A8 = !BCAT1&S100A8 (Confidence: 1, TimeStep: 1) 

S100A8_4_Activator: S100A8 = !BCAT1&LYZ (Confidence: 1, TimeStep: 1) 

S100A8_5_Activator: S100A8 = !CCNB1&IGH (Confidence: 1, TimeStep: 1) 

S100A8_1_Inhibitor: S100A8 = TMEM97 (Confidence: 1, TimeStep: 1) 

S100A8_2_Inhibitor: S100A8 = WDHD1 (Confidence: 1, TimeStep: 1) 

S100A8_3_Inhibitor: S100A8 = CENPH (Confidence: 1, TimeStep: 1) 

S100A8_4_Inhibitor: S100A8 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

S100A8_5_Inhibitor: S100A8 = ASF1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SCML4 with decay value = 1: 

SCML4_1_Activator: SCML4 = F13A1 (Confidence: 1, TimeStep: 1) 

SCML4_2_Activator: SCML4 = MNDA (Confidence: 1, TimeStep: 1) 

SCML4_3_Activator: SCML4 = !BRIP1&SCML4 (Confidence: 1, TimeStep: 1) 

SCML4_4_Activator: SCML4 = !BUB1B&SCML4 (Confidence: 1, TimeStep: 1) 

SCML4_5_Activator: SCML4 = !C4orf46&SCML4 (Confidence: 1, TimeStep: 1) 

SCML4_1_Inhibitor: SCML4 = ECT2 (Confidence: 1, TimeStep: 1) 

SCML4_2_Inhibitor: SCML4 = FOXM1 (Confidence: 1, TimeStep: 1) 

SCML4_3_Inhibitor: SCML4 = STIL (Confidence: 1, TimeStep: 1) 

SCML4_4_Inhibitor: SCML4 = ATAD2 (Confidence: 1, TimeStep: 1) 

SCML4_5_Inhibitor: SCML4 = BIRC5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SELENOI with decay value = 1: 

SELENOI_1_Activator: SELENOI = !TXNIP (Confidence: 1, TimeStep: 1) 

SELENOI_2_Activator: SELENOI = CENPH (Confidence: 1, TimeStep: 1) 

SELENOI_3_Activator: SELENOI = CKAP2 (Confidence: 1, TimeStep: 1) 
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SELENOI_4_Activator: SELENOI = APITD1-CORT (Confidence: 1, TimeStep: 1) 

SELENOI_5_Activator: SELENOI = ASF1B (Confidence: 1, TimeStep: 1) 

SELENOI_1_Inhibitor: SELENOI = !LOC100996643 (Confidence: 1, TimeStep: 1) 

SELENOI_2_Inhibitor: SELENOI = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

SELENOI_3_Inhibitor: SELENOI = !BYSL (Confidence: 1, TimeStep: 1) 

SELENOI_4_Inhibitor: SELENOI = !SELENOI (Confidence: 1, TimeStep: 1) 

SELENOI_5_Inhibitor: SELENOI = FGD2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SEMA4D with decay value = 1: 

SEMA4D_1_Activator: SEMA4D = SEMA4D (Confidence: 1, TimeStep: 1) 

SEMA4D_2_Activator: SEMA4D = !B3GNT2&FGR (Confidence: 1, TimeStep: 1) 

SEMA4D_3_Activator: SEMA4D = !C5orf24&!PTP4A1 (Confidence: 1, TimeStep: 1) 

SEMA4D_4_Activator: SEMA4D = !DHX9&TNFSF8 (Confidence: 1, TimeStep: 1) 

SEMA4D_5_Activator: SEMA4D = !FABP5&SLA (Confidence: 1, TimeStep: 1) 

SEMA4D_1_Inhibitor: SEMA4D = !BIRC3&!HBG1 (Confidence: 1, TimeStep: 1) 

SEMA4D_2_Inhibitor: SEMA4D = ABHD17B&ASPM (Confidence: 1, TimeStep: 1) 

SEMA4D_3_Inhibitor: SEMA4D = RBM14&!TNFSF8 (Confidence: 1, TimeStep: 1) 

SEMA4D_4_Inhibitor: SEMA4D = ABHD17B&KIF11 (Confidence: 1, TimeStep: 1) 

SEMA4D_5_Inhibitor: SEMA4D = !BIRC3&PAICS (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SERPINA1 with decay value = 1: 

SERPINA1_1_Activator: SERPINA1 = PPBP (Confidence: 1, TimeStep: 1) 

SERPINA1_2_Activator: SERPINA1 = FGL2 (Confidence: 1, TimeStep: 1) 

SERPINA1_3_Activator: SERPINA1 = !CCDC86&!PRPS2 (Confidence: 1, TimeStep: 1) 

SERPINA1_4_Activator: SERPINA1 = !CCDC86&SERPINA1 (Confidence: 1, TimeStep: 1) 

SERPINA1_5_Activator: SERPINA1 = !E2F7&FCGR3B (Confidence: 1, TimeStep: 1) 

SERPINA1_1_Inhibitor: SERPINA1 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

SERPINA1_2_Inhibitor: SERPINA1 = ASF1B (Confidence: 1, TimeStep: 1) 

SERPINA1_3_Inhibitor: SERPINA1 = AURKA (Confidence: 1, TimeStep: 1) 

SERPINA1_4_Inhibitor: SERPINA1 = !BTG1 (Confidence: 1, TimeStep: 1) 

SERPINA1_5_Inhibitor: SERPINA1 = CCDC34 (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for SERPINB9 with decay value = 1: 

SERPINB9_1_Activator: SERPINB9 = SERPINB9 (Confidence: 1, TimeStep: 1) 

SERPINB9_2_Activator: SERPINB9 = ITGAM (Confidence: 1, TimeStep: 1) 

SERPINB9_3_Activator: SERPINB9 = CCR1 (Confidence: 1, TimeStep: 1) 

SERPINB9_4_Activator: SERPINB9 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

SERPINB9_5_Activator: SERPINB9 = F13A1 (Confidence: 1, TimeStep: 1) 

SERPINB9_1_Inhibitor: SERPINB9 = !LILRB2 (Confidence: 1, TimeStep: 1) 

SERPINB9_2_Inhibitor: SERPINB9 = E2F7 (Confidence: 1, TimeStep: 1) 

SERPINB9_3_Inhibitor: SERPINB9 = !SMAP2 (Confidence: 1, TimeStep: 1) 

SERPINB9_4_Inhibitor: SERPINB9 = !TMEM2 (Confidence: 1, TimeStep: 1) 

SERPINB9_5_Inhibitor: SERPINB9 = ANP32E (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SESN1 with decay value = 1: 

SESN1_1_Activator: SESN1 = PPBP (Confidence: 1, TimeStep: 1) 

SESN1_2_Activator: SESN1 = !CDC20&!LOC100505650 (Confidence: 1, TimeStep: 1) 

SESN1_3_Activator: SESN1 = !ASPM&!ECT2 (Confidence: 1, TimeStep: 1) 

SESN1_4_Activator: SESN1 = !ASPM&METTL7A (Confidence: 1, TimeStep: 1) 

SESN1_5_Activator: SESN1 = !ASPM&!CENPK (Confidence: 1, TimeStep: 1) 

SESN1_1_Inhibitor: SESN1 = CDT1&!FKBP5 (Confidence: 1, TimeStep: 1) 

SESN1_2_Inhibitor: SESN1 = CRNDE&TENM4 (Confidence: 1, TimeStep: 1) 

SESN1_3_Inhibitor: SESN1 = !DDIT4&LOC100505650 (Confidence: 1, TimeStep: 1) 

SESN1_4_Inhibitor: SESN1 = !CCNB1&ECT2 (Confidence: 1, TimeStep: 1) 

SESN1_5_Inhibitor: SESN1 = !CCNB1&!METTL7A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SHCBP1 with decay value = 1: 

