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Abstract: Pesticides have been identified as major contaminants of various waterways. Being classi-
fied as potential endocrine disrupting compounds, pesticides in aqueous system are highly hazardous
to aquatic organisms and the ecosystem. The treatment of pesticide-containing wastewater can be
performed through several means, but a wastewater treatment strategy which emphasizes both
treatment efficiency and sustainability is a necessity of current time. In this context, bioremediation
has been increasingly promoted as an alternative technique for the remediation of diverse pollu-
tants. Particularly, bioremediation which involves the utilization of microalgae for the removal or
conversion of pesticides to the harmless or less harmful compounds is becoming a trend. Exploit-
ing microalgae as a tool for wastewater treatment presents multiple advantages over conventional
treatment technologies, which include an opportunity to simultaneously treat pesticide-containing
wastewater and nutrient recovery for microalgae cultivation as well as less formation of toxic sludge.
This review discusses the roles of microalgae in mitigating pesticide pollution issue, while offering an
opportunity for nutrient recovery from various wastewater sources. Based on the current laboratory
studies, the use of microalgae bioremediation as a promising strategy for pesticide treatment has been
rationalized. The establishment of more pilot scale studies is highly encouraged to further facilitate
the implementation of this treatment approach for practical application.

Keywords: microalgae; pesticide; bioremediation; wastewater treatment

1. Introduction

Pesticides, naturally occurring or chemically synthesized, are a broad array of chemical
substances used for pest control through their disruptions on the physiological activities of
the targeted pest. For centuries, the use of pesticides has been instrumental to ensure agri-
cultural productivity [1]. When used properly, pesticides can protect humans and animals
from many vector-mediated diseases and suppress infestation outbreaks [2]. Despite the
importance of pesticides in helping to achieve better food quality and quantity to match
with the global demands, their worldwide usage has raised concerns due to the fact that
pesticides can impose negative impacts on the unspecified target organisms [3]. It has
been stated that about 95% of the pesticides applied did not reach the target pest but were
deposited in their surrounding environments [4]. In recent years, pesticides have been
regarded as emerging contaminants which can impose serious impacts on human health
and aquatic ecosystems, even at low concentration [5]. The diversity of native species,
both the target and nontarget ones, can be altered with the introduction of pesticides such
as herbicides and insecticides, eventually leading to the disruption of ecological balance
and habitat loss. Some classes of pesticides are known to bioaccumulate in organisms and
biomagnify at higher trophic levels [6].
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Although some countries have banned the residential uses of poisonous pesticides, the
agricultural applications of pesticide are still widely permitted [7,8]. While some pesticides
can be considered harmless to the users and the current risk assessment also shows insufficient
evidence on the lethal and acute effects of pesticides, chronic effects such as birth defects,
tumor productions and neurotoxicity have been associated with the long-term exposure to
the active ingredients of certain types of pesticides and their metabolites [9,10]. Pesticides can
be degraded in the natural environment through the metabolic activities of microorganisms
or through chemical decomposition [11]. Nevertheless, many recalcitrant pesticides are stable
over time and remain readily detectable in the environment, implying that degradation by soil
bacteria lacks efficiency [12]. The high stability and water solubility of the residues of some
pesticides make them persistent in the water ecosystem. The degradable products of pesti-
cide, i.e., the metabolites, can also result in water contamination [13]. Lately, drinking water
has been identified as a possible route for human exposure to pesticides. The pesticides
in drinking water supplies, even at low-level contamination, are perceived as a potential
source of health problems due to their functions as endocrine disruptors [14]. The presence
of pesticide residues in these water systems has become a continuous concern as it presents
a potential threat to public health and water security.

Various strategies have been implemented to alleviate the detrimental impacts of pesti-
cide contamination in aquatic system. Devising potent detection and establishing treatment
methods for pesticide contaminated water have been actively pursued. Pesticide reme-
diation can be accomplished through physical, chemical and biological approaches [15].
These processes depend largely on multiple factors such as the type of matrix, nature of
pesticide, water chemistry and cost of investment, among others. Therefore, the selection of
pesticide treatment technology should take the advantages and limitations of each of them
into account. With current emphases on sustainable wastewater treatment, bioremediation
which involves the elimination of contaminants through the catabolic ability of microorgan-
isms becomes an important topic. The growth of specific microorganisms is stimulated by
utilizing the pesticide contaminants as sources of food and energy. Through bioremediation,
contaminants can be converted into less complex structures and harmless gases such as
carbon dioxide and water as by-products. Bioremediation by microalgae, also known as
phytoremediation, is now a highly preferred process for wastewater treatment [16].

Microalgae are fast growing aquatic organisms that exist naturally in various habitats
and throughout the entire oceanic ecosystem, including in freshwater and saline water
ecosystems. Microalgae are at the basal level of food pyramid and act as the initial point of
trophic transfer; hence, they are crucial in maintaining the equilibrium of aquatic ecosys-
tem. The role of microalgae in recovering important nutrients such as phosphorus and
nitrogen from secondary effluents has been increasingly investigated in the past few years.
This approach not only reduces the occurrence of eutrophication and long-term pollution
problems caused on some persistent organic micropollutants [17–19], but microalgae cultiva-
tion in wastewater also offers tertiary treatment coupled with the production of commercially
attractive biomass which can serve many purposes in industries [20]. In addition, the biomass
produced from microalgae cultivation can be used as feedstocks of a diverse range of products
that hold numerous applications in the industries and for bioenergy generation at commercial
scale. Microalgae have been used to treat micropollutants such as pesticides, dyes, heavy
metals and drugs originated from various industrial sectors, including domestic effluents,
agricultural runoffs and pharmaceuticals [21–27]. Microalgae have demonstrated the abil-
ity to degrade and detoxify a wide spectrum of organic and inorganic pollutant through
bioadsorption, bioaccumulation or biodegradation [28,29]. These pathways provide at-
tractive means to remediate pesticides found in various point of entries. The metabolic
mechanisms responsible for pesticide removal by microorganisms have been summarized
by Nie et al. [30].

