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A B S T R A C T

This paper proposes a simulation study to solve the optimal allocation of the Battery Energy Storage System
(BESS) problem in distribution networks. The effect of BESS’s installation in the selected distribution networks
is surveyed for a 24-hour period, where time-of-use electricity charges are divided into three periods: standard,
peak, and off-peak hours. This study will use Teaching Learning-Based Optimization (TLBO) as the main
optimizer for the problem simulation. The objective function is to minimize the combined cost of purchasing
electricity and energy loss, where the optimal location of BESS and its operated power at each hour are
treated as the control variables to be optimized. Two distribution systems are utilized, viz. 18-node and 33-
node systems are considered to assess the performance of TLBO in solving the mentioned problem, where
a comparison with other recent metaheuristic algorithms also have been conducted. The study’s findings
demonstrated the promising results of TLBO in terms of minimizing the energy cost and significantly reducing
the peak loads during peak hours in the 24 h. The simulations also show that TLBO can be used as an effective
tool for position and power of BESS optimization solution, where for the 18-node system, there is about 3.7
% cost reduction and for the 33-node system, about 12% cost saving for power purchased for the surveyed
24-h period.
. Introduction

The electrical power infrastructures from generation to the distri-
ution are facing significant impediment due to the rapid growth of
he technological advancements, penetration of renewable energy re-
ources into existing networks, decarbonization initiatives, enforcement
owards zero net greenhouse gas emissions, as well as breaking the
nterdependence of economic development with the consumption of
atural resources. The world is now approaching toward carbon emis-
ion reduction along with the promotion of clean energy development
top priority. Among the efforts to cater these issues is by introducing

he Battery Energy Storage System (BESS) which can be applied to the
lectrical Distribution Systems (EDS) to increase the effectiveness and
levate the reliability. One of the important yet complex tasks that
ttract the researchers is the determination of optimal sizing of an
ffective BESS system, which requires considering various factors such
s optimal charging and discharging, cost efficiency, capacity limits,
ower balance, carbon emission, power oscillation and ageing [1].

To date, there are quite numerous studies proposed in the literature
o solve the optimal allocation of BESS, especially utilizing the meta-
euristic approaches. Metaheuristic approaches have become a popular
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solution for solving optimization problems across many fields such as in
engineering [2–8], computer science [9–13], community detection in
social networks [14,15], ecology [16], steel industry [17], integrated
energy system (IES) [18], and even in biology and medicine [19,20]
and many more. The implementation of Whale Optimization Algo-
rithm (WOA) into BESS optimal placing and sizing has been proposed
in [21], and the improved version of Nondominated Sorting Genetic
Algorithm-II (NSGA-II) for BESS placement and capacity selection has
been proposed in [22]. Ref. [23] proposed the determination of the
best allotment of the Interline-Photovoltaic-Battery Energy Storage Sys-
tem (I-PV-BESS) system in islanded electrical distribution system us-
ing Coyote Optimization Algorithm (COA). Cuckoo Search Algorithm
for optimal placement of the BESS problem also has been proposed
in [24]. Recent work on hybrid Arithmetic Optimization Algorithm and
Sine Cosine Algorithm (AOA-SCA) for BESS integration in distribution
networks for loss minimization has been discussed in [25].

From the mentioned approaches, it can be seen that the usage of
metaheuristic algorithms still can be explored especially in solving the
BESS allocation problem or in energy storage problems in general.
Thus, this paper takes the initiative to propose the optimal allocation
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of BESS and its operation for 24-h period using Teaching Learning
Based Optimization (TLBO) approach. In this paper, the objective is
to minimize the combine cost of purchasing electricity and energy
loss charged by the utility so that the electricity usage during peak-
hours can be reduced. TLBO is often considered as an optimizer due
to its simplicity or sometime known as parameter free algorithm, as
it requires tuning only two parameters: the population size and the
maximum number of iterations. This simplicity is a key advantage
of TLBO over other metaheuristic algorithms for solving optimization
problems. However, it is important to note that TLBO’s effectiveness
may vary depending on the specific problem being solved, as it may
not perform well for optimization problems that are subject to the
No Free Lunch (NFL) theorem. To date, there are numerous research
that have been proposed that use TLBO as a choice of solution such
as in Optimal Power Flow (OPF) problems that have been presented
in [26], TLBO as an optimizer of Enhanced Neural Network (ENN) in
Terminal voltage prediction of Li-Ion batteries [27], optimal sizing of
a grid-connected photovoltaic (PV)/battery system [28], optimization
of in-core fuel loading pattern of material test reactor [29], modified
version of TLBO for optimal design of an electric vehicle charging
station [30], economic dispatch of power generation [31] as well as
in energy management system (EMS) [32]. Similar work in energy
storage using TLBO that emphasize on the reliability improvement of
Radial Distribution System (RDS) has been proposed in [33]. It can be
observed that the TLBO is still a viable option for tackling optimization
challenges owing to its simplicity and efficacy.

