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Abstract: Data-driven electrical energy efficiency management is the emerging trend in electrical
energy forecasting and management. This fusion of data science, artificial intelligence, and electrical
energy management has turned out to be the most precise and robust energy management solution.
The Smart Energy Informatics Lab (SEIL) of the Indian Institute of Technology (IIT) conducted an
experimental study in 2019 to collect massive data on university campus energy consumption. The
comprehensive comparative study preparatory to the recommendation of the best candidate out of
24 machine learning algorithms on the SEIL dataset is presented in this work. In this research work,
an exhaustive parametric and empirical comparative study is conducted on the SEIL dataset for the
recommendation of the optimal machine learning algorithm. The simulation results established the
findings that Bagged Trees, Fine Trees, and Medium Trees are, respectively, the best-, second-best-,
and third-best-performing algorithms in terms of efficacy. On the contrary, a reverse ranking is
observed in terms of efficiency. This is grounded in the fact that Bagged Trees is most effective
algorithm for the said application and Medium Trees is the most efficient one. Likewise, Fine Trees
has the optimum tradeoff between efficacy and efficiency.

Keywords: data driven energy efficiency management; machine learning; SEIL dataset; artificial
intelligence; energy forecasting

1. Introduction

Electrical energy is an essential and likely increasingly scarce resource around the
globe. Its scarcity could be handled in the following bifold manner. The first solution is to
increase generation capacity, and the second is to improve load management and energy
demand forecasting [1]. The scope of this study is mainly focused on electrical energy
management and demand forecasting. This domain is well represented in the literature
and a large number of researchers have submitted their contributions. The research has
established that the major venues of energy consumption are buildings. This includes such
things as residential buildings, commercial buildings, and industrial buildings [2]. It is
also reported in the literature that building energy consumption accounts for 39% of global
energy consumption and 38% of greenhouse gas emissions [3]. The SEIL published a study
in 2019 endeavoring to collect massive amounts of data on the energy consumption of
residential buildings and university campuses. Both datasets are reported as the most recent
and benchmark dataset of data-driven energy forecasting systems considering residential
buildings and university campuses [4]. In this research study, a university campus energy
consumption dataset is under consideration.

It has been observed that large-scale university campuses demand a significant amount
of electricity to fulfill their HVAC requirements. This includes, but is not limited to, the
power requirements of lab equipment, machines, office equipment, classes, auditorium IT,
and support equipment [5]. However, on the other hand, electrical energy is a constrained
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resource. Electrical energy management systems (EEMS) are one of the most widely
advocated solutions for achieving the goal of reconciling electricity demand with limited
electricity resources. Furthermore, these systems contribute to a significant reduction in
electricity consumption bills [6]. Electrical energy demand forecasting is the essential and
integral part of the EEMS. It aims to manage, monitor, optimize, and analyze the day-to-
day electricity demand of a specific area [7]. Therefore, the efficiency and efficacy of the
EEMS is highly correlated with the performance of the electrical forecasting system [8].
Accurate, robust, adaptive, and efficient energy forecasting promises efficiency in the
energy management system.

Moreover, an efficient electrical energy forecasting system complements other energy
management policies, making for optimum energy consumption [9]. This eventually turns
into a competitive advantage in particular and sustainable development in general. Re-
searchers have recently strongly advocated for a data-driven approach for robust, adaptive,
and efficient energy forecasting systems [10]. In the literature, this is technically termed
the “black box approach”. On the other hand, engineering or “white box” and statistical
or “grey box” approaches are already in place [11]. In the data-driven, or “black box”
approach, the artificial intelligence (machine learning or deep learning) model is trained
and customized for the specific application. Since the training of the model is purely based
on the data provided to it, it is logically termed a data-driven approach [12]. The recent
literature is enriched by many applications of various machine learning algorithms for
data-driven energy efficiency management. This includes, but is not limited to, probabilistic
modeling [13], Artificial Neural Network, Random Forest [14], Regression [15] and many
more machine learning algorithms that are trained for the respective application’s dataset.

It has been observed that many datasets for building energy management are available.
Likewise, different researchers have employed different machine learning algorithms for
classification and prediction on their respective datasets. However, the need for a bench-
mark dataset was felt in the literature. Moreover, a unified application-oriented machine
learning algorithm is also a pressing need. The SEIL then conducted a study in the year 2019
to collect a massive amount of data on the energy consumption of residential buildings and
university campuses. In this research, a university campus energy consumption dataset is
under consideration. This work also submits an exhaustive parametric and empirical study
of machine learning algorithms on the relevant SEIL dataset (University Campus). Finally,
the recommendation of the optimal machine learning algorithm for university campus
energy demand forecasting is submitted.