SHCBP1_1_Activator: SHCBP1 = CDK1 (Confidence: 1, TimeStep: 1) 

SHCBP1_2_Activator: SHCBP1 = HMMR (Confidence: 1, TimeStep: 1) 

SHCBP1_3_Activator: SHCBP1 = KIF14 (Confidence: 1, TimeStep: 1) 

SHCBP1_4_Activator: SHCBP1 = KIF20A (Confidence: 1, TimeStep: 1) 

SHCBP1_5_Activator: SHCBP1 = POLQ (Confidence: 1, TimeStep: 1) 

SHCBP1_1_Inhibitor: SHCBP1 = !CDK1 (Confidence: 1, TimeStep: 1) 

SHCBP1_2_Inhibitor: SHCBP1 = !HMMR (Confidence: 1, TimeStep: 1) 
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SHCBP1_3_Inhibitor: SHCBP1 = !KIF14 (Confidence: 1, TimeStep: 1) 

SHCBP1_4_Inhibitor: SHCBP1 = !KIF20A (Confidence: 1, TimeStep: 1) 

SHCBP1_5_Inhibitor: SHCBP1 = !POLQ (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SIK1 with decay value = 1: 

SIK1_1_Activator: SIK1 = KIF26A (Confidence: 1, TimeStep: 1) 

SIK1_2_Activator: SIK1 = MIR4683 (Confidence: 1, TimeStep: 1) 

SIK1_3_Activator: SIK1 = CPM (Confidence: 1, TimeStep: 1) 

SIK1_4_Activator: SIK1 = POU4F1 (Confidence: 1, TimeStep: 1) 

SIK1_5_Activator: SIK1 = RPS6KA2 (Confidence: 1, TimeStep: 1) 

SIK1_1_Inhibitor: SIK1 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

SIK1_2_Inhibitor: SIK1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

SIK1_3_Inhibitor: SIK1 = !METTL7A (Confidence: 1, TimeStep: 1) 

SIK1_4_Inhibitor: SIK1 = SEMA4D (Confidence: 1, TimeStep: 1) 

SIK1_5_Inhibitor: SIK1 = !WASF1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SKP2 with decay value = 1: 

SKP2_1_Activator: SKP2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

SKP2_2_Activator: SKP2 = ASF1B (Confidence: 1, TimeStep: 1) 

SKP2_3_Activator: SKP2 = AURKA (Confidence: 1, TimeStep: 1) 

SKP2_4_Activator: SKP2 = !BTG1 (Confidence: 1, TimeStep: 1) 

SKP2_5_Activator: SKP2 = CCDC34 (Confidence: 1, TimeStep: 1) 

SKP2_1_Inhibitor: SKP2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

SKP2_2_Inhibitor: SKP2 = !ASF1B (Confidence: 1, TimeStep: 1) 

SKP2_3_Inhibitor: SKP2 = !AURKA (Confidence: 1, TimeStep: 1) 

SKP2_4_Inhibitor: SKP2 = BTG1 (Confidence: 1, TimeStep: 1) 

SKP2_5_Inhibitor: SKP2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SLA with decay value = 1: 

SLA_1_Activator: SLA = !AKAP12 (Confidence: 1, TimeStep: 1) 

SLA_2_Activator: SLA = !MSH6 (Confidence: 1, TimeStep: 1) 

SLA_3_Activator: SLA = ITPKB (Confidence: 1, TimeStep: 1) 
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SLA_4_Activator: SLA = S100A11 (Confidence: 1, TimeStep: 1) 

SLA_5_Activator: SLA = TNFSF8 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SLC22A23 with decay value = 1: 

SLC22A23_1_Activator: SLC22A23 = UBE2C (Confidence: 1, TimeStep: 1) 

SLC22A23_2_Activator: SLC22A23 = !SCML4&WFS1 (Confidence: 1, TimeStep: 1) 

SLC22A23_3_Activator: SLC22A23 = !FCER1G&SLC22A23 (Confidence: 1, TimeStep: 1) 

SLC22A23_4_Activator: SLC22A23 = !FCGR3B&SLC22A23 (Confidence: 1, TimeStep: 1) 

SLC22A23_5_Activator: SLC22A23 = !FGD2&SLC22A23 (Confidence: 1, TimeStep: 1) 

SLC22A23_1_Inhibitor: SLC22A23 = !CENPK&FGD2 (Confidence: 1, TimeStep: 1) 

SLC22A23_2_Inhibitor: SLC22A23 = TMEM2&!WFS1 (Confidence: 1, TimeStep: 1) 

SLC22A23_3_Inhibitor: SLC22A23 = !MIR8071-1&SERPINA1 (Confidence: 1, TimeStep: 1) 

SLC22A23_4_Inhibitor: SLC22A23 = !SCML4&SERPINA1 (Confidence: 1, TimeStep: 1) 

SLC22A23_5_Inhibitor: SLC22A23 = ECT2&MS4A1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SMAP2 with decay value = 1: 

SMAP2_1_Activator: SMAP2 = !CENPU (Confidence: 1, TimeStep: 1) 

SMAP2_2_Activator: SMAP2 = !HIST4H4 (Confidence: 1, TimeStep: 1) 

SMAP2_3_Activator: SMAP2 = !CKS1B (Confidence: 1, TimeStep: 1) 

SMAP2_4_Activator: SMAP2 = GIMAP4 (Confidence: 1, TimeStep: 1) 

SMAP2_5_Activator: SMAP2 = LILRB2 (Confidence: 1, TimeStep: 1) 

SMAP2_1_Inhibitor: SMAP2 = HIST4H4&!IFNGR1 (Confidence: 1, TimeStep: 1) 

SMAP2_2_Inhibitor: SMAP2 = HIST4H4&!LILRB2 (Confidence: 1, TimeStep: 1) 

SMAP2_3_Inhibitor: SMAP2 = HIST4H4&!MIR4683 (Confidence: 1, TimeStep: 1) 

SMAP2_4_Inhibitor: SMAP2 = HIST4H4&!RNASET2 (Confidence: 1, TimeStep: 1) 

SMAP2_5_Inhibitor: SMAP2 = ANP32E&HIST4H4 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SMC2 with decay value = 1: 

SMC2_1_Activator: SMC2 = CENPH (Confidence: 1, TimeStep: 1) 

SMC2_2_Activator: SMC2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

SMC2_3_Activator: SMC2 = ASF1B (Confidence: 1, TimeStep: 1) 

SMC2_4_Activator: SMC2 = AURKA (Confidence: 1, TimeStep: 1) 
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SMC2_5_Activator: SMC2 = !BTG1 (Confidence: 1, TimeStep: 1) 

SMC2_1_Inhibitor: SMC2 = !CENPH (Confidence: 1, TimeStep: 1) 

SMC2_2_Inhibitor: SMC2 = !CDK1 (Confidence: 1, TimeStep: 1) 

SMC2_3_Inhibitor: SMC2 = !HMMR (Confidence: 1, TimeStep: 1) 

SMC2_4_Inhibitor: SMC2 = !KIF14 (Confidence: 1, TimeStep: 1) 

SMC2_5_Inhibitor: SMC2 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SMIM3 with decay value = 1: 

SMIM3_1_Activator: SMIM3 = GSN (Confidence: 1, TimeStep: 1) 

SMIM3_2_Activator: SMIM3 = P2RY14 (Confidence: 1, TimeStep: 1) 

SMIM3_3_Activator: SMIM3 = DDIT4 (Confidence: 1, TimeStep: 1) 

SMIM3_4_Activator: SMIM3 = TBXA2R (Confidence: 1, TimeStep: 1) 

SMIM3_5_Activator: SMIM3 = MIR4683 (Confidence: 1, TimeStep: 1) 

SMIM3_1_Inhibitor: SMIM3 = BMF&E2F7 (Confidence: 1, TimeStep: 1) 

