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Abstract: The ability to create “structured models” of biological simulations is becoming more and
more commonplace. Although computer simulations can be used to estimate the model, they are
restricted by the lack of experimentally available parameter values, which must be approximated. In
this study, an Enhanced Segment Particle Swarm Optimization (ESe-PSO) algorithm that can estimate
the values of small-scale kinetic parameters is described and applied to E. coli’s main metabolic
network as a model system. The glycolysis, phosphotransferase system, pentose phosphate, the
TCA cycle, gluconeogenesis, glyoxylate pathways, and acetate formation pathways of Escherichia
coli are represented by the Differential Algebraic Equations (DAE) system for the metabolic network.
However, this algorithm uses segments to organize particle movements and the dynamic inertia
weight (ω) to increase the algorithm’s exploration and exploitation potential. As an alternative to
the state-of-the-art algorithm, this adjustment improves estimation accuracy. The numerical findings
indicate a good agreement between the observed and predicted data. In this regard, the result
of the ESe-PSO algorithm achieved superior accuracy compared with the Segment Particle Swarm
Optimization (Se-PSO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential
Evolution (DE) algorithms. As a result of this innovative approach, it was concluded that small-scale
and even entire cell kinetic model parameters can be developed.

Keywords: kinetic parameters; simulation; estimation; algorithm; E. coli

1. Introduction

Computing simulations and optimization are important subjects in systems biology
and bioinformatics, where they play an important role in mathematical approaches to
the reverse engineering of biological systems and managing uncertainty in that context.
The large amount of computation required for the simulation, calibration, and analysis of
models has prompted a number of researchers to propose various parallelization schemes
in an attempt to accelerate these activities [1]. The development of dynamic (kinetic) models
at a smaller scale has been the focus of recent research, with the eventual goal of producing
whole-cell models. Model calibration has gained a lot of interest, especially with reference
to global optimization metaheuristics and hybrid approaches [2].

Thus, kinetic models are being developed so that the dynamics of biological processes
can be described in a quantitative manner. These models consider the stoichiometry of
reactions and the kinetic expressions associated with each enzyme. In vitro experiments
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are used to determine the kinetic properties of enzymes by exposing isolated enzymes
to optimal conditions. In vitro experiments are used to determine the kinetic properties
of enzymes by exposing isolated enzymes to optimal conditions. These conditions are
not the same as those found around enzymes inside living cells; thus, when compared to
in vivo-measured concentrations, the use of in vitro parameters in kinetic models can result
in incorrect predictions of intracellular metabolite concentrations [3]. The dynamics of cell
metabolism can be fine-tuned by perturbing a culture and measuring fluxes, enzyme levels,
and intra- and extracellular metabolite concentrations as a function of time. Advances in
experimental techniques have paved the way for developing dynamic models for metabolic
networks that can estimate microbial behavior [4].

Various Escherichia coli (E. coli) models were created and simulated in order to better un-
derstand the model’s behavior and produce specific products such as those reported in [5–9].
In [5], the researchers simulate and estimate the kinetic parameters of two pathways while
ignoring the other pathways (gluconeogenesis and glyoxylate). In [6], glutamine/aspartate
metabolism and fructose consumption are incorporated into the model by utilizing the
(Pts) system. However, the model does not consider the entire pathway model or E. coli
cell growth. The researchers in [7] generate the experimental time courses of extracellular
glucose and biomass in the E. coli model but do not consider the overall production of the
pathways. As reported in [8], Kotte used the Monod equations to simulate glucose uptake
without estimating the specific growth rate based on a molecular process in E. coli; therein,
he did not consider estimating the entire E. coli main metabolic pathway. Neglecting the
entire main metabolic pathway may result in an incorrect prediction of the simulation
result. As a result, small-scale kinetic parameters must be comprehensively investigated.
The study of a complete model can only be comprehensively achieved by including the
entire cell system. This is because the feedback loop of several metabolites, such as PEP,
OAA, PYR, and others, may affect other enzymes in the main metabolic pathway, causing
the concentration of other metabolites to change dynamically over time [10,11].

Recently, three different strategies were compared for estimating the kinetic parameters
of a dynamic model of central carbon metabolism in Escherichia coli, i.e., the modified
simplex method [12,13], simulated annealing, and differential evolution. According to
the authors, differential evolution produced the best results. Moreover, the researchers
in [14] revised the central carbon metabolism model and estimated kinetic parameters
for the glycolytic enzymes from [5]. The parameter estimation problem was solved using
MATLAB and a weighted least squares objective function.

As a result, researchers are increasingly using metaheuristic optimization [15] algo-
rithm methods to estimate the kinetic parameters of the E. coli model and other biological
models because of the difficulties in calculating kinetic parameters. Several of these meta-
heuristic methods have been utilized to estimate the kinetic parameters utilized in [16–19],
and some of these algorithms used experimental data derived from [5,20]. Furthermore,
there are hundreds or even thousands of parameters in biological kinetic models that make
parameter estimates difficult because of the large search space that must be investigated.
High-dimensional kinetic models (with hundreds or thousands of different kinetic pa-
rameters) are difficult to compute and, as a result, the above algorithms’ performance is
negatively affected, resulting in reduced accuracy [21].

Differential Evolution (DE) is an example of a method that is commonly used and
explored for parameter estimation in metabolic models. The DE method’s key shortcoming
is its time consumption, which makes it difficult for the DE algorithm to set its parameters
when a high number of processors and numerous local searches are involved. Evolutionary
algorithms, such as the Genetic Algorithm (GA), share many of the same principles as DE.
This methodology is often used to estimate metabolic model parameters. When compared
to DE, Particle Swarm Optimization (PSO), and other methods, this algorithm’s key flaw is
the time it takes to compute [22,23].

Many other fields, including those referenced in [24–26], have used the PSO algorithm
since its inception in 1995. Birds and fish finding their food were modeled using the method
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described in [27]. They share information with each other as they proceed through the
search process, and then hunt for their destination randomly and autonomously. Therefore,
the search space is filled with different courses and directions for the particles to follow.

Additionally, the Enhanced Segment Particle Swarm Optimization (ESe-PSO) method
was conceived and developed based on the Segment Particle Swarm Optimization (Se-PSO)
algorithm with the aim of performing deep searches while maintaining the accuracy of
Se-PSO. This progression is predicated on the understanding of Se-PSO’s local and global
point initialization [2]. Segmentation separates the particles into groups in this scenario,
allowing them to work together toward the ideal solution. This approach was modified
to identify small-scale kinetic parameters in an E. coli model [9] and governor–turbine
models in a single-area power plant [28,29]. As a result of the linearity of the model’s
linear inertia weight (ω) [28], the inertia weight has an effect on the particles’ exploration
and exploitation. As a result, extensive exploration is required at the start and minimal
exploitation near the end of the algorithm’s execution. This is performed to avoid the local
optima trap and thus increase the efficiency of estimating kinetic parameters with the goal
of minimizing model distances in a reasonable amount of time.

In this regard, the model under study [9] was formulated to simulate the main
metabolic pathway of E. coli. This model has six pathways, including glycolysis, pen-
tose phosphate, the TCA cycle, gluconeogenesis, and glyoxylate, in addition to acetate
formation. This model was chosen in this study rather than the aforementioned models
due to its ability to simulate the main metabolic pathways of E. coli with small-scale kinetic
parameters. Moreover, as a result of the lack of real experimental data, the nonlinearity of
the model, and the small-scale kinetic parameters, the model response metabolites must be
investigated depending on estimating small-scale kinetic parameters [30]. The experimental
dataset used in this study [20] consists of many metabolites and is used in many studies
for kinetic parameters, such as [16,17,21,31]. The purpose of this work was to adopt the
ESe-PSO algorithm to estimate small-scale kinetic parameters. The sensitive kinetics were
obtained for estimation purposes [4]. The remainder of the paper is organized as follows.
The introduction is presented in Section 1. The problem statement is outlined in Section 2.
The approach is described in Section 3. Section 4 discusses the outcome. In the final section,
the conclusion is summarized. As a result, we believe that this novel technique can help to
estimate small-scale dynamic models in systems biology.

2. Problem Formulation

Kinetic metabolic models are part of the enzymatic equation for ODE functions. The
models’ behavior and procedure design can be hampered by erroneous metabolic kinetic
models. As a result of the nonlinearity of the model, obtaining accurate results is a chal-
lenging task because the kinetics are often gathered from multiple laboratories and under
differing conditions [32–34].

In this regard, the main kinetic metabolic model of E. coli simulated in [9] contains
large-kinetic parameters distributed across six pathways. This model had a great impact on
E. coli model simulations in terms of understanding and simulating its behavior. However,
the researchers stated that the model requires further investigations focused on its kinetic
parameter estimations and responses and that further comparisons with real experimental
data with small-scale kinetic parameters are necessary. Thus, further study to this end is of
significant importance. However, the process of parameter estimation involves looking for
the parameter values in a mathematical model (formulated using ODE) that best suit the
experimental data. This can be accomplished by minimizing the scalar distance between the
model prediction and experimental data, considering experimental errors. This problem can
be divided into three categories: multimodal, continuous, and single-objective optimization.
The objective function of kinetic parameter estimation considered in this work is described
as follows:

f =
∣∣∣(yr,1 − ys,1

)
+
(

yr,2 − ys,2
)
+ . . . + (yr,m − ys,m)

∣∣∣ (1)
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where f is the objective function and yr,m is the actual model output r resulting from m
metabolites. The ys,m term is the simulation model output s for m metabolites.

Because biological problems are nonlinear, estimating the best parameters for this
problem is difficult because many local minima exist. Most optimization algorithms become
easily trapped in local minima as a result, resulting in a slow convergence speed.