The organization of the manuscript is as follows: Section 2 presents a Literature
Review of the recent studies in the domain. The research gap is highlighted in Section 3.
Sections 4 and 5, respectively, show the system setup and methodology of the proposed
study. Sections 6 and 7 comprise the results and discussions. Finally, Section 8 presents the
conclusion of the study.

2. Literature Review

This section will provide an in-depth review of the literature on the application of
machine learning algorithms to energy predictions. Primarily, the scope of this literature
review is bifold. First, the performance evaluation of various machine learning algorithms
for electrical energy forecasting is considered. This establishes the logical rationale for the
utility of machine learning algorithm energy forecasting. Secondly, the existing work on
the benchmark dataset of SEIL University Campus is presented. This clarifies the research
gap in the SEIL University Campus dataset.

In 2019, Johannesen et al. [16] presented a study to investigate the response of a
regression model to a Sydney dataset. This dataset comprised weather, time stamps,
and load demand. The dataset was locally gathered for four years. The research has
diffused/mapped the time stamp, weather, and load demand data as common instances.
Finally, the authors employed the Random Forest Regressor, k-Nearest Neighbor Regressor
and Linear Regression for load forecasting. The authors presented a conclusion that for
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the Sydney region dataset of electrical consumption, Random Forest is the best candidate
for short-term (30 min) prediction. Likewise, the kNN Regression Tool is found to be
relatively efficient for long term prediction (24 h) [17]. Another study was conducted on
the power consumption of higher education university campuses in Korea. In this study,
the authors also mapped the weather data and power consumption data. The authors in
this study reduced the features dimension using principal component analysis (PCA) and
then employed ANN and SVM for energy demand prediction. The authors then concluded
that for the said dataset, the ANN is found to be the better candidate for energy demand
prediction [18].

In parallel to the university campus, residential buildings are similar venues for energy
consumption. Chou et al. [19] have presented a study on energy demand forecasting for
residential buildings. In particular, the authors presented a hybrid model of prediction
and optimization. They reported that the hybrid evolutionary-neuro system is found
to be better as compared to the classical machine learning network for their respective
datasets. The dataset was locally gathered from a residential building. In the same year,
another group of authors also presented a study to rationalize the evolutionary-neuro
system for energy forecasting. In this study, the authors have presented a hybrid model
of evolutionary algorithms, i.e., teaching learning-based optimization (TLBO) and ANN.
They also advocated the efficacy of the hybrid model for their respective datasets [20].
In another study, its author has presented a hybrid model for optimization and energy
demand forecasting. This approach was tested on a dataset of South Korea’s hourly
energy consumption. The author claimed that the proposed model could be useful for
other datasets. However, a limited rationale of this claim is set forth in their paper [21].
Ahmad et al. [22] have published a survey in Sustainable Cities and Society. In this survey,
the authors have presented a comprehensive comparison through a literature survey about
the efficacy of machine learning algorithms for energy demand forecasting. They have
concluded that the Bayesian regularization back-propagation neural networks (BRB-NNs)
and the Levenberg-Marquardt back-propagation neural networks (LMBNNs) are found to
be relatively efficient predictors for electrical energy demand forecasting.

The second fold of this literature review is related to the existing investigation into the
benchmark dataset of SEIL. In this section, the research contribution of the SEIL University
Campus dataset is presented. In addition, the research gap is highlighted in the automatic
learning application on electrical power prediction and existing work on the SEIL. A group
of SEIL researchers used LSTM and improved the algorithm for optimizing the sinusoidal
cosine. It translates into accurate and reliable power consumption predictions for short,
medium and long-term forecasts. They argued that the hybridization of the enhanced
Sine Cosine and LSTM algorithms has transformed into a robust power consumption
model [4]. In a separate publication, SEIL researchers used kCNN-LSTM to provide
accurate predictions of energy consumption in buildings. This experiment was based
on real-time energy consumption data from the Kanwal Rekhi building, an academic
building of the Indian Institute of Technology (IIT), Mumbai. The proposed approach uses
k means clustering to conduct cluster analysis and understand the energy usage model. The
proposed approaches were formed and tested using real-time energy consumption data
from a four-floor building at IIT Bombay, India [4,23,24]. In-addition to the above recent
work, Table 1 shows a literature matrix to highlight recent work of energy management
using artificial intelligence with the title, proposed work, and the corresponding limitations
of the proposed work.
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Table 1. Literature map on energy management using artificial intelligence.