SMIM3_2_Inhibitor: SMIM3 = !CENPU&DEPDC1B (Confidence: 1, TimeStep: 1) 

SMIM3_3_Inhibitor: SMIM3 = !CEP55&DEPDC1B (Confidence: 1, TimeStep: 1) 

SMIM3_4_Inhibitor: SMIM3 = !DEPDC1B&FOXM1 (Confidence: 1, TimeStep: 1) 

SMIM3_5_Inhibitor: SMIM3 = !DEPDC1B&STIL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SNORA21 with decay value = 1: 

SNORA21_1_Activator: SNORA21 = ELL2&!NEAT1 (Confidence: 1, TimeStep: 1) 

SNORA21_2_Activator: SNORA21 = !CDC42EP3&LOC728175 (Confidence: 1, TimeStep: 1) 

SNORA21_3_Activator: SNORA21 = ELL2&FH (Confidence: 1, TimeStep: 1) 

SNORA21_4_Activator: SNORA21 = ELL2&PTTG1 (Confidence: 1, TimeStep: 1) 

SNORA21_5_Activator: SNORA21 = ELL2&RFC3 (Confidence: 1, TimeStep: 1) 

SNORA21_1_Inhibitor: SNORA21 = !CRNDE (Confidence: 1, TimeStep: 1) 

SNORA21_2_Inhibitor: SNORA21 = CDC42EP3 (Confidence: 1, TimeStep: 1) 

SNORA21_3_Inhibitor: SNORA21 = !CDC20&IRAK3 (Confidence: 1, TimeStep: 1) 

SNORA21_4_Inhibitor: SNORA21 = IRAK3&!KIF4A (Confidence: 1, TimeStep: 1) 

SNORA21_5_Inhibitor: SNORA21 = IRAK3&!SHCBP1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SNORD3B-1 with decay value = 1: 
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SNORD3B-1_1_Inhibitor: SNORD3B-1 = !RNASET2 (Confidence: 1, TimeStep: 1) 

SNORD3B-1_2_Inhibitor: SNORD3B-1 = !CD53 (Confidence: 1, TimeStep: 1) 

SNORD3B-1_3_Inhibitor: SNORD3B-1 = !P2RX5&!SNORD3B-1 (Confidence: 1, TimeStep: 1) 

SNORD3B-1_4_Inhibitor: SNORD3B-1 = !P2RX5&!P2RY14 (Confidence: 1, TimeStep: 1) 

SNORD3B-1_5_Inhibitor: SNORD3B-1 = !P2RX5&!TBXA2R (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SNTB2 with decay value = 1: 

SNTB2_1_Activator: SNTB2 = !EMP1&SNTB2 (Confidence: 1, TimeStep: 1) 

SNTB2_2_Activator: SNTB2 = !DDIT4&SNTB2 (Confidence: 1, TimeStep: 1) 

SNTB2_3_Activator: SNTB2 = !P2RY14&SNTB2 (Confidence: 1, TimeStep: 1) 

SNTB2_4_Activator: SNTB2 = CDK6&TCF19 (Confidence: 1, TimeStep: 1) 

SNTB2_5_Activator: SNTB2 = KCNK12&!RBMS3 (Confidence: 1, TimeStep: 1) 

SNTB2_1_Inhibitor: SNTB2 = !DDIT4&!HBB (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for SNX10 with decay value = 1: 

SNX10_1_Activator: SNX10 = !BIRC3&SNX10 (Confidence: 1, TimeStep: 1) 

SNX10_2_Activator: SNX10 = !BIRC3&!RCC1 (Confidence: 1, TimeStep: 1) 

SNX10_3_Activator: SNX10 = MYRIP&!PRPS2 (Confidence: 1, TimeStep: 1) 

SNX10_4_Activator: SNX10 = MYRIP&!RCC1 (Confidence: 1, TimeStep: 1) 

SNX10_5_Activator: SNX10 = MYRIP&SNX10 (Confidence: 1, TimeStep: 1) 

SNX10_1_Inhibitor: SNX10 = RCC1&!SNX10 (Confidence: 1, TimeStep: 1) 

SNX10_2_Inhibitor: SNX10 = !ITPKB&LOC728175 (Confidence: 1, TimeStep: 1) 

SNX10_3_Inhibitor: SNX10 = ARRDC3&!ZFP36L2 (Confidence: 1, TimeStep: 1) 

SNX10_4_Inhibitor: SNX10 = !TARSL2&!ZFP36L2 (Confidence: 1, TimeStep: 1) 

SNX10_5_Inhibitor: SNX10 = SNX10&!ZFP36L2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SNX29P2 with decay value = 1: 

SNX29P2_1_Activator: SNX29P2 = DDIT4&KLF9 (Confidence: 1, TimeStep: 1) 

SNX29P2_2_Activator: SNX29P2 = DDIT4&!RMI2 (Confidence: 1, TimeStep: 1) 

SNX29P2_3_Activator: SNX29P2 = FABP5&!IGLL1 (Confidence: 1, TimeStep: 1) 

SNX29P2_4_Activator: SNX29P2 = FABP5&SNX29P2 (Confidence: 1, TimeStep: 1) 

SNX29P2_5_Activator: SNX29P2 = !HBG1&SNX29P2 (Confidence: 1, TimeStep: 1) 
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SNX29P2_1_Inhibitor: SNX29P2 = !KLF9&SHCBP1 (Confidence: 1, TimeStep: 1) 

SNX29P2_2_Inhibitor: SNX29P2 = !KLF9&RFC3 (Confidence: 1, TimeStep: 1) 

SNX29P2_3_Inhibitor: SNX29P2 = !CKAP2&KIF4A (Confidence: 1, TimeStep: 1) 

SNX29P2_4_Inhibitor: SNX29P2 = !AURKB&KIF4A (Confidence: 1, TimeStep: 1) 

SNX29P2_5_Inhibitor: SNX29P2 = BIRC3&DEPDC1B (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SOCS1 with decay value = 1: 

SOCS1_1_Activator: SOCS1 = PPBP (Confidence: 1, TimeStep: 1) 

SOCS1_2_Activator: SOCS1 = FGL2 (Confidence: 1, TimeStep: 1) 

SOCS1_3_Activator: SOCS1 = MNDA (Confidence: 1, TimeStep: 1) 

SOCS1_1_Inhibitor: SOCS1 = !SOCS1&!TXNIP (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SOS1 with decay value = 1: 

SOS1_1_Activator: SOS1 = GBP4 (Confidence: 1, TimeStep: 1) 

SOS1_2_Activator: SOS1 = LILRB2 (Confidence: 1, TimeStep: 1) 

SOS1_3_Activator: SOS1 = !CENPV (Confidence: 1, TimeStep: 1) 

SOS1_4_Activator: SOS1 = IRAK3 (Confidence: 1, TimeStep: 1) 

SOS1_5_Activator: SOS1 = DENND3 (Confidence: 1, TimeStep: 1) 

SOS1_1_Inhibitor: SOS1 = UBE2C (Confidence: 1, TimeStep: 1) 

SOS1_2_Inhibitor: SOS1 = BCL2L11&!LY96 (Confidence: 1, TimeStep: 1) 

SOS1_3_Inhibitor: SOS1 = CENPV&!LY96 (Confidence: 1, TimeStep: 1) 

SOS1_4_Inhibitor: SOS1 = DEPDC1B&!LY96 (Confidence: 1, TimeStep: 1) 

SOS1_5_Inhibitor: SOS1 = !GBP4&!LY96 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SQLE with decay value = 1: 

SQLE_1_Activator: SQLE = CCNB2 (Confidence: 1, TimeStep: 1) 

SQLE_2_Activator: SQLE = CDC45 (Confidence: 1, TimeStep: 1) 

SQLE_3_Activator: SQLE = CENPA (Confidence: 1, TimeStep: 1) 