Furthermore, the kinetic parameters that need to be estimated using the methods in
Section 3 are implemented.

3. Materials and Methods

This section describes the model structure and the algorithms of DE, GA, PSO, Se-PSO,
and Ese-PSO in order to estimate small-kinetic parameters.

3.1. The Structure of the E. coli Kinetic Model

The dynamic model of the main metabolic pathway of E. coli formulated in [9] was
used as a benchmark and described in Figure 1. This model, which consists of glycolysis,
pentose phosphate, the TCA cycle, gluconeogenesis, and glyoxylate pathways, in addition
to acetate formation with the phosphotransferase system. This model has 23 metabolites, 28
enzymatic reactions, 10 co-factors (e.g., adenosine triphosphate (ATP), coenzyme A (COA),
nicotinamide adenine dinucleotide phosphate (NADPH)), and 172 kinetic parameters.
Equation (2) gives the rate at which the concentration of the metabolite in the considered
model changes.

dCi
dt

= ∑j Rijvj − µCi (2)

where Ci is the concentration of metabolite i, Rij is the stoichiometric coefficient of metabo-
lite i in the reaction j, vj is the rate of the reaction j, and Ci is the growth rate on the dilution
effect µ = 0.1 h−1 due to the increase in cell volume as the cell grows [9].
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The model mass balance equations in Table 1 and the kinetic rate equations in Table 2
for the investigated model that was described in Figure 1 are all listed below.

Table 1. The mass balance equation.

Metabolites Mass Balance Description

Cell (X) d[X]
dt = µ[X]

Extra Glucose (GLCex ) d[GLCex ]
dt = −vPTS[X]

Glucose-6-phosphate (G6P) d[G6P]
dt = vPTS − vPGI − vG6PDH − µ[G6P]

Fructose 6-phosphate (F6P)
d[F6P]

dt = vPGI − vPFK + vTKTB + vTAL −
µ[F6P]

Fructose 1,6-Phosphate (FDP) d[FDP]
dt = vPFK − vALDO − µ[FDP]

Glyceraldehyde 3-phosphate (GAP)
d[GAP]

dt = 2vALDO − vGAPDH + vTKTA +
vTKTB − vTAL − µ[GAP]

Phosphoenol-pyruvate (PEP)
d[PEP]

dt = vGAPDH + vPCK − vPTS − vPYK −
vPPC − µ[PEP]

Pyruvate (PYR)
d[PYR]

dt = vPYK + vPTS + vMEZ − vPDH −
µ[PYR]

Acetyl-CoA (AcCoA)
d[AcCoA]

dt = vPDH + vACS + vCS − vPTA −
µ[AcCoA]

Isocitrate (ICIT) d[ICIT]
dt = vCS − vICDH − vICL − µ[ICIT]

2-Keto-D-gluconate (2KG) d[2KG]
dt = vICDH − v2KGDH − µ[2KG]

Succinate (SUC) d[SUC]
dt = v2KGDH + vICL − vSDH − µ[SUC]

Fumarate (FUM) d[FUM]
dt = vSDH − vFUM − µ[FUM]

Malate (MAL)
d[MAL]

dt = vFUM + vMS − vMDH − vMEZ −
µ[MAL]

Oxaloacetate (OAA)
d[OAA]

dt = vMDH + vPPC − vCS − vPCK −
µ[OAA]

Glyoxylate (GOX) d[GOX]
dt = vICL − vMS − µ[GOX]

Acetyl phosphate (ACP) d[ACP]
dt = vPTA − vACK − µ[ACP]

Acetate (ACEex) d[ACEex ]
dt = (vACK − vACS)µ[X]

6-Phosphogluconolactone (6PG) d[6PG]
dt = vG6PDH − v6PGDH − µ[6PG]

Ribose 5-phosphate (Ru5P) d[RU5P]
dt = v6PGDH − vRPE − vRPI − µ[Ru5P]

Ribulose 5-phosphoenolpyruvate (R5P) d[R5P]
dt = vRPI − vTKTA − µ[R5P]

Xylulose 5-phosphate (Xu5P) d[Xu5P]
dt = vRPE − vTKTA − vTKTB − µ[Xu5P]

Sedoheptulose 7-phosphate (S7P) d[S7P]
dt = vTKTA − vTAL − µ[S7P]

Erythrose 4-phosphate (E4P) d[E4P]
dt = vTAL − vTKTB − µ[E4P]

Table 2. The kinetic rate equations.

Reactions Kinetic Equation

Cell growth (X)
 µm

(
1− [X]

Xm

)(
[GLcex ]

Ks+[GLcex ]

)
kATPvATP(.), ([GLcex ] > 0)

µmA [Aceex ]
KsA+[Aceex ]

kATPvATP(.), ([GLcex ] ≤ 1 and[Aceex ] > 0)

Phosphotransferase systems (PTS) vmax
PTS [GLcex ]

[PEP]
PYR(

Ka1+Ka2
[PEP]
[PYR]+Ka3 [GLcex ]+[GLcex ]

[PEP]
[PYR]

)(
1+ [G6P]n G6P

KG6P

)
Phosphoglucose
isomerase/phosphoglucoisomerase (PGI)

vmax
PGI

(
[G6P]− [F6P]

Keq

)

KG6P

1+ [F6P]

KF6P

1+ [F6P]
KF6P

6pginh

+
[6PG]

KG6P
6pginh

+G6P
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Table 2. Cont.

Reactions Kinetic Equation

Phosphofructokinase (PFK) vmax
PFKKATP [F6P]

K(ATP ,ADP)

[F6P]+KF6P
z

K
b(ADP,AMP)+ [PEP]

KPEP
Ka(ADP,AMP)


1+

Lp f k1+[F6P]

 Ka(ADP,AMP)

KF6P
s

(
Kb(ADP,AMP)+

[PEP]
KPEP

)



nPFK


Aldolase (Aldo) vmax

ALDO

(
[FDP]− [DHAP][GAP]

Keq

)
(

KFDP +[FDP]+ KGAP [DAHP]

[Keq Vbi f ]
+

KDHAP [GAP]

[Keq Vbi f ]
+ [FDP][GAP]

KPEP
inh

+ [DHAP][GAP]
KeqVbi f

)
Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

vmax
GAPDH

(
[GAP]− [PEP][NADH]

Keq [NAD]

)
(

KGAP

(
1+ [PEP]

KPGP

)
+[GAP]

)(
KNAD
NAD

(
1+ [NADH]

KNADH

)
+1
)

Pyruvate kinase (PYK) vmax
PYK [PEP]

(
PEP

KPEP
+1
)npyk−1

[ADP]

KPEP

LPYK

(
1+ [ATP]

KATP
[FDP]
KFDP

+
[AMP]
KAMP

+1

)npyk

+
(

[PEP]
KPEP

+1
)npyk

 ([ADP]+KADP)

Phosphoenolpyruvate
carboxylase (Ppc)

K1+K2[AcCOA]+K3[FDP]+K4[AcCOA][FDP]
1+K5[AcCOA]+K6[FDP]

(
[PEP]

Km+[PEP]

)
Glucose-6-phosphate
dehydrogenase (G6PDH)

vmax
G6PDH [G6P][NADP]

([G6P]+Kg6p)
(

1+ [NADPH]
Kndph

)(
Knadp

(
1+ [NADPH]

Knadph

)
+NADP

)
Hydroxyprostaglandin
dehydrogenase (PGDH)

vmax
PGDH [6PG][NADP]

([6PG]+K6pg)
(
[NADP]+Knadp

(
1+ [NADPH]

Knadph

)(
1+ [ATP]

Katp

))
Ribulose-phosphate
3-epimerase (Rpe) vmax

Rpe

(
[Ru5P]− [R5P]

KRpe
eq

)
Ribose-5-phosphate
isomerase (Rpi) vmax

Rpi

(
[Ru5P]− [R5P]

KRpi
eq

)
Transketolase 1 (TktA) vmax

TKtA

(
[R5P][Xu5P]− [S7P][GAP]

KTKtA
eq

)
Transketolase 2 (TktB) vmax

TKtB

(
[Xu5P][E4]− [F6P][GAP]

KTKtB
eq

)
Tyrosine ammonia lyase
(Tal) vmax

TaL

(
[GAP][S7P]− [E4P][F6P]

KTKtB
eq

)
Phosphoenolpyruvate
carboxykinase (PcK) vmax

PcK

 [OAA] [ATP]
[ADP]

KOAA
m

[ATP]
[ADP]+[OAA] [ATP]

[ADP]+
KATP

i KOAA
m

KADP
i

+
KATP

i KOAA
m

KPEP
m KADP

i
[PEP]+

KATP
i KOAA

m
KPEP

i KATP
l

[ATP][PEP]
[ADP] +

KATP
i KOAA

m
KADP

i KOAA
l

[OAA]


Pyruvate dehydrogenase
(PDH)

vmax
PDH

[NAD]

(
1

1+Ki
[NADH]
[NAD]

)(
[PYR]
KPYR

m

)(
1

KNAD
m

)(
[COA]

KCOA
m

)
(

1+ [PYR]
KPYR

m

)(
1

NAD + 1
KNAD

m
+ [NADH]

KNADH
m [NAD]

)(
1+ [COA]

KCOA
m

+ [AcCOA]

KAcCOA
m

)
Phosphate acetyltransferase
(Pta)

vmax
Pta

(
1

KAcCOA
i KP

m

)(
[AcCoA][P]− [AcP][CoA]

Keq

)
(

1+ [AcCoA]

KAcCoA
i

+ [P]
KP

i
+ [ACP]

KACP
i

+ [CoA]

KCoA
i

+

(
[AcCoA][P]
KAcCoA

i KP
m

)
+

(
[AcP][CoA]

KACP
m KCoA

i

))
(Acetate Kinase) (Ack) vmax

Ack

(
1

KADP
m KACP

m

)(
[AcP][ADP]− [ACE][ATP]

Keq

)
(

1+ [Acp]
KAcP

m
+ [ACE]

KACE
m

)(
1+ [ADP]

KADP
m

+ [ATP]
KATP

m

)
Acetyl-CoA synthetase (Acs) vmax

Acs [ACE][NADP]
(Km+[ACE])(Keq+[NADP])

Citrate synthase (Cs) vmax
CS [AcCoA][OAA]

(KAcCoA
d KOAA

m +KAcCoA
m [OAA])+

(
[AcCoA]KOAA

m

(
1+ [NADH]

KNADH
i1

))
+

(
[AcCoA][OAA]

(
1+ [NADH]

KNDAH
i2

))

Isocitrate dehydrogenase
(ICDH)
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Table 2. Cont.

