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Abstract. Based on the chosen properties of an induction motor, a random forest (RF) classifier, a
machine learning technique, is examined in this study for bearing failure detection. A time-varying
actual dataset with four distinct bearing states was used to evaluate the suggested methodology.
The primary objective of this research is to evaluate the bearing defect detection accuracy of the
RF classifier. First, run four loops that cycle over each feature of the data frame corresponding to
the daytime index to determine the bearing states. There were 465 repetitions of the inner race
fault and the roller element fault in test 1, 218 repetitions of the outer race fault in test 2, and 6324
repetitions of the outer race in test 3. Secondly, the task is to find the data for the typical bearing
data procedure to differentiate between normal and erroneous data. Out of 3 tests, (22-23) %
normal data was obtained since every bearing beginning to degrade usually exhibits some form of
a spike in many locations, or the bearing is not operating at its optimum speed. Thirdly, to display
and comprehend the data in a 2D and 3D environment, Principal Component Analysis (PCA) is
performed. Fourth, the RF algorithm classifier recognized the data frame's actual predictions,
which were 99% correct for normal bearings, 97% accurate for outer races, 94% accurate for inner
races, and 97% accurate for roller element faults. It is thus concluded that the proposed algorithm
is capable to identify the bearing faults.
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1. Introduction

One of the essential parts of a mechanical spinning system is a bearing. It is a highly standardized, precise
mechanical device with a high rate of labour efficiency, minimal friction, and ease of assembly and
operation [1]. The inner race, outer race, ball elements, and retainer comprise most rolling bearings. The
failure of the inner race, outer race, and ball elements is the most typical sort of rolling bearing fault.
Bearing faults often manifest themselves as various component flaws. Statistics show that bearing
problems account for more than 40% of motor malfunctions [2]. Figure 1 depicts the rolling bearings'
usual life curve. Four phases are involved: Running-in, normal operation, early weak fault onset and
healing, and severe fault are the four phases.
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Figure 1. Typical roller-bearing life curve [3].

The traditional signal processing techniques' time, frequency, and time-frequency-domain analyses are all
possible [4]. Methods like the fast Fourier transform (FFT) [5], wavelet transformation (WT) [6],
empirical mode decomposition (EMD) [7], ensemble empirical mode decomposition (EEMD) [8],
empirical wavelet transforms (EWT) [9], wavelet packet transform (WPT) [10], variational mode
decomposition (VMD) [11], stochastic resonance, sparse decomposition, etc. are used for the analysis and
classification of bearing fault signals. This study measures the root mean square value (RMS), maximum
and lowest mean standard deviations (unbiased std), skewness, kurtosis, crest factor, and form factor
using the Python programming language. The mode classifier should be developed after feature extraction
to achieve automated fault detection. Many studies have reported machine learning (ML) and deep
learning (DL)-based detection models. Artificial neural networks (ANN), support vector machines (SVM),
extreme learning machines (ELM), K-Nearest Neighbor (KNN), Hidden Markov models (HMMs), auto-
encoders, convolutional neural networks (CNNs), deep belief networks, generative adversarial networks,
and recurrent neural networks (RNN) are frequently used to create these models [12-20]. To enhance
generalisation performance and lessen the overfitting problem of the single decision tree, Breima et al.
[21] presented the random forests (RF) classification strategy based on the notion of the bagging
technique [22] and integrating random selection [23]. RF has shown strong classification performance
when handling high-dimensional and small-sample issues compared to the conventional decision tree
approach. Random Forest (RF) has recently shown strong generalization performance for numerous
pattern recognition scenarios as a classification approach. A diagnosis method was carried out in [24]
employing a classifier based on RF and a genetic algorithm. In [25], the authors utilised feature rankings
for several rotating equipment fault categories and used K-nearest neighbours and RF as the classifier. In
order to enhance the diversity of classification trees and the performance of individual classification trees,
the weighted voting rule was used for random forests [26]. In great detail, studies comparing the weighted
RF and traditional RF were also carried out.

According to experimental comparison data, the suggested technique outperforms previous methods in
terms of diagnostic defect accuracy. Three features are the key contributions of this work:
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- First, 9-time domain characteristics from Tests 1, 2, and 3 were retrieved correspondingly. Using
libraries for visualizing, charting, and mathematical feature extraction, such as matplotlib, scipy,
numpy, and pandas, the significant and representative features with sufficient defect information
are recovered from the python language.