SQLE_4_Activator: SQLE = DLGAP5 (Confidence: 1, TimeStep: 1) 

SQLE_5_Activator: SQLE = MAD2L1 (Confidence: 1, TimeStep: 1) 

SQLE_1_Inhibitor: SQLE = !BYSL (Confidence: 1, TimeStep: 1) 

SQLE_2_Inhibitor: SQLE = P2RY14 (Confidence: 1, TimeStep: 1) 
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SQLE_3_Inhibitor: SQLE = !PAICS (Confidence: 1, TimeStep: 1) 

SQLE_4_Inhibitor: SQLE = TBXA2R (Confidence: 1, TimeStep: 1) 

SQLE_5_Inhibitor: SQLE = !TNFRSF21 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for STAB1 with decay value = 1: 

STAB1_1_Activator: STAB1 = EPPK1 (Confidence: 1, TimeStep: 1) 

STAB1_2_Activator: STAB1 = CDC42EP3&TBXA2R (Confidence: 1, TimeStep: 1) 

STAB1_3_Activator: STAB1 = CDC42EP3&TARSL2 (Confidence: 1, TimeStep: 1) 

STAB1_4_Activator: STAB1 = CRNDE&STAB1 (Confidence: 1, TimeStep: 1) 

STAB1_5_Activator: STAB1 = !CLEC2B&MNDA (Confidence: 1, TimeStep: 1) 

STAB1_1_Inhibitor: STAB1 = CRNDE&!WFS1 (Confidence: 1, TimeStep: 1) 

STAB1_2_Inhibitor: STAB1 = !C4orf46&!IRAK3 (Confidence: 1, TimeStep: 1) 

STAB1_3_Inhibitor: STAB1 = !CKS1B&!IRAK3 (Confidence: 1, TimeStep: 1) 

STAB1_4_Inhibitor: STAB1 = !C4orf46&!LILRB2 (Confidence: 1, TimeStep: 1) 

STAB1_5_Inhibitor: STAB1 = !C4orf46&!RNASET2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for STIL with decay value = 1: 

STIL_1_Activator: STIL = !BMF&MDK (Confidence: 1, TimeStep: 1) 

STIL_2_Activator: STIL = CENPV&MDK (Confidence: 1, TimeStep: 1) 

STIL_3_Activator: STIL = !IFNGR1&MDK (Confidence: 1, TimeStep: 1) 

STIL_4_Activator: STIL = !IL1B&MDK (Confidence: 1, TimeStep: 1) 

STIL_5_Activator: STIL = !IRAK3&MDK (Confidence: 1, TimeStep: 1) 

STIL_1_Inhibitor: STIL = !ATAD2 (Confidence: 1, TimeStep: 1) 

STIL_2_Inhibitor: STIL = !BIRC5 (Confidence: 1, TimeStep: 1) 

STIL_3_Inhibitor: STIL = !BUB1 (Confidence: 1, TimeStep: 1) 

STIL_4_Inhibitor: STIL = !CCNA2 (Confidence: 1, TimeStep: 1) 

STIL_5_Inhibitor: STIL = !CDCA5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for SUV39H2 with decay value = 1: 

SUV39H2_1_Activator: SUV39H2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

SUV39H2_2_Activator: SUV39H2 = ASF1B (Confidence: 1, TimeStep: 1) 

SUV39H2_3_Activator: SUV39H2 = AURKA (Confidence: 1, TimeStep: 1) 
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SUV39H2_4_Activator: SUV39H2 = !BTG1 (Confidence: 1, TimeStep: 1) 

SUV39H2_5_Activator: SUV39H2 = CCDC34 (Confidence: 1, TimeStep: 1) 

SUV39H2_1_Inhibitor: SUV39H2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

SUV39H2_2_Inhibitor: SUV39H2 = !ASF1B (Confidence: 1, TimeStep: 1) 

SUV39H2_3_Inhibitor: SUV39H2 = !AURKA (Confidence: 1, TimeStep: 1) 

SUV39H2_4_Inhibitor: SUV39H2 = BTG1 (Confidence: 1, TimeStep: 1) 

SUV39H2_5_Inhibitor: SUV39H2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TARSL2 with decay value = 1: 

TARSL2_1_Activator: TARSL2 = TBXA2R (Confidence: 1, TimeStep: 1) 

TARSL2_2_Activator: TARSL2 = STAB1 (Confidence: 1, TimeStep: 1) 

TARSL2_3_Activator: TARSL2 = F13A1 (Confidence: 1, TimeStep: 1) 

TARSL2_4_Activator: TARSL2 = !BRIP1&TARSL2 (Confidence: 1, TimeStep: 1) 

TARSL2_5_Activator: TARSL2 = !BUB1B&TARSL2 (Confidence: 1, TimeStep: 1) 

TARSL2_1_Inhibitor: TARSL2 = !KIF2C&TTK (Confidence: 1, TimeStep: 1) 

TARSL2_2_Inhibitor: TARSL2 = !CCNB1&CHEK1 (Confidence: 1, TimeStep: 1) 

TARSL2_3_Inhibitor: TARSL2 = !CCNB1&FANCI (Confidence: 1, TimeStep: 1) 

TARSL2_4_Inhibitor: TARSL2 = !CCNB1&FOXM1 (Confidence: 1, TimeStep: 1) 

TARSL2_5_Inhibitor: TARSL2 = !CCNB1&STIL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TBXA2R with decay value = 1: 

TBXA2R_1_Activator: TBXA2R = TBXA2R (Confidence: 1, TimeStep: 1) 

TBXA2R_2_Activator: TBXA2R = F13A1 (Confidence: 1, TimeStep: 1) 

TBXA2R_3_Activator: TBXA2R = RAB31 (Confidence: 1, TimeStep: 1) 

TBXA2R_4_Activator: TBXA2R = !ANP32E&RASSF4 (Confidence: 1, TimeStep: 1) 

TBXA2R_5_Activator: TBXA2R = !ASPM&IFNGR1 (Confidence: 1, TimeStep: 1) 

TBXA2R_1_Inhibitor: TBXA2R = !LILRB2 (Confidence: 1, TimeStep: 1) 

TBXA2R_2_Inhibitor: TBXA2R = ECT2 (Confidence: 1, TimeStep: 1) 

TBXA2R_3_Inhibitor: TBXA2R = CCNB2 (Confidence: 1, TimeStep: 1) 

TBXA2R_4_Inhibitor: TBXA2R = CDC45 (Confidence: 1, TimeStep: 1) 

TBXA2R_5_Inhibitor: TBXA2R = CENPA (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for TCF19 with decay value = 1: 

TCF19_1_Activator: TCF19 = !P2RX5&PHF19 (Confidence: 1, TimeStep: 1) 

TCF19_2_Activator: TCF19 = !P2RX5&POLE2 (Confidence: 1, TimeStep: 1) 

TCF19_3_Activator: TCF19 = !P2RX5&TIPIN (Confidence: 1, TimeStep: 1) 

TCF19_4_Activator: TCF19 = !P2RX5&TPX2 (Confidence: 1, TimeStep: 1) 

TCF19_5_Activator: TCF19 = !P2RX5&UBE2T (Confidence: 1, TimeStep: 1) 

TCF19_1_Inhibitor: TCF19 = !WDR76 (Confidence: 1, TimeStep: 1) 

TCF19_2_Inhibitor: TCF19 = !E2F8 (Confidence: 1, TimeStep: 1) 

TCF19_3_Inhibitor: TCF19 = !GINS2 (Confidence: 1, TimeStep: 1) 

TCF19_4_Inhibitor: TCF19 = !DTL (Confidence: 1, TimeStep: 1) 

TCF19_5_Inhibitor: TCF19 = !TOP2A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TENM4 with decay value = 1: 

TENM4_1_Activator: TENM4 = AURKB&MDM2 (Confidence: 1, TimeStep: 1) 