Reactions Kinetic Equation

Isocitrate lyase (IcL) vmax
lcl− f

[ICIT]
KICIT

m(
1+ [ICIT]

KICIT
m

+ [SUC]
KSUC

m
+ [PEP]

KPEP
m

+ [2KG]

K2KG
m

+ 1
Kl

)
Malate synthase (MS) vmax

MS
[GOX]

KGOX
m

[AcCoA]

KAcCoA
m

− vmax
MS

[MAL]
KMAL

m(
1+ [GOX]

KGOX
m

+ [MAL]
KMAL

m
+

(
1+ [AcCoA]

KAcCoA
m

))
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Succinate dehydrogenase
(SDH)

vSDH1vSDH2

(
[SUC]− [FUM]

Keq

)
KSUC

m vSDH2+vSDH2[SUC]+ vSDH1 [FUM]
Keq

Fumarate hydratase (Fum) vFum1vFum2

(
[FUM]− [MAL]

kFum eq

)
KFum

m vFum1+vFum2[FUM]+
VFum1 [MAL]

Keq

Malic enzyme (Mez) vmax
Mez [MAL] [NADP]

(KMAL+[MAL]) (Keq+[NADP])

Malate dehydrogenase
(MDH)
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Phosphoenolpy-

ruvate carboxyki-

nase (PcK) 
 𝑣𝑃𝑐𝐾
𝑚𝑎𝑥(

[𝑂𝐴𝐴]
[𝐴𝑇𝑃]
[𝐴𝐷𝑃]

𝐾𝑚
𝑂𝐴𝐴[𝐴𝑇𝑃]

[𝐴𝐷𝑃]
+[𝑂𝐴𝐴]

[𝐴𝑇𝑃]
[𝐴𝐷𝑃]

+
𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝐴𝐷𝑃 +

𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑚
𝑃𝐸𝑃𝐾𝑖

𝐴𝐷𝑃
[𝑃𝐸𝑃]+

𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝑃𝐸𝑃𝐾𝑙

𝐴𝑇𝑃 
[𝐴𝑇𝑃][𝑃𝐸𝑃]
[𝐴𝐷𝑃]

+
𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝐴𝐷𝑃𝐾𝑙

𝑂𝐴𝐴
[𝑂𝐴𝐴]

) 

Pyruvate dehydro-

genase (PDH) 
𝑣𝑃𝐷𝐻
𝑚𝑎𝑥

[𝑁𝐴𝐷]
(

1

1+𝐾𝑖
[𝑁𝐴𝐷𝐻]
[𝑁𝐴𝐷]

)(
[𝑃𝑌𝑅]

𝐾𝑚
𝑃𝑌𝑅)(

1

𝐾𝑚
𝑁𝐴𝐷)(

[𝐶𝑂𝐴]

𝐾𝑚
𝐶𝑂𝐴)

(1+
[𝑃𝑌𝑅]

𝐾𝑚
𝑃𝑌𝑅)(

1
𝑁𝐴𝐷+

1

𝐾𝑚
𝑁𝐴𝐷+

[𝑁𝐴𝐷𝐻]

𝐾𝑚
𝑁𝐴𝐷𝐻[𝑁𝐴𝐷]

)(1+
[𝐶𝑂𝐴]

𝐾𝑚
𝐶𝑂𝐴+

[𝐴𝑐𝐶𝑂𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑂𝐴)

 

Phosphate acetyl-

transferase (Pta)  
𝑣𝑃𝑡𝑎
𝑚𝑎𝑥(

1

𝐾𝑖
𝐴𝑐𝐶𝑂𝐴𝐾𝑚

𝑃
)([𝐴𝑐𝐶𝑜𝐴][𝑃]−

[𝐴𝑐𝑃][𝐶𝑜𝐴]
𝐾𝑒𝑞

)

(1+
[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑖
𝐴𝑐𝐶𝑜𝐴+

[𝑃]

𝐾𝑖
𝑃+

[𝐴𝐶𝑃]

𝐾𝑖
𝐴𝐶𝑃+

[𝐶𝑜𝐴]

𝐾𝑖
𝐶𝑜𝐴+(

[𝐴𝑐𝐶𝑜𝐴][𝑃]

𝐾𝑖
𝐴𝑐𝐶𝑜𝐴𝐾𝑚

𝑃
)+(

[𝐴𝑐𝑃][𝐶𝑜𝐴]

𝐾𝑚
𝐴𝐶𝑃𝐾𝑖

𝐶𝑜𝐴))

 

(Acetate Kinase) 

(Ack) 
𝑣𝐴𝑐𝑘
𝑚𝑎𝑥(

1

𝐾𝑚
𝐴𝐷𝑃𝐾𝑚

𝐴𝐶𝑃)([𝐴𝑐𝑃][𝐴𝐷𝑃]−
[𝐴𝐶𝐸][𝐴𝑇𝑃]

𝐾𝑒𝑞
)

(1+
[𝐴𝑐𝑝]

𝐾𝑚
𝐴𝑐𝑃+

[𝐴𝐶𝐸]

𝐾𝑚
𝐴𝐶𝐸)(1+

[𝐴𝐷𝑃]

𝐾𝑚
𝐴𝐷𝑃+

[𝐴𝑇𝑃]

𝐾𝑚
𝐴𝑇𝑃)

 

Acetyl-CoA syn-

thetase (Acs) 

𝑣𝐴𝑐𝑠
𝑚𝑎𝑥[𝐴𝐶𝐸][𝑁𝐴𝐷𝑃]

(𝐾𝑚+[𝐴𝐶𝐸])(𝐾𝑒𝑞+[𝑁𝐴𝐷𝑃])
 

Citrate synthase 

(Cs) 

𝑣𝐶𝑆
𝑚𝑎𝑥[𝐴𝑐𝐶𝑜𝐴][𝑂𝐴𝐴]

(𝐾𝑑
𝐴𝑐𝐶𝑜𝐴𝐾𝑚

𝑂𝐴𝐴+𝐾𝑚
𝐴𝑐𝐶𝑜𝐴[𝑂𝐴𝐴])+([𝐴𝑐𝐶𝑜𝐴]𝐾𝑚

𝑂𝐴𝐴(1+
[𝑁𝐴𝐷𝐻]

𝐾𝑖1
𝑁𝐴𝐷𝐻))+([𝐴𝑐𝐶𝑜𝐴][𝑂𝐴𝐴](1+

[𝑁𝐴𝐷𝐻]

𝐾𝑖2
𝑁𝐷𝐴𝐻))

 

Isocitrate dehydro-

genase (ICDH) 
[𝐼𝐶𝐷𝐻]

𝐾𝑓

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃([𝐼𝐶𝐼𝑇]−
[𝑁𝐴𝐷𝐻][2𝐾𝐺]

𝐾𝑒𝑞
𝐼𝐶𝐷𝐻[𝑁𝐴𝐷𝑃]

)

(

 
 

1
[𝑁𝐴𝐷𝑃]

+
[𝐼𝐶𝐼𝑇]𝐾𝑚

𝑁𝐴𝐷𝑃

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃[𝑁𝐴𝐷𝑃]
+

1

𝐾𝑑
𝑁𝐴𝐷𝑃+

[𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃+ 
[𝐼𝐶𝐼𝑇]

𝐾𝑑
𝐼𝐶𝐼𝑇[𝑁𝐴𝐷𝑃]

 
[𝑁𝐴𝐷𝑃𝐻]𝐾𝑚

𝑁𝐴𝐷𝑃

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑚

𝑁𝐴𝐷𝑃𝐾𝑒𝑖𝑛ℎ
𝑁𝐴𝐷𝑃𝐻+ 

[𝑁𝐴𝐷𝑃𝐻]𝐾𝑒𝑘𝑛ℎ
2𝐾𝐺

𝐾𝑚
2𝐾𝐺𝐾𝑒𝑛ℎ𝑒

𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]
+

[2𝐾𝐺]𝐾𝑚
𝑁𝐴𝐷𝑃𝐻

𝐾𝑚
2𝐾𝐺𝐾𝑒𝑛ℎ𝑒

𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]
+
[2𝐾𝐺]

𝐾𝑚
2𝐾𝐺 

[𝑁𝐴𝐷𝑃𝐻]

𝐾𝑒𝑛ℎ𝑒
𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]

+
[2𝐾𝐺]𝐾𝑚

𝑁𝐴𝐷𝑃𝐻

𝐾𝑚
2𝐾𝐺𝐾𝑚

𝑁𝐴𝐷𝑃𝐻 
[𝑁𝐴𝐷𝑃𝐻]

𝐾𝑒𝑘𝑛
𝑁𝐴𝐷𝑃[𝑁𝐴𝐷𝑃])

 
 

 

Isocitrate lyase 

(IcL) 