- Normal data should also be segregated to distinguish between normal and defective data. The
probability of having normal data in such a situation is (22%-23%) since any bearing beginning
to degrade always exhibits some form of a spike in several locations or is not operating at peak
efficiency.

- Finally, the same libraries as before were used to classify errors using the random forest approach.
In this investigation, the test side accuracy of the RF approach is fairly excellent, reaching a high
classification precision of 95.58%.

1.1. Problem statement

Many methodologies have been put forward in the available literature to identify and categorize bearing
problems in IMs. Current methods still have a number of practical shortcomings even if a high
classification accuracy has been attained in diagnosing bearing problems. For defect detection in rotating
equipment in the time domain, frequency domain (rapid Fourier transform), and time-frequency domain,
Chuan Li et al. [27] developed a deep statistical feature learning technique (wavelet packet transform).
Fast Fourier Transform (FFT) has spectrum leakage-related issues built-in, nevertheless. In order to
identify bearing flaws in IMs, Qingbo He et al. [28] presented novel research to investigate the wavelet
packet transform (WPT) flow characteristics of vibration signals. The rolling element-bearing vibration
data are pre-processed using empirical model decomposition [29]. (EMD). Even though EMD is a more
signal-adaptable algorithm than WPT, it still has mode-mixing and end-effect issues. A unique approach
for predicting numerous failure modes in rotating equipment was proposed in [30]. The technique
combines non-parametric cumulative incidence functions with a machine learning and pattern recognition
approach known as logical analysis of data (LAD). The bearing defect detection approach put forward in
this study offers certain benefits over the methods currently being employed for real-time analysis of the
suggested method. This technique may reduce the impact of random and asynchronous noise in the
vibration signal in the first scenario. Secondly, unlike EMD, this method-based signal analysis is not
afflicted by mode mixing and end effect issues. Additionally, refrain from using associated or irrelevant
features in machine learning models. In light of its benefits, an RF classifier was chosen because of its
ease of deployment, high prediction accuracy, and little need for model adjustment. The RF model has the
potential for real-time categorization and is simple to train, evaluate, and apply to a local system. The
approach used in this paper to find rolling bearing faults in IMs is based on Python and RF languages.

1.2. Research Objectives

- To predict the faults in a bearing applying Python language and RF classifier that are used to train
machine learning algorithm.

- To evaluate the meaningful feature extraction from obtained data using matplotlib, scipy, numpy,
pandas’ libraries which are usually used for, visualizing, plotting and mathematical.

- To convert this problem as a classification task data is visualized and Fault-labels are created.

- To visualize and better understand the data in a 2D, and 3D space dimensionality reduction
technique, more specifically principal compact analysis (PCA) is used.

- To evaluate the accuracy of bearing faults and performance on the test run by trained RF
algorithm.

2. Theoretical Background
2.1 Bearing Faults Signature

The most frequent issues with induction motors (IMs) account for around 40% of all faults, according to
failure surveys performed by the Electric Power Research Institute (EPRI) [31-33]. The inner and outer
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races of a rolling bearing are separated from one another by rolling components like balls or cylindrical
rollers [34]. These components may experience material fatigue or wear, resulting in flaking and pitting
[35]. Single-point flaws and generalized roughness are the two categories into which bearing faults may
be divided. Single-point flaws are localized and divided into rolling element flaws, inner raceway flaws,
and outer raceway flaws. The bearing components and three of the most typical localized bearing faults—
outer race, inner race, and rolling element faults—are shown in Figure 2.

a) Outer Ring b) Inner Race Fault
Rolling element fault 3 e
-
\‘ / a
Rolling (i )
Element Outer Race Fault
Bearing \,
Cage a

Figure 2. a) Bearing components [36]. b) Schematic illustrates localized flaws on a rolling element and
in the inner and outer races [37].

