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Abstract  The stiff stochastic differential equations 

(SDEs) involve the solution with sharp turning points that 

permit us to use a very small step size to comprehend its 

behavior. Since the step size must be set up to be as small 

as possible, the implementation of the fixed step size 

method will result in high computational cost. Therefore, 

the application of variable step size method is needed 

where in the implementation of variable step size methods, 

the step size used can be considered more flexible. This 

paper devotes to the development of an embedded 

stochastic Runge-Kutta (SRK) pair method for SDEs. The 

proposed method is an adaptive step size SRK method. The 

method is constructed by embedding a SRK method of 1.0 

order into a SRK method of 1.5 order of convergence. The 

technique of embedding is applicable for adaptive step size 

implementation, henceforth an estimate error at each step 

can be obtained. Numerical experiments are performed to 

demonstrate the efficiency of the method. The results show 

that the solution for adaptive step size SRK method of 

order 1.5(1.0) gives the smallest global error compared to 

the global error for fix step size SRK4, Euler and Milstein 

methods. Hence, this method is reliable in approximating 

the solution of SDEs. 

Keywords Embedded Stochastic Runge-Kutta, 

Adaptive Step Size, Stochastic Differential Equations 

1. Introduction

Most of the physical systems around us are subjected by 

the uncontrolled factors, hence stochastic differential 

equations (SDEs) are needed to model these systems. The 

random function in SDEs can be modelled by perturbing a 

system with a Wiener process [1]. SDEs can be found in 

many fields including geology, demography, economics, 

physics, signal processing, modern control theory and 

more. However, the exact solution of SDEs is complicated 

to be solved. In this situation, a numerical method provides 

the solution to the systems. The numerical analysis of 

SDEs differs significantly from that of ODEs due to 

peculiarities of stochastic calculus [2]. 

The development of numerical methods for SDEs is far 

from complete. First step to this direction was done by 

Maruyama in 1950 by introducing Euler method with 0.5 

order of convergence. Euler-Maruyama is the simplest 

method that based on the truncation of stochastic Taylor 

expansion followed by Milstein method developed by 

Milstein in 1974 [3]. It is well-known that Runge-Kutta 

(RK) method has been used widely to approximate the 

solution of ODEs [4]. The effectiveness of this method in 

solving SDEs has been demonstrated in [5]. Burrage 

introduced general formulation of stochastic Runge-Kutta 

(SRK) method [5]. The SRK method has been developed 

for 2-stage and 4-stage. The rooted tree theory of ODEs has 
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been extended to SDEs to study the order of conditions. 

Most of the numerical methods that have been 

developed thus far are fixed step size. Fix step size 

implementation failed in providing the most efficient 

solution in many physical systems. There are cases of stiff 

problems which the solution has sharp turning points and 

need for the use of a very small step size to obtain the 

approximation. Fix step size implementation is ineffective 

particularly in analyzing the behavior of the challenging 

area of the stiff problems. In order to solve the problems, 

variable step sizes have been employed in ODEs. Fehlberg 

proposed Runge-Kutta Fehlberg method, which is an 

embedded Runge-Kutta method for solving ODEs [6]. This 

adaptive fifth-order method has been constructed that uses 

only six function evaluations for each time-step. Variable 

step sizes implementation in the development of numerical 

methods for ODEs can be considered as successful in 

providing good approximation to the exact solution [7]. In 

SDEs, the embedded of SRK method has been developed 

by [8] and [9]. The proposed method converges to the 

analytical solution of stochastic problems [8] and [9].  

This research focuses on the development of an adaptive 

step size stochastic Runge-Kutta method where the 2-stage 

stochastic Runge Kutta of order 1.0 is embedded into 

4-stage stochastic Runge Kutta of order 1.5 for solving 

SDEs. The outline of this paper is; in Section 2, the SRK2 

method with order of convergence of 1.0 and SRK4 

method with order of convergence 1.5 will be introduced. 

Furthermore, the newly developed scheme for an adaptive 

step size and the numerical algorithm is then carried out in 

this section. In Section 3, the numerical result is presented 

to illustrate the efficiency of adaptive step size SRK 

method in solving stochastic model, then followed by the 

discussion and concluding remarks in Section 4. 

2. Materials and Methods

2.1. Stochastic Runge-Kutta for SDEs 

Consider the autonomous Stratonovich SDEs 

         dy t f y t dt g y t dW t  (1) 

where f is drift function, g is diffusion function and  W t  

is a d-dimensional process having independent scalar 

Wiener process components  0t  [5]. 

Equation (1) can be written in integral form of 

           0

0 0

t t

y t y t f y s ds g y s dW s

t t

    (2) 

To obtain the stochastic Taylor expansion of the exact 

solution, the differential operators 

0
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y











(3) 

are substituted into equation (2), where 0L  and 1L  are

differential operators in the form of Stratonovich calculus. 

The expansion of equation (2) is derived through the 

iterated application of the stochastic chain rule. By 

considering up 2.0 order of convergence, the following 

stochastic Taylor expansion is yielded

(4) 

where R is a remainder term and , , ,1 2
J j j jk  represent

the Stratonovich multiple integral. The integration is 
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According to [1], the general form of SRK method can 

be written as 

      
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where 1, ,i s  represent the stage of SRK method. The

scheme for the s-stage can be written in Butcher tableau 

[10] as follows 

(6) 

2.2. 2-Stage Stochastic Runge Kutta with High Strong 

Order 1.0 

General form of SRK2 method with 1.0 order of 

convergence was developed based on the formulation (5) 

by [1] and can be presented as 
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where 
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The order conditions of Taylor expansion can be 

described by using rooted tree [11]. The local truncation 

error of SRK method is computed by comparing the 

stochastic Taylor expansion of the actual solution in (4) 

with the stochastic Taylor expansion of SRK in (7). The 

comparison gives 
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where    1
1, ,1 ,Te b B e   and

 2
d B e . 