𝑣𝑙𝑐𝑙−𝑓
𝑚𝑎𝑥 [𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇

(1+
[𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇+

[𝑆𝑈𝐶]

𝐾𝑚
𝑆𝑈𝐶+

[𝑃𝐸𝑃]

𝐾𝑚
𝑃𝐸𝑃+

[2𝐾𝐺]

𝐾𝑚
2𝐾𝐺+

1
𝐾𝑙
)

 

Malate synthase 

(MS)  

𝑣𝑀𝑆
𝑚𝑎𝑥 

[𝐺𝑂𝑋]

𝐾𝑚
𝐺𝑂𝑋 

  
[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑜𝐴− 𝑣𝑀𝑆

𝑚𝑎𝑥 
[𝑀𝐴𝐿]

𝐾𝑚
𝑀𝐴𝐿

(1+
[𝐺𝑂𝑋]

𝐾𝑚
𝐺𝑂𝑋+

[𝑀𝐴𝐿]

𝐾𝑚
𝑀𝐴𝐿+(1+ 

[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑜𝐴))

 

2-Ketoglutarate 

(2KG) 

𝑣2𝐾𝐺𝐷𝐻
𝑚𝑎𝑥  [𝑎𝐾𝐺][𝐶𝑜𝐴]

(

 
 

𝐾𝑚
𝑁𝐴𝐷 [𝑎𝐾𝐺][𝐶𝑜𝐴]

[𝑁𝐴𝐷]
 + 𝐾𝑚

𝐶𝑜𝐴 [𝑎𝐾𝐺]+𝐾𝑚
2𝐾𝐺[𝐶𝑜𝐴]+[𝑎𝐾𝐺][𝐶𝑜𝐴]+ 

𝐾𝑚
2𝐾𝐺𝐾𝑧[𝑎𝐾𝐺][𝑆𝑈𝐶][𝑁𝐴𝐷𝐻]

𝐾1
2𝐾𝐺𝐾1

𝑆𝑈𝐶[𝑁𝐴𝐷]

𝐾𝑚
2𝐾𝐺 𝐾𝑧[𝑆𝑈𝐶][𝑁𝐴𝐷𝐻]

𝐾1
𝑆𝑈𝐶 [𝑁𝐴𝐷]

+
𝐾𝑚
𝑁𝐴𝐷 [𝑎𝐾𝐺][𝐶𝑜𝐴][𝑁𝐴𝐷𝐻] 

𝐾1
𝑁𝐴𝐷𝐻[𝑁𝐴𝐷]

 + 
𝐾𝑚
𝐶𝑜𝐴 [𝑎𝐾][𝑆𝑈𝐶] 

𝐾1
𝑆𝑈𝐶                         

)

 
 

 

Succinate dehy-

drogenase (SDH) 

𝑣𝑆𝐷𝐻1𝑣𝑆𝐷𝐻2([𝑆𝑈𝐶]−
[𝐹𝑈𝑀]
𝐾𝑒𝑞

)

𝐾𝑚
𝑆𝑈𝐶𝑣𝑆𝐷𝐻2+𝑣𝑆𝐷𝐻2[𝑆𝑈𝐶]+ 

𝑣𝑆𝐷𝐻1[𝐹𝑈𝑀]
𝐾𝑒𝑞

 

Fumarate hydra-

tase (Fum)  

𝑣𝐹𝑢𝑚1𝑣𝐹𝑢𝑚2([𝐹𝑈𝑀]− 
[𝑀𝐴𝐿]
𝑘𝐹𝑢𝑚 𝑒𝑞

)

𝐾𝑚
𝐹𝑢𝑚𝑣𝐹𝑢𝑚1+𝑣𝐹𝑢𝑚2[𝐹𝑈𝑀]+

𝑉𝐹𝑢𝑚1[𝑀𝐴𝐿]
𝐾𝑒𝑞

 

Malic enzyme 

(Mez)  

𝑣𝑀𝑒𝑧
𝑚𝑎𝑥 [𝑀𝐴𝐿] [𝑁𝐴𝐷𝑃]

(𝐾𝑀𝐴𝐿+[𝑀𝐴𝐿]) (𝐾𝑒𝑞+[𝑁𝐴𝐷𝑃]) 
 

Malate dehydro-

genase (MDH)  

𝑣𝑀𝐷𝐻1𝑣𝑀𝐷𝐻2([𝑀𝐴𝐿]−
[𝑂𝐴𝐴]
𝐾𝑒𝑞

)

(

 
 
 
 
 

𝐾1
𝑁𝐴𝐷𝐾𝑚

𝑀𝐴𝐿𝑣𝑀𝐷𝐻2
[𝑁𝐴𝐷]

+𝐾𝑚
𝑀𝐴𝐿 𝑣𝑀𝐷𝐻2+

𝐾𝑚
𝑁𝐴𝐷𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿]

[𝑁𝐴𝐷]
+𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿]+

𝐾𝑚
𝑂𝐴𝐴𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻]

𝐾𝑒𝑞[𝑁𝐴𝐷]
+ 
𝐾𝑚
𝑁𝐴𝐷𝐻𝑣𝑀𝐷𝐻1[𝑂𝐴𝐴]

𝐾𝑒𝑞[𝑁𝐴𝐷]
+

𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝑒𝑞[𝑁𝐴𝐷]
+
𝑣𝑀𝐷𝐻1𝐾𝑚

𝑂𝐴𝐴[𝑁𝐴𝐷𝐻]

𝐾𝑒𝑞𝐾1
𝑁𝐴𝐷 +

𝑣𝑀𝐷𝐻2𝐾𝑚
𝑁𝐴𝐷[𝑀𝐴𝐿][𝑂𝐴𝐴]

𝐾1
𝑂𝐴𝐴[𝑁𝐴𝐷]

+
𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻]

𝐾1
𝑁𝐴𝐷

+
𝑣𝑀𝐷𝐻1[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝑒𝑞𝐾1
𝑀𝐴𝐿[𝑁𝐴𝐷]

 +
𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑂𝐴𝐴  +

𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑁𝐴𝐷𝐾𝑒𝑞

 + 
𝐾1
𝑁𝐴𝐷𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑁𝐴𝐷𝐾𝑚

𝑂𝐴𝐴𝐾1
𝑁𝐴𝐷𝐻

)
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After the model structure is described, the algorithms used to estimate the kinetics are
stated below.

3.2. GA Algorithm

One of the most well-known heuristic search algorithms is the Genetic Algorithm,
which is based on the process of natural evolution. In recent decades, GA has received a
lot of attention in engineering design optimization. GA was first introduced in computer
science in the 1960s, when a group of biologists attempted to implement the process of
evolution in nature in computer code [35]. GA refers to any population-based algorithm
that finds the best solution by using selection, crossover, and mutation across chromosomes.
A member of the population is referred to as a chromosome/genotype, which is a binary
or real-valued string. Several types of GA have been introduced in optimization studies
following Barricelli [35]. However, a given optimization problem can be simply defined in
GA by following three main steps, which include [36]:

Initialization is the first step.
Step 1: generation;
Step 2: selection;
Step 3: stopping criteria.
The first step in the GA algorithm is the generation of initial chromosomes (genotypes)

in step 0. In most practical problems, genotypes are generated at random, and the goodness
of each chromosome is assessed using an objective function and the constraints that go
with it.

Step 1: Introduce the generation operator and apply it to the current population to
generate an intermediate one. In the first step, the initial and intermediate populations
are the same (step 0). However, the imposition of the generation operator forms the
intermediate population in subsequent iterations;

Step 2: To create the next population, crossover-mutation operators are applied to the
results of Step 1. When the generator (operator) creates a chromosome by combining the
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properties of two parental chromosomes, the term crossover is used. However, the term
mutation is used when a new chromosome is formed by making minor changes to the
properties of a single parent chromosome [37].

The algorithm design is influenced by experience, model specifications, and the
association of experimental results with various heuristic search algorithms. Thus, the
algorithm used in this work is described in Algorithm 1 below.

Algorithm 1. The GA Adoption

1. Generate an initial population with m chromosomes at random;
2. Define the kinetic boundaries;
3. Determine the fitness, f(m), of each chromosome in m;
4. Build the evolved population using the following criteria;
5. Using proportional fitness selection for m1 and m2 chromosomes;
6. Use the crossover function on m1 and m2 to create a new chromosome (m3);
7. Use the mutation function on m3 to generate m′;
8. Include m\ in the next population;
9. Replace the old population with the new population;
10. If the stopping criteria are not met, repeat step 2 of the procedure.

3.3. DE Algorithm

More than two decades ago, Storn and Price [38] presented Differential Evolution
(DE), a novel optimization method designed to handle nondifferentiable, nonlinear, and
multimodal objective functions. To meet this requirement, DE was designed as a stochastic
parallel direct search method that borrows concepts from the broad class of evolutionary
algorithms while requiring only a few easily chosen control parameters. Early experimental
results show that DE outperforms other well-known evolutionary algorithms in terms of
convergence [38,39].

The combination of randomly chosen vectors produces new individuals (vectors)
in each population. In our context, this operation is known as mutation. The resulting
vectors are then mixed with another predetermined vector—the target vector—in a process
known as recombination. This operation produces the trial vector. If and only if the trial
vector reduces the value of the objective function f, it is accepted for the next generation.
This operation is known as selection. The following is a high-level description of the
aforementioned operators (for one generation). Thus, the algorithm used in this work is
described in Algorithm 2 below.

