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Abstract: Analyzing metabolic pathways in systems biology requires accurate kinetic parameters that repre-

sent the simulated in vivo processes. Simulation of the fermentation pathway in the Saccharomyces cerevisiae

kinetic model help saves much time in the optimization process. Fitting the simulated model into the exper-

imental data is categorized under the parameter estimation problem. Parameter estimation is conducted to

obtain the optimal values for parameters related to the fermentation process. This step is essential because

insufficient identification of model parameters can cause erroneous conclusions. The kinetic parameters can-

not be measured directly. Therefore, they must be estimated from the experimental data either in vitro or in

vivo. Parameter estimation is a challenging task in the biological process due to the complexity and nonlin-

earity of the model. Therefore, we propose the Artificial Bee Colony algorithm (ABC) to estimate the param-

eters in the fermentation pathway of S. cerevisiae to obtain more accurate values. A metabolite with a total

of six parameters is involved in this article. The experimental results show that ABC outperforms other esti-

mation algorithms and gives more accurate kinetic parameter values for the simulated model. Most of the

estimated kinetic parameter values obtained from the proposed algorithm are the closest to the experimental

data.
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1 Introduction

One of the main goals of systems biology is to develop a model that can act as a biological function simulator.

It is advantage to determine whether combining individual metabolite properties can give better explana-

tions of the fermentation pathway without conducting a real experiment [1, 2]. Hence, it is crucial to increase

the competency of the simulation process. Nonlinear differential equations are highly complex, so parameter

estimation is difficult with the increasing size and nonlinearity of the fermentation pathway, leading to a cor-

responding increase in size and variable in the model [3]. Furthermore, the complicated equation increases

the complexity of the model [4]. Parameter estimation is one of the critical steps in constructing a mathemati-

cal model. Unfortunately, it possesses several problems; (1) the existence of noisy data leads to low accuracy,

and (2) the increasing number of unidentified parameters and equations in the model makes it a complex

model.

The field of systems biology has seen rapid development in recent years, and various mathematical models

have been proposed to simulate biological functions, including the fermentation pathway in Saccharomyces

cerevisiae. Parameter estimation is a critical step in constructing suchmathematical models, and it is essential to

obtain accurate parameter values to ensure the accuracy of the simulation results. Several algorithms have been

proposed in the literature for parameter estimation in biochemical systems, including Simulated Annealing,

Simplex algorithm, and Scatter Search. However, these algorithms need to be revised to handle the complexity

and nonlinearity of the models, leading to inaccurate parameter estimates. To address this issue, researchers

have explored the use of metaheuristic algorithms, such as Particle Swarm Optimization, Genetic Algorithm,

andAnt ColonyOptimization. These algorithms have shownpromising results in various optimization problems,

including parameter estimation in biochemical systems. However, there is still room for improvement in terms

of their efficiency and effectiveness.

Previously, algorithms such as Simulated Annealing (SA), Simplex algorithm, and Scatter Search [5, 6] were

used for parameter estimation. Parameter estimation using the SA algorithmwas applied in the S-systemmodel

of a biochemical network proposed by Gonzalez et al. [7]. In contrast, Zhou et al. [8] introduced the Simplex

algorithm in parameter estimation for intracellular uptake and delivery of plasmid DNA. Remli et al. [5, 6]

proposed a Scatter Search to solve large-scale parameter estimation in kinetic models of biochemical systems.

Nevertheless, those algorithms still face some problems. Simplex algorithm and SA both require a sufficient

number of iterations to guarantee a high-quality solution, and SA is also sensitive to parameter selection [9, 10].

Scatter Search needs help to satisfy many nonlinear constraints to high accuracy [11]. Hence, the accuracy of the

simulated parameter value may decrease due to the incapability of the algorithms to find a better solution in

the search space.

While existing algorithms have shown promising results in parameter estimation for biochemical systems,

they have limitations in handling the complexity and nonlinearity of the models. Simulated Annealing and Sim-

plex algorithm require a large number of iterations to guarantee a high-quality solution, and Scatter Search faces

difficulty in satisfying many nonlinear constraints to high accuracy. Additionally, Particle Swarm Optimization,

Genetic Algorithm, and Ant Colony Optimization, while showing promise in various optimization problems,

have limitations in terms of their efficiency and effectiveness in parameter estimation for biochemical systems.

Therefore, there is a need for more efficient and effective algorithms to improve the accuracy of the parame-

ter estimates for the simulated models. In this paper, we propose the use of the Artificial Bee Colony algorithm,

which has several advantages, such as global search capability, fast convergence rate, and robustness against

noise in the data. The proposed algorithm overcomes the limitations of existing algorithms and shows superior

performance in obtaining more accurate kinetic parameter values for the simulated model compared to other

existing algorithms.

