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ABSTRACT

The non-linear I-V characteristics of the photovoltaic output have affected fault detection methods to work accurately. This scenario can cause hidden faults in the 
system and reduces overall productivity. Fault detection and monitoring techniques are evolving in photovoltaic fault management systems. Until recently, model-
based technique, output signal analysis technique, statistically based technique, and machine learning techniques are the four main advanced fault detection methods 
that researchers have widely studied. This study has identified the limitations and advantages of previous photovoltaic fault detection and monitoring techniques, 
especially their applicability to all sizes of photovoltaic systems. This study proposes a multi-scale dual-stage photovoltaic fault detection and monitoring technique for 
better system safety, efficiency, and reliability. Challenges and suggestions for future research directions are also provided in this study. Overall, this study shall provide 
researchers and policymakers with a valuable reference for developing better fault detection and monitoring techniques for photovoltaic systems.
Index Terms—Advanced fault detection and monitoring techniques, machine learning techniques, model-based technique, output signal analysis technique, 
photovoltaic, statistically based technique
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I. INTRODUCTION

The power generation from the solar photovoltaics (PV) system has experienced substantial 
increases in the last decade worldwide [1]. However, along with this growth, the associated risks 
also increased significantly. Common faults in the PV system can be caused by physical or com-
ponent damage, electrical and mechanical damage, defects in system design, environmental 
impacts, improper installation, and unscheduled maintenance [2,3]. Therefore, a PV fault moni-
toring system is crucial in increasing PV systems’ reliability, efficiency, and safety.

Conventional protection devices (CPD) such as fuses and circuit breakers are normally used as 
protection devices because they are easy to handle and inexpensive. The CPD can detect faults 
and isolate faulty circuits only for large fault currents [4]. Studies have also proven that CPDs are 
usually hard to detect faults if the voltage difference is minor, such as faults under low irradiance 
transition conditions that occur during partial shading, degradation, and the transition of night-
to-day [5,6]. As a result, undetected faults are hidden, reduce the system’s efficiency and reliabil-
ity, and may cause severe effects such as electric shock or fire hazards [5,7-9]. Hence, advanced 
fault detection and monitoring technique (FDMT) is needed for maintaining PV system, identify-
ing the root cause of failures, and recommending corrective action for the PV system to operate 
or function accurately.

Researchers have conducted many studies on advanced FDMT to develop better PV fault detec-
tion and monitoring systems, especially to detect potential faults on the DC side, which is the 
dominant part of fire risk [8]. According to [10], four main FDMTs are commonly used in PV sys-
tems: the model-based power loss and I, V curve approaches are the most widely used, followed 
by machine learning and statistically based techniques (SBTs). The least used is the output signal 
analysis technique.

The model-based approach compares the expected data obtained from the simulation process 
with data measured from an experiment or data collected from a real PV system [11,17], while 
today’s most favorable method, the machine learning technique (MLT), which mainly consists 
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of three main algorithm approaches, supervised learning, semi-
supervised learning, and unsupervised learning, exploits artificial 
intelligence (AI) in completing the task [18-25]. Meanwhile, in the 

statistical analysis approaches, the most common application is 
determining the threshold value of each monitored parameter and 
comparing it with the measured value of the threshold limit (lower 
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Fig. 1. Common faults on the DC and AC sides of the PV system.

Fig. 2. Brief description of common faults on DC and AC sides of the PV system.
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and upper limit) to obtain normal or faulty conditions of the PV sys-
tem [17,26-30]. Finally, the output signal analysis works on the fre-
quency time-domain examination to detect any abnormalities in the 
sample while identifying faults in the PV system [31-36].

Many studies have analyzed the effectiveness of these four advanced 
FDMTs mainly on the accuracy, ability to detect and diagnose faults, 
the complexity of integration with PV systems, and implementa-
tion costs. Nevertheless, this study found that the development of 
these fault detection techniques still has gaps that can be improved, 
especially for the fault localization of large-scale PV systems, which is 
always challenging and time-consuming [37,38], the practicability for 
PV maintenance work [39], and suitability for all PV array sizes. Hence, 
an improved version of the fault detection and monitoring approach 
has been proposed in this study. This study is organized as follows: 
first, this study describes common faults in PV systems. Then it ana-
lyzes the main advanced FDMTs established from previous studies 
to find their advantages and limitations. Subsequently, this study 
provides recommendations and discussions to develop an improved 
PV system fault detection and monitoring model. Finally, this study 
presents conclusions and discusses the work for the future direction.