The rest of the paper is organized as follows: Section 2 discusses
the problem formulation. A brief description of the implementation of
TLBO for the stated problem is presented in Section 3 followed by the
results and discussion in Section 4. Section 5 states the conclusion of
the paper.

2. Problem formulation

One of the effective solutions for minimizing the costs especially
during the peak hours with high demand and high prices charged by
the utility is the proper BESS’s installation in the EDS. In this paper, the
concept is simple where the BESS supplies the EDS at peak hours while
at off-peak hours, it will store the energy. This approach led to higher
efficiency in the operation of the EDS as well as economical. Apart
from that, the proper determination of suitable location of BESS also
serves an important role in reducing the total power loss and cost of the
EDS operation. Thus, the objective function (OF ) for the optimization
problem is to minimize the combine cost of power purchased and loss
cost for the 24-h period, as follows [24]:

𝑂𝐹 (𝐿𝐵𝐸𝑆𝑆 , 𝑥𝑖) =
24
∑

𝑖=1

(

𝑃𝑥,𝑖 + 𝑃𝐿𝑜𝑠𝑠,𝑖
)

⋅ 𝐶𝑜𝑠𝑡𝑖 (1)

where 𝑃𝑥,𝑖, 𝑃𝐿𝑜𝑠𝑠,𝑖 and 𝐶𝑜𝑠𝑡𝑖 are the real power purchased from the
utility, total power loss for the system and the power price at 𝑖th
interval, respectively. 𝐿𝐵𝐸𝑆𝑆 represents the location of BESS which also
included as the control variables to be optimized, x that and can be
expressed as follows:

𝑥 =
[

𝐿𝐵𝐸𝑆𝑆 , 𝑥1,… , 𝑥24
]

(2)

where the 𝑥1 to 𝑥24 are the percentage of BESS from the rated power for
each interval of 24-h. The optimal solution obtained in (2) must fulfill
the equality constraint which is the storage capacity in the surveyed
period of 24-h must equal to zero so that the BESS can be fully operated
for the next planning day. On the other hand, the storage capacity of
BESS, viz. BESS𝑐𝑎𝑝 can be calculated from the equality constraint that
has been identified, where the following expressions are used to depict
the situation:
24
∑

𝑃𝐵𝐸𝑆𝑆,𝑖 = 0 (3)

𝑖=1

2

𝐵𝐸𝑆𝑆𝑐𝑎𝑝 = max[𝑐𝑢𝑚𝑠𝑢𝑚(𝑥1,… , 𝑥24)] (4)

where 𝑃𝐵𝐸𝑆𝑆,𝑖 is the operating power of BESS in the ith hour and
cumsum is the sequence function to calculate partial sums of the vector
[x1,. . . , x24] [24]. In this paper, the capacity of the BESS is determined
based on the test system which will be revealed in the next section.
On the other hand, for the inequality constraints, the solution obtained
must not violate the maximum and minimum of the voltage magnitude
at each bus or node in the EDS, which is defined follows:

𝑉 𝑚𝑖𝑛
𝑘 ≤ 𝑉𝑘 ≤ 𝑉 𝑚𝑎𝑥

𝑘 𝑘 = 1,… , 𝑁 (5)

where 𝑉𝑘 and N are the voltage magnitude at each bus and the
number of nodes in the system, respectively. In order to ensure the re-
sults obtained are not violating the mentioned constraints, the penalty
function, (PF) is enforced in Eq. (1), as follows:

𝑂𝑏𝑗 = 𝑂𝐹 + 𝑃𝐹

[

𝑚𝑎𝑥
(

0.9 − 𝑉 𝑚𝑖𝑛
𝑘 , 0

)

+ 𝑚𝑎𝑥
(

𝑉 𝑚𝑎𝑥
𝑘 − 1.1, 0

)

+
|

|

|

|

|

|

24
∑

𝑖=1
𝑃𝐵𝐸𝑆𝑆,𝑖

|

|

|

|

|

|

]

(6)

where PF is set to 1000. In this study, PF is used to incorporate all
the mentioned constraints into the objective function, OF allowing
the optimization algorithm to find a feasible solution that satisfies the
constraints. From the experiments that have been conducted, we found
that the value of 1000 provided a good balance between imposing
a strong penalty on infeasible solutions and preserving the overall
performance of the objective function. In addition, to ensure accurate
results obtained and no violation of the constraints, the power flow
solution program namely MATPOWER [34] is used to include the
required results into the objective function.