When a ball travels through an area damaged in a bearing, shock pulses with a certain frequency occur.
The rolling element's shape and rotational frequency f,,, may be used to derive the characteristic
frequency. The defect introduces abnormalities in the air-gap flux density via vibrations, which results in
an aberration in the current signal's harmonics. The current signal's variation reveals the existence of
bearing problems. Below is a list of the various characteristic frequencies for each defect specified in [35].

e Inner race fault: fipner = fim sz“” (1+ g Cba“g’i cosp) (1)

e  Outer race fault: f yer = fm%(l - gb—“” cosf) (2)
cage

e Ball or rolling element fault: fpq = fm chag; 1- gé’::e cos?p) 3)

e Cage fault: foqge = finy (1 — 22 - cosp) ()

where £ is the contact angle of the balls, N pall 18 the number of balls, Dy,,; is the diameter of the ball, and
D qge s the cage diameter, commonly referred to as the ball or roller pitch diameter.
Due to bearing degradation, the stator and rotor move radially, causing oscillations that introduce
recognisable fault frequencies into the current signals. The cause of this is the rotor's radial displacement
concerning the stator as a result of the bearing problems. It causes the spinning eccentricity and load
torque to fluctuate. This causes the machine inductances to fluctuate, which modulates the motor-current
signals' amplitude, frequency, and phase. According to [2][38], the motor current equation for a bad
bearing is as follows:

o (D) =3, ik cos (Wt + @) )
Together with phase angle ¢ and angular velocity w,, an expression for the angular velocity is:
anb;armg (6)
Here, p is the machine's specific pole pair number, and feqring is the fault current harmonic frequency.

Notably, f bearing may be expressed as follows:
fbearlng |fs t mfvl (7)

° ka
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Where f, may either be the inner race defect frequency ( finner) or the outer race defect frequency
(fouter)> and f is the supply or fundamental frequency, m =1,2,3, ....... and indicates the harmonic
indexes. The frequency auto-search technique described in [39] may be used to determine the estimated
fault signature frequencies. The harmonics generated by bearing failures may sometimes overlap or be
near noise frequencies, making it challenging to tell them apart and bearing fault identification [40].
Therefore, it is challenging to identify the bearing faults in an IM when the bearing specifications are
unknown, and the inverter frequency fluctuates.

2.2 Feature Extraction

By dividing the original raw data into smaller, easier-to-process groupings, feature extraction minimises
the data size. The raw dataset often has a lot of variables. Therefore, processing it takes a lot of CPU
power. Because of its capacity to identify developing flaws, online diagnostics for condition monitoring
has recently attracted interest. Directly measured signals are insufficient for online usage since a tiny
quantity of data is insufficient for diagnosis. A large data sample is necessary for efficient defect
identification. Therefore, feature extraction becomes an essential phase that saves important information
for reaching the final selection to simplify the computation [41].

The vibration signal is first segmented in a time-domain technique before the specific statistical properties
of each segment are assessed. These characteristics could provide a statistical analysis of the signal,
which might assist in elucidating certain hidden data from the unprocessed vibration signals of a sound or
damaged bearing [42] . This study used time domain data to generate nine traditional statistical feature
parameters for condition evaluation. Maximum, minimum, mean, median, standard deviation, skewness,
kurtosis, root mean square, and crest factor are the temporal domain characteristics retrieved from the
signal. These characteristics look at the signal's probability density function (PDF). The median is the
number in the center when the data points are sorted in ascending order, while the mean is the average of
the available data points. The standard deviation may be calculated by calculating the variance's square
root. It is a statistic that measures the spread of observations over data collection. It is healthy knowledge
that as a bearing's state changes, the PDF likewise does, making variations in skewness and kurtosis
detectable. The signal's skewness may also be utilised to determine whether it is favourably or negatively
skewed. The PDF's peak value is measured by kurtosis, which shows that the signal is impulsive.
According to the definition of the moment, the skewness of a signal with a normal distribution, or a
normal bearing signal, is equal to zero. Positive values suggest non-symmetry towards higher values,
whereas negative values are caused by skewness towards lower values [43]. Kurtosis is a further
measurement that may be made since skewness is determined by the mean value of the vibration signal's
PDF, while the PDF's peak is used to determine the fourth-order moment. It is well known that a standard
bearing's vibration signal has a skewness value of around zero and a kurtosis value of three [80]. The
kurtosis value will then rise to over three when the vibration signal changes due to defects, and the
skewness value will change to either negative or positive. The RMS value will steadily rise as the fault
develops. RMS, however, has the drawback of being unable to offer information on the developing fault
stage while it grows with the development of the issue. Last, the crest factor shows how a dataset's peak
value compares to its practical value. The crest factor quantifies the impact. For "spiky signals," crest
factor is adequate [43]. Table 1 contains the mathematical formulas for the statistical aspects that have
been mentioned. Here, x;, i = 1,2,3, ..., N represents the motor current signal. N, n, and o represent the
number of data points, mean and standard deviation respectively. The time-domain characteristics are of
high quality because of their sensitivities and because they provide statistical information about the
current signal [44].
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Table 1. Features for the feature matrix were extracted from time domains (x is the current signal)