Algorithm 2. The DE Adoption

1. Initialization operation: Generate the initial individuals x0
i , i = 1, 2, . . . NP in S0.

Determine the mutation probability F, the crossover probability CR, and the maximal
number of generations Gm. Set the current generation G = 0;

2. Initialize the kinetic boundaries;
3. For each individual xG

i , i = 1, 2, . . . NP, perform steps 3–5 to produce the population for
the next generation G + 1;

4. Mutation operation: a perturbed individual xG+1
i is generated as follows:

x∼G+1
i = xG

r1
+ F.

(
xG

r2
− xG

r3

)
;

5. Crossover operation: the perturbed individual x∼G+1
i =

[
x∼G+1

i1 , x∼G+1
i2 , . . . , x∼G+1

in

]
and

the current individual xG
i =

[
xG

i1, xG
i2, . . . , xG

in
]

are selected by a binomial distribution to
perform the crossover operation to generate the offspring x−G+1

i ;
6. Evaluation operation: the offspring x−G+1

i competes one-to-one with its parent xG
i ;

7. G = G + 1;
8. Repeat steps 2–7 as long as the number of generations is smaller than the allowable

maximum number Gm and the best individual is not obtained.
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3.4. PSO Algorithm

Kennedy, a social psychologist, and Eberhart, an electrical engineer, developed the
idea of particle swarms to create computational intelligence by exploiting already existing
natural interacting systems [40,41].

The PSO method was developed in the middle of the 1990s while attempting to mimic
the elegant, well-choreographed motion of a flock of birds as part of a social cognition
study looking into the idea of collective intelligence in biological populations. Soon after its
creation, it was recognized as an evolutionary technique [42]. This technique has received
extensive study and in-depth reflection due to its incredibly effective problem-solving
capabilities in a variety of technical and scientific applications.

The earliest simulations [42] modelled flocks of birds foraging for grain and were
driven by social behavior. This quickly became a potent optimization technique, called
Particle Swarm Optimization [43,44] (PSO).

The collection of particles in the search space in the PSO algorithm aims to optimize
a fitness function, similar to the movement of flocks of birds in the natural environment
in search of food. The particles are randomly placed in the search space and their quality
or fitness at that position is evaluated. Then, after a predetermined number of iterations,
each particle moves to a new location that is a better fit than the previous one. With some
random perturbations, this movement is based on the history of the particle’s best and
current locations with those of the best positions attained by other particles in the swarm.
Thus, with a fixed number of particles working together, the swarm achieves the most
optimal solution to the fitness function in the problem space in subsequent iterations [44,45].
The fitness or objective function in the PSO algorithm is a performance evaluation crite-
rion that is dependent on the algorithm’s application area. A performance criterion is
typically defined by a mathematical formulation that quantifies system performance via
a performance index. Thus, the algorithm used in this work is described in Algorithm 3
below.

Algorithm 3. The PSO Adoption

1. Initialize particles of PSO;
2. Initialize the parameters;
3. Initialize the velocities and positions of the swarm;
4. For each particle;
5. Iteration i : birdstep : i ++;
6. Initialize the kinetics and their boundaries;
7. Calculate the fitness using Equation (1);
8. Find the particles with best fitness in the neighborhood;
9. Calculate the velocity of each particles using this equation:

vi (t + 1) = wvi(t) + c1r1(pi(t)− xi(t)) + c2r2(Gi(t)− xi(t));
10. Update the position of each particle using this equation: xi(t + 1) = xi(t) + vi (t + 1);
11. If the fitness value > the best fitness the best fitness pi(t), then set the current values as the

new Gi(t);
12. Otherwise, modify steps 1 and 2 and repeat steps 3–11;
13. Print the best fitness Gi(t) of each particle;
14. End.
15. End.

3.5. Se-PSO Algorithm

The Se-PSO algorithm is derived from a mix of segmentation and Particle Swarm
Optimization (PSO) algorithms, wherein segmentation is utilized to identify the local and
global optimal point problems of PSO. On the basis of the dimension, the segmentation
can be divided into more than two groups. The concept of parameter segmentation is
theoretically illustrated in Figure 2. Assuming that we have three kinetic parameters that
are initialized with search space boundaries, parameters 1 and 2 are divided into two
segments, whereas parameter 3 is divided into one segment. Then, on the basis of the
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objective function, a group of particles moving in the search space is initiated. Each search
iteration displays the local optimum position in each segment parameter. This scenario is
shown in Figure 2 [28].
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The following parameters are set in this optimization identification case: the bird steps
for PSO = 30, c2 = 1.2, c1 = 1.2, and ω = 0.9. According to the experimental results, it is
better to initially set the inertia weight to a higher value and gradually reduce it to obtain
refined solutions. To improve the algorithm, a new inertia weight is proposed that is set to
the damping process as a linearly decreasing time-varying function.

3.6. ESe-PSO Algorithm

The primary parameters of the PSO algorithm (c1, c2, and ω) help the algorithm
obtain the best possible result. When dealing with high-dimensional difficult situations,
PSO suffers from early convergence to local optima [26]. As a result, the three parameters
indicated above must be carefully calculated for a robust PSO [46]. The first is the learning
factor that pulls particles toward their personal optimum position, while the second is the
social learning component that pushes particles toward their global optimum position. It
also remembers the prior velocity of the particles, preventing them from converging to local
minima. Thus, in the basic PSO utilized in Se-PSO, the inertia weight (ω) was set (0.9) [28],
indicating the necessity to adjust it in order to produce a better estimation in this work.

This approach was created using the fundamental PSO algorithm used in PSO seg-
mentation. This advancement is related to the inertia weight (ω), which determines the
influence that the last iteration speed has on the current speed and allows the particles to
explore larger regions in the beginning and exploit neighboring areas at lower speeds in
later stages. The development is carried out by initializing the inertia weight and damp-
ing parameter, which is determined throughout the iteration process to improve control
convergence and enable the particle to search for a global solution.

According to the PSO algorithm, a particle with a higher fitness value is thought to be
nearer to the global optimum than one with a lower fitness value. Stronger local exploration
capabilities may be necessary for the particle with a higher fitness to seek through its
immediate surroundings for the best solution. On the other hand, a particle with a lower
fitness requires stronger global exploration capabilities to move fast to the particles with
higher fitness. This improves the likelihood that the particle discovers the global optimum



Processes 2023, 11, 126 11 of 25

and speeds up the PSO’s convergence. Lower inertia weights can be employed for particles
with superior fitness, which helps to accelerate the PSO’s convergence. Higher inertia
weights are used for particles that are less fit and far from the optimal particle position,
which can improve their capacity for global exploration and help these particles escape
from local maxima [24].

The process of damping is subsequently executed before the end of the loop iteration
process. This process supports the searching process by calculating the inertia weight after
each iteration until the iteration is finished. This method supports the particles through
control of convergence, thereby balancing the local and global search by increasing the
exploration and exploitation of the particles to locate the optimal values [46,47]. When
the inertia weight was initialized to the original interval value ω [1, 0.01], the damping
value was set to ωdamp = 0.99. Subsequently, the damping process damp is calculated in a
decreasing manner in the iteration loop, using Equations (3) and (4), until the iteration is
finished:

damp = ω∗ ωdamp (3)

ω =

(
ωmax −ωmin

itermax − itermin

)
+ ωmin (4)

where damp is the damping process, ωdamp is the damping value, ωmax is the maximum
value of ω = 1, ωmin is the minimum value of ω = 0.01, and itermax and itermin are the
maximum and minimum iterations, respectively.

In this regard, this process explores wider areas in the beginning and exploits nearby
areas in the later stages at a reduced speed. The changes are added to Se-PSO since this
algorithm combines segmentation and particle swarm optimization based on the inertia
weight (ω) modification in addition to segmentation. This modification helps the basic
Se-PSO to more effectively reach the best optimum solution and increase exploration and
exploitation. However, after the damping process is added, the velocity of Se-PSO [28]
should be modified according to the damping changes as described in Equation (5):

vi(t + 1, j) = damp.vi(t, j) + c1r1(pi(t, j)− xi(t, j)) + c2r2(Gi(t, j)− x(t, j)) (5)

where xt,j is the position of particle i, vt,j is the velocity of particle i, t is the iteration of
particles, j is the number of segments, ω is the inertia weight, damp is a damping process,
c1 and c2 are the acceleration coefficients, and r1 and r2 are random numbers between (0
and 1). The pi term is the local optimum position of particle i, and Gi is the global optimum
position of particle i.

After the ω is modified, the ESe-PSO algorithm proceeds according to the process
illustrated by Algorithm 4 below:
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Algorithm 4. The ESe-PSO Adoption

1. Set Se-PSO parameters, the problem dimension, and the kinetic boundaries;
2. Initialize the vt,j and xt,j;
3. Set the segment_number and the segment_length [2,28] for each kinetic parameter;
4. For k = 1 to the number of the segment;
5. Evaluate f ;
6. Select the best Gi (t, j);
7. Set iteration i = 1;
8. Update the ω, damp, vt,j, xt,j;
9. Evaluate f ;
10. If fnew < f ;
11. Update the Gi(t, j);
12. xi,j(t + 1) = Gi(t, j);
13. If fnew > f , return to step 1 until the iteration i = iteration is finished or a good solution is

discovered. If fnew < f , then print Gi(t, j);
14. Set xi,j(t + 1) = Gi(t, j);
15. Set the optimal segment of each particle;
16. New optimal_segment

(
kp
)

= current position
(
kp
)
;

17. Apply the PSO [11] Algorithm for the new optimal values.

The ESe-PSO adoption algorithm can be described based on the parameters and steps
described in the above pseudocode. Specifically, all of the parameters for the ESe-PSO
method and the problem’s dimensions and kinetic boundaries are calculated and set. Then,
according to the kinetic sensitivity, the number of segments to be created and the length of
each segment for each kinetic are determined. Following that, starting with segment 1 and
continuing until the number of segments is reached, the objective function is assessed, and
then the global optimum position is selected for each segment in the evaluation. Thereafter,
the iteration counter is set and the damping process damp is included, after which you
should update the inertia weight ω, the velocity vt,j, and the location xt,j. Then, once
the updating process has been completed, the fitness function f results are evaluated. A
particle segment’s global optimum position G(t, j) is determined based on whether the new
fitness function fnew is better than the current fitness f update. If, on the other hand, the
new fitness function fnew is less than the present fitness function f , the algorithm returns to
the beginning of its parameters and makes the necessary modifications. A second option is
that the algorithm finds issues that are highly solvable, or that the iteration is completed. In
this situation, the best particle segment is published from each particle segment on a global
scale. Following that, the global best of each particle segment is used to determine the
current position of each particle segment G(t, j) = current position

(
kp
)
. The PSO algorithm

then iterates through the possibilities until it finds the best solution.