II. COMMON FAULTS IN THE PV SYSTEM

Common faults on the DC and AC sides of PV systems can be cat-
egorized according to time characteristics as permanent, inter-
mittent, and incipient [37]. Permanent faults remain in place until 
corrections are made, such as line–line faults, open-circuit faults, 
ground faults, and arc faults. Intermittent faults refer to temporary 
effects such as shading, leaves, bird drops, dust, and snow accumu-
lation. On the other hand, incipient fault can occur due to cell deg-
radation, corrosion, and partial damage to the joints. Untreated 
incipient faults may lead to permanent faults. The common fault 
classifications for PV systems are illustrated in Fig. 1, with a brief 
description of those faults shown in Fig. 2 [37,40,41]. Meanwhile, a 
brief overview of deterministic features of the faults, their poten-
tial causes, and effects are depicted in Table I [3,8,37,42].

III. OVERVIEW OF MAIN ADVANCED PV FAULT DETECTION 
TECHNIQUE

As CPD cannot detect all the defects and failures in PV systems, many 
advanced FDMTs have been developed for reliable PV system pro-
tection methods. This study evaluates model-based power loss and 
IV curve analysis, MLT, statistically based analysis, and output signal 
analysis proposed in the previous studies regarding their reliability 
and feasibility.

A. Model-based Technique
Model-based Technique (MBT) uses the principle of comparing sim-
ulation data (expected values) with experimental or measured data 
(output) from a real system to find the abnormalities. The common 
procedure of MBT as fault detection and diagnosis technique can be 
seen in Fig. 3 [11-13,15,16,43]. The basic formula for the MBT involv-
ing a threshold that describes the limits of the PV system operational 
status detection variable is given in (1). In contrast, the MBT involves 
a threshold limit in (2).
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From (1), x is the tolerance factor in avoiding tripping. While in 
(2), thmax and thmin refer to the upper and lower thresholds, 
respectively.

TABLE I. THE COMMON FAULTS IN A PV SYSTEM, THEIR POTENTIAL CAUSES, 
AND EFFECTS

Fault Type Causes of Fault/Defect Potential Effect

Short-circuit fault/
line–line fault

Undersize overcurrent 
protection devices, 
undersize cable/wire, poor 
installation practices, or 
human error

Reduce power output, 
overheating, wire insulation 
damage

Open-circuit fault Disconnected terminal 
circuit

Reduce power output

Mismatch/partial 
shading

Environmental effects, 
uneven radiation received 
by PV array, inadequate 
maintenance

Reduce power output

Ground fault Incorrect grounding system 
design, poor installation 
practices, or human error

Tripping/no power output

Arc fault/ hot spot Poor installation practices 
or human error

Fire risk

Lightning strike Natural hazard Fire risk

Degradation Weathering and aging 
effect

Reduce power generation

Reverse bypass 
diode

Poor installation practices 
or human error

No power output

PV, photovoltaic.

Start

Simulation model of 
PV system/array (STC)

 Output data collection 
(Actual PV system)

Simulated/
experimental 

data

Measured/
collected data

Comparison process:
Data_meas = xData_sim

Data_thmax ≤ Data_sim ≤ Data_thmin   

Normal Fault

YES NO

Fig. 3. The common procedure of MBT.
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Studies [11,13] compared, measured, and simulated output ratios, 
including I–V curve signature analysis, module degradation factor, 
and power performance, to develop a real-time FDMT algorithm. 
This algorithm has successfully detected partial shading, faulty mod-
ule, degradation, ground fault, line–line fault, and open-circuit fault. 
Another real-time FDMT algorithm was developed [14]. This FDMT 
was formulated based on theoretical voltage and power ratio analy-
sis for fault detection and hybrid with fuzzy logic (FL) algorithm to 
detect partial shading faults on the DC side of the grid-connected 
PV system (GCPVS).

A study [15] used estimated and measured maximum power point 
current and maximum power values to detect, diagnose, and locate 
a line–line fault, ground fault, and partial shading for PV arrays 
with blocking diodes. On the contrary, a study by [16] proposed a 
fault detection algorithm using artificial bee colonies (ABC) as an 
optimizer. This study has successfully detected four faults using 
estimated and measured values of maximum power point voltage, 
maximum power point current, and maximum power. Furthermore 
[17], used Gray wolf optimization (GWO) to detect, diagnose, and 
locate open-circuit and short-circuit faults at the string level of PV 
arrays. A detailed summary of some featured studies using the MBT 
is summarized in Table II.