Feature name Formula
Maximum max|x;|
Minimum min|x;|

N
1
Mean u= ﬁz x;
i=1 .
~ N+1)°
Median median = <( 5 ) >
N AV
Standard deviation o= i (i — )
N-1
N )3
Skewness skewness = L Zizi&iT®
N ~ a3
AN
Kurtosis Kurtosis = ~ 2=
N gt
N 2
Root mean square \’Zi=1 X
ers = T
Crest factor Cr= max
§min
Form factor Fp= rms
mean

2.3 Dimensionality Reduction Technique

Visualizing the training set and working on it becomes more challenging as the number of characteristics
increases. These traits may sometimes be redundant or connected. Dimensionality reduction is thus an
essential technique for ML applications (DR). There are two primary methods for performing DR: (I)
keeping only the most pertinent features from the original dataset (generally referred to as feature
selection); and (II) shrinking the original dataset into a new one through analysis or combination of the
input variables, where the new dataset essentially contains the same information as the original (generally
referred to as dimensionality reduction) [45]. Projective approaches and manifold modelling are two
different categories of DR techniques. Principal component analysis (PCA) [46], probabilistic PCA [47],
and Gaussian generalised discriminant analysis (GDA) [48] are projective approaches. The following
methods are taken into consideration for the various techniques: local linear embedding (LLE) [47],
stochastic neighbour embedding (SNE) [49], t-distributed stochastic neighbour embedding (t-SNE) [49],
neighbourhood preserving embedding (NPE) [50], locality preserving projection (LPP) [51], stochastic
proximity embedding (SPE), and isometric feature mapping (Isomap) [52]. PCA was employed in this
study to display the data in both 2D and 3D formats. Primary component analysis (PCA), a standard
statistical analytic technique, may be used to identify the principal components. This technique is often
utilised in data dimension reduction fault diagnosis, feature extraction and fusion fault diagnosis, high-
dimensionality visualisation fault diagnosis, data regression fault diagnosis, etc. It is possible to think
about PCA as a transformation that projects the original data into a smaller-dimensional new space.

2.4 Algorithm Development for Random Forests (RF)

A classifier called random forest is made up of many decision-tree classifiers. The creation of the

algorithm is broken down into the following 3 phases:
1. From the initial data collection, T, training samples are taken and returned using the Bootstrap
sampling technique. Similar to the first data set, there are the same number of samples. In the event
when X is a collection of data with n samples, {x1, X7, .... X}, a sample x;(i = 1,2....n) is taken from
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the primary data collection X. To merge it into a new set X, n times are required. Without a sample,
x;, the probability of X* is therefore:

« p=(1-3) ®)
1 n
e limp= lim (1 —;) = e~ ~ 0.368 9)
n—-oo n—-oo

About 36.8% of the samples in the original data set won't be retrieved when n is big enough. When this is
the case, the random forest's decision tree cannot find a local optimum solution. As a result, it can acquire
a stronger classifier and successfully prevent that anomalous data from showing up in the sample set.
Meanwhile, the generalization error, correlation coefficient, and decision-tree intensity are estimated
using the undiscovered Out-Of-Bag (OOB). As a result, the classification accuracy of the algorithm may
be measured.
2. The T decision-tree models h;(X*, ©) are built for the T training samples (X7, X5, ..... X7) in which
i=12..T,K=1.2..
The decision tree model stated in [41] is shown in Equation (10).

_ (label(h;) h; is the leaf node
© Oaxy . Xnhe) = {c(xl, X3, Xy, hy) Ry IS the inner node (10)
o (X", 0,) = c(xy,x, ... X, root (Ry)) (11)

Where root(h;) is the root node of the decision tree h;(X*, ©). c(xq,X3, ... Xp, hy) is the
segmentation criterion of the decision tree h;(X*, 9,).

The random forest generated by T decision trees is used to categorise the test sample. Each tree has a vote
privilege that determines how the categorisation will turn out. The decision-tree output categories that
have been most fully classified make up the final classification result.