4. Results
4.1. Algorithms Estimation Result

A comparative inertia weight is shown in Table 3. Five (5) different inertia weights
were tested 30 times to calculate the best solution with the best fitness function (the lowest)
updating the scheme (minimization) as described in [48–50]. The purpose here was to
investigate and enhance the Se-PSO algorithm’s ability with the inertia weight to increase
accuracy. These inertia weights were selected because the Se-PSO algorithm uses a constant
value and the particles face difficulties in exploration and exploitation since the problem is
highly nonlinear and the inertia weight is constant. However, applying different inertia
weight ω strategies can enhance the algorithm. Table 3 records the best five inertia weights
ω in terms of accuracy and efficiency of the ESe-PSO algorithm when dealing with small-
scale kinetic parameters estimation.

Figure 3 describes the 5 scenarios of the inertia weight (ω) to determine the best and
worst solution before starting the estimation.
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Table 3. The inertia weight test.

Number References Name of the Inertia
Weight The Formula of Inertia Weight

Best
Solution
Function

Worst
Solution
Function

1 [26] Random inertia
weight

ω = 0.5 + rand()
2 rand is a random number

between 0 and 1.
0.051 0.9

2 [38] Linear decreasing
inertia weight

ω =
(
(ωmax−ωmin)∗(itermax−itermin)

itermax

)
+ ωmin

where ωmin is the minimum inertia
weight = 0.4, ωmax is the maximum inertia
weight = 0.9, and itermax, min is the maximum
and minimum iterations.

0.023 0.07

3 [27] Constant inertia
weight ω = 0.9 0.04 0.8

4 [39] The chaotic inertia
weight

ω = (ω1 −ω2) ∗ itermax−itermin
itermax

+ ω2 ∗ z
z = 4 ∗ z ∗ (1− z)
where z is interval number (0, 1), ω1,2 are the
maximum and minimum inertia weight, and
itermax, min are the maximum and minimum
iterations.

0.031 0.09

5 ESe-PSO Damping process

damp =
((

ωmax−ωmin
itermax−itermin

)
+ ωmin

)
∗ωdamp

ωmax = 1 is the maximum inertia weight,
ωmin = 0.01 is the minimum inertia weight,
itermax, min is the maximum and minimum
iterations, and ωdamp = 0.99 is the
damping process value.

0.021 0.06

Note: The shaded cells represent the best and lower objective function.

Estimation of small-scale kinetics needs a sensitivity analysis to explore the kinetics’
efficacy. However, the sensitivity analysis shows how many outputs are affected by the
changes made to each kinetic parameter in order to identify the most sensitive kinetics.
The sensitive kinetic parameters of [4,10] were used for estimation purposes, where the
sensitivity percentage efficacy is shown in Table 4. It is difficult to optimize 172 kinetics at
the same time due to the small-scale kinetic parameters. As a result, the sensitivity analysis
was used to identify the most sensitive parameters and reduce estimation costs. All of
the kinetics were tested up to a 200% perturbation. Furthermore, during the simulation,
7 kinetic parameters were identified to be the most effective kinetics out of a total of 172
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and were designated as the parameters that needed to be estimated, while the remaining
kinetics were left at their original values because they had an efficacy of below 20% if the
perturbation was increased to 200%. The kinetic parameters’ segments were increased
throughout the ESe-PSO execution by adding one segment to each kinetic to boost the
likelihood of finding an accurate solution, which allowed the algorithm to search a broad
space. Additionally, the kinetic limits, with their upper and lower values, were started
with tiny increments. On the basis of the objective function, the optimal segment was
determined, as shown in Table 5. Thereafter, after updating the inertia weight by adding
the damping process, the method of updating the location, velocity, and the objective
function follows that of the PSO algorithm. The best segment is then used as the new
boundary, and PSO searches around it. The objective behind the damping process is to
boost the particles’ exploration and exploitation capabilities in order to find an optimal
solution. The damping process has a value of 0.99, and the inertia weight is [1, 0.01].

Table 4. The kinetic parameter segments.

Kinetics Number of Segments Sensitivity Affection

vpyk
max 2 39 (metabolites and enzymes) 73.58%

npk 3 44 (metabolites and enzymes) 83.09%
icdh 2 41 (metabolites and enzymes) 77.35%
k f

icdh
2 42 (metabolites and enzymes) 79.13%

kd
icdhnap 3 43 (metabolites and enzymes) 80.24%

Kicdhnapm 2 42 (metabolites and enzymes) 79.24%
vicl

max 3 46 (metabolites and enzymes) 86.79%

Table 5. The kinetic parameters boundaries.

Kinetics Original Lower Upper Kinetic
Estimation

vpyk
max 1.08500 0.82000 1.5000 0.820000

npk 3.00000 2.30000 3.5000 3.402000
icdh 24.4210 23.5000 24.900 23.82500
k f

icdh
289,800 289,799 289,800 289,799.9

kd
icdhnadp 0.0060 0.0030 0.0500 0.027000

km
icdhnadp 0.0170 0.0060 0.0600 0.007350

vicl
max 3.8315 3.3000 4.3000 3.956000

As a result, the damping changes its values in a decreasing manner in each iteration
until the iteration is complete.

Notably, the ESe-PSO approach utilized in this work precisely minimizes the model
response distance. Moreover, rather than the molecule itself, this reduction reduces just
15 metabolites. This is due to the addition of the Se-PSO algorithm’s kinetic parameter
segmentation and damping procedure. Tables 4 and 5 illustrate the segmentation of kinetic
parameters and the predicted kinetic parameters.

The segmentation was recommended based on the sensitivity analysis results’ effect on
the kinetic parameters. Only two kinetic factors influence more than or equal to 43 metabo-
lites and enzymes, accounting for more than 80% of the total. These were considered
two segments as a result of the extremely important alterations to the model output. The
others, on the other hand, were regarded as a single section. As a result, each segment was
expanded by one in order to maximize the likelihood of discovering an optimal solution.

The estimation of the kinetic parameters functions to minimize the distance of the
model responses from [9] and move it towards the experimental data from [20]. From
Table 6, it is evident that the simulation concentration result is remarkably close to the real
experimental data for the model under study measured by mM = 0.001 mole literˆ(−1.0).
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Table 6. The simulation results.

Metabolites Experimental
Data Model Data Optimized

Values PSO

Optimized
Values
Se-PSO

Optimized
Values
ESe-PSO

Optimized
Values DE

Optimized
Values GA

Glc 0.0617 mM 0.12276 mM 0.16717 mM 0.20195 mM 0.0395 mM 0.1523 mM 0.192 mM
G6P 1.76 mM 0.20364 mM 0.18432 mM 0.17731 mM 0.98621 mM 0.1602 mM 0.2013 mM
F6P 0.42 mM 0.02132 mM 0.01967 mM 0.01906 mM 0.0942 mM 0.02013 mM 0.019 mM
DHAP/GAP 0.231 mM 0.31106 mM 0.02496 mM 0.23518 mM 0.23518 mM 0.26023 mM 0.2812 mM
FDP 0.67 mM 1.4645 mM 0.84333 mM 0.71747 mM 0.65053 mM 0.9523 mM 1.214 mM
PEP 1.04 mM 1.4917 mM 1.2159 mM 1.1587 mM 1.087 mM 1.21 mM 1.325 mM
PYR 1.71 mM 2.8101 mM 3.3025 mM 3.832 mM 2.3502 mM 3.025 mM 2.894 mM
6PG 0.96 mM 0.01785 mM 0.01828 mM 0.01881 mM 0.0932 mM 0.01925 mM 0.0181 mM
Ru5P 0.088 mM 0.02135 mM 0.02093 mM 0.02101 mM 0.0352 mM 0.01933 mM 0.0183 mM
R5P 0.243 mM 0.0762 mM 0.07443 mM 0.07457 mM 0.0835 mM 0.07023 mM 0.0752 mM
E4P 0.112 mM 0.02744 mM 0.02162 mM 0.02003 mM 0.0625 mM 0.02625 mM 0.0252 mM
AcCoA 0.145 mM 1.0015 mM 1.117 mM 1.2679 mM 0.9325 mM 1.1025 mM 1.081 mM
OAA 0.241 mM 0.02962 mM 0.02268 mM 0.01592 mM 0.0503 mM 0.02525 mM 0.0282 mM
ICIT 0.21 mM 0.2103 mM 0.01241 mM 0.00206 mM 0.1902 mM 0.01925 mM 0.038 mM
2KG 0.134 mM 5.3656 mM 4.2219 mM 2.8222 mM 2.6253 mM 4.335 mM 4.4241 mM
Ace 0.36 mM 0.00347 mM 0.00499 mM 0.00626 mM 0.0825 mM 0.00225 mM 0.00342 mM
Distance 0 57.16% 37.09% 26.29% 16.18% 33.9% 35.34%

Note: The shaded cells represent the best simulation result of each algorithm.