The table shows that most of the proposed MBTs were usually 
developed through simulation processes and experimental proce-
dures involving weather stations to obtain actual or measured data. 
The installation method was easily executed, required medium 
to high installation costs, and obtained medium to high accuracy. 
Nevertheless, most were developed to detect specific faults and 
were not tested for fault locations. In addition, almost all of these 
studies were not tested or evaluated for large-scale PV arrays.

B. Machine Learning Technique
MLT consists of various methods, principles, and structures. They 
require input data and parameters from weather and meteorologi-
cal station. The MLT has three main algorithms: supervised learning, 
semi-supervised learning, and unsupervised learning, which utilize 
computer intellect to complete the task [44]. The supervised learn-
ing process uses training data that are fully labeled with a known 
class label and is the most used MLT algorithm, such as an artificial 
neural network (ANN), which is normally used for classification. The 
common process of MLT as fault detection and diagnosis technique 
is depicted in Fig. 4 [18-25].

The study [18] employed the ANN and an optimized Kernel extreme 
learning machine for fault diagnosis and verified high accuracy. 

TABLE II. A DETAILED SUMMARY OF SOME STUDIES USING THE MODEL-BASED TECHNIQUE

Ref
Description of Study  
(Approaches and Type of PV System)

Software/
Programming

Tested/Evaluated  
(PV Array Scale)

Validation
Cost of 

Installation
Accuracy 
AchievedSmall Medium Big

[11] • Fault detection: I-V curve real-time analysis
• Stand alone
• Fault detected: PS on DC side
• Easy integration with PV array/system

LabVIEW √ Simulation and 
experiments

Medium Medium

[13] • Fault detection: module degradation factor
• Stand alone
• Fault detected: DA and LLF on the DC side.
• Easy integration with PV array/system

- √ √ Experiments High Medium

[14] • Fault detection: VR and PR
• Fault diagnosis: FL
• Grid-tied
• Fault detected: PS on DC side
• Medium complexity of integration with PV array/system

LabVIEW √ √ Simulation and 
experiments

Medium to 
high

High

[15] • Fault detection and diagnosis: Voc, Isc, Pmpp, and Impp
• Stand alone with MPPT
• Fault detected: LLF, LGF, and PS on the DC side.
• Medium complexity of integration with PV array/system

PSIM √ Simulation and 
experiments

High High

[16] • Fault detection and diagnosis: Vmpp, Impp, Pmpp, and 
ABC algorithm

• Grid-tied with MPPT
• Fault detected: OCF, SCF, PS, and IF on DC side and AC side.
• Medium complexity of integration with PV array/system

MATLAB/PSIM √ Simulation and 
experiments

Medium to 
high

High

[17] • Fault detection: Output current
• Fault diagnosis: GWO
• Stand alone with MPPT
• Fault detected: OCF and SCF on the DC side.
• Medium complexity of integration with PV array/system

MATLAB √ Simulation and 
experiments

Medium to 
high

High

VR, voltage ratio; PR, power ratio; FL, fuzzy logic; LLF, line–line fault; LGF, line–ground fault; PS, partial shading; OCF, open-circuit fault; SCF, short-circuit fault; IF, inverter 
fault; FM, faulty module; GF, ground fault; DA, degradation array; IF, inverter fault; Voc, open circuit voltage; Isc, short circuit current; Pmpp, maximum power point; Impp, 
maximum power point current; Vmpp, maximum power point voltage, MPPT, maximum power point tracking.
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[45] has studied the combination of radial basis function networks 
(RBFN) and the wavelet transform in PV fault classification. The RBFN 
is a feed-forward neural network, and a faster learning speed has 
performed better than a conventional classifier.

Besides that [19] developed a fault detection algorithm for a line–
line fault in a PV array based on a support vector machine (SVM) 
classifier. Meanwhile [20] explored random forest-based (RF) fault 
diagnosis for PV arrays using array voltage and string current. Lastly 
[21] has proven that the MLT using K-nearest neighbors has suc-
cessfully detected, diagnosed, and localized electrical faults and 
partial shading.

Semi-supervised learning is a combination of supervised and unsu-
pervised learning approaches. It uses both labeled and unlabeled 
data for training. This technique learns from mistakes to make a 
decision, such as in [22], which used a graph-based semi-supervised 
learning procedure. Lastly, unsupervised learning uses only unla-
beled training data for processing tasks of clustering or prediction, 
such as in [23] using FL. It has successfully detected and diagnosed 
faults on the DC side of GCPVS. A detailed summary of these studies 
is presented in Table III.