* H(x) =argmgx Y I(h(X*,0,) =Y) (12)

where Y is the output tag variable; I (*) is the indicator function; and h;(X*, ©;) is the single decision
tree. The design and testing of the random forest are shown in Figure 3.
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Figure 3. Flow chart of random forests [53].

2.5 Accuracy Prediction

Generally speaking, the prediction accuracy improves with the number of estimators. Beyond a threshold
number of trees, adding additional trees results in no appreciable speed increase and raises computational
demand. The number of trees mentioned in the literature is 128 [54], 200 [55], or 250 [56]. A number of
classification criteria are utilised to evaluate the trained RF algorithm's prediction accuracy [57][58]. The
accuracy (q,), which is the ratio of the number of accurate predictions (N7) to the total number of
samples (N), is the easiest statistic to understand, i.e.,

Ny
« qu="r (13)

A classification is considered True Positive (N7p) if a sample labelled as positive is also anticipated to be
positive. False Negative (Ngy) is the categorization if it is expected to be negative. False Positives (Ngp)
and True Negatives (Nry) are defined similarly. A 2x2 confusion matrix C may be used to show these

four integers. The implementation used in this work is based on scikit-learn [59]; other sources, such as
[60], may use a transposed version.

Nrp  Npy
o (= 14
Ngp  Nry (14
The equation gives the number of accurate predictions using the four definitions (15)
e Nr= Nrp+ Npy (15)

The precision (g, ) or confidence is defined as the fraction of all positively predicted samples (Npp),
which are labelled as positive (N7p), i.¢.,
The proportion of all positively predicted samples ( Npp) that are labelled as positive ( Npp), or the
precision (q,,) or confidence, is defined as the precision (gp), i.e.,

_ Nep Ntp
= Npp — Nrp+Ngp (16)
Conversely, the recall (q,) or sensitivity gives the fraction of all positively labelled samples (Np), which
are correctly identified as positive, i.e.,
The recall (q,) or sensitivity, on the other hand, provides the percentage of all positively labelled samples
(Npy), that are accurately detected as positive, i.e.

Nrp Nrp
ar = Np, — Npp+Npy (17

In the case of multi-label classification, precision and recall values are calculated separately for each class,
with ‘positives’ meaning samples belonging to the respective class. Each row in the confusion matrix
represents a ‘true’ class, with the ‘predicted’ class labels as columns. In this case, the confusion matrix
contains the number of correct predictions of each class in the diagonal, and false predictions are
contained in the respective off-diagonal elements. Given a classification with N labels, the precision and
recall can be calculated separately for each class (denoted by index i,i = 1...N from the coefficients of
the N X N confusion matrix as follows:

O _ _Ci
e q, = Z]N:l » (18)
® Cii
— 19
qr Z;V:1 Cij ( )

3. Experimental Setup and Methodology

3.1 Test Rig Setup

A shaft has four bearings placed on it. An AC motor connected to the shaft by rub belts controlled the
rotation speed to remain constant at 2000 RPM. A spring mechanism provides a radial force of 6000 lbs
on the shaft and bearing. All bearings are greased by force. As shown in Figure 4, Rexnord ZA-2115
double-row bearings were mounted on the shaft. PCB 353B33 High-sensitivity Quartz ICP
accelerometers were placed on the bearing housing (two accelerometers for each bearing [x- and y-axes]
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for data set 1, one accelerometer for each bearing for data sets 2 and 3). Figure 4 shows displays the
positioning of the sensors. All failures happened after the bearing had completed more than its intended

lifespan of more than 100 million rotations.

I r
Acce!leromete:rs —‘ Radial Load | |
L o - ! - /

t, [ s i

LK |

Figure 4. Illustration of a sensor installation and a bearing test setup.

Table 2. Test characteristics

Test no. Quantity of Test Period Faults
accelerometers
. Inner race [Bearing 3]
Test 1 8 49680 min 34 days 12h Rolling element [Bearing 4]
Test 2 4 9840 min 6 days 20h Outer race [Bearing 1]
Test 3 4 44480 min 31 days 10h Outer race [Bearing 3]

3.2 Data Structure
The data packet contains three (3) data sets (IMS-Rexnord Bearing Data.zip). A test-to-failure experiment

is described in each piece of data. Each data set comprises individual files, including snapshots of the
vibration signal taken every second at predetermined intervals. Each file has a sampling rate of 20 kHz
and a total point count of 20,480. The file name indicates the data collection date. A data point is a record
(row) in a data file. NI DAQ Card 6062E enabled data collecting. Greater time stamp intervals indicate

that the experiment will resume the next working day.