This paper aims to improve the accuracy of kinetic parameters for the yeast fermentation pathway of

S. cerevisiae. The existing algorithms mentioned need to be revised to handle the complexity and nonlinear-

ity of the model. Therefore, we chose to explore the potential of the Artificial Bee Colony algorithm, which is

inspired by the foraging behavior of honeybees. This algorithmeffectively solves various optimization problems,
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including parameter estimation in the kinetic model of biochemical systems. The ABC algorithm has the advan-

tage of being able to explore the search space more efficiently and effectively. In this paper, we compare the

performance of the ABC algorithm with other existing algorithms and demonstrate its superiority in obtaining

more accurate kinetic parameter values for the simulated model.

In Section 2, the methodology is briefly explained, whereas, in Section 3, the experimental setup is

described. In Section 4, the result and discussion of this study are presented. Lastly, in Section 5, the conclusion

of this work is drawn, and future works are suggested.

2 Methodology

2.1 Problem formulation

In the case of a biochemical process, hypotheses based on the knowledge of the underlying network structure of a pathway are

translated into a system of kinetic equations, and parameters are obtained from literature or estimated from a data fit. Parameter

estimation can be formulated as Equation (2.1): in the model noted as s(X) and a bio-logical compound shown as s has a set of param-

eters which is X = {X1,X2,X3, . . . , XD} where D is the total number of parameters. Hence the formula for reaction rate of compound s

can be formulated as below:
ds

dt
= g(s(X), t),

s
(
t0

)
= s(0),

y = g(s(X), t)+ e (2.1)

In Equation (2.1), g represents a nonlinear function that is involved in forming an ordinary differential equation (ODE), and t rep-

resents sampling time. Then, y is a time series of simulated data, also known as the model’s output, and e represents the noise

data randomly produced by Gaussian noise N (1,0). The purpose of parameter estimation is to find the set of the optimal param-

eter, which can be noted as X. Then variance between simulated time-series data stated as y and experimental time-series data

noted as yexp can be reduced. The variance can be calculated by applying the nonlinear least squared error function, f (X) which is

shown below:

f (X) = min

n∑

i=1
(yexp − y)2 (2.2)

Equation (2.2), n is the maximum value generated, and i is the index variable.

2.2 Artificial Bee Colony algorithm

In 2005, the first ABC was proposed by Karaboga [12]. The algorithm is based on mimicking the foraging honeybee behavior. Three

components inside ABC comprise the food source, employed bee, and unemployed bee. In ABC, a solution is represented by a food

source, whereas the bee represents the agent in finding a solution. The employed bee goes to a food source that has been vis-

ited previously, whereas the unemployed bees wait and decide to choose a food source, and the scout bees search for a solution

randomly.

The fitness of the solution is represented by the amount of nectar inside the food source. The number of employed bees in a

population is the same as the number of solutions. Figure 1 shows the flowchart of ABC.

2.2.1 Initializationphase: Firstly, all variable values are initialized based onproblem,which are i=number of kinetic parameters

to be optimized, j = 10, xiMax = initial guess∗10, xiMin = initial guess/10, Maxtrial = 10, and Maxcycle = 20. The first step is the

initialization of the population with the matrix of i × j, where i is denoted as the number of reactions in the kinetic model, and j

is denoted as the number of possible solution populations. The number of j must be more than i because j equals the number of

employed bees.

x
ii
= x

i
+ rand(0, 1)(x

i
min−x

i
max) (2.3)

Equation (2.3) is the initial food source (x
ii
) where x

i
is the minimum value x

i
max is the maximum values of parameter bound-

aries (lower and upper bounds). Then, the initial food source is created. The population is then evaluated to get the fitness value of

each possible solution using a fitness function.
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Figure 1: ABC flowchart.

2.2.2 Employed phase: In this phase, a new population is created randomly near the original position populations. The amount

of new candidate population is the same as the amount in the first phase. The formula ABC of the new neighboring food source (𝑣
ii
)

is defined by Equation (2.4):

𝑣
ii
= x

ii
+∅

ii
(x

i
+ x

ki
) (2.4)

Where the initial population is noted by x
ii
, and∅

ii
is a uniformly distributed real randomnumber in the range [1,−1] andk is a random

number between range 1 to size population that the index chosen has to be different. The formula for fitness (fitness
i
) calculation is

shown as Equation (2.5):

fitness
i
= 1

(
1

1− f
i

)
if f

i
≥ 0;

fitness
i
= 1+ abs( f

i
)if f

i
< 0; (2.5)
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where f
i
is the value of the food source obtained. The new population’s fitness is also evaluated using the given fitness formula. Both

populations, the new candidate and the present population fitness, are compared based on the local selection process, also known as

the greedy selection process. Employed bees carry out this selection process to select the best fitness between the two populations.