By solving equation (8) simultaneously, the scheme for 

2-stage SRK with strong order of convergence 1.0 can be 

presented in Butcher Tableau as  

(9) 

2.3. 4-Stage Stochastic Runge-Kutta with High Strong 

Order 1.5 

SRK4 method with 1.5 order of convergence was 

developed based on the formulation (5) and can be 
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where 
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The Stratonovich Taylor expansion of the actual solution 

in (4) and the Stratonovich Taylor expansion of numerical 

solution (10) are compared, and this leads to 

(11) 

where    1
1, ,1 , ,Te c Ae b B e     and

 2
d B e . 

By solving equation (11) simultaneously, the scheme for 

4-stage SRK with strong order of convergence 1.5 can be 

obtained and it is presented as follows 
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2.4. Adaptive Step Size SRK Method of Order 1.5(1.0) 

The adaptive SRK method of order 1.5(1.0) consists of 

2-stage SRK and 4-stage SRK methods. The scheme of 

coefficient is written as 
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is of strong order p̂ p . In order to embed SRK2 and 

SRK4, we choose ˆ 1p   and 1.5p  . Then, we 

substitute SRK2 of order 1.0 in (9) into (12), which gives 

(14) 

The unknown coefficients of the deterministic part of 

(14) are substituted with the coefficients in RK4 scheme. 

Using 
2

,21
3

a  1,1 2 3 4       1 4   and
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(15) 

Another 17 equations with 18 parameters were 

computed using MAPLE and yield new embedded method 

of SRK1.5(1.0)  

(16) 

This scheme may increase the efficiency of the 

simulations problem in SDEs as this approach monitors the 

change of the solution in two subsequent discrete time of 
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The approximation of Stratonovich integral of 1J and

10J  can be computed using
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where 1N  and 2N  are two independent standard

normally distributed random variables [12]. 

2.5. Numerical Algorithm 

Numerical algorithm performing the SRK of order 

1.5(1.0) numerical schemes to the model is presented. 
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3) Define the initial condition, 0t  and .0y

4) Perform numerical schemes of SRK of order 1.5(1.0)

to SDEs.
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6) Define the relative error, rtol  and the absolute error,

.atol

7) Evaluate  max , .0 1tol y y rtol atol 

8) Evaluate the adaptive step size for yi  using: If

,R tol keep yi  as the current step solution and

move to the next solution with step size,

1

1.50.8
tol

h
R

 
 
 

else recalculate iy  with step size, 

1

1.50.8
tol

h
R

 
 
 

. If the tolerance, ,tol  is not met more 

than once in the step, compute yi  with step size, .
2

h

9) Compute the error between the adaptive step size

SRK of order 1.5(1.0) with exact solution of SDEs

model.

10) Compare the error between fix step size Euler method,

Milstein method, SRK4 method and the adaptive step

size SRK of order 1.5(1.0) with exact solution of

SDEs model.

3. Results and Discussion

The fix step size SRK4, Euler and Milstein methods and 

the adaptive step size SRK of order 1.5(1.0) method are 

performed to the SDEs model, 
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       dy t y t dt y t dW t    

where   and   are real constant. The exact solution of

SDE is 

     
1 20 exp
2

y t y t W t  
  

    
  

 (18) 

The numerical results of Euler method, Milstein scheme, 

SRK4 and SRK of order 1.5(1.0) are compared with the 

exact solution (18). 

Figure 1 shows the numerical solution of SRK of order 

1.5(1.0) method for 2   and 1  . Based on Fig. 1, 

we can see that the numerical solutions obtained show the 

solution of adaptive step size SRK of order 1.5(1.0) is 

converged to the exact solution. 

Figure 2 shows the numerical solution of adaptive step 

size SRK of order 1.5(1.0) and fix step size SRK4 method 

and the exact solution. From Fig. 2, we can see that the 

numerical solution for SRK of order 1.5(1.0) is consistent 

with SRK4 method and both methods converge to the exact 

solution.  

Figure 1.  Numerical solution of SRK of order 1.5(1.0) method and the exact solution 

Figure 2.  Numerical solution of SRK of order 1.5(1.0) method, SRK4 method and the exact solution 
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Figure 3.  Numerical solution of SRK of order 1.5(1.0), SRK4, Euler, Milstein and the exact solution 

The numerical solution illustrated in Figure 3 shows that 

the adaptive step size SRK of order 1.5(1.0) method gives 

the most nearly approximation to the exact solution in 

comparing to the fix step size SRK4, Milstein and Euler 

methods. 

Table 1 shows the global error of SRK4, Euler, Milstein 

and SRK of order 1.5(1.0) methods for 1t  . The global 

error for adaptive step size SRK of order 1.5(1.0) is less 

than the global error for the solution obtained using fix step 

size SRK4, Milstein and Euler methods. 

Table 1.  Global error of SRK1.5(1.0), SRK4, Milstein and Euler 
methods

Numerical Method Global Error 

SRK1.5(1.0) 1.7739 

SRK4 1.8555 

Milstein 10.6079 

Euler 33.1522 

4. Conclusions

In summary, the solution of adaptive step size SRK of 

order 1.5(1.0) is converged to exact solution and the global 

error is less than the global error for fix step size 

implementation methods. We can conclude that SRK of 

order 1.5(1.0) method developed in this research gives 

better approximation for solving SDEs than 4-stage SRK 

(SRK4), Milstein and Euler methods. For future research, 

we can increase the order of convergence by embedding 

the order of 1.5 and 2.0. Stability analysis of the fix and 

variable step size methods can further investigate in the 

case of SDEs which require long time-integration. 
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