TENM4_2_Activator: TENM4 = AURKB&TENM4 (Confidence: 1, TimeStep: 1) 

TENM4_3_Activator: TENM4 = CENPU&MDM2 (Confidence: 1, TimeStep: 1) 

TENM4_4_Activator: TENM4 = CEP55&TENM4 (Confidence: 1, TimeStep: 1) 

TENM4_5_Activator: TENM4 = CKAP2L&TENM4 (Confidence: 1, TimeStep: 1) 

TENM4_1_Inhibitor: TENM4 = !TENM4 (Confidence: 1, TimeStep: 1) 

TENM4_2_Inhibitor: TENM4 = !AURKB (Confidence: 1, TimeStep: 1) 

TENM4_3_Inhibitor: TENM4 = !KIF18A (Confidence: 1, TimeStep: 1) 

TENM4_4_Inhibitor: TENM4 = !OIP5 (Confidence: 1, TimeStep: 1) 

TENM4_5_Inhibitor: TENM4 = !TRIP13 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TIMELESS with decay value = 1: 

TIMELESS_1_Activator: TIMELESS = ANLN&MDK (Confidence: 1, TimeStep: 1) 

TIMELESS_2_Activator: TIMELESS = BCAT1&MDK (Confidence: 1, TimeStep: 1) 

TIMELESS_3_Activator: TIMELESS = !CD53&MDK (Confidence: 1, TimeStep: 1) 

TIMELESS_4_Activator: TIMELESS = !ANP32E&BUB1B (Confidence: 1, TimeStep: 1) 

TIMELESS_5_Activator: TIMELESS = !ANP32E&C4orf46 (Confidence: 1, TimeStep: 1) 

TIMELESS_1_Inhibitor: TIMELESS = !CKS1B (Confidence: 1, TimeStep: 1) 

TIMELESS_2_Inhibitor: TIMELESS = !TIMELESS (Confidence: 1, TimeStep: 1) 
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TIMELESS_3_Inhibitor: TIMELESS = !BRCA1 (Confidence: 1, TimeStep: 1) 

TIMELESS_4_Inhibitor: TIMELESS = !MCM7 (Confidence: 1, TimeStep: 1) 

TIMELESS_5_Inhibitor: TIMELESS = !BYSL (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TIPIN with decay value = 1: 

TIPIN_1_Activator: TIPIN = APITD1-CORT (Confidence: 1, TimeStep: 1) 

TIPIN_2_Activator: TIPIN = ASF1B (Confidence: 1, TimeStep: 1) 

TIPIN_3_Activator: TIPIN = AURKA (Confidence: 1, TimeStep: 1) 

TIPIN_4_Activator: TIPIN = !BTG1 (Confidence: 1, TimeStep: 1) 

TIPIN_5_Activator: TIPIN = CCDC34 (Confidence: 1, TimeStep: 1) 

TIPIN_1_Inhibitor: TIPIN = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

TIPIN_2_Inhibitor: TIPIN = !ASF1B (Confidence: 1, TimeStep: 1) 

TIPIN_3_Inhibitor: TIPIN = !AURKA (Confidence: 1, TimeStep: 1) 

TIPIN_4_Inhibitor: TIPIN = BTG1 (Confidence: 1, TimeStep: 1) 

TIPIN_5_Inhibitor: TIPIN = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TK1 with decay value = 1: 

TK1_1_Activator: TK1 = CCNB1 (Confidence: 1, TimeStep: 1) 

TK1_2_Activator: TK1 = IQGAP3 (Confidence: 1, TimeStep: 1) 

TK1_3_Activator: TK1 = CDK1 (Confidence: 1, TimeStep: 1) 

TK1_4_Activator: TK1 = CKAP2L (Confidence: 1, TimeStep: 1) 

TK1_5_Activator: TK1 = HMMR (Confidence: 1, TimeStep: 1) 

TK1_1_Inhibitor: TK1 = !CDC20 (Confidence: 1, TimeStep: 1) 

TK1_2_Inhibitor: TK1 = !KIF4A (Confidence: 1, TimeStep: 1) 

TK1_3_Inhibitor: TK1 = !CENPW (Confidence: 1, TimeStep: 1) 

TK1_4_Inhibitor: TK1 = !DHFR (Confidence: 1, TimeStep: 1) 

TK1_5_Inhibitor: TK1 = !RAD51 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TMEM100 with decay value = 1: 

TMEM100_1_Activator: TMEM100 = !CDC42EP3&RBMS3 (Confidence: 1, TimeStep: 1) 

TMEM100_2_Activator: TMEM100 = !CDC42EP3&TMEM100 (Confidence: 1, TimeStep: 1) 

TMEM100_3_Activator: TMEM100 = DTL&TMEM100 (Confidence: 1, TimeStep: 1) 
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TMEM100_4_Activator: TMEM100 = !MDK&RFC3 (Confidence: 1, TimeStep: 1) 

TMEM100_5_Activator: TMEM100 = !MDK&PTTG1 (Confidence: 1, TimeStep: 1) 

TMEM100_1_Inhibitor: TMEM100 = !IGLL1 (Confidence: 1, TimeStep: 1) 

TMEM100_2_Inhibitor: TMEM100 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

TMEM100_3_Inhibitor: TMEM100 = !DEPDC1B&!RBMS3 (Confidence: 1, TimeStep: 1) 

TMEM100_4_Inhibitor: TMEM100 = !FH&!RBMS3 (Confidence: 1, TimeStep: 1) 

TMEM100_5_Inhibitor: TMEM100 = GIMAP7&!RBMS3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TMEM2 with decay value = 1: 

TMEM2_1_Activator: TMEM2 = LILRB2 (Confidence: 1, TimeStep: 1) 

TMEM2_2_Activator: TMEM2 = !CENPV (Confidence: 1, TimeStep: 1) 

TMEM2_3_Activator: TMEM2 = IRAK3 (Confidence: 1, TimeStep: 1) 

TMEM2_4_Activator: TMEM2 = GSN (Confidence: 1, TimeStep: 1) 

TMEM2_5_Activator: TMEM2 = AKAP12 (Confidence: 1, TimeStep: 1) 

TMEM2_1_Inhibitor: TMEM2 = !METTL7A (Confidence: 1, TimeStep: 1) 

TMEM2_2_Inhibitor: TMEM2 = UBE2C (Confidence: 1, TimeStep: 1) 

TMEM2_3_Inhibitor: TMEM2 = !AKAP12&!LILRB2 (Confidence: 1, TimeStep: 1) 

TMEM2_4_Inhibitor: TMEM2 = !AKAP12&!IL6ST (Confidence: 1, TimeStep: 1) 

TMEM2_5_Inhibitor: TMEM2 = !AKAP12&!KLF9 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TMEM97 with decay value = 1: 

TMEM97_1_Activator: TMEM97 = CENPH (Confidence: 1, TimeStep: 1) 

TMEM97_2_Activator: TMEM97 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

TMEM97_3_Activator: TMEM97 = ASF1B (Confidence: 1, TimeStep: 1) 

TMEM97_4_Activator: TMEM97 = AURKA (Confidence: 1, TimeStep: 1) 

TMEM97_5_Activator: TMEM97 = !BTG1 (Confidence: 1, TimeStep: 1) 

TMEM97_1_Inhibitor: TMEM97 = !CENPH (Confidence: 1, TimeStep: 1) 

TMEM97_2_Inhibitor: TMEM97 = !CDK1 (Confidence: 1, TimeStep: 1) 

TMEM97_3_Inhibitor: TMEM97 = !HMMR (Confidence: 1, TimeStep: 1) 

TMEM97_4_Inhibitor: TMEM97 = !KIF14 (Confidence: 1, TimeStep: 1) 

TMEM97_5_Inhibitor: TMEM97 = !KIF20A (Confidence: 1, TimeStep: 1) 