The feasibility of microalgae-enabled bioremediation for a wide range of emerging con-
taminants including pesticides has been comprehensively reviewed and discussed [31–35].
It has been generally observed that the overall treatment efficiency can be boosted by har-
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nessing the unique capability of microalgae to simultaneously achieve pollutant removal
and nutrient recovery. Tremendous efforts have also been made in the studies related to
the bioremediation of pesticides. Much research has been focused on studying the efficiency
of newly isolated strains in remediating pesticides via different mechanisms. Sheng et al.
provided insights into the bioremediation of pesticides using bacteria, fungi and microalgae,
in which the mechanisms involved in the contemporary biodegradation approaches, espe-
cially those based on bacteria-microalgae consortium, were highlighted [36]. The bibliometric
analyses performed by Verasoundarapandian et al. evidenced a significant increase in the
research trend on bioremediation of pesticides based on microalgae in the past 5 years [37].
Hena et al. reviewed the potential and effectiveness of microalgae in removal pharmaceu-
ticals and personal care products. The microalgae species and their ability to acclimatize
are important factors affecting the pollutant removal efficiencies [38]. The metabolism and
pathways of microalgae used for the remediation of emerging pollutants in wastewater
have been reported by Maia et al. [39]. With more pesticide compounds being identified
as potential candidates to become priority pollutants in near future, there is a need to
substantially improve the current wastewater system and to look at the potential alterna-
tives. Although extensive investigations have been made in pesticide remediation using
microalgae, these studies have not been systematically reviewed. The present review aims
to provide an overview and analyses on the potentials of microalgae-enabled wastewater
treatment for pesticide bioremediation. By comparing the features of currently available
pesticide treatment technologies, the advantages of microalgae are highlighted. Based
on the specific removal mechanisms, the roles and efficiencies of microalgae in removing
pesticides from wastewater are evaluated. As assimilation of nutrients by microalgae
during the treatment process is an attractive feature for microalgae-enabled wastewater
treatment, this review also pays attention to the capability of the treatment process to si-
multaneously realize pesticide removal and nutrient recovery. The major stumbling blocks
in materializing microalgae bioremediation and the current knowledge gaps are identified.
The corresponding future directions are highlighted to facilitate the implementation of this
interesting approach for practical applications.

2. Pesticides Classification and Characteristics

Pesticides can be categorized in many ways, namely origins, targeted species, chemical
characteristics, active ingredients, mode of action and toxicity, just to name a few [40,41].
Figure 1 shows the general classifications of pesticides based on their target, origins,
chemical composition, physico-chemical properties and toxicity. Pesticides can be man-
made or occur naturally. Many synthetic pesticides have been produced using different
chemicals that vary in their compositions, depending on intended application of the
pesticides. Herbicides have wide usage in agricultural and wildland ecosystems to control
the growth of undesirable weed populations, hence increasing the productivity of crops
to achieve an economically profitable level [42]. Therefore, in parallel to the growth of
agricultural activities, the usage of herbicide is the fastest growing section, which covers
almost 50% of the pesticide industry [43]. Glyphosate and triazine compounds such as
atrazine are herbicides that have been heavily used worldwide. These compounds can
easily translocate in the ecosystem so their residues can be detected in soil, water, and biota.
As the name implies, insecticides are chemicals used to kill insects to protect cultivated
plants or to mitigate disease-carrying insects in some regions. Insecticides harm insects
by disrupting their nervous system [44]. Neonicotinoids such as acetamiprid, thiacloprid
and imidacloprid are a class of synthetic neuro-active insecticides widely used for insect
control. Neonicotinoids impose selective toxicity through pharmacophores that can bind
with the receptors of insect [45]. The toxicity effects of neonicotinoids on different species
of invertebrates such as bees as well as on the metabolisms of aquatic organisms have
been reported [46]. Other major categories of pesticide are rodenticides used to bait and
control rodent population, as well as fungicide and bactericides which acts as an inhibitor
of fungal spore germination and bacteria growth, respectively. Some pesticides can be used
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to control more than one class of pests. Based on the WHO classification, pesticides can be
divided into several classes, varying from Type III for slightly hazardous pesticides such as
malathion to Type Ia for extremely hazardous such as parathion.
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The more useful and common way of classifying pesticides is based on their chemical
composition and active ingredients as this classification provides a direct indication of
the physico-chemical properties of the pesticides, hence determining the mode of applica-
tion, efficiency, precautionary steps during their application and their fate in the environ-
ment. The chemical compositions of insecticides can be divided into four primary groups,
i.e., organochlorines, organophosphorus, carbamates and pyrethrin and pyrethroids [47].
Organochlorides are chlorinated hydrocarbon derivatives commonly found in insecticides.
Common organochloride pesticides include dichlorodiphenyltrichloroethane (DDT), lin-
dane, and endosulfan [48]. Organochlorine pesticides are known for their high persistence
in the environment [49]. This property is closely related to presence of a halogen electron
withdrawing group that results in an electron-deficient condition such that the compounds
can withstand aerobic degradation. The human exposure to organochloride may cause neuro-
logical damage and endocrine disorders. Organophosphates such as malathion, parathion,
diazinon, fenthion are ester of phosphoric acids [50]. They are composed of organic moieties
and central phosphate groups such as thio- or dithio-phosphate. The wide variety of sub-
stituents used for the synthesis of organophosphate compounds causes great variations in their
physicochemical properties such as polarity and resistance to degradation. Organophosphates
are less stable and degrade faster than organochlorides by hydrolysis [51]. Organophosphate
affects the enzyme functions of insects and some mammals through irreversible covalent
inhibition. The more severe acute toxicity of organophosphate causes the elevated risk
associated with the use of this class of pesticides. Prolonged exposure of organophosphate
results in increased risks for central nervous, cardiovascular and respiratory diseases. Car-
bamate compounds used in insecticides are esters derived from carbamic acid, whereas
those used in herbicides are synthesized from the derivatives of carbamic acid such as
thiocarbamic acid and dithiocarbamic acid [52]. Sharing the same toxicity mechanisms
as organophosphate, carbamate pesticides are harmful to nervous system, but normally
with reversible and less severe effects. Triazine compounds which contain triazine isomers
as part of their core structures are a major class of herbicides [53]. The commonly used
triazines are symmetrical triazines such as chloro-s-triazines thiomethyl-s-triazines and