Ref Year Proposed Work Limitations

[25] 2018 In this literature, the large data is called Big Data
for energy management.

The availability of the referenced massive
datasets is limited.

[26] 2019 Deep learning approaches have outdone
themselves in dealing with big data.

There is the challenge of managing the
large data package.

[27] 2019 The authors have strongly argued for the usefulness
of Deep Learning frameworks to design the
electrical energy efficiency management system.

Huge standard reference limits set of
data for electric energy.[28] 2016

[29] 2016
This is a comparative consideration of two
varieties of the Deep Learning network: (LSTM)
and sequence architecture (S2 S).

In this study, coverage is limited to a
single residential customer.

[30] 2016

They then compared the proposed model with
the regression of existing support vector and
Deep Learning frameworks. The result of the
simulation shows that the local RVS surpassed
the RVS and H2 O in-Deep Learning.

The authors stated that they used data on
submissions; however, the details of the
data were not included in this document.

[31] 2016

This paper presented the Factored Conditional
Limited Boltzmann Machine (FCRBM) to forecast
energy demands. The model has been tested on
the EcoGrid EU data set.

The author of this paper needed to
compare his research study with other
variations of Deep Learning architecture
and currently performed systems.

[32] 2017
The authors have compared the convolutional
neural network (CNN/ConvNet) with the study
presented in 2016.

No new CNN/ConvNet architecture was
presented in this study, and neither was
the pre-trained network described.

[33] 2017 Initially formed the Recurrent neural networks
(RNN) using a data-driven approach.

This model-less, evidence-based
approach has surpassed the approach of
model-based studies in management
of energy.

[34] 2017

This study provided a comprehensive
comparison of conventional machine learning
algorithms, including vector support machines,
Gaussian processes, regression trees, overall
amplification and linear regression, and the Deep
Learning method.

Validation of the claim related to the
energy management system is observed
to be unclear.

[35] 2018

This method is optimized for building energy
management, and explores two DL algorithms,
namely, Deep Q-learning (DQN) and Deep Policy
Gradient (DPG), at the same time.

The parametric fringe of the proposed
technique proved insufficient. Moreover,
the cognitive scope of the gadget seems
to be very trendy.

[36] 2018
The authors have used Recurrent neural networks
(RNN) to forecast time series data of energy
consumption for a university campus.

The robustness of this work could be
enhanced if the master data set had
been chosen.

[37] 2019

The authors have suggested using the methods of
alternating direction of multipliers (ADMM) and
accelerated alternating direction of multipliers
(AADM) to find the optimum value of operation
of the micro network distribution.

This study did not include the data-based
approach to energy forecasting.
Moreover, it was felt that the parametric
comparison was missing in this work.

[38] 2019
This work submitted a data-driven, Deep
Learning approach to district-wide energy
demand forecasting.

This study appears deficient because of
the absence of a baseline data set and
extensive comparison with
pre-existing models.

[39] 2020 The FS-FCRBM-GWDO hybrid model is superior
to the existing models presented in this study.

The gap between the existing real-world
reference data set and the pre-established
model is deficient.

[40] 2020
Major contributions include device-based
real-time power management via a common
cloud data monitoring server.

The actual application was outside the
scope of study.
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Table 1. Cont.

Ref Year Proposed Work Limitations

[41] 2020

The authors have used a convolutional neural
network (CNN) and a multilayer bi-directional
synchronized recurrent unit (MB-GRU) to predict
the consumption load of a residential building.

The degree of contribution to research
could increase if the updated architecture
of Deep Learning could be introduced.
Moreover, the systematic evaluation of
the novel model may be established in
comparison to the existing pre-trained
Deep Learning architectures.

[42] 2021

A machine (computer) based vision approach,
You Only Look Once (YOLO v3), was utilized to
calculate the number of individuals within the
region. It is more in correlation with the
temperature range of the air conditioning units.

The author’s study would be made more
effective by implementing new variants
of Deep Learning.