 



 

 245 

Multiple Transition Functions for TNFRSF21 with decay value = 1: 

TNFRSF21_1_Activator: TNFRSF21 = BYSL&!RASSF4 (Confidence: 1, TimeStep: 1) 

TNFRSF21_2_Activator: TNFRSF21 = DTL&!STAB1 (Confidence: 1, TimeStep: 1) 

TNFRSF21_3_Activator: TNFRSF21 = BRCA1&!STAB1 (Confidence: 1, TimeStep: 1) 

TNFRSF21_4_Activator: TNFRSF21 = CKS1B&!STAB1 (Confidence: 1, TimeStep: 1) 

TNFRSF21_5_Activator: TNFRSF21 = GINS2&!STAB1 (Confidence: 1, TimeStep: 1) 

TNFRSF21_1_Inhibitor: TNFRSF21 = LILRA1 (Confidence: 1, TimeStep: 1) 

TNFRSF21_2_Inhibitor: TNFRSF21 = !ANP32E&!TNFRSF21 (Confidence: 1, TimeStep: 1) 

TNFRSF21_3_Inhibitor: TNFRSF21 = !FH&!TNFRSF21 (Confidence: 1, TimeStep: 1) 

TNFRSF21_4_Inhibitor: TNFRSF21 = !DHFR&!TNFRSF21 (Confidence: 1, TimeStep: 1) 

TNFRSF21_5_Inhibitor: TNFRSF21 = HBB&RNASET2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TNFSF8 with decay value = 1: 

TNFSF8_1_Activator: TNFSF8 = TNFSF8 (Confidence: 1, TimeStep: 1) 

TNFSF8_2_Activator: TNFSF8 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

TNFSF8_3_Activator: TNFSF8 = !RAG1 (Confidence: 1, TimeStep: 1) 

TNFSF8_4_Activator: TNFSF8 = LOC100130872 (Confidence: 1, TimeStep: 1) 

TNFSF8_5_Activator: TNFSF8 = SEMA4D (Confidence: 1, TimeStep: 1) 

TNFSF8_1_Inhibitor: TNFSF8 = !SNX10 (Confidence: 1, TimeStep: 1) 

TNFSF8_2_Inhibitor: TNFSF8 = LOC728175 (Confidence: 1, TimeStep: 1) 

TNFSF8_3_Inhibitor: TNFSF8 = LOC100996643&!TNFSF8 (Confidence: 1, TimeStep: 1) 

TNFSF8_4_Inhibitor: TNFSF8 = !BIRC3&MYRIP (Confidence: 1, TimeStep: 1) 

TNFSF8_5_Inhibitor: TNFSF8 = LOC100996643&TMEM2 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TOP2A with decay value = 1: 

TOP2A_1_Activator: TOP2A = CENPF (Confidence: 1, TimeStep: 1) 

TOP2A_2_Activator: TOP2A = DEPDC1B (Confidence: 1, TimeStep: 1) 

TOP2A_3_Activator: TOP2A = NEK2 (Confidence: 1, TimeStep: 1) 

TOP2A_4_Activator: TOP2A = CDK1 (Confidence: 1, TimeStep: 1) 

TOP2A_5_Activator: TOP2A = CKAP2L (Confidence: 1, TimeStep: 1) 

TOP2A_1_Inhibitor: TOP2A = !E2F8 (Confidence: 1, TimeStep: 1) 

TOP2A_2_Inhibitor: TOP2A = !TYMS (Confidence: 1, TimeStep: 1) 
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TOP2A_3_Inhibitor: TOP2A = PPP1R16B (Confidence: 1, TimeStep: 1) 

TOP2A_4_Inhibitor: TOP2A = !PTP4A1 (Confidence: 1, TimeStep: 1) 

TOP2A_5_Inhibitor: TOP2A = !FABP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TPX2 with decay value = 1: 

TPX2_1_Activator: TPX2 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

TPX2_2_Activator: TPX2 = ASF1B (Confidence: 1, TimeStep: 1) 

TPX2_3_Activator: TPX2 = AURKA (Confidence: 1, TimeStep: 1) 

TPX2_4_Activator: TPX2 = !BTG1 (Confidence: 1, TimeStep: 1) 

TPX2_5_Activator: TPX2 = CCDC34 (Confidence: 1, TimeStep: 1) 

TPX2_1_Inhibitor: TPX2 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

TPX2_2_Inhibitor: TPX2 = !ASF1B (Confidence: 1, TimeStep: 1) 

TPX2_3_Inhibitor: TPX2 = !AURKA (Confidence: 1, TimeStep: 1) 

TPX2_4_Inhibitor: TPX2 = BTG1 (Confidence: 1, TimeStep: 1) 

TPX2_5_Inhibitor: TPX2 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TRIB1 with decay value = 1: 

TRIB1_1_Activator: TRIB1 = !ABHD17B (Confidence: 1, TimeStep: 1) 

TRIB1_2_Activator: TRIB1 = IL18RAP (Confidence: 1, TimeStep: 1) 

TRIB1_3_Activator: TRIB1 = LOC728175 (Confidence: 1, TimeStep: 1) 

TRIB1_4_Activator: TRIB1 = SCML4&TRIB1 (Confidence: 1, TimeStep: 1) 

TRIB1_5_Activator: TRIB1 = IL6ST&!PRPS2 (Confidence: 1, TimeStep: 1) 

TRIB1_1_Inhibitor: TRIB1 = PRPS2&!TRIB1 (Confidence: 1, TimeStep: 1) 

TRIB1_2_Inhibitor: TRIB1 = !IL18R1&!TRIB1 (Confidence: 1, TimeStep: 1) 

TRIB1_3_Inhibitor: TRIB1 = CENPV&!TRIB1 (Confidence: 1, TimeStep: 1) 

TRIB1_4_Inhibitor: TRIB1 = !IL6ST&!TRIB1 (Confidence: 1, TimeStep: 1) 

TRIB1_5_Inhibitor: TRIB1 = !TMEM2&!TRIB1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TRIP13 with decay value = 1: 

TRIP13_1_Activator: TRIP13 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

TRIP13_2_Activator: TRIP13 = ASF1B (Confidence: 1, TimeStep: 1) 

TRIP13_3_Activator: TRIP13 = AURKA (Confidence: 1, TimeStep: 1) 
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TRIP13_4_Activator: TRIP13 = !BTG1 (Confidence: 1, TimeStep: 1) 

TRIP13_5_Activator: TRIP13 = CCDC34 (Confidence: 1, TimeStep: 1) 

TRIP13_1_Inhibitor: TRIP13 = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

TRIP13_2_Inhibitor: TRIP13 = !ASF1B (Confidence: 1, TimeStep: 1) 

TRIP13_3_Inhibitor: TRIP13 = !AURKA (Confidence: 1, TimeStep: 1) 

TRIP13_4_Inhibitor: TRIP13 = BTG1 (Confidence: 1, TimeStep: 1) 

TRIP13_5_Inhibitor: TRIP13 = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TTK with decay value = 1: 

TTK_1_Activator: TTK = KIF2C (Confidence: 1, TimeStep: 1) 

TTK_2_Activator: TTK = ATAD2 (Confidence: 1, TimeStep: 1) 

TTK_3_Activator: TTK = BIRC5 (Confidence: 1, TimeStep: 1) 

TTK_4_Activator: TTK = BUB1 (Confidence: 1, TimeStep: 1) 

TTK_5_Activator: TTK = CCNA2 (Confidence: 1, TimeStep: 1) 

TTK_1_Inhibitor: TTK = !KIF2C (Confidence: 1, TimeStep: 1) 

TTK_2_Inhibitor: TTK = !CCNB2 (Confidence: 1, TimeStep: 1) 

TTK_3_Inhibitor: TTK = !CDC45 (Confidence: 1, TimeStep: 1) 