Water 2023, 15, 70 5 of 21

methoxy-s-triazine. They act as inhibitors of photosynthesis by blocking the movement of
electrons through the binding with the protein in the transport chain.

The studies of pesticides which include their detection, distribution in soil and water
bodies, modes of action, transport mechanisms and pathways have been performed exten-
sively [54–56]. Identifying the sources of pesticide residues is the key to mitigate pesticide
pollution in soil and water. Commonly, besides depositing on fruits and vegetables, pes-
ticides sprayed on crops find their way into the aquatic systems including ground water
and surface water through irrigation and runoff [57]. The excessive leakage of pesticides
into the environment is also related to the poorly regulated disposal guideline and the
mishandling of users [58]. The cleaning of pesticide containers and spraying machines, as
well as the improper disposal of pesticides, also leads to the enrichment of pesticides in the
receiving water bodies. Pesticide production wastewater is the wastewater generated from
the pesticide manufacturing industries [59]. Treatment of pesticide production wastewater
is required prior to their mixing with domestic wastewater. The migration of pesticides
through soil into water bodies depends on many factors including the soil texture, pesti-
cide concentration, pesticide–soil interaction and stability of pesticides. Other important
physiochemical properties such as the water solubility, vapor pressure, and octanol–water
partition coefficient (Kow) of pesticide compounds also dictate their modes of transporta-
tions and possible sinks in the environment. Although the actions of pesticides are meant
to be specific to the target species, they may also exhibit toxic effects to other nontarget
species upon the exposure to the aquatic creatures. Their toxicity towards freshwater fish
and estuarine have been widely reported [60,61]. The subsequent exposure of humans
and animals to these pesticide residues occurs via ingestion of foods containing them, or
absorption through skin or lungs.

3. Treatment of Pesticide-Containing Wastewater

The selection of the pesticide treatment method majorly depends on the compositions
of pesticides in wastewater, treatment cost and simplicity of the operation. Therefore, a
comprehensive analysis of influent characteristics and the coupling of the most suitable
treatment technology are required for the design of treatment facilities targeted for re-
moval of emerging pollutants such as pesticides in wastewater. It is also important to
correlate the characteristics of pesticide compounds with the environmental conditions
as the characteristics such as solubility, reactivity and surface charge can be considerably
changed by the surrounding matrices. Physical, chemical and biological methods have
been widely used for the removal of pesticides in aqueous medium [62–64]. Constructed
wetland treatment based on pseudo-natural engineered conditions has been commonly
used to mitigate pesticide in agricultural run-off [65]. Various microbial, biological, physi-
cal, and chemical mechanisms can take place to facilitate the elimination of pesticides in
a constructed wetland treatment system [66]. The removal of organophosphate has been
achieved with removal efficiency of >80% [67]. However, the removal efficiency of pesti-
cides in constructed wetland varies by the pesticide types [68]. Adsorption and filtration
are physical processes widely used in wastewater treatment plants. They are suitable for a
wide range of wastewater treatment, mainly due to their simplicity, high removal capacity
and cost-effectiveness [69–73]. Using functional nanosized adsorbent such as multiwalled
carbon nanotubes, removal efficiency of up to 90% has been reported for diuron [74].
Lately, adsorbents derived from agricultural waste demonstrate high potential in treating
pesticides in a sustainable way [75]. The main feature of physical treatment processes is
their ability to capture or trap pesticide contaminants from the contaminated water, so
that the separation between pesticide compounds and the remaining compositions can be
accomplished. Although most physical treatment processes can be feasibly established at
large scale and popular with many industries, the formation of hazardous sludge and its
subsequent disposal operation and cost often a major concern of these processes.

On the other hand, chemical and biological processes involve the chemical alteration
of the compositions and structures of the targeted pesticides, hence converting them
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into other forms of compounds that are normally simpler and less toxic. Degradation of
pesticides through advanced oxidative processes (AOPs) has been widely reported [76–79].
Photocatalysis, fenton oxidation and ozonation have demonstrated high feasibility for
pesticide removal. AOPs are attractive for the oxidative degradation of organic pollutants
on account of their high efficiency in short reaction time and less sludge production
compared to physical methods [80]. The major bottleneck of chemical treatment process is
large doses of several different chemicals that are typically required to enable the oxidation
processes. In addition to cost concern, the use and disposal of some harsh chemicals also
create an environmental issue. Biological method involves bioremediation using plants such
as algae or microorganisms such as yeast and bacteria to absorb, accumulate or degrade the
pesticide pollutants [81]. Compared to physical or chemical methods, biological methods
can be performed at lower cost and in more environmentally friendly manners [82,83].
Activated sludge is the most common biological method used in current wastewater
treatment system to remove organic pollutants [84,85]. Microorganism strains such as
Pseudomonas and Bacillus have been isolated from various sources including pesticide-
contaminated soil for the biodegradation of pesticide [86,87]. An advantageous feature of
microalgal biodegradation is that it transforms the harmful pesticide compounds to less
toxic molecules rather than just serving as a biofilter that separates the pesticide compounds
from their matrices. Recently, mixed bacteria–microalgae consortia have been increasingly
used for the bioremediation of pesticides [88]. Studies have evidenced that bacteria secrete
chemicals that can enhance the interaction with microalgae. The co-existence of denitrifying
bacteria and microalgae can also improve nutrient removal efficiency [89].