[43] 2021
A new machine learning model for forecasting
the energy usage on an hourly basis in a
residential building is proposed.

The performance of the machine learning
algorithm is compromised as a result of
the performance plateau highlighted
with big data.

[44] 2021

Deep Learning is the best candidate for power
prediction based on time series. The concern in
this study is increasingly associated with the fact
that the performance of ML and DL is found.

Three small data sets were used to
validate the study. the authors could not
pursue the novel Deep Learning
architecture of a machine learning model
for data-driven energy
efficiency forecasting.

[45] 2020 Comparison of Machine Learning and DL
algorithms with the residential building dataset.
The comparison was based on competition
between ML and DL.

These works also highlight the urgent
need for a master data set for
domain-specific applications such as
hospitals, schools, universities,
residential buildings, etc.

[46] 2020

[47] 2020

[48] 2019

The work continued to use the RNN with the
LSTM approach to forecast energy demand. This
work also suggested a gap in the development of
any new DL architecture and a pre-formed
network of master datasets.

This work also suggests a gap in the
development of new ML on
master datasets.

[49] 2019
Smart Energy Informatics Lab (SEIL) offered
data-driven reinforcement learning for
predicting demand.

[50] 2020 SEIL-IIT introduced the database medium for
adaptive data visualization of large sensors.

[51] 2020

Smart Energy Informatics Lab (SEIL), the same
group, studied the hybrid model for predicting
energy consumption in buildings through
LSTM networks.

[52] 2017 There has been a push for a data-driven approach
to the intelligent energy management system.

[53] 2019 In this work reference is made to the data set
generated by their research. Another area that this
group has targeted is solar photovoltaic optimisation
and building thermal modelling [53–55]. This is
beyond the scope of our study.

The Pre-Trained model is deficient.[54] 2019

[55] 2018

3. Gap Analysis

After careful analysis of the existing work in the domain of data-driven energy manage-
ment, it has been determined that the utilization of artificial intelligence is now inevitable
for robust and precise energy management. In this connection, the benchmarking of the
domain specific dataset is an essential need. Moreover, the development of robust machine
learning algorithms will facilitate the objective. After detailed analysis, the SEIL dataset
is found to be the most suitable dataset for energy forecasting for a university campus.
However, the comprehensive empirical comparison of machine learning algorithms in the
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literature is found to be deficient. In this study, the gap will be bridged by submitting an
exhaustive evaluation of large number of machine learning algorithms on the SEIL dataset.
The key deliverable of this study is the recommendation of the best machine learning
algorithm. The recommendation will be based on empirical facts and figures.

4. Dataset Description and System Setup

The SEIL dataset was gathered from an IIT university building. The building has
four floors and is divided into three wings. The dataset includes data from December
2016 through July 2018. All datasets are in CSV format. The datasets are all at one-
minute granularity with current, voltage, and power as input attributes, and real energy
consumption as an output attribute. The dataset is massive, with a volume of 20 GB. Data
has been extracted from various units in the university building, such as building level,
class level, auditorium level, lab level, office level, etc. In this study, the building-level
data is taken into account in order to predict the total energy consumption of the building.
Table 2 illustrates the list of attributes of the dataset. Since the dataset is labeled and
continuous, the machine learning prediction algorithms have been selected for training
and testing. A total of 24 machine learning prediction algorithms were tested to determine
the best machine learning algorithm. The grounds for the decision are the functions of
RMSE, R-Squared, MSE, MAE, prediction speed, and computation time. Please refer to
Table 2. Attributes 1 to 23 served as the input attributes and attribute number 24 is taken as
the output attribute. The power meter records the phase voltage (V1, V2, and V3) and the
phase current (A1, A2, and A3). Attributes 8 to 10 describe the apparent power, whereas
attributes 12 to 14 represent the real power consumed. The reactive power for each phase is
shown in attributes 16 to 19, and the power factor for each phase is shown as PF1, PF2, and
PF3 in attributes 20 to 22. The output real power in Wh is taken as the response variable. It
is to be noted that in the dataset, the real power Wh is identical to the apparent and reactive
power. Therefore, real power has been selected as the response variable.

Table 2. Attributes of the dataset.