TTK_4_Inhibitor: TTK = !CENPA (Confidence: 1, TimeStep: 1) 

TTK_5_Inhibitor: TTK = !DLGAP5 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TUBA4A with decay value = 1: 

TUBA4A_1_Activator: TUBA4A = TUBA4A (Confidence: 1, TimeStep: 1) 

TUBA4A_2_Activator: TUBA4A = STAB1 (Confidence: 1, TimeStep: 1) 

TUBA4A_3_Activator: TUBA4A = !LILRB2&SMIM3 (Confidence: 1, TimeStep: 1) 

TUBA4A_4_Activator: TUBA4A = GBP4&P2RY14&!TENM4 (Confidence: 1, TimeStep: 1) 

TUBA4A_5_Activator: TUBA4A = !DENND3&!LOC100505650&SMIM3 (Confidence: 1, TimeStep: 1) 

TUBA4A_1_Inhibitor: TUBA4A = LOC100505650 (Confidence: 1, TimeStep: 1) 

TUBA4A_2_Inhibitor: TUBA4A = BCL10 (Confidence: 1, TimeStep: 1) 

TUBA4A_3_Inhibitor: TUBA4A = ASPM&!TUBA4A (Confidence: 1, TimeStep: 1) 

TUBA4A_4_Inhibitor: TUBA4A = NUF2&!TUBA4A (Confidence: 1, TimeStep: 1) 

TUBA4A_5_Inhibitor: TUBA4A = HELLS&!TUBA4A (Confidence: 1, TimeStep: 1) 
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Multiple Transition Functions for TXNIP with decay value = 1: 

TXNIP_1_Activator: TXNIP = !CKAP2 (Confidence: 1, TimeStep: 1) 

TXNIP_2_Activator: TXNIP = TXNIP (Confidence: 1, TimeStep: 1) 

TXNIP_3_Activator: TXNIP = !CENPU (Confidence: 1, TimeStep: 1) 

TXNIP_4_Activator: TXNIP = !HIST4H4 (Confidence: 1, TimeStep: 1) 

TXNIP_5_Activator: TXNIP = NEAT1 (Confidence: 1, TimeStep: 1) 

TXNIP_1_Inhibitor: TXNIP = ANP32E&MDK (Confidence: 1, TimeStep: 1) 

TXNIP_2_Inhibitor: TXNIP = !BMF&MDK (Confidence: 1, TimeStep: 1) 

TXNIP_3_Inhibitor: TXNIP = CENPV&MDK (Confidence: 1, TimeStep: 1) 

TXNIP_4_Inhibitor: TXNIP = E2F7&MDK (Confidence: 1, TimeStep: 1) 

TXNIP_5_Inhibitor: TXNIP = ECT2&MDK (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for TYMS with decay value = 1: 

TYMS_1_Activator: TYMS = WDR76 (Confidence: 1, TimeStep: 1) 

TYMS_2_Activator: TYMS = MKI67 (Confidence: 1, TimeStep: 1) 

TYMS_3_Activator: TYMS = ZWINT (Confidence: 1, TimeStep: 1) 

TYMS_4_Activator: TYMS = ANLN (Confidence: 1, TimeStep: 1) 

TYMS_5_Activator: TYMS = BRIP1 (Confidence: 1, TimeStep: 1) 

TYMS_1_Inhibitor: TYMS = !TYMS (Confidence: 1, TimeStep: 1) 

TYMS_2_Inhibitor: TYMS = PRDM1 (Confidence: 1, TimeStep: 1) 

TYMS_3_Inhibitor: TYMS = LGALS3 (Confidence: 1, TimeStep: 1) 

TYMS_4_Inhibitor: TYMS = RAB31 (Confidence: 1, TimeStep: 1) 

TYMS_5_Inhibitor: TYMS = !ANLN&BIRC3 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for UBE2C with decay value = 1: 

UBE2C_1_Activator: UBE2C = UBE2C (Confidence: 1, TimeStep: 1) 

UBE2C_2_Activator: UBE2C = !AKAP12&APITD1-CORT (Confidence: 1, TimeStep: 1) 

UBE2C_3_Activator: UBE2C = !AKAP12&ASF1B (Confidence: 1, TimeStep: 1) 

UBE2C_4_Activator: UBE2C = !AKAP12&AURKA (Confidence: 1, TimeStep: 1) 

UBE2C_5_Activator: UBE2C = !AKAP12&AURKB (Confidence: 1, TimeStep: 1) 

UBE2C_1_Inhibitor: UBE2C = !UBE2C (Confidence: 1, TimeStep: 1) 

UBE2C_2_Inhibitor: UBE2C = !APITD1-CORT (Confidence: 1, TimeStep: 1) 
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UBE2C_3_Inhibitor: UBE2C = !ASF1B (Confidence: 1, TimeStep: 1) 

UBE2C_4_Inhibitor: UBE2C = !AURKA (Confidence: 1, TimeStep: 1) 

UBE2C_5_Inhibitor: UBE2C = BTG1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for UBE2T with decay value = 1: 

UBE2T_1_Activator: UBE2T = APITD1-CORT (Confidence: 1, TimeStep: 1) 

UBE2T_2_Activator: UBE2T = ASF1B (Confidence: 1, TimeStep: 1) 

UBE2T_3_Activator: UBE2T = AURKA (Confidence: 1, TimeStep: 1) 

UBE2T_4_Activator: UBE2T = !BTG1 (Confidence: 1, TimeStep: 1) 

UBE2T_5_Activator: UBE2T = CCDC34 (Confidence: 1, TimeStep: 1) 

UBE2T_1_Inhibitor: UBE2T = !APITD1-CORT (Confidence: 1, TimeStep: 1) 

UBE2T_2_Inhibitor: UBE2T = !ASF1B (Confidence: 1, TimeStep: 1) 

UBE2T_3_Inhibitor: UBE2T = !AURKA (Confidence: 1, TimeStep: 1) 

UBE2T_4_Inhibitor: UBE2T = BTG1 (Confidence: 1, TimeStep: 1) 

UBE2T_5_Inhibitor: UBE2T = !CCDC34 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for WASF1 with decay value = 1: 

WASF1_1_Activator: WASF1 = P2RX5 (Confidence: 1, TimeStep: 1) 

WASF1_2_Activator: WASF1 = !HBG1&WASF1 (Confidence: 1, TimeStep: 1) 

WASF1_3_Activator: WASF1 = !HBB&WASF1 (Confidence: 1, TimeStep: 1) 

WASF1_4_Activator: WASF1 = !IGH&WASF1 (Confidence: 1, TimeStep: 1) 

WASF1_5_Activator: WASF1 = !F13A1&!S100A11 (Confidence: 1, TimeStep: 1) 

WASF1_1_Inhibitor: WASF1 = !WASF1 (Confidence: 1, TimeStep: 1) 

WASF1_2_Inhibitor: WASF1 = FCGR3B&HBG1 (Confidence: 1, TimeStep: 1) 

WASF1_3_Inhibitor: WASF1 = FCGR3B&!IL1B (Confidence: 1, TimeStep: 1) 

WASF1_4_Inhibitor: WASF1 = FCGR3B&ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

WASF1_5_Inhibitor: WASF1 = ITGB2-AS1&!SNORA21 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for WDHD1 with decay value = 1: 

WDHD1_1_Activator: WDHD1 = !CD53&MDK (Confidence: 1, TimeStep: 1) 

WDHD1_2_Activator: WDHD1 = CENPK&MDK (Confidence: 1, TimeStep: 1) 

WDHD1_3_Activator: WDHD1 = !IGH&MDK (Confidence: 1, TimeStep: 1) 
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WDHD1_4_Activator: WDHD1 = !IGLC1&MDK (Confidence: 1, TimeStep: 1) 

WDHD1_5_Activator: WDHD1 = !BMF&MDK (Confidence: 1, TimeStep: 1) 