Hybrid treatment technologies offer opportunities to tackle the limitations of single
treatment process and to amplify the treatment efficiencies by combining the unique
advantages of each process [90]. In addition to their capability in delivering high pesticide
removal efficiency, technologies such as oxidation and filtration processes also show great
promise in terms of their versatility and compatibility to integrate with each other to further
improve the efficiency of treatment processes [91]. It is worth noting that despite the
efficiencies of these technologies in removing pesticide in lab settings, many full-scale
wastewater treatment systems are incapable of removing most of the pesticides below the
required limit as they are not designed for this purpose, but to improve the water quality by
removing major contaminants. The establishment of specialized units to treat a particular
type of wastewater on site will ensure the use of more appropriate techniques based on the
water composition.

4. Bioremediation of Pesticides Using Microalgae: Why and How

Microalgae are phytoplanktons which feature biochemical properties such as oxygen-
mediated photosynthesis. Microalgae can be found in various species, and most of them
can grow and survive under hostile conditions such as high salinity and extreme tempera-
ture. Compared to other plants, microalgae can produce higher biomass yield without the
use of non-arable land. Therefore, microalgae represent a sustainable resource for biomass
production to answer growing demand for bioprocessing and production of environmen-
tally friendly products. Microalgae can tolerate and grow well in saline wastewater with
high load of organic matter [92]. The acclimation of microalgae allows them to tolerate the
toxicity of pharmaceutical, pesticide and mining wastes [93–95]. By utilizing the inherent
biological mechanism of microalgae, the treatment process can be accomplished without
producing undesirable by-products that may result in secondary pollutions. Furthermore,
the cultivation of microalgae can mitigate carbon dioxide and absorb the micronutrients
in the effluents during their growth process [96]. Microalgae can alter and stabilize the
physico-chemical–biological characteristics of wastewater. For instance, they can reduce
the chemical and biochemical oxygen demand and retard the growth of selected bacte-
ria species [97,98]. In addition, microalgae are capable of degrading phenolic and dye
pigments that are commonly found in wastewater, thus decreasing the color intensity
and improving the availability of sunlight in the water bodies [99]. The decolorization of
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wastewater can also help in easing the treatment process at wastewater treatment plants.
Interestingly, the cultivation of microalgae in wastewater allows simultaneous pollutant
removal and nutrient recovery from a wide range of wastewater. The recovery of nutrients
from wastewater using microalgae has been widely reported. Nitrogen compounds in the
form of nitrites, nitrates and ammonium are assimilated via various pathways to sustain
their growth, meanwhile phosphorus in the form of phosphate is used to facilitate the
metabolic activities [100–102]. Microalgae could achieve removal efficiencies of up to >95%
for nitrogen and phosphorus [103–105]. One of the most extensively studied species of
microalgae for wastewater treatment is Chlorella, Chlamydomonas and Scenedesmus sp. [32]
due to their strong adaptability in stressful and harsh environmental conditions. Among
all, Chlorella vulgaris has attracted particularly wide attention owing to its advantages in
terms of ability to grow in autotrophic, heterotrophic, or mixotrophic conditions which
confers them the advantage to consume different types of soluble substrates in the aquatic
system. The consortia of microalgae and bacteria have also been increasingly explored in
this area, as it represents a significant advance in improving the process effectiveness [106].

The phytoremediation of pesticides through microalgae can take place through one of
the three main pathways as shown in Figure 2, namely biosorption, bio-uptake or bioac-
cumulation and biodegradation. Biosorption by microalgae is a passive and metabolic-
independent process. The process occurs when the pesticide molecules are adsorbed to the
cell wall of the microalgal cells. The fibril carbohydrate matrix, sulfated polysaccharides and
the intercellular spaces of the cell wall could facilitate the adsorption of organic contaminant in
wastewater [107]. Microalgae possess high surface area to biovolume ratio, hence can serve as
a good medium for sorption and the subsequent interaction with pesticides. In addition, the
surface of microalgae offers diverse multifunctional groups with uniform distribution of
binding sites to facilitate the biosorption so that various mechanisms such as complexation,
ion exchange and precipitation can take place through electrostatic interaction at micro
level [108]. The biosorption of transition metals by Chlorella vulgaris was accomplished
through functional groups such as sulfate, carboxyl, and hydroxyl groups [109] while the
biosorption of 2,4-dichlorophenoxyacetic (2,4-D) herbicide was predominantly established
through their interaction with hydroxyl, carboxyl, and amine active surface groups of
Gracilaria verrucosa [110]. The mechanisms and roles of functional groups during biosorp-
tion are highly dependent on the characteristics of pollutants such as their charges and
polarity. Biosorption is a major mechanism involved in the removal of heavy metal ions by
microalgae from wastewater [111]. Apart from the functionality of the microalgal cell wall,
the extracellular polymer substances (EPS) secreted also affect the biosorption efficiency.
Like typical adsorption process, microalgal biosorption process is also influenced by many
factors including pH, temperature and contact time. The interactions occur between dif-
ferent contaminants and microalgal biomass can also affect the strength of the sorption,
therefore the relevant parameters such as ionic strength should not be ignored [112].
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Bioaccumulation, also termed active biosorption, is a process where the pesticide
molecules are first attached to the surface, followed by their migration into the living
microalgal cell through active transport to bind with intracellular proteins and other or-
ganelles [113]. Under the same condition, bioaccumulation takes place at lower rate that the
biosorption. The efficacy of bioaccumulation is governed by the bioconcentration factor which
is defined as the ratio of concentration of a pollutant accumulated in the microalgae to the
concentration of exposed environment at equilibrium. The bioaccumulation of toxic pesticide
compounds in the microalgal cells prompts the production of reactive oxygen species (ROS)
from cell organelles [114]. The excessive ROS causes oxidation of DNA and membrane lipids,
leading to disruption to cell components and functionalities. The side effects of bioaccumula-
tions to the microalgal cells are countered by the production of antioxidative enzymes that
can eliminate excessive ROS by scavenging these free radicals [115]. It was reported that
insecticides acephate and imidacloprid with concentration of 15 mg/L induced an adaptive
biochemical change in freshwater microalgae Chlamydomonas mexicana, where superoxide
dismutase activity (SOD) antioxidant enzyme was significantly increased as part of the
defense mechanisms [116]. The photosynthetic algae native to polar regions, Cocomyxa
subellipsoidea hydrolyze and breakdown paraoxon, malathion and diazinon organophos-
phates through the formation of ROS have been demonstrated [117]. Interestingly, the
ROS-dependent mechanism exhibited little to no toxic effects on the algae.