Table 3. Bearing characteristics

Rexnord ZA-2115 variables Values
Pitch diameter (mm) 71.5
Rolling element diameter (mm) 8.4
Number of rolling elements per row 16
Contact angle (°) 15.17
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3.3 Methodology

This test set illustrates how a machine-learning method may be used to foresee bearing failures. In the
first section, look at the data pre-treatment phase and learn to take data from a text file and extract
features from the resulting data to create useful features. In this instance, time domain characteristics were
retrieved from the provided acceleration data and stored in a CSV file. The pre-processed data will be
used later in this series to train machine learning systems that can anticipate bearing failures. Random
forests are supervised learning techniques. With it, one can do both classification and regression. The
algorithm's flexibility and usability make it the best choice. Random Forest creates decision trees on
randomly selected data samples, gets a prediction from each tree, and selects the best alternative. It also
provides a reasonably precise measurement of the utility of the feature. Figure 5 depicts the complete
method of bearing faults detection.

Figure 5. Proposed bearing fault diagnosis strategy.
4. Results and Discussion

4.1 Feature Extraction

Using Table 3, Two accelerometers are used in Test 1 for each bearing, one along the x-axis and the other
along the y-axis, both in radial directions but orthogonal to one another. Because there is little change in
the data along the x and y axes, just one axis of the accelerometers for each bearing is used in Dataset 2.
Once all the data has been extracted, it is stored in data frames with daytime indexes so that it may be
plotted. The first training set disclosed that the third bearing experienced an inner race fault, and the
fourth bearing experienced a roller element defect. Therefore, till the completion of the test, bearings 1
and 2 do not exhibit any form of flaw. Therefore, it is important to consider whether or not the extraction
characteristics for bearings 3 and 4 may reveal any minimal variances. By looking at the first
characteristic, the maximum value, it is simple to see that bearing 3 has a larger deviation and that bearing

10
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4 has faults that are more noticeable as deterioration progresses when compared to bearings 1 and 2,
which are colored blue and orange, respectively. The minimum feature value might again see bearings 3
and 4 deviate much from the standard bearings 1 and 2. Only Bearing 3 exhibits a considerable variation
from the mean value of the bearings; the other bearings do not. As can be observed from the standard
deviation, bearing 3 similarly exhibits significant variation near the graph's edge, but bearing 4 exhibits
very little departure from standard bearings. When the data visualization portion is complete, it is possible
to observe where the flaws first appeared. The defects do not start at the beginning of the degradation
phase; they only appear towards the finish. You should determine the maximum value and the point at
which the deterioration value first became significant before classifying those data sets as flawed. The
primary objective of this extraction is to create a massive classification model that can categorize various
fault kinds from various bearings. While making the faulty data set for inner race fault will take the data
for the 3rd bearing from this '2003-11-21 00:32:00' to '2003-11-24 18:22:00' daytime. That is because
from 003-11-21 00:32:00' time the bearings 3 and 4 started to show deviation from the normal bearings.
During the mentioned interval for test 1, (465 rows x 10 columns) times inner race and (465 rows x 10
columns) roller element fault will be repeated.

The same data is presented in test 2 in the same manner, and fault labels are generated to transform this
issue into a classification challenge. After the test-to-fail experiment, bearing 1 experienced outer race
failure. From the maximum value, it is obvious that bearing 1 exhibit a significant departure from the
acceleration data of the other bearings after the test. It is also indicated in the description that bearing 1
exhibits outer race failure. From the RMS value, it is evident that the date (2004-02-17) bearing 1 began
to exhibit some form of anomalous behaviour, which continued to the conclusion of the graph. Therefore,
a period must be chosen from the date (2004-02-17) to determine the outer race failure (2004-02-19). The
outer race fault will occur 218 rows by 10 columns times within the time frame specified for test 2.

As in Tests 1 and 2, it is possible to transform any data frame index to a daytime index in Test 3 so that it
will aid in plotting. To display the features for all 4 bearings and the time on the x-axis, the Run 4 loop
will cycle over each column or feature of the data frame. It is evident from the table that the max or mean
graph displays a particular equilibrium before (2004-03-04 09:27:00). However, given that the identical
error happened in test 2, it then exhibits a significant variance until the test is complete. In contrast, test 2
had a defect in bearing 1, test 3 faulted bearing 3, while the other two were balanced as normal. You must
use the time from (2004-03-04 09:27:00) to (2004-04-18 02:42:00) to get the outer race fault timings.
During this interval it will give (6324 rows x 9 columns) times of outer race fault.