The table shows that most proposed MLT detection methods were 
developed through simulation and experimental procedures involv-
ing weather stations to obtain data. These methods have achieved 
high accuracy in detecting and diagnosing faults. However, most 

Data acquisition

Data collection via process of 

Simulation /experimental/measurement

Modelling & Simulation ML algorithm

Testing/training ML algorithm

Results of Fault detection and diagnosis

(Decision making)

Parameter/feature extraction

Fig. 4. The common procedure of MLT.

TABLE III. A DETAILED SUMMARY OF SOME FEATURED STUDIES USING THE MACHINE LEARNING TECHNIQUES

Ref
Description of Study  
(Approaches and Type of PV System)

Software/
Programming

Tested/Evaluated  
(PV Array Scale)

Validation
Cost of 

Installation
Accuracy 
AchievedSmall Medium Big

[18] • Fault detection: ANN
• Fault diagnosis: KELM
• Stand alone
• Fault detected: DA, SCF, OCF, and PS on the DC side

MATLAB 
Simulink 

√ √ Simulation 
and 

experiments

Medium High

[19] • Fault detection: SVM
• Stand alone
• Fault detected: LLF, DA, and PS on the DC side

MATLAB 
Simulink

√ Simulation 
and 

experiments

Medium High

[20] • Fault detection and diagnosis: RF
• Grid-tied
• Fault detected: DA, PS, and LLF on DC side and AC side

MATLAB 
Simulink

√ Simulation 
and 

experiments

High Medium

[21] • Fault detection, diagnosis, and location: KNN
• Grid-tied
• Fault detected: OCF, LLF, and PS on DC side and AC side.

MATLAB/ PSIM √ √ Simulation 
and 

experiments

Medium to 
high

Medium

[22] • Fault detection and diagnosis: GBSL
• Stand alone
• Fault detected: LLF and OCF on the DC side.

MATLAB 
Simulink

√ Simulation 
and 

experiments

High Medium

[23] • Fault detection: ANN and FL
• Grid-tied
• Fault detected: OCF and SCF on the DC side.

MATLAB 
Simulink

√ Simulation 
and 

experiments

Medium High

[45] • Fault classification: RBFN combined with a wavelet-based approach 
for feature extraction

• Stand alone
• Fault detected: PS, LLF, SCF, OCF, PS, and FM on DC side and AC side

MATLAB 
Simulink

√ Simulation 
and 

experiments

Low High

LLF, line–, line fault; LGF, line, ground fault; PS, partial shading; OCF, open, circuit fault; SCF, short, circuit fault; IF, inverter fault; FM, faulty module; GF, ground fault; 
DA, degradation array; IF, inverter fault; ANN, artificial neural network; KELM, Kernel extreme learning machine; SVM, support vector machine; RF, random forest; KNN, 
K-nearest neighbors; GBSL, graph-based semi-supervised learning; RBFN, radial basis function networks.
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studies did not offer the fault location. In addition, they required 
moderate to high implementation costs due to the need for special-
ized computer software and specialized skills to execute the proce-
dure. In addition, all of these MLTs were not tested or evaluated on 
large-scale PV arrays.

C. Statistically based Technique
SBT uses a data-based approach to build a model. Usually, the SBT 
approach applies a difference in the mean or variance to indicate any 
errors in the system [46]. Figure 5 describes the common process of 
SBT in detecting and diagnosing faults in the PV system [17,26-29].

A study by [26] proposed a t, test analysis of power and voltage ratio 
to determine a faulty PV module, faulty string, faulty bypass diode, 
and faulty MPPT on the DC and AC sides of the GCPVS, while [27] 
introduced the PV fault detection method with better noise robust-
ness and monitoring quality using the independently generalized 
likelihood ratio test.

A study by [28] developed a fault monitoring method using an expo-
nentially weighted moving average (EWMA). The technique suc-
cessfully detected open-circuit fault, short-circuit fault, and partial 
shading in the PV system. To further explore this technique [29] pre-
sented univariate and multivariate exponentially weighted moving 
average charts to monitor the performance of the PV system. The 

Start

The analysis result within threshold value

Normal Fault

Data collection via process of 

Simulation /experimental/measurement

Setting of 

threshold limits

Analysis data using SBT T-test/OD/ANOVA/Variance etc.