Biodegradation is the most important and effective mechanism for contaminant re-
moval through microorganisms. It involves catalytic metabolic degradation which converts
complex pesticide compounds into simpler molecules or completely mineralizes them [118].
Microalgae can decompose organophosphorus compounds and use the compounds of nitro-
gen, phosphorus and carbon as a source of nutrients [119]. The biodegradation of pesticides
by microalgae relies on the metabolism of various enzymes that play different roles during
the biodegradation process. The biodegradation of pesticides involves multiple steps which
can be generalized as (i) the activation of pesticides through oxidation, reduction, and
hydroxylation to increase their hydrophilicity, solubility, and degradability, (ii) the transfer
to enzyme to pesticides to form conjugates and (iii) transportation of conjugates into vac-
uoles [30]. For pesticides with high water solubility, their higher occurrence and mobility
in aqueous medium allows higher bioavailability for biodegradation, specially under long
hydraulic retention time [120]. Pesticides can be simultaneously bioaccumulated and biode-
graded by microalgae. Fresh water Scenedesmus obliquus demonstrated simultaneous
bioaccumulation and biodegradation of triadimefon to its metabolite, triadimenol. The
mixed mechanisms allowed a more rapid and efficient removal of pesticides. It was also
observed that the biodegradation of triadimefon was stereoselective with degradation of S-
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(+)-enantiomer was more favourable, indicating that chirality of pesticides is an important
parameter to be considered for microalgal biodegradation [121].

The treatments of pesticides using microalgae can be accomplished in several ways, as
shown in Figure 3 [122]. The most conventional way of cultivating microalgae is through
an open microalgal system such as high-rate algal ponds (HRAPs). HRAPs are designed
as shallow raceways that can co-culture microalgae and bacteria to allow the degrada-
tion of organic matter by heterotrophic bacteria while consuming oxygen produced from
microalgal photosynthesis [123]. Currently, huge efforts have been dedicated to the estab-
lishment of photobioreactor (PBR), a closed system design for the cultivation of microalgae
using solar or artificial light sources to enable photosynthesis of the photoautotrophic
organisms [124]. Compared to its membrane bioreactor (MBR) counterpart, PBR does
not require electromechanical aeration for the liquor mixing due to the photosynthetic
activity of microalgae, hence it is more advantageous in terms of energetic cost involved
for the wastewater treatment. Although the cost of operation and maintenance and the
energy consumption of PBR are higher compared to that of closed systems, PBR allows
better control of environmental parameters including temperature and light irradiation for
higher biomass productions. As the microalgae culture has better protection, the risk of
contamination is also much lower in a closed system [125].
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5. Recent Research Progresses in Pesticide Bioremediation Using Microalgae
5.1. Pond-Based Treatment

The removal efficiency of 26 common wastewater organic micropollutants including
2,4-D diazinon and atrazine pesticides has been evaluated based on pilot-scale HRAPs [126].
A significant seasonal variability for the micropollutant removal was observed due to the
change in the predominant algae species and the variations in their metabolic activities
during warm and cold seasons. The removal of NH4–N decreased from 99% during summer
to 90% during winter in a HRAP operating at a hydraulic retention time of 4 days, indicating
that the environmental conditions also affected the nutrient removal efficiency. Although
the removal efficiency of HRAPs was comparable to that of conventional wastewater
treatment plant, it was observed that the removal of pesticides (<76%) was generally lower
than that of other pharmaceutically active micropollutants (>95%). This was explained by
the variations of the complex chemical compounds which resulted in the occurrence of
different removal processes that took place simultaneously in the microalgal wastewater
treatment system.
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5.2. Flask-Based Treatment

Recent laboratory demonstrations have witnessed the efficiency of microalgae in treat-
ing different types of pesticides present in agricultural run-off. Castellanos-Estupiñan
reported >75% removal of chlorpyrifos from rice plantation runoff using Chlorella and
Scenedesmus sp. [127]. While both nitrate and phosphate can be significantly reduced
by >80%, the removal efficiency of Scenedesmus sp. was significantly higher than that of
Chlorella sp. The removal efficiencies of pesticides from agricultural run-off using microal-
gae systems operated under batch feeding operational mode were evaluated based on
11 types of pesticides [128]. Due to the differences in their chemical structure and resis-
tance towards biodegradation, the pesticide removal efficiencies varied significantly: poor
removal efficiency of <10% has been observed for mecoprop, atrazine and simazine, while
high removal efficiency of 91% and 99% has been achieved for endosulfan and malathion,
respectively. For pentachlorobenzene which can be easily photodegraded, the presence
of microalgae has hampered the photo-oxidation upon its adsorption to the microalgae
surface, resulting in poor removal from the agriculture run-off. Under the same operating
conditions, it was observed that continuous operation mode can further improve pesticide
removal efficiencies as the higher microalgae turnover resulted from the exponential grow-
ing phase in the continuous feeding operation facilitated more adsorption and degradation
of pesticides. In the case of batch mode operation, the growth of microalgae reached a
stationary phase and the capacity to remove pesticides declined at this point.