If the new one is better than the present one, the present one will be forgotten, and the new candidate will be memorized, and vice

versa.

In this phase, the number of cycles is a control parameter. A trial is predefined for each solution. The initial or the original

populations might have higher fitness values compared to the newly formed solution population. Usually, this happens during the

exploitation of the solution population. In this situation, the current solution cannot be improved, and the control parameter is used

to limit the abandonment. The trial increases by one if the current solution cannot be improved, or the trial will be zero in the vice

versa situation. The current solution that cannot be further improved beyond the trial limit is considered exhausted and abandoned

by the employee bees.

2.2.3 Onlooker phase: A new population is generated in this phase from the possible solutions where the employee phase has

developed. The formula for probability (p
i
) used is shown in Equation (2.6):

p
i
= fit

i
∕

SN∑

i=1
fit

i
(2.6)

Whereby SN is denoted as population size, fit
i
denoted as fitness value in i iteration, and fit

i
is denoted as fitness value in j iteration.

The number of onlookers must be the same size as the number of employee bees, so the number of the new population is the same as

the previous one. Based on the given formula, the possible solution can be estimated using the probability of the population solution

weighted. If a higher probability is achieved, there is a higher chance that the solution can be achieved. When the present population

is of higher fitness value, it will replace the old one or vice versa.

Selecting a population from two populations using the greedy selection process is essential. Hence, the population with a higher

fitness value replaces the old one. The value of p needs to be recalculated to decide whether the present population needs to be

replaced or remain. This process is iterated to get the best population among the two populations. It is like the employee phase, and

the control parameter is used to limit the abandons of the population. If the population cannot be improved, the trial increases by

one, whereas a replaced population trial is set to zero.

2.2.4 Memorize the best phase: The best fitness value among the populations is selected by using the greedy selection algorithm.

The artificial bee memorizes the position and shares her information with onlooker bees, and the position of the food source is

updated, otherwise is kept the same. The selected population represents the optimal value for the parameter.

2.2.5 Scout phase: Every food source has only one employed bee; therefore, the number of employed bees is equal to the number

of food sources. If the position cannot be improved through the predetermined number of trials “limit” of bees, the food source is

abandoned, and its employed bee becomes a scout. The scout starts to search for a new food source randomly, and after finding

a new source, its new position is accepted. The algorithm terminates if it reaches the maximum cycle or it meets the termination

condition.

3 Experimental setup

This paper obtains a kinetic model of the S. cerevisiae fermentation pathway from the BioModels database [13] in SBML format. This

model has several components, such as species, reaction, and global parameters.

This model has an extracellular and cytoplasmic compartment type. These two compartments are three-dimensional compart-

ments with a constant of one liter size. The properties are set to true to prevent the amount from being affected by any reaction.

Table 1 shows the properties of each species. The experimental and estimated kinetic parameter values generated are used in the

ODE of glucose shown in Equation (3.1).
d

dt
(
Glci

) = +Vin− Vhk

cytoplasm
(3.1)

where Glucose inside the cell is represented by Vin, which has Vm1 and KilG6p as parameter properties. Vhk is a hexokinase involved

in the production of glucose and ATP by conversion of glucose-6-phosphate in a reversible reaction. These two reactions are shown

below.

Vin = cytoplasm∗(VinVml − VinKilG6P∗G6P)

Vhk = cytoplasm∗Vhk_Vm2∕
(
1+ Vhk_Km2Glc∕Glci+ Vhk_Km2ATP∕ATP

+ Vhk_Ks2Glc∗Vhk_Km2ATP∕(Glci∗ATP)
)
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Table 1: Properties for each species.

Id Name Compartment Derived unit

Gly Glycerol Cytoplasm mmol/L

EtOH Ethanol Cytoplasm mmol/L

Carbo Glycogen and trehalose Cytoplasm mmol/L

Glco Clucose outside the cell Extracellular mmol/L

The performance evaluation of ABC, SA, and Simplex algorithms in estimating parameter values are evaluated using standard

error rate (A) and standard deviation (STD) for 50 runs. The algorithms were executed in MATLAB R2010a on a 2048 MB RAM and

Intel Pentium 4 processor laptop. For ABC, the colony size was set to 40, the limit of the total number of trials for each employed bee

was set to 30, the onlooker bee was set to 50, and the bee was set to 70. The number of function evaluations is equal to the number of

runs. This is because the function is evaluated once per run. For 50 runs, 50 functions are evaluated.

The time series for glucose is obtained from Equation (3.1). The formula of evaluation performance is given as Equation (3.2).

Error rate e:

e =
N∑

i=1

(
y− yi

)2
(3.2)

Where N is the number of runs whereas y and yi are experimental and simulated parameter values respectively.