YES NO

Fig. 5. The common procedure of SBT.

TABLE IV. A DETAILED SUMMARY OF SOME FEATURED STUDIES USING THE STATISTICALLY, BASED TECHNIQUES

Ref
Description of Study  
(Approaches and Type of PV System)

Software/
Programming

Tested/Evaluated (PV Array 
Scale)

Validation
Cost of 

Installation
Accuracy 
AchievedSmall Medium Big

[26] • Fault detection and diagnosis: t-test statistical analysis 
with threshold limits on PR and VR

• Grid-tied
• Fault detected: FM and PS on DC side and AC side.

LabVIEW √ √ Simulation and 
experiments

Medium to 
high

High

[27] • Fault detection and diagnosis: GLRT with threshold 
limits

• Grid-tied
• Fault detected: PS and FM on the DC side 

MATLAB 
Simulink

√ Simulation and 
experiments

Medium Medium

[28] • Fault detection and diagnosis: EWMA with threshold 
limits

• Grid-tied
• Fault detected: temporary PS, OCF, and SCF on the 

DC side 

MATLAB/ PSIM √ √ Simulation and 
experiments

Medium to 
high

Medium

[29] • Fault detection and diagnosis: MEWMA with threshold 
limits

• Grid-tied
• Fault detected: Temporary PS, OCF, SCF, and DA on the 

DC side

MATLAB/ PSIM √ Simulation and 
experiments

High High

[30] • Fault detection and diagnosis using VPCA
• Grid-tied
• Fault detected: PS on DC side

VPCA 
computational 

model

√ √ Simulation and 
experiments

High High

[47] • Fault detection, diagnosis, and location: OD and 
regression coefficient extraction

• Grid-tied
• Fault detected: LLF on DC side

MATLAB 
Simulink

√ √ Simulation and 
experiments

Medium to 
high

High

VR, voltage ratio; PR, power ratio; LLF, line–line fault; PS, partial shading; OCF, open-circuit fault; SCF, short-circuit fault; IF, inverter fault; FM, faulty module; GF, ground fault; 
DA, degradation array; IF, inverter fault; GLRT, generalized likelihood ratio test; EWMA, exponentially weighted moving average; MEWMA, univariate and multivariate 
exponentially weighted moving average; VPCA, vertical principal component analysis; OD, outlier detection.
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study showed that the proposed method could detect and distin-
guish between permanent faults (short-circuit fault, open-circuit 
fault, and degradation) and temporary faults (a small portion of 
partial shading). Another interesting study by [47] developed fault 
detection and location using residual-based outlier detection and 
regression coefficient extraction governed by the PV system’s pre-
defined threshold, producing better performance. On the other hand 
[30], presented the partial shading fault detection method using ver-
tical principal component analysis, which has proven to obtain bet-
ter results than the standard PCA method. A detailed review of these 
techniques is presented in Table IV.

The table shows that SBT detection methods were developed 
through simulation processes and experimental procedures involv-
ing weather stations to obtain data. This technique used a threshold 
limit for determining the normal or faulty condition of the PV sys-
tem and has achieved high accuracy. They required medium to high 
installation costs. However, most of these studies did not offer fault 
locations and were not tested or evaluated on large-scale PV arrays.

D. Output Signal Analysis Technique
Generally, the output signal analysis technique (OST) works on the 
frequency/time domain analysis to detect any changes in the sam-
ple during the fault detection process. A time-domain signal is mea-
sured by varying the amplitude of the signal layers over time. While 
a frequency-domain signal is converted into a time-domain signal 
to noise, indicating fault detection and diagnosis errors. The fre-
quency-domain signal can emit the sound found in the time domain 
signal. Lastly, the time-frequency signal works in both the time and 
frequency simultaneously and is applied when the signals in short-
term vary significantly during the process. The common procedure 
of OST for PV fault detection can be seen in Fig. 6 [31-36].

In [31], fast fourier transform was used for arc fault detection on the 
DC and AC sides. [32] developed a DC arc-fault detection method 

using discrete wavelet transform (DWT) to analyze the spectral char-
acteristics of electromagnetic radiation signals corresponding to 
abrupt changes in arcing current. Temporarily [33] applied wavelet 
packets transform (WPT) to develop an online method to identify 
PV array faults under low irradiation. Their study has proven that the 
performance of the WPT method is better than DWT in detecting 
failures.