11
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4.2 Normal Fault Data Collection

The deviation data or the time of the interval data was used to identify the flaws in the earlier tests. The
task is to identify the data for the normal bearing data operation so that normal and incorrect data may be
distinguished. Each test's data frame must be read to have the standard data frame. The probability of
having normal data in such a situation is (22-23%) since any bearing beginning to degrade always
exhibits some form of a spike in several locations or is not operating at peak efficiency. Therefore, in this
instance, the data must be taken to a location where it is in excellent shape and is already coping well.
After extraction, 22-23% of 3 tests' (768 rows 10 columns) periods of normal data would be obtained.

4.3 Dimensionality Reduction and Visualization

In order to better comprehend the data in a 2D and 3D environment, the dimensionality reduction
approach, more especially Principal Component Analysis (PCA), is shown in Table 5. PCA is justified
since data visualization is beneficial for many machine learning applications. When two or three
characteristics are available, it is simple to plot the data and see it. However, when more than 3 features
are available (from 3 tests, 9 features were collected), it is quite challenging to plot the data. For this
reason, the dimensional reduction approach was required to reduce the 9 features to 2 or 3, which should
help you comprehend the data better.

Table 5. Graphical visualization using PCA

Principal compact analysis

2D 3D

2 component PCA o 3DPCA

@ Normal

@ OuterRace

@ Inner Race
Roller Element

Principal Component 3

)

Principal Companent 2
K,
Ay .‘~
i 5
e
L]
S L ]
L]
A
L]
|
[ ]

- -

3 a &
Principal Component 1

Here, different types of flaws are grouped in various regions, as can be seen in 2D. Green stands in for the
normal fault, red for the outer race fault, yellow for the roller element, and blue for the inner race fault,
respectively. The first two main components account for 0.65, or 65% of the variance (the first principal
component accounts for 0.47, or 47%, and the second principal component accounts for 0.18, or 18%).
One component must be added to the other two major components to form a data frame with three
principal components. One thing that can be analysed clearly in 3D is that normal bearing is extremely
distinct from other flaws or seems to blend in very well. However, the yellow roller element defect and
the blue inner race fault are well aligned. Therefore, it is challenging to discern between roller element
defects and inner race faults. On the other hand, the variance of the outer race fault and normal bearing
can be distinguished by 0.80, or 80%, of the variance (47% by principal component 1, 18% by principal
component 2, and the final one is 14.5%), which is excellent.
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4.4 Fault Classification

Try to read the faults (Normal, outer race fault test2, outer race fault test3, inner race fault and roller
element fault test]) data set to classify the various sorts of faults that have been issued to them in the past.
A 20% test size and the random forest technique were utilized to produce the test split. The fault
categories are shown in Figure 6.

Normal 0014 ]
08
Outer Race - 0025 0.6
Inner Race - 0028 i a4
-0.2
Roller Element - 0
| | | =-0.0
Normal Outer Race Inner Race Roller Element

Figure 6. True prediction of data fame.

Figure 6 shows that the genuine predictions were accurate and could anticipate 97% of the outer race,
94% of the inner race, and 99% of the roller element fault. Having said that, the test side accuracy is
pretty excellent, with an average prediction accuracy of 96.26%.

5. Conclusion

In this research, a thorough investigation of the use of the random forest method and the Python
programming language to identify bearing problems is conducted using appropriate libraries. It is efficient
in procedures dealing with enormous volumes of data. Effective feature extraction, standard data
separation, dimensionally reduction, and visualization have been carried out for the categorization of
bearing faults. Out of 20,480 data points, 9 domain features were extracted at a sampling rate of 20 kHz.
After extraction, periods of typical data (768 rows x 10 columns) would be retrieved. The variance
obtained using PCA for 2D and 3D is 65% and 80% respectively. The accuracy of the RF model with
feature selection was > 95%, according to experimental findings, while the model's stability and
performance may be enhanced. The suggested approach for bearing failure identification in IMs may be
realistically used. Automatic input parameter selection for dimensionality reduction methods can be the
subject of future study.
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