As presented in Table 6, using the experimental data from [20], the estimation result
of the ESe-PSO algorithm improved as compared to the results from the Se-PSO and
PSO algorithms. The estimated result is highlighted. In the ESe-PSO estimation results,
15 metabolites (GLc, G6P, F6P, GHAP/GAP, FDP, PEP, PYR, 6PG, Ru5P, R5P, E4P,
AcCoA, OAA, 2KG, and Ace) were well-optimized with a minimized error of about 16.81%.

Only the ICIT was not properly minimized. In the Se-PSO estimation results, seven
(7) metabolites (GHAP/GAP, FDP, PEP, 6PG, Ru5P, 2KG, and Ace) were well-optimized
and minimized, with an error of about 26.29%. In the PSO estimation results, seven (7)
metabolites (GHAP/GAP, FDP, PEP, 6PG, Ru5P 2KG, and Ace) were well-optimized
and minimized, with errors of approximately 37.09%. In the DE estimation results, six (6)
model outputs (DHAP/GAP, FDP, 6PG, Ru5P, and 2KG) were well-optimized, with a
minimized distance of about 33.9%. In the GA estimation result, six (6) metabolites (GLc,
DHAP/GAP, FDP, PEP, 6PG, Ru5P, and 2KG) were well-optimized, with a distance
minimized to 35.34%. Therefore, it can be confirmed that the results were perfect when
compared to the model under study, which has a distance of 57.16% [9].

This indicates that, for kinetic parameter estimation, all these algorithms could provide
a decent result, but the adopted and enhanced algorithm produces a better estimation than
the others in terms of accuracy. Some of the metabolites were not minimized to a slight
degree due to the other pathways’ involvement, the model complexity, and the lumping
together of various metabolites [9].

A comparative experiment is shown in Table 7. The ESe-PSO achieved the best
(7.04 ∗ 10−5 and 7.41 ∗ 10−5) objective function mean as compared to the Se-PSO algorithm
and the best mean (0.000603 and 0.00379), PSO (0.003893 and 0.00549), GA (0.11476 and
0.269007), DE (0.049185), and 0 and DE (0.049185 and 0.280478), respectively, for the Hoque
dataset. Overall, the ESe-PSO can be adopted to effectively estimate small-scale kinetic
parameters to obtain accurate and acceptable results.
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Table 7. Comparative objective function results over 20 runs [19].

Methods Mean STD Best Lower

PSO 0.00549 0.018391 0.00057 0.030252
Se-PSO 0.000379 0.003526 0.000021 0.00758
ESe-PSO 7.41 × 10−5 0.000338 3.7 × 10−6 0.00052
DE 0.023385 0.280478 0.00024 0.50257
GA 0.114985 0.269007 0.0081 0.1472

Note: The shaded cells represent the MEAN, STD, and BEST and LOWER objective functions.

Notably, the ESe-PSO was superior to the original Se-PSO, PSO, and other state-of-
the-art approaches in terms of distance minimization, and the smallest objective function’s
value produced appropriate fits to two sets of experimental data. This is because the ESe-
PSO algorithm added a damping process to increase the exploration and exploitation of the
search space to support the particle in finding a global optimum solution. This modification
facilitates the accurate determination of the optimal solution. The inertia weight ω was
adjusted to the maximum and minimum during the damping process.

However, as stated in [32,51], the mean, STD (standard deviation), distance mini-
mization, and F-test can be calculated for the result accuracy. The STD is a well-known
measurement of how broad the meanings of the values being distributed are. The dis-
tance minimization is used to see how much the algorithm moves the estimation closer
to real experimental data. An F-test is any statistical test in which the test statistic has an
F-distribution under the null hypothesis. It is most often used when comparing statistical
models that have been fitted to a dataset, in order to identify the model that best fits the
population from which the data was sampled. As a result, using the experimental dataset,
the algorithms were implemented and adopted to minimize the distance between the
simulation results and the results in [20].

The hypothesis of this study is based on the results from the six estimations as follows:

H0 : STD2
E ≥ STD2

D (6)

H1 : STD2
E < STD2

D (7)

where STD2
E is the standard deviation of the optimized result E, STD2

D is the standard
deviation of the model under study D, and nE, nD are the number of variables for the
optimized and model result, respectively.

To ensure that the final simulated results were statistically consistent with the exper-
imental results in Table 5, a statistical test, the F-test [51], was applied to the ESe-PSO
algorithm results with the model under study and the experimental data. The results,
using the method from Hoque et al., 2005, show that all the metabolites achieved an STD
close to the mean and 0. Thus, this demonstrates that the results produced by ESe-PSO are
consistent with Equation (9). The hypothesis of the result in Table 5 was calculated and
confirmed using Equations (8) and (9).

Ftest =
STD2

E
STD2

D
=

0.7381
2.0941

= 0.3525 (8)

F1−0.05 =
1

F0.05,nE ,nD

=
1

F0.05,15,15
=

1
2.4034

= 0.4161 (9)

The hypothesis in Table 5 aims to minimize the distance of the model under study.
Therefore, it was concluded that H0 is rejected, while H1 is accepted as a reasonable result.
The model simulation, after estimation, is presented in Table 5.

After the kinetic parameters were estimated and the model outputs under study were
minimized, an observable increase or decrease in the model pathway output simulation
results was noted as compared to the model under investigation, as shown in Figure 4.
In the glycolysis pathway, the model response simulation of GLcex, FDP, GAP/DHAP,
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PEP, and PYR decreased, while G6P and F6P increased due to the pts system and a little
consumption of GLcex. In the pentose phosphate pathway, the model outputs simulation
of 6PG, Ru5P, R5P, Xu5P, and E4P increased, while S7P decreased due to the increase in
G6P and the involvement of F6P and GAP/DHAP in the calculation.
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In the TCA cycle, the simulated model outputs of OAA, FUM, and GOX increased
due to gluconeogenesis/analaprotic pathway involvement and the effect of the mez, pck,
and ppc enzymes. This was also due to the increases in PEP and PYR, whereas the
metabolites ICIT, 2KG, SUC, and MAL decreased. Moreover, acetate formation had a
certain impact on the model response, which resulted in increases in ACP and decreases
in ACE and AcCOA. This was due to AcCOA′s involvement in the TCA cycle and the
glyoxylate pathways. In the glyoxylate pathway, the metabolites ICIT, SUC, and MAL
decreased, while GOX increased. This was attributed to the involvement of the TCA
cycle, the analaprotic pathway, and AcCOA involvement. In the analaprotic pathway, the
metabolites PEP, PYR, and MAL decreased, while the metabolite OAA increased due to
the TCA cycle and analaprotic pathway involvement.

On the contrary, the other metabolites moved slightly towards the experimental data
with small errors. These changes occurred due to other metabolites’ participation, model
complexity, glucose depletion, and the lumping together of various metabolites to simplify
the model.
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4.2. ESe-PSO Algorithm with Different Optimization Problems

The performance of the enhanced segment particle swarm optimization (ESe-PSO)
algorithms was compared to that of the original segment particle swarm optimization (Se-
PSO) algorithms. The test functions were chosen from six different benchmark functions
using the Sphere, Rosenbrock, Rastrigin, Griewank, Shubert, and Booth functions with
asymmetric initial range settings (higher and lower boundary values). The experimental
results indicated that the ESe-PSO method outperformed the original Se-PSO algorithm in
terms of convergence speed under all test conditions. However, the experimental results
established ESe-PSO as a potentially useful optimization algorithm in a variety of other
fields.

Nonlinear functions are used as a comparison here. The first function is the Sphere
function, which is represented by equation ( f (x)), as follows:

f (x) = ∑n
i = 1 X2 (10)

where X = (X1, X2, . . . , Xn) is an n-dimensional real valued vector. The second function is
the Rosenbrock function as described by equation ( f1(x)):

f1 = ∑n
i = 1(100

(
Xi − X2

i

)2
+ (Xi − 1)2) (11)

The third function is the generalized Rastrigrin function as described by equation
( f2(x)):

f2 = 10d + ∑d
i = 1

[
x2

i − 10 cos(2π xi)
]

(12)

The fourth function is the generalized Griewank function as described by equation
( f3(x)):

f3(x) =
1

4000 ∑n
i = 1 X2

i = 1 −∏n
i = 1 cos

(
Xi√

i

)
+ 1 (13)

The fifth function is the generalized Shubert function as described by equation ( f4(x)):

f4 =
(
∑5

i = 1 i cos((i + 1)x1 + i)
)(

∑5
i = 1 i cos((i + 1)x2 + i)

)
(14)

The sixth function is the generalized Booth function as described by equation ( f5(x)):

f5 = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 (15)

As shown in Table 8, the maximum number of iterations for each function in both
algorithms was set to 50, 100, and 150. The bird number was set to 20, 40, 60, and 80. Each
algorithm was evaluated 10 times in order to determine the mean global optimum position.

Table 8. The functions’ boundaries.

Functions Lower and Upper Values

f [−5, 5]
f1 [−5, 10]
f2 [−5.12, 5.12]
f3 [−600, 600]

f4
[−10, 10] for i = 1, 2,
[−5.12, 5.12] i = 1, 2

f5 [−10, 10] for all i = 1, 2

Furthermore, as demonstrated in Tables 9 and 10, the ESe-PSO convergence speed
towards the optimal values was faster than that of Se-PSO. It is worth noting, however, that
the ESe-PSO method’s convergence was swift in all functions but slowed when scanning a



Processes 2023, 11, 126 19 of 25

huge space for the global optimum location before being chosen by the ESe-PSO algorithm
as it approached the optimum.