OST studies based on spread-spectrum time-domain reflectometry 
have attracted many researchers. For example, [34] developed this 
technique for detecting and locating disconnection faults in PV 

Start

Online/offline output data collection

Generate signal samples

Limit violations

Fault

YES NO

Frequency/Time domain signal analysis

Fig. 6. The common procedure of OST.

TABLE V. A DETAILED SUMMARY OF SOME FEATURED STUDIES USING THE OUTPUT SIGNAL ANALYSIS TECHNIQUES

Ref
Description of Study  
(Approaches and Type of PV System)

Software/
Programming

Tested/Evaluated (PV Array 
Scale)

Validation
Cost of 

Installation
Accuracy 
AchievedSmall Medium Big

[31] • Fault detection: FFT
• Stand alone
• Fault detected: Arc fault on DC side and AC side.

- √ Experiments High High

[32] • Fault detection: DWT
• Stand alone
• Fault detected: Arc fault on DC side

- √ Experiments High High

[33] • Fault detection: WPT
• Grid-tied
• Fault detected: LLF, GF, and PS on the DC side

MATLAB 
Simulink

√ Simulation and 
experiments

High High

[34] • Fault detection: SSTDR
• Stand alone
• Fault detected: OCF and SCF in PV string

- √ Experiments Medium Medium

[35] • Fault detection: SSTDR
• Stand alone
• Fault detected: analysis of faults of complex loads.

MATLAB 
Simulink

√ Simulation and 
experiments

High High

LLF, line–line fault; LGF, line–ground fault; PS, partial shading; OCF, open–circuit fault; SCF, short–circuit fault; IF, inverter fault; FM, faulty module; GF, ground fault; 
DA, degradation array; IF, inverter fault; FFT, fast fourier transform; DWT, discrete wavelet transform, WPT, wavelet packets transform; SSTDR, spread-spectrum time-
domain reflectometry.
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power plants, whereas [35] used this technique for investigating 
faults in PV systems due to complex loads. A detailed review of these 
approaches is summarized in Table V.

The table shows that the OST detection method accurately detects 
PV system/array failures. However, it involved high costs because 
it required sophisticated tools to produce high-speed sampling. 
Also, none of these methods offered a fault location. Finally, almost 
all studies were tested or evaluated only on small-scale PV arrays/
systems.

IV. DISCUSSION AND RECOMMENDATION

Table VI presents an analytical evaluation showing that the meth-
ods/techniques developed have achieved good accuracy and con-
tributed to new knowledge. However, most were only developed for 
the specific fault(s) and did not provide fault locations. In addition, 

the requirements of data loggers, specialized computer software, 
and specialized skills to operate the software in collecting data 
needed substantial costs. Furthermore, no assessment of the suit-
ability of PV system maintenance was performed. Finally, almost all 
those studies were only tested and evaluated on small-scale PV sys-
tems. Consequently, their practicality for medium and large-scale PV 
systems cannot be determined.

Hence, this study proposes a multi-scale dual-stage (MsDs) PV FDMT 
and the main contributions as the following:

a. MsDs is a low-cost and easy execution model to detect, diag-
nose, and locate a variety of common faults on PV arrays with-
out the interruption of system operation.

b. MsDs is an AI-based FDMT approach that can benefit PV sys-
tem maintenance work. MsDs can distinguish different inci-
dents or failures with different characteristics that require 

TABLE VI. ANALYTICAL EVALUATION OF MAIN ADVANCED FDMT

Ref Description of study Summary results/limitations

[15] The circuit-based analysis for detecting and diagnosing 
faults compared Voc, Isc, Pmpp, and Impp to detect LLF, 
LGF, and PS on the DC side of the PV array for a stand-
alone PV system with MPPT. The proposed method is 
viable for the scalable PV array size.

The algorithm developed through simulation and experiment has obtained good results and 
involved moderate costs. The development cost of this algorithm will increase as the scale size 
of the PV array experiment setup increases. The procedure was quite complicated during data 
acquisition involving various equipment for circuit analysis. Furthermore, this study was not 
tested/evaluated on medium and large-scale PV systems.

[16] The fault detection and diagnosis are based on a 
model-based technique using Vmpp, Impp, Pmpp, and 
ABC algorithms to detect OCF, SCF, PS, and IF on the DC 
and AC sides GCPVS with MPPT.

This study has proven achieved good accuracy and detected multiple faults. The proposed 
technique using upper and lower thresholds for each indicator of good or faulty PV system 
operation may affect the study’s accuracy as it is difficult to obtain an accurate and appropriate 
threshold. In addition, this study was not tested/evaluated on medium and large-scale PV 
systems.