WDHD1_1_Inhibitor: WDHD1 = !CENPH (Confidence: 1, TimeStep: 1) 

WDHD1_2_Inhibitor: WDHD1 = !CDK1 (Confidence: 1, TimeStep: 1) 

WDHD1_3_Inhibitor: WDHD1 = !HMMR (Confidence: 1, TimeStep: 1) 

WDHD1_4_Inhibitor: WDHD1 = !KIF14 (Confidence: 1, TimeStep: 1) 

WDHD1_5_Inhibitor: WDHD1 = !KIF20A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for WDR76 with decay value = 1: 

WDR76_1_Activator: WDR76 = CENPH (Confidence: 1, TimeStep: 1) 

WDR76_2_Activator: WDR76 = APITD1-CORT (Confidence: 1, TimeStep: 1) 

WDR76_3_Activator: WDR76 = ASF1B (Confidence: 1, TimeStep: 1) 

WDR76_4_Activator: WDR76 = AURKA (Confidence: 1, TimeStep: 1) 

WDR76_5_Activator: WDR76 = !BTG1 (Confidence: 1, TimeStep: 1) 

WDR76_1_Inhibitor: WDR76 = !IQGAP3 (Confidence: 1, TimeStep: 1) 

WDR76_2_Inhibitor: WDR76 = !ANLN (Confidence: 1, TimeStep: 1) 

WDR76_3_Inhibitor: WDR76 = !PRR11 (Confidence: 1, TimeStep: 1) 

WDR76_4_Inhibitor: WDR76 = !CDC20 (Confidence: 1, TimeStep: 1) 

WDR76_5_Inhibitor: WDR76 = !KIF4A (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for WFS1 with decay value = 1: 

WFS1_1_Activator: WFS1 = PDE4B&PTP4A1 (Confidence: 1, TimeStep: 1) 

WFS1_2_Activator: WFS1 = !SERPINA1&WFS1 (Confidence: 1, TimeStep: 1) 

WFS1_3_Activator: WFS1 = ARPP21&WFS1 (Confidence: 1, TimeStep: 1) 

WFS1_4_Activator: WFS1 = !HBG1&PDE4B (Confidence: 1, TimeStep: 1) 

WFS1_5_Activator: WFS1 = PDE4B&WFS1 (Confidence: 1, TimeStep: 1) 

WFS1_1_Inhibitor: WFS1 = ITGB2-AS1 (Confidence: 1, TimeStep: 1) 

WFS1_2_Inhibitor: WFS1 = LOC100130872 (Confidence: 1, TimeStep: 1) 

WFS1_3_Inhibitor: WFS1 = LILRA1 (Confidence: 1, TimeStep: 1) 

WFS1_4_Inhibitor: WFS1 = !KIF26A&!WFS1 (Confidence: 1, TimeStep: 1) 

WFS1_5_Inhibitor: WFS1 = !IL1B&!WFS1 (Confidence: 1, TimeStep: 1) 

 



 

 251 

Multiple Transition Functions for ZBTB16 with decay value = 1: 

ZBTB16_1_Activator: ZBTB16 = LILRA1 (Confidence: 1, TimeStep: 1) 

ZBTB16_2_Activator: ZBTB16 = !CCR1&ZBTB16 (Confidence: 1, TimeStep: 1) 

ZBTB16_3_Activator: ZBTB16 = !GSN&LILRB2 (Confidence: 1, TimeStep: 1) 

ZBTB16_4_Activator: ZBTB16 = !GSN&SERPINB9 (Confidence: 1, TimeStep: 1) 

ZBTB16_5_Activator: ZBTB16 = !GSN&ZBTB16 (Confidence: 1, TimeStep: 1) 

ZBTB16_1_Inhibitor: ZBTB16 = !LILRB2&!ZBTB16 (Confidence: 1, TimeStep: 1) 

ZBTB16_2_Inhibitor: ZBTB16 = !RBMS3&SNORA21 (Confidence: 1, TimeStep: 1) 

ZBTB16_3_Inhibitor: ZBTB16 = DFNA5&!ZBTB16 (Confidence: 1, TimeStep: 1) 

ZBTB16_4_Inhibitor: ZBTB16 = !GBP4&SNORA21 (Confidence: 1, TimeStep: 1) 

ZBTB16_5_Inhibitor: ZBTB16 = !GBP4&!ZBTB16 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ZFP36L2 with decay value = 1: 

ZFP36L2_1_Activator: ZFP36L2 = ZFP36L2 (Confidence: 1, TimeStep: 1) 

ZFP36L2_2_Activator: ZFP36L2 = TXNIP (Confidence: 1, TimeStep: 1) 

ZFP36L2_3_Activator: ZFP36L2 = LEF1 (Confidence: 1, TimeStep: 1) 

ZFP36L2_4_Activator: ZFP36L2 = !HIST4H4 (Confidence: 1, TimeStep: 1) 

ZFP36L2_5_Activator: ZFP36L2 = !MTHFD2 (Confidence: 1, TimeStep: 1) 

ZFP36L2_1_Inhibitor: ZFP36L2 = CKAP2 (Confidence: 1, TimeStep: 2) 

ZFP36L2_2_Inhibitor: ZFP36L2 = !TXNIP (Confidence: 1, TimeStep: 2) 

ZFP36L2_3_Inhibitor: ZFP36L2 = !ZFP36L2 (Confidence: 1, TimeStep: 2) 

 

Multiple Transition Functions for ZNF367 with decay value = 1: 

ZNF367_1_Activator: ZNF367 = MDK&MKI67 (Confidence: 1, TimeStep: 1) 

ZNF367_2_Activator: ZNF367 = MDK&NCAPG (Confidence: 1, TimeStep: 1) 

ZNF367_3_Activator: ZNF367 = MDK&NEK2 (Confidence: 1, TimeStep: 1) 

ZNF367_4_Activator: ZNF367 = MDK&NUSAP1 (Confidence: 1, TimeStep: 1) 

ZNF367_5_Activator: ZNF367 = MDK&POLQ (Confidence: 1, TimeStep: 1) 

ZNF367_1_Inhibitor: ZNF367 = !CKS1B (Confidence: 1, TimeStep: 1) 

ZNF367_2_Inhibitor: ZNF367 = !TIMELESS (Confidence: 1, TimeStep: 1) 

ZNF367_3_Inhibitor: ZNF367 = !BRCA1 (Confidence: 1, TimeStep: 1) 

ZNF367_4_Inhibitor: ZNF367 = !MCM7 (Confidence: 1, TimeStep: 1) 
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ZNF367_5_Inhibitor: ZNF367 = !RAD51AP1 (Confidence: 1, TimeStep: 1) 

 

Multiple Transition Functions for ZWINT with decay value = 1: 

ZWINT_1_Activator: ZWINT = KIF2C (Confidence: 1, TimeStep: 1) 

ZWINT_2_Activator: ZWINT = ATAD2 (Confidence: 1, TimeStep: 1) 

ZWINT_3_Activator: ZWINT = BIRC5 (Confidence: 1, TimeStep: 1) 

ZWINT_4_Activator: ZWINT = BUB1 (Confidence: 1, TimeStep: 1) 

ZWINT_5_Activator: ZWINT = CCNA2 (Confidence: 1, TimeStep: 1) 

ZWINT_1_Inhibitor: ZWINT = !KIF2C (Confidence: 1, TimeStep: 1) 

ZWINT_2_Inhibitor: ZWINT = !CCNB2 (Confidence: 1, TimeStep: 1) 

ZWINT_3_Inhibitor: ZWINT = !CDC45 (Confidence: 1, TimeStep: 1) 

ZWINT_4_Inhibitor: ZWINT = !CENPA (Confidence: 1, TimeStep: 1) 

ZWINT_5_Inhibitor: ZWINT = !DLGAP5 (Confidence: 1, TimeStep: 1) 
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