Attribute
Number

Attribute
Symbol

Attribute
Number

Attribute
Symbol

Attribute
Number

Attribute
Symbol

Attribute
Number

Attribute
Symbol

1. V1 8. VA1 15. W 22. PF3
2. V2 9. VA2 16. VAR1 23. PF
3. V3 10. VA3 17. VAR2 24. FwdWh
4. A1 11. VA 18. VAR3 25. FwdVAh
5. A2 12. W1 19. VAR

26. FwdVARh,
FwdVARhC

6. A3 13. W2 20. PF1
7. A 14. W3 21. PF2

5. Methodology

A quad-folded cascading methodology was used in this study. Figure 1 shows the
pictorial illustration of the proposed methodology. In the first phase, the SEIL dataset is
used, and the total energy consumption at the building level is considered. The building
level energy consumption includes the auditorium, classroom, conference room, building
floor, labs, offices, server room, and sub-server room. In the second phase, the building level
dataset is first divided into 70% training samples and 30% testing samples with random
permutation. The training set is used to train 24 machine learning algorithms. In the third
phase, the parametric performance of each ML algorithm is evaluated as the function of
training parameters like RMSE, R-squared, MSE, MAE, and Prediction Speed. Similarly,
the same parameters for the testing phase are computed. Finally, the ranking of algorithms
based on their efficacy and efficiency are established. Figure 2 illustrates the functional
inside view of the training testing phase. The training and testing phase constitutes the
inside workings of Phase 2 of the proposed methodology (Figure 1).
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Figure 1. Layout of proposed methodology.

Figure 2. General framework of system training and testing [24].

6. Results

This section presents an exhaustive and comprehensive empirical evaluation of the
best candidate of machine algorithm for energy demand prediction using the SEIL dataset.
Figures 3–8 show the visual inferences of Table 3 for easy reference. Figures 9–20 illus-
trate the prediction vs. actual and residual of training and testing for each algorithm.
In this study, 24 machine learning prediction algorithms were evaluated on benchmark
performance parameters. In the predicted vs. actual graph, the x-axis shows the true
response and the y-axis represents the predicted response. The approximate linearity of
these curves is shown in black and the actual observation is depicted with blue dots. In
the predicted vs. actual graph, the perceptual variance can be observed as the distance
between the predicted value and the actual value. The larger variation corresponds to
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the poor prediction performance of the respective algorithm. Moreover, the degree and
measure of variation for the respective algorithm are shown in Table 3. The degree and
measure of variation are the function of RMSE, R-Squared, MSE, and MAE for training and
testing events. Likewise, prediction speed and computation time also establish grounds for
the efficiency of the algorithm. The higher value of the error measure translates into the
poor performance of the candidate algorithm. Figures 9–20 also include the Residual Error
of training and testing for the top three performing algorithms. The x-axis of the residual
curve refers to the predicted response, and the y-axis corresponds to the residual error. The
close proximity of residual error to the predicted observation corresponds to the higher
efficacy of the candidate algorithm. The inference is also correlated with the empirical and
absolute values illustrated in Table 3. Foremost in this investigation, the top three perform-
ing machine learning algorithms for energy demand prediction at a university campus
based on SEIL datasets are selected in general. Subsequently, an in-depth investigation of
the performance parameter is performed. The graphical illustration and empirical findings
have established that Bagged Trees (1), Fine Trees (2), and Medium Trees (3) are the top three
performing algorithms in terms of efficacy. On the contrary, a reverse ranking is observed
in terms of efficiency. This can also be inferred from Table 4. The performance measures
such as RMSE, R-Squared, MSE, and MAE refer to the efficacy of the algorithm. Likewise,
prediction speed and training time reflects the efficiency of the algorithm.

Figure 3. Training and testing RMSE.

Figure 4. Training and testing R-Squared.
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Figure 5. Training and testing MSE.

Figure 6. Training and testing MAE.

Figure 7. Prediction speed.
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Figure 8. Training time.

Figure 9. Fine Trees Prediction vs. Actual training.

Figure 10. Fine Trees Prediction vs. Actual testing.
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Figure 11. Fine Trees Residual training.

Figure 12. Fine Trees Residual testing.

Figure 13. Medium Trees Prediction vs. Actual training.
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Figure 14. Medium Trees Prediction vs. Actual testing.

Figure 15. Medium Trees Residual training.

Figure 16. Medium Trees Residual testing.
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Figure 17. Bagged Trees Prediction vs. Actual training.

Figure 18. Bagged Trees Prediction vs. Actual testing.
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Figure 19. Bagged Trees Residual training.