[18] The fault diagnosis modeling using KELM combined with 
Nelder–Mead Simplex to optimize the parameter to 
detect DA, SCF, OCF, and PS on the stand-alone PV 
system’s DC side.

For the labeled fault data sample, KELM, which has a very fast learning speed and good 
generalization performance, has produced high accuracy results in this study. However, in 
reality, labeled data are not always available, and preparing/generating labeled data samples 
through fault simulations and field experiments will cost high.

[30] The procedure for detecting PS on the DC side of the 
GCPVS system using VPCA. The study also extended the 
contribution of a plot method for diagnosing the faults to 
the interval case.

This proposed VPCA procedure, which considered the uncertainties of the PV system and used 
Q-statistics and T2-statistics, has been shown to obtain better accuracy than conventional PCA. 
Nevertheless, this proposed method has not tested its feasibility on medium and large-scale PV 
systems.

[33] The online fault detection method used WPT to 
distinguish PS from the faulty conditions on the DC part 
of CGPVS with MPPT. The array voltage and current were 
selected as inputs, and threshold values were generated 
from the MATLAB/Simulink simulations.

The proposed method succeeded in distinguishing PS from other faults because WPT can 
detect abnormalities in the signal (data) that undergoes abrupt changes. This method is useful 
for avoiding false alarm tripping for low mismatch fault percentages and low irradiation 
conditions. However, wrongly determining the pre-set threshold can affect the accuracy, and 
this study only tested on small-scale PV arrays.

[34] The study was to find and locate OCF and SCF in PV 
strings using STTDR for the stand-alone PV systems with 
complex (capacitive) loads. This technique was developed 
by the experimental setup of uneven PV panel 
configuration.

OCF and SCF were successfully detected when changes in impedance due to PV module 
discontinuities were analyzed using the SSTDR technique. However, when more panels were 
connected, which caused an increase in impedance ( capacitance ), finding the location of the 
faults became more difficult due to the more peaks, and difficult to analyze. Moreover, this 
study was only tested on small-scale PV arrays.

[45] The fault classification model using RBFN combined with 
a wavelet-based approach for feature extraction to detect 
PS, LLF, SCF, OCF, PS, and FM on the DC side and the AC 
side for stand-alone PV systems.

The performance of the developed technique was proven better than conventional methods 
with a very short detection time. The technique was tested on a 1 kW single-phase stand-alone 
PV system, which described 100% training efficiency under 13 seconds and 97% test efficiency 
under 0.2 seconds. However, the performance of this proposed approach has not been tested/
evaluated on medium and large-scale PV systems, which are expected to require more 
simulation time.

[47] The approach of the outlier rule and comparison of a 
pre-set threshold for current string measurements to 
detect and identify the location of wiring faults either on 
the intra-string or cross-string for the DC side of the 
GCPVS. 

A combination of analytical and regression expressions that depend on the type of fault, radiation 
level, and string current measurements have successfully detected and located LLFs on intra 
-stri ng/cr oss-s tring . Obtaining labeled data to validate the proposed technique involved a lot of 
equipment and high costs. Furthermore, wrongly determining the pre-set threshold can affect 
the accuracy, and this study was not tested/evaluated on medium and large-scale PV systems.
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specialize competent people and different tools and techniques 
to address and implement corrections [48]. Thus, it can reduce 
response time, reduce the cost of corrective work, and optimize 
the system operation.

c. MsDs is recommended to be tested and evaluated on small, 
medium, and large PV array models to ensure its feasibility on 
all scales of PV arrays.

A. Multi-scale Dual-stage Photovoltaic Fault Detection and 
Monitoring Technique
Figure 7 depicts the proposed MsDs flow chart, consisting of a hybrid 
algorithm, where stage-1 applies a comparison-based algorithm for 
fault detection procedures and stage-2 employs MLTs for fault diag-
nosis and location procedures. The proposed fault detection algo-
rithm is developed to detect six common faults on the DC side of 
the PV arrays.