A microalgae–bacteria consortium was formed using Scenedesmus sp. strains isolated
from a wastewater treatment plant to simultaneously remove imidacloprid, thiacloprid
and nutrient from the wastewater [129]. The consortium achieved removal of 71.24%
for imidacloprid and 9.71% for thiacloprid, which was 55.54% and 2.71% higher than
that of without microalgae inoculation. A removal rate of total nitrogen and phosphate
was also higher. As depicted in Figure 4a, biodegradation was identified as the primary
mechanism responsible for the removal of imidacloprid and thiacloprid. However, due
to the difference in their chemical structures, the removal efficiency of imidacloprid with
N-nitroimine was higher than that of thiacloprid with N-cyanoimine as the Scenedesmus sp.
TXH had better transformation effects on imidazole, the most reactive site of IMI that is
susceptible to various chemical reactions such as oxidation, reduction, and hydroxylation.
The environmental factors such as light intensity and temperature have been identified
as key parameters to be optimized during the treatment as they can interfere with the
interaction of microalgae and bacteria in the symbiotic system. Temperature influences the
stability and adsorption ability of the microalgae–bacteria consortium while light plays an
important role in the enzyme activity of microorganisms [130].
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5.3. PBR-Based Treatment

García-Galán evaluated the efficiency of a pilot scale semi-closed PBR in removing
pesticides in peri-urban agricultural areas [131]. As illustrated in Figure 4b, the PBM system
consisted of two open tanks connected using horizontal tubes, operating with useful volume
of 11.7 m3 and hydraulic retention time of 5 days. Similar to many laboratory attempts, the
PBR treatment demonstrated inconsistent removal efficiencies depending on the pesticide
compounds. Among the 16 types of medium to highly polar pesticides detected in the
run-off, 10 types of pesticides including alachlor, linuron and cybutrine have been fully
eliminated. Although removal of up to 88% has been achieved, 2.4-D, MCPA, diuron,
terbutryn, diazinon and imidacloprid were identified as more resilient pesticides in the
PBR system. Particularly, the conversion of some metabolites into the original pesticide
compounds during the PBR treatment has resulted in higher concentrations of diuron,
terbutryn, diazinon in the treated effluent.

The removal of acetamiprid and propanil using an outdoor pilot-scale tubular PBR was
evaluated in a continuous operation for 38 days [132]. As shown in Figure 4c, The removal
efficiency of propanil increased over time due to biomass acclimation and eventually >99%
of the pesticide was removed through biodegration in the PBR with an HRT of 8 days
under semi-continuous mode. Complete mineralization of its intermediate by-products
was also observed. On the other hand, acetamiprid required a longer time for its complete
degradation in the PBR, with meant removal efficiency of 71% during the steady state.
While acetamiprid has lower biodegradability, biomass washout in the pilot PBR has
further resulted in inefficient biodegradation by the declining biomass concentration. The
finding implies that biomass washout in PBR should be minimized so that the biomass
can be sufficiently used to sustain the biodegradation, especially for pesticides with lower
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biodegradability. One way of addressing this issue is by introducing membrane modules
in the PBR. Through the integration, not only the washing effect can be minimized, but the
decoupling of solid retention time from the hydraulic retention time can also be materialized
through the confinement of microalgal biomass.

5.4. Integrated Microalgae System

Microalgae are mostly suspended in the typical microalgal reactors. The immobi-
lization of microalgae during the wastewater treatment involves the entrapment of the
microalgal cells within a matrix to limit their mobility while maintaining their metabolical
activity as long as possible [133]. The immobilization of microalgae in a host matrix has
been accomplished for several reasons [134]. The immobilization technique can increase the
cell survival and metabolic activity as well as ease in the separation of microalgal biomass
after treatment. In addition, the immobilization of bacteria–microalgae consortium can
improve the symbiotic interactions between the two species [135]. Many host materials
such as alginate and luffa sponge have been reported for microalgae immobilization [136].
The stability of host and the immobilized microalgae is an important aspect especially for
scaled up long-term application. Rerrando and Matamoros reported the immobilization of
microalgae–bacteria consortium in polyurethane foam for the treatment of groundwater
containing micropollutants [137,138]. They observed an enhanced bacteria biodegrada-
tion processes in the symbiotic consortium for the biodegradation of pesticides (bromacil,
atrazine, diuron, bentazone, and mecoprop). Despite the light blocking effect caused by
the host matrix, the removal efficiency of the polyurethane-immobilized microalgae was
improved by >30% compared to that of the free counterpart. Compared to microalgae
immobilized in luffa sponges which disaggregate in the reactor due to the mechanical
stirring effect, the foam material was able to retain its integrity throughout the 60-day
operation in the continuous-feeding reactors.