Figure 20. Bagged Trees Residual testing.
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Table 3. Performance evaluation of machine learning algorithm for energy prediction on SEIL dataset.

Algorithm Training Testing

RMSE R-Squared MSE MAE Prediction
Speed (Obs/s)

Training
Time (s) RMSE R-Squared MSE MAE

Linear 1.35 × 108 0.54 1.83 × 1016 8.42 × 107 790,000 22.065 1.36 × 108 0.53 1.84 × 1016 8.45 × 107

Interactions Linear 1.22 × 108 0.62 1.48 × 1016 8.02 × 107 110,000 65.108 1.23 × 108 0.62 1.50 × 1016 8.05 × 107

Robust Linear 1.64 × 108 0.32 2.68 × 1016 5.25 × 107 790,000 19.44 1.65 × 108 0.31 2.71 × 1016 5.30 × 107

Stepwise Linear 1.18 × 108 0.65 1.39 × 1016 7.63 × 107 600,000 24,417 1.18 × 108 0.64 1.40 × 1016 7.66 × 107

Fine Trees 2.11 × 106 1 4.44 × 1012 1.40 × 106 3,300,000 8.3244 2.38 × 106 1 5.64 × 1012 1.41 × 106

Medium Trees 2.81 × 106 1 7.87 × 1012 1.42 × 106 3,700,000 8.0721 3.20 × 106 1 1.02 × 1013 1.43 × 106

Coarse Tree 4.26 × 106 1 1.81 × 1013 1.49 × 106 4,000,000 7.5477 4.63 × 106 1 2.15 × 1013 1.50 × 106

Linear SVM 8.67 × 108 −18.13 7.52 × 1017 6.69 × 108 1,400,000 8892.6 8.68 × 108 −18.13 7.54 × 1017 6.69 × 108

Quadratic SVM 3.46 × 108 −2.05 1.20 × 1017 2.98 × 108 240,000 18,985 3.45 × 108 −2.02 1.19 × 1017 2.98 × 108

Cubic SVM 6.38 × 108 −9.35 4.07 × 1017 5.50 × 108 260,000 5761.7 6.37 × 108 −9.31 4.06 × 1017 5.50 × 108

Fine Gaussian SVM 1.04 × 108 0.72 1.08 × 1016 8.83 × 107 270,000 10,099 1.04 × 108 0.72 1.08 × 1016 8.85 × 107

Medium Gaussian SVM 2.10 × 108 −0.13 4.43 × 1016 1.80 × 108 1,200,000 17,835 2.11 × 108 −0.13 4.44 × 1016 1.80 × 108

Coarse Gaussian SVM 2.17 × 108 −0.19 4.69 × 1016 1.82 × 108 1,300,000 18,127 2.17 × 108 −0.2 4.71 × 1016 1.82 × 108

Boosted Trees 2.33 × 107 0.99 5.42 × 1014 1.66 × 107 180,000 62.082 2.31 × 107 0.99 5.34 × 1014 1.66 × 107

Bagged Trees 1.58 × 106 1 2.48 × 1012 1.06 × 106 120,000 119.87 1.78 × 106 1 3.17 × 1012 1.09 × 106

Squared E × ponential GPR 7.68 × 107 0.85 5.89 × 1015 4.62 × 107 200 9102.8 7.66 × 107 0.85 5.87 × 1015 4.62 × 107

Matern 5/2 GPR 6.40 × 107 0.9 4.10 × 1015 3.87 × 107 110 15,589 6.40 × 107 0.9 4.10 × 1015 3.88 × 107

E × ponential GPR 6.86 × 107 0.88 4.70 × 1015 3.73 × 107 130 14,212 6.87 × 107 0.88 4.72 × 1015 3.73 × 107

Rational Quadratic GPR 7.30 × 107 0.86 5.33 × 1015 4.11 × 107 110 15,637 7.28 × 107 0.87 5.29 × 1015 4.11 × 107

Narrow Neural Network 3.18 × 107 0.97 1.01 × 1015 1.04 × 107 1,000,000 254.45 3.12 × 107 0.98 9.76 × 1014 1.03 × 107

Medium Neural Network 2.54 × 107 0.98 6.46 × 1014 1.46 × 107 1,100,000 396.17 2.51 × 107 0.98 6.32 × 1014 1.46 × 107

Wide Neural Network 1.81 × 107 0.99 3.27 × 1014 1.14 × 107 630,000 1238.8 1.79 × 107 0.99 3.19 × 1014 1.14 × 107

Bi-layered Neural Network 3.77 × 108 −2.62 1.42 × 1017 3.21 × 108 1,000,000 35.635 3.77 × 108 −2.6 1.42 × 1017 3.20 × 108

Tri-layered Neural Network 3.77 × 108 −2.62 1.42 × 1017 3.21 × 108 870,000 48.817 3.77 × 108 −2.6 1.42 × 1017 3.20 × 108
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Table 4. Efficacy vs. Efficiency ranking.