Table 9. ESe-PSO consumption for Sphere function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.194 s 0.003 s
PSO 3 0.191 s 0.040 s
Sphere 4920 0.161 s 0.151 s

Table 10. Se-PSO consumption for Sphere function.

Function Calls Total Time Self-Time

Se-PSO 1 0.213 s 0.004 s
PSO 3 0.209 s 0.030 s
Sphere 4920 0.179 s 0.179 s

The ESe-PSO took 0.194 s to attain the optimum global position, whereas the Se-PSO
took only 0.213 s. The self-time column in Tables 9 and 10 show that ESe-PSO took 0.004 s
to determine the global optimum position, while Se-PSO took 0.013 s. Furthermore, as
indicated in the calls column (4920 and 650), ESe-PSO searched the vast space nearly twice
as fast as Se-PSO.

When compared to Se-PSO, the global optimum position of ESe-PSO in the Sphere
function produced a far superior outcome Table 11 in a short period of time.

Table 11. ESe-PSO and Se-PSO global best positions for Sphere function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 1.21607 × 107 2.12225 × 106

15 10 15 3.68313 × 109 4.25861 × 108

25 10 15 2.83561 × 1010 2.03589 × 109

Furthermore, as shown in Tables 12 and 13, ESe-PSO’s convergence speed towards
the optimal values was faster than the Se-PSO’s. It is worth noting, however, that the
convergence of ESe-PSO was swift across the board, but it slowed down when scanning a
broad space for the global optimum location before being chosen by the PSO algorithm
as it approached the optimum. The ESe-PSO took 0.240 s to obtain the optimum global
position, but the Se-PSO only took 0.363 s. The self-time column in Tables 12 and 13 shows
that ESe-PSO took 0.0009 s to determine the global optimum position, while Se-PSO took
0.001 s. Furthermore, as indicated in the calls column (4920), ESe-PSO searched the vast
space nearly twice as fast as Se-PSO.

Table 12. ESe-PSO consumption for Rastrigin function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.240 s 0.0009 s
PSO 3 0.239 s 0.0291 s
Rastrigin 4920 0.210 s 0.210 s

Table 13. Se-PSO consumption for Rastrigin function.

Function Calls Total Time Self-Time

Se-PSO 1 0.363 s 0.001 s
PSO 3 0.362 s 0.028 s
Rastrigin 4920 0.334 s 0.334 s
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In Table 14, the global optimum position of ESe-PSO exhibited a considerably im-
proved outcome in a short time as compared to Se-PSO in the Rastrigin function.

Table 14. ESe-PSO and Se-PSO global best position for Rastrigin function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 3.4572 × 10−7 8.3919 × 10−6

15 10 15 5.7394 × 10−7 2.2586 × 10−7

25 10 15 6.8241 × 10−9 2.03589 × 10−8

Furthermore, as shown in Tables 15 and 16, the ESe-PSO’s convergence speed towards
the optimal values was faster than that of the Se- PSO. It is worth noting, however, that the
convergence of ESe-PSO was swift across the board, but it slowed down when scanning a
broad space for the global optimum location before being chosen by the PSO algorithm
as it approached the optimum. The ESe-PSO took 0.135 s to obtain the optimum global
position, but the Se-PSO took only 0.158 s. The self-time column in Tables 15 and 16 shows
that ESe-PSO took 0.001 s to determine the global optimum position, while Se-PSO took
0.004 s. Furthermore, as indicated in the calls column (4920), ESe-PSO searched the vast
space nearly twice as fast as Se-PSO.

Table 15. ESe-PSO consumption for Rosenbrock function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.135 s 0.001 s
PSO 3 0.134 s 0.021 s
Rosenbrock 4920 0.113 s 0.113 s

Table 16. Se-PSO consumption for Rosenbrock function.

Function Calls Total Time Self-Time

Se-PSO 1 0.158 s 0.004 s
PSO 3 0.154 s 0.026 s
Rosenbrock 4920 0.128 s 0.128 s

In Table 17, the global optimum position of ESe-PSO exhibited a considerably im-
proved outcome in a short time as compared to Se-PSO in the Rosenbrock function.

Table 17. ESe-PSO and Se-PSO global best position for Rosenbrock function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 0 0
15 10 15 0 0
25 10 15 0 0

Furthermore, as shown in Tables 18 and 19, the ESe-PSO’s convergence speed towards
the optimal values was faster than that of the Se-PSO. It is worth noting, however, that the
convergence of ESe-PSO was swift across the board, but it slowed down when scanning a
broad space for the global optimum location before being chosen by the PSO algorithm
as it approached the optimum. The ESe-PSO took 0.363 s to obtain the optimum global
position, but the Se-PSO took only 0.048 s. The self-time column in Tables 18 and 19 shows
that ESe-PSO took 0.001 s to determine the global optimum position, while Se-PSO took
0.013 s. Furthermore, as indicated in the calls column (4920), ESe-PSO searched the vast
space nearly twice as fast as Se-PSO.
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Table 18. ESe-PSO consumption for Griewank function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.023 s 0.001 s
PSO 3 0.022 s 0.014 s
Griewank 4920 0.008 s 0.008 s

Table 19. Se-PSO consumption for Griewank function.

Function Calls Total Time Self-Time

Se-PSO 1 0.037 s 0.002 s
PSO 3 0.035 s 0.022 s
Griewank 4920 0.013 s 0.013 s

In Table 20, the global optimum position of ESe-PSO exhibited a considerably im-
proved outcome in a short time as compared to Se-PSO in the Griewank function.

Table 20. ESe-PSO and Se-PSO global best position for Griewank function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 9.8935 × 10−8 8.1222 × 10−7

15 10 15 5.4572 × 10−12 8.4574 × 10−10

25 10 15 6.1742 × 10−15 3.5258 × 10−13

Furthermore, as shown in Tables 21 and 22, the ESe-PSO’s convergence speed towards
the optimal values was faster than that of the Se-PSO. It is worth noting, however, that the
convergence of ESe-PSO was swift across the board, but it slowed down when scanning a
broad space for the global optimum location before being chosen by the PSO algorithm as it
approached the optimum. The ESe-PSO took 0.25 s to obtain the optimum global position,
but the Se-PSO took only 0.032 s. The self-time column in Tables 21 and 22 shows that
ESe-PSO took 0.002 s to determine the global optimum position, while Se-PSO took 0.003
s. Furthermore, as indicated in the calls column (4920), ESe-PSO searched the vast space
nearly twice as fast as Se-PSO.

Table 21. ESe-PSO consumption for Shubert function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.025 s 0.002 s
PSO 3 0.024 s 0.015 s
Shubert 4920 0.006 s 0.006 s

Table 22. Se-PSO consumption for Shubert function.

Function Calls Total Time Self-Time

Se-PSO 1 0.032 s 0.003 s
PSO 3 0.029 s 0.020 s
Shubert 4920 0.009 s 0.009 s

In Table 23, the global optimum position of ESe-PSO exhibited a considerably im-
proved outcome in a short time as compared to Se-PSO in the Shubert function.
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Table 23. ESe-PSO and Se-PSO global best position for Shubert function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 −186.7278 −186.7234
15 10 15 −186.7300 −186.7245
25 10 15 −186.7309 −186.7289

Furthermore, as shown in Tables 24 and 25, the ESe-PSO’s convergence speed towards
the optimal values was faster than that of the Se-PSO. It is worth noting, however, that the
convergence of ESe-PSO was swift across the board, but it slowed down when scanning a
broad space for the global optimum location before being chosen by the PSO algorithm
as it approached the optimum. The ESe-PSO took 0.363 s to obtain the optimum global
position, but the Se-PSO took only 0.048 s. The self-time column in Tables 24 and 25 shows
that ESe-PSO took 0.001 s to determine the global optimum position, while Se-PSO took
0.004 s. Furthermore, as indicated in the calls column (4920), ESe-PSO searched the vast
space nearly twice as fast as Se-PSO.

Table 24. ESe-PSO consumption for Booth function.

Function Calls Total Time Self-Time

ESe-PSO 1 0.015 s 0.001 s
PSO 3 0.014 s 0.010 s
Booth 4920 0.004 s 0.004 s

Table 25. Se-PSO consumption for Booth function.

Function Calls Total Time Self-Time

Se-PSO 1 0.027 s 0.004 s
PSO 3 0.023 s 0.014 s
Shubert 4920 0.009 s 0.009 s

In Table 26, the global optimum position of ESe-PSO exhibited a considerably im-
proved outcome in a short time as compared to Se-PSO in the Booth function.

Table 26. ESe-PSO and Se-PSO global best position for Booth function.

Bird Steps Dimension Iteration ESe-PSO Se-PSO

5 10 15 0.0000 0.0023
15 10 15 0.0000 0.0012
25 10 15 0.0000 0.0001

5. Conclusions

For the purposes of this study, ESe-PSO and a number of other state-of-the-art algo-
rithms were developed and assessed. Particle segmentation was used in order to direct the
motion of the particles toward the global optimal location. The inertia weight and dampen-
ing procedure of this algorithm were also changed to boost exploration and exploitation in
order to discover the global optimum location more quickly. We demonstrate the universal
applicability of the adopted technique by successfully applying it to small-scale kinetic
parameters. The E. coli model’s small-scale kinetic parameters were evaluated using the
ESe-PSO, Se-PSO, PSO, DE, and GA algorithms. Small-scale models can benefit greatly
from the ESe-PSO method because of its high estimate efficiency. The seven kinetic parame-
ters (vpyk

max, npk, icdh, k f
icdh, kd

icdhnap, km
icdhnadp, and vicl

max) were effectively estimated. The F-test,
the mean, and the STD proved that the results are moved closely to the real experimental
data.
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