Microalgal fuel cell is a relatively new concept that exhibits significant potential
for simultaneous carbon fixation and bioenergy generation while delivering enhanced
wastewater treatment efficiency. Deng et al. developed a two-chamber microalgae fuel
cells comprised of an anaerobic anode chamber and an aerobic cathode chamber separated
by a proton exchange membrane [139]. The removal of imidacloprid was accomplished
in the cathode chamber of microalgae fuel cells using Chlorella sp. while anaerobic sludge
and wastewater were inoculated in the anode chamber. Under closed-circuit condition,
the removal of imidacloprid was achieved in the range of 57–62% through biodegradation.
Several degradation products of imidacloprid were detected, but they were less toxic than
the original imidacloprid and had insignificant impact on the growth of microalgae. The
cathodic electroactivity has been promoted with the degradation of imidacloprid where
voltage of 200 mV was generated for up to 9 days. In another study using a similar system,
the highest removal of thiacloprid (32.5%) was achieved at low pesticide concentrate
below 20 ppm with stable bioelectricity voltage of 202 mV [140]. The concentration of
thiacloprid above 50 ppm induced oxidative stress to the microalgal cell and depressed the
biomass growth.

5.5. Discussion

Microalgae-enabled wastewater treatment is postulated as an alternative for pesticides
removal from aqueous environment. The recent achievement made in this field has been
compared and summarized in Table 1 to better understand the feasibility of this approach.
Bioremediation through microalgae has been accomplished through pond and photoreac-
tors system. For lab-scale studies, batch removal of pesticide has been investigated using
simple flask-based set up. Based on the studies discussed in this section, regardless of the
types of system, it is observed that the removal efficiency of different classes of pesticides
is obviously different due to the difference in their functional groups and chemical com-
position. Furthermore, the performance of a single type of microalgae can be sometimes
inconsistent and different species of microalgae exhibited removal efficiencies that vary
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for each class of pesticides. Systematic screening is therefore needed to select and validate
the removal efficiencies of pesticides by a wide diversity of microalgae species. As the
chemistry and external condition of the aquatic environment vary from source to source,
the selection of the native strains dominating the identified wastewater environment is
a crucial step towards achieving high removal efficiency by the microalgae in a practical
manner. In most of the current studies, the efficiency of pesticide removal and nutrient
recovery by microalgae has been evaluated based on removal efficiency (%) or removal
rate. While these parameters serve as a good indication for the performance of microalgae-
enabled strategies in remediating pesticides, it is important to ensure that the treated
effluent contains pesticide level that meets the standards set by the local authorities. It is
exciting to witness the innovation introduced in this area, one of them is the development
of microalgal fuel cell that demonstrates potential for bioenergy generation while treating
pesticide-containing wastewater. Although the power output is still below satisfactory
level, the efforts aligned with this direction will provide more positive outcomes.

Table 1. Summary of pesticide and nutrient removal efficiency through microalgal bioremediation.

System Wastewater Microalgae
Species Efficiency Refs.

HRAP Urban
wastewater

Stigeoclonium sp.,
Chlorella sp.

Diazonon, 2,4-D,
atrazine: 40–60%
N-NH4+: 99%

[126]

Batch mode flask
reactor

Agriculture
run-off

Scenedesmus sp.,
Chlorella sp.

Chlorpyrifos > 75%
N-NO3

−: 85%
P-PO4

3−: 82%
[127]

Batch mode flask
reactor

Agriculture
run-off (batch)

Scenedesmus sp.,
Chlorella sp.

Endosulfan: 91%
Malathion: 99% [128]

Batch mode flask
reactor

Municipal
wastewater

Scenedesmus sp.
TXH

Imidacloprid: 71.2%
Thiacloprid: 9.71%
Total dissolve N: > 80%
Total dissolved P: > 90%

[129]

Batch mode flask
reactor Ground water

Scenedesmus
quadricauda,
Chlorella vulgaris.

Nitrate: 44%
Bromacil: 94%
Atrazine: 83%
Diuron: 88%
Bentazon: 54%

[137]

PBR Agriculture
run-off

Chlorella sp. and
Stigeoclonium sp.

MCPA: 88%
alachlor, linuron,
cybutrine: 100%
N-NH4+: 93%
N-NO3

−: 54%
P-PO4

3−: 100%

[131]

PBR - Scenedesmus sp.,
Chlorella sp.

Propanil: 99%
Acetamiprid: 71%
N-NO3

−: 24%
P-PO4

3−: 94%

[132]

Microalgae fuel
cell - Chlorella sp. Imidacloprid: 57–62% [139]

Microalgae fuel
cell - Chlorella sp. Thiacloprid: 32.5% [140]

6. Challenges and Future Research Directions

With the current emphasis on circular economy, microalgae-enabled wastewater treat-
ment is deemed to provide a holistic solution to achieve removal effectiveness and resource
conversion potential. Nevertheless, apart from the efforts made in delving into the potential
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of microalgae for the bioremediation of pesticides, unexplored avenues still exist. The
unsolved questions and knowledge gaps must be tackled to promote the implementation
of this strategy for practical applications.

Bioremediation has been generally known to take place through biosorption, bioaccu-
mulation and biodegradation. However, despite the understanding achieved to date, it is
still challenging to gather collective information on the intercorrelated factors that affect
metabolic pathways, optimal conditions for degradation. In addition to the three major
pesticide removal mechanisms, the abiotic processes such as volatilization and photodegra-
dation of pesticides in the microalgal wastewater medium should not be disregarded.
Furthermore, it is well established that only a small amount of the pesticide applied directly
acts on the targeted species while the remaining pesticides tend to interact with soil to
form metabolites with longer half-life and more complex properties. The action of these
metabolites on the biodegradation should be investigated. In-depth investigations are
required to examine the quality of treated effluent after the separation of microalgae from
the reactors. In addition, the detection of byproducts is also important to avoid secondary
pollutions. As the biodegradation not always leads to complete mineralization of pesticide
compounds, attention should also be focused on the toxicity assessment of the resulting
mixtures. It is also known that the mode of nutrition could interfere with the ability of
some microalgae in remediating pesticides. The addition of external carbon source may be
required to improve the durability of microalgae in poisonous concentrations of pesticides.
Such observations provide a clue on the suitability of microalgae remediation for different
sources of pesticide-containing wastewater.