Algorithm Efficacy Ranking Efficiency Ranking

Bagged Trees 1st 3rd
Fine Trees 2nd 2nd

Medium Trees 3rd 1st

Table 4 reveals an intriguing fact: on the SEIL dataset, Bagged Trees is the most
effective algorithm for said application, while Medium Trees is the most efficient algorithm
for electrical energy demand prediction for university campuses. Likewise, Fine Trees have
the optimum tradeoff between efficacy and efficiency. The Bagged Trees produces 75%,
56%, and 76% improvement in RMSE, MSE, and MAE, respectively, in training and testing,
as compared to the Fine Trees. Similarly, the Bagged Trees produces 56%, 32%, and 75%
improvement in RMSE, MSE, and MAE, respectively, in training and testing as compared to
the Medium Trees algorithm. This metric shows the percentage of improvement in terms of
efficacy between the algorithms. Similarly, in terms of efficiency improvement, the Medium
Trees is 32 times more efficient in prediction speed and 14.8 times more efficient in training
time, as compared to the Bagged Trees algorithm. Likewise, it is 1.3 times more efficient
in prediction speed and 3 times more efficient in training time, as compared to the Fine
Trees algorithm.

7. Discussion

Careful analysis of the simulation results presented in Section 6 establishes the ratio-
nale for the best candidate of machine learning algorithm for energy demand forecasting.
To the best of the authors’ knowledge, little work has been presented in the literature to date
attempting to determine the best ML algorithm based on empirical facts. The systematic
and empirical evaluation of a wide range of machine learning algorithms reveals that the
Bagged Trees, Fine Trees, and Medium Trees algorithms are the top three ranked algorithms
for energy demand forecasting using the SEIL dataset. This finding presents a knowledge
add-on to the SEIL project consisting of the recommendation of the best machine learning
algorithm for energy demand forecasting. Moreover, the new and customized algorithm
is suggested to have further improvements in efficiency and efficacy. Based on this study,
it is to be suggested that use of the novel and customized variant of the Medium Trees
is strongly advised if efficiency is the primary goal. Similar to this, use of the innovative
and customized Bagged Trees method is recommended if higher order efficacy is sought.
The aforementioned conclusions are solely based on the empirical data and graphical facts
presented in this work.

It has been inferred from the literature that the performance of a load management
system is mainly the function of its efficiency and effectiveness, depending upon the
application area. Most of the time, the knowledge of the optimum trade-off between
efficiency and effectiveness is the dire need. Moreover, machine learning algorithms have
been reported to be the best candidates for load management and demand forecasting.
However, the selection of the relevant algorithm(s) for the specific application in order to
attain higher performance is the pressing need. This study has contributed to a further
extension of the research on the SEIL dataset by proposing the best candidate machine
learning algorithm for the higher degree of performance. The proposed claim is also
advocated by the empirical performance parameters of machine learning algorithms.

8. Conclusions

This study has presented a comprehensive and exhaustive empirical evaluation of
machine learning algorithm for energy demand prediction on the SEIL dataset. The Smart
Energy Informatics Lab (SEIL) of the Indian Institute of Technology (IIT) Bombay India,
conducted an experimental study in 2019 to collect a massive dataset on university campus
energy consumption. A comprehensive comparative study for the recommendation of the
best candidate of machine learning algorithm on the SEIL dataset was the missing element



Energies 2022, 15, 5742 17 of 19

in the recent literature. This study has well filled that gap left for subsequent investigation.
After the careful and detailed empirical assessment of performance parameters, it has
been concluded that the Bagged Trees is the most effective algorithm for energy demand
prediction applications and the Medium Trees is the most efficient algorithm for real-time
systems. Moreover, Fine Trees has the optimum tradeoff between efficacy and efficiency.
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