Average error rate (A):

A = e∕N (3.3)

Where e and N represent the error rate and the number of runs. The simulated parameter value is close to the experimental value if

the average error rate is small.

Standard deviation (STD):

STD =
√
e∕N (3.4)

Where e is the error rate, and N is the number of runs. An accurate simulated parameter value is obtained if the STD value is closer

to zero.

4 Results and discussion

This paper presents a comparison between ABC, the Simplex algorithm, and SA in estimating parameter val-

ues. Simplex algorithm and SA are chosen because both algorithms are widely used in parameter estimation

problems in biological models, engineering, and hydrogeology. Accuracy evaluation is done by generating time

series data for glucose inside the cell. The calculation of the average error rate and the standard deviation is

carried out by using the time series data. High standard deviations indicate low precision and low standard

deviations indicate high precision. The production graph, with a comparison of three estimation algorithms,

is produced.

The simulated result values are used to calculate glucose’s average error rate and standarddeviation. Table 2

shows the result for glucose and the value of average error rate (e) and STD.

Table 2 shows that ABC has the lowest average error rate and the lowest STD value for glucose, with a value

of 7.84× 10−06 and 0.0028, respectively, whereas SA has an average error rate of 7.1824× 10−04 and a STD value of

Table 2: Average of error rate and STD values for glucose.

Evaluation criteria ABC Simplex SA

Average of error rate, A 7.84 × 10−6 9.7344 × 10−4 7.182 × 10−4

STD 0.0028 0.0312 0.0268

The bold numbers represent the best result.
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Figure 2: Concentration glucose against time in second.

0.0268. For Simplex algorithm, it has an average error rate of 9.7344× 10−04 and an STD value of 0.0312, that is the

highest among the algorithms. The standard deviationmeasurement shows how different the value is dispersed

from the mean average value. The STD value of ABC shows that it is closer to the average value, indicating that

the simulated result produced by ABC is consistent over time.

The time-series data for concentration glucose is generated and shown in Figure 2. The figures comprise the

experimental data and the simulated results obtained by ABC, Simplex algorithm, and SA.

In Figure 2, the x-axis represents the time, and the y-axis represents concentration. Based on Figure 2, the

line for ABC is the closest to the experimental line, followed by the SA and Simplex algorithm line. The graph

shows that ABC is themost accurate comparedwith the other two algorithms. In contrast, the Simplex algorithm

and SA display a distance from the experimental line.

The outcome of the result proves that the estimated values of the kinetic parameters from ABC success-

fully enhance the production rate since the line is slightly higher compared to the experimental. The result

means there is an enhancement in the concentration for both metabolites compared to the other two previous

works.

ABC shows a better performance in enhancing glucose production as it is good in finding optimum param-

eter values. ABC can avoid being trapped in local optima due to its ability to find new solutions if the current

solution cannot be improved (exceeding the maximum trial). Thus, the results show that ABC is more accurate

and reliable than SA and Simplex algorithms. From the results, SA shows poor performance in finding the opti-

mal value of the parameters in the fermentation pathway model compared to ABC. Rutenbar [14] found that

the SA algorithm could be faster due to its iterative improvement in nature. Many configurations are required

to be visited at many temperatures to achieve the optimal solution. Moreover, the SA algorithm can only find

the global minimum if the movements are sufficient, but there is a risk that it might not converge in real

problems. The Simplex algorithm shows the poorest performance compared to ABC and SA algorithms. The

Simplex algorithm does not depend on the gradient, which means converging slowly or not converging at all is

possible [15].

5 Conclusion and future work

In this paper, we propose the use of the Artificial Bee Colony algorithm, which has several advantages, such as

global search capability, fast convergence rate, and robustness against noise in the data. The proposed algorithm

overcomes the limitations of existing algorithms and shows superior performance in obtaining more accurate

kinetic parameter values for the simulated model compared to other existing algorithms.

There is still room for improvement in finding the optimum value of parameter values for better simula-

tion and greater accuracy. In conclusion, experimental parameter estimation is time-consuming, complicated,

and expensive. However, implementing ABC reduces the computational time for parameter estimation suc-

cessfully. For further improvement, a new strategy should be adopted for ABC due to its good exploration

ability but poor exploitation performance [16]. Furthermore, the variety of evaluation methods can also help
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determine the algorithm’s performance and have more functions in handling the noise data in the algorithms

efficiently [3]. Also, one of the most challenging bottlenecks in whole-cell modeling is parameter estimation

because a complete whole-cell model should simulate the functional role of every gene and gene-product. It

leads to large-scalemetabolic parameter estimations [17]. ABC should be further expanded to that scale to resolve

the problem.
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