Elaborated tools and advanced technology help to bridge the current knowledge gap
in regard to the mechanisms involved in the bioremediation of pesticides. Combining
experimental findings and statistical tools in an integrative way is important in the research
in this field. Progress in computational studies to demonstrate the necessary mechanisms
and pathways in a much precise manner and more predictably could help optimize the
pesticide remediation efficiency while realizing sustainable water treatment strategies. A
less complicated computational tool such as response surface methodology (RSM) would be
helpful in providing more insights into the interactive relationship of the major influential
parameters, so that the pesticide and nutrient removal efficiency can be better correlated.
The finding also serves as a basis to optimize the system operated at a larger scale. Dynamic
modelling of data can help to predict the behaviour and biological activity of microalgae
when dealing with wastewater with different characteristics. The use of instrumentation,
control and automation (ICA) systems can be used to gather all the relevant information
about the process to improve the efficiency and robustness of the system. However, it
should also be pointed out that the complexity of modelling variables involved in pesticide-
containing wastewater conditions and their effects on the microalgae cultures will be a
great challenge to address.

Pesticide bioremediation through microalgae is a complicated process. Two major
aspects can be taken into account, the survival and activity of the microalgae strains and
the characteristics of the pesticides. The concentration of pesticide has considerable effect
on the efficiency of microalgal bioremediation. The concentration of pesticide in the range
of µg L−1 generally has no profound effect on microalgae, but at higher concentration, the
toxicity of pesticides may lead to inhibition of cell growth [141]. In addition, for a given
pesticide concentration, the metabolic responses exhibited by microalgae may vary by
species [142]. Therefore, a detailed profiling on the tolerance of microalgae will be useful to
create a database that can serve as a guideline for microalgae selection. A very recent study
on the sensitivity response of artic microalgae to pesticide interestingly showed that Arctic
species Micromonas polaris demonstrated higher resistance to atrazine and simazine than its
temperate counterpart [143]. The difference in the ecophysiological characteristics of the
two microalgal species have contributed to their variations in terms of growth, cell size,
activity, ROS contents and protective mechanisms. Such study highlights the importance of
establishing an efficient screening through molecular toolkits to identify the potential of
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different species so that the underlying molecular mechanisms of bioremediation can be
revealed and the best-fit microalgae species can be selected.

The large-scale commercial application of microalgae for the bioremediation of pes-
ticides and other emerging micropollutants remains uncertain due to the conceptual gap
between laboratory finding and industrial expectations. Numerous tailbacks should be
carefully addressed to promote the large-scale implementation of the bioremediation tech-
nology. The experimental studies implemented in bench-scale have been conveniently
performed using a simple apparatus set up such as shake flasks under controlled sterile
conditions. While such setting provides a quick evaluation of the performance, the operat-
ing conditions and the corresponding findings are difficult to scale up to pilot-scale plant
systems which usually operate in continuous mode and are fed with complex real water
effluents. As the main purpose of setting up a laboratory study is to explore the possibility
and to validate the performance of a newly developed approach, the experimental proce-
dures are often simplified by fixing a representative experimental concentration. Most of
the current pesticide removal studies have been focused on the use of single pesticides in
a single experiment. It is obviously not the case in real scenario. For instance, inhibitory
effects on the biodegradation of Scenedesmus obliquus have been observed when the mixture
of several organic pollutants was tested using the microalgae-enabled wastewater treatment
system [144]. The studies on the interactions and competitions among the organic microp-
ollutants are still not well-grounded. The limitations reveal the importance of setting up
laboratory experiments by considering the effects of co-existed micropollutants in the real
wastewater so that the actual removal efficiency can be practically elucidated. The external
environmental conditions have considerable effects on the overall efficiencies of microalgae,
not only the pesticide removal but also the nutrient recovery rate. The uncertainties in
some technical aspects, especially the inconsistency in performance and challenges in
adapting under varying weather conditions, may limit the wider practical application of
the bioremediation. For outdoor operation, the fluctuations of the removal efficiency due
to the environmental conditions such as during winter and summer should be taken into
consideration. It is therefore important to establish pilot-scale studies in a long-term set up
throughout the year so that the fluctuations in the environmental factors such as intensity
of solar irradiation and wastewater characteristics can be considered when evaluating the
efficiency of the system.

While the current advancements have improved our understanding of pesticide reme-
diation through microalgae, future research should be structured to address knowledge
gaps and make innovations at the implementation level. Lastly, although bioremediation
has been generally regarded as a cheaper approach as compared to the physical and chem-
ical processes, the cost effectiveness at large scale implementation has not been widely
evaluated. In addition, the performance stability for long-term operation should be meticu-
lously investigated. Comprehensive techniques and complete assessments are required
to address the procedural and ecological issues to facilitate the scale up of its application.
The knowledge can be harnessed to build a framework for the establishment of solutions
for the current pesticide management challenges. The life cycle analyses which look at
the viability of microalgae enabled bioremediation of pesticides should be established to
ensure the implementation of the technology as a real cost-effective innovative solution for
wastewater treatment.

7. Concluding Remarks

Natural sources such as microalgae can serve as an ecologically safe, cheap, and
efficient alternative for removing hazardous pesticide pollutants from aqueous environ-
ments. Apart from pesticide removal, bioremediation through microalgae is also promising
for many other emerging pollutants. The development of microalgae bioremediation ap-
proaches for pesticide removal is still at its beginning stage, but some promising results
have already been witnessed in some laboratory and pilot scale attempts. Pesticide removal
using microalgae still confronted by many technological challenges, but with the attractive
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features demonstrated by microalgae as a tool for bioremediation, this strategy is deemed
as an economical alternative to the existing techniques. With the plethora of information
available and the help of innovations made in this field, it is anticipated that this technology
can evolve from the laboratory to practical application in near future.
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