For the data acquisition, the study proposed to develop a PV array 
fault-free model (PV_nofault) and a PV array fault model (PV_faultn) 
for partial shading, ground fault, line–line fault, open-circuit fault, 

degradation array, and faulty module. Where n = 1–6 represents 
these six faults. The PV array modeling is developed using MATLAB 
Simulink, a modified version [18]. The values for the input param-
eters, Isc, Voc, Iph, N, Rs, and Rsh, are obtained from the manufactur-
er’s PV module specification data. Fault detection at stage 1 is based 
on a comparison between the PV yield by the model PV_nofault and 
PV_faultn in detecting abnormalities. The yield of solar panel, r (kWp), 
is formulated as in (3). It is expected that r from the PV_nofault to be 
higher than r from the PV_faultn [49]. The fault detection condition 
is given in (4)

r �� � �Electric power kWp
area of one panel

 (3)

r rPV PVnofault fault� � If YES fault detected f NO normal conditio, ; , nn  (4)

Stage 2 is fault diagnosis and location procedures to identify whether 
the fault is located at a module, string, or array. The training at 
stage 2 is suggested to be performed with cross-validation together 

Fig. 7. Flowchart of the proposed multi-scale dual-stage PV fault detection and monitoring technique.
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with three different types of MLT algorithms: discrimination analysis 
(DA), RF, and multi-class support vector machine, to obtain the best 
classification accuracy. The input parameters are the feature vectors 
of maximum power, short-circuit current, open-circuit voltage, mean 
current and voltage, and the standard deviation. These input param-
eters are selected based on the theoretical analysis of I–V curves 
generated from the PV array modeling simulation process.

B. Performance Evaluation of the Proposed MsDs Technique
To validate the performance of MsDs as feasible to all PV array scales 
and practical for PV system maintenance, this study recommends:

1. to develop and simulate small, medium, and large-scale PV 
array fault-free and PV array fault models.

2. to train/test the proposed algorithm using several MLTs to 
acquire the best accuracy results.

3. to train/test the proposed algorithm using labeled and unla-
beled data collected from actual operating PV systems to evalu-
ate its practicality for PV maintenance.

C. Challenges and Improvements for Future
This study captures some challenging issues; some modifications are 
recommended to be implemented for future work are proposed as 
follows:

1. It is necessary to demonstrate the performance of the proposed 
method/technique by training/testing using the actual data 
collected, as the accuracy of the results will usually be reduced 
compared to the simulated data [50]. However, controlling 
external factors during the experimental setup is challenging.

2. The fault detection procedure for PV maintenance work uses 
unlabeled data from the real operating PV system to find 
hidden PV fault(s). However, it is challenging to collect fault 
sample data and control external factors of operating condi-
tions and the external temperature of PV arrays for evaluating 
the proposed algorithms for accurate and effective PV system 
FDMT.

V. CONCLUSION
Studies on developing advanced fault detection methods/tech-
niques for PV arrays/systems have been widely conducted and 
proven that it can detect and diagnose faults well. Developing a 
good fault detection technique is important and indispensable since 
conventional protection devices such as circuit breakers and fuses 
cannot clean up all PV system failures due to PV’s non-linear out-
put characteristics. Untreated faults will be hidden in the system and 
can reduce the system’s productivity, further may lead to the risk of 
fire, which can cause loss of life and destruction to the system and 
buildings.

Previously, many reviews have been performed on PV system 
advanced fault detection methods/techniques. The purpose is to 
find the advantages and limitations and seek recommendations 
to improve the efficiency, reliability, and safety of existing meth-
ods/techniques. Nevertheless, this study found gaps that could be 
improved, especially in terms of suitability in all PV system sizes, 
including detecting various faults without interruption of system 
operation and feasibility for PV system maintenance.

This study proposes a MsDs technique for improved fault detection 
and monitoring of PV systems. This study proposes data acquisition 
generated from MATLAB Simulink modeling, which requires low 

cost. The procedure consisted of stage 1 using a comparison-based 
approach for detecting multiple faults and stage 2 using several 
machine learning algorithms combined with cross-validation to diag-
nose and locate detected faults with the best accuracy. Separating 
the fault detection procedure at stage-1 to check whether fault(s) 
are hidden before the fault classification procedure at stage 2 is con-
tinued is beneficial for PV system maintenance work. In addition, 
labeled and unlabeled data from the actual operating PV system are 
recommended to be used in the validation of the proposed algo-
rithm. Subsequently, the developed algorithm is recommended to 
be tested and evaluated on small, medium, and large-scale PV array 
modeling to validate its feasibility for multi-scale PV systems.

Overall, the advanced PV fault detection, diagnosis, and location 
procedures, including recommendations for future work pro-
posed in this study, can be further explored to produce better 
models and algorithms. Finally, this study shall help PV system 
researchers and policymakers develop FDMT for better efficiency, 
reliability, and safety.
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