3. Application of Teaching Learning Based Optimization (TLBO)
into optimal allocation of BESS

TLBO is inspired by the analogy of teaching and learning between
teacher and students in the classroom that has been proposed by [35,
36]. It can be classified as one of the well-known algorithms from the
human-based group that does not require any tuning parameter apart
from the number of populations and maximum iterations. In TLBO, two
phases are proposed namely teacher and student phases. During each
phase, new solutions are generated and evaluated. The best solution is
then selected using a greedy selection method. This method selects the
solution with the best performance so far, whether it was created in the
teacher or student phase.

The teacher phase in the TLBO algorithm is a critical component of
the optimization process. During this phase, the teacher tries to improve
the performance of the population by generating new solutions that are
more promising than the current best solution. The teacher’s behavior
is influenced by a teaching factor (TF ), which is a key parameter in the
algorithm. This factor controls the teacher’s impact on the population
and is updated at every iteration based on the performance of the
population. The value TF is influenced by the mean student in the
population. The mean student is a representation of the average per-
formance of the population. If the mean student is high, it implies that
the population is performing well, and the teacher’s influence should
be reduced. On the other hand, if the mean student is low, it implies
that the population is not performing well, and the teacher’s influence
should be increased. The operation of TLBO with the equations used
are presented in pseudo code shown in Fig. 1 [35,36].

The implementation of TLBO into the optimal allocation of BESS
is depicted in Fig. 2. The proposed TLBO algorithm requires several
inputs to be set before the optimization process can begin. These
include the number of running simulations, the number of populations,
and the maximum number of iterations. Additionally, the function
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Fig. 1. Pseudo code of TLBO.
details such as the lower and upper bounds and the dimensions of
the problem must be identified. The load flow study is then executed
for each hour for each population as an evaluation process to obtain
the objective function results. During the optimization process, TLBO
generates new solutions for the control variables within the boundaries.
The best solution found so far is recorded, and the optimization process
continues until the maximum iteration and simulation run settings are
reached. Once completed, the best solution from the simulation run is
identified, and the performances of the TLBO are compared to other
selected metaheuristic algorithms, which will be presented in the next
section.

By setting the necessary inputs and conducting a thorough evalu-
ation process, the proposed TLBO algorithm is able to optimize the
control variables to achieve the best possible outcome within the
specified boundaries. Its ability to generate new solutions and record
the best found so far ensures that the optimization process is efficient
and effective. The comparison with other metaheuristic algorithms
provides a useful benchmark for evaluating the performance of the
TLBO algorithm in solving the optimization problems.

4. Results and discussion

All simulations for this study are executed using MATLAB 2019b

on a MacBook Pro Processor 2.40 GHz Quad-Core Intel Core i5, 8 GB

3

RAM. To assess the performance of TLBO in optimal allocation and
operating of BESS, two test systems are used, viz. 18-node and 33-node
systems. For both cases, 25 control variables are to be optimized consist
of the components that have been discussed in the previous section. The
assumptions for both cases are made referred to [24,37–39], where (1)
three categories of loads are considered at each node of the system: resi-
dential, commercial, and industrial loads; and (2) the load at each node
is treated as the average load per hour. The load flow solution is exe-
cuted using the MATPOWER toolbox developed by [34] to obtain the
information of converged power flow such as voltage magnitude at each
bus as well as total power loss at each hour for a 24-h period. The per-
formances of the proposed TLBO are compared with other metaheuris-
tic algorithms namely Barnacles Mating Optimizer (BMO) [40–42], Salp
Swarm Algorithm (SSA) [43], Gradient-Based Optimizer (GBO) [44],
Particle Swarm Optimization (PSO) [45] as well as Cuckoo Search
Algorithm (CSA) that has been proposed in [24]. For fair comparison,
all algorithms will be set the similar number of population and max-
imum number of iterations, which are 30 and 100, respectively. The
corresponding prices for electricity are referred to [24].

4.1. The 18-node system

This distribution system consists of 18-node where node 1 is treated
as a substation with the voltage level of the whole system is 10 kV.
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Fig. 2. TLBO for optimal allocation of BESS for 24-h period.
Fig. 3. Single line diagram of the 18-node system [24].

he single-line diagram for this system is visualized in Fig. 3. This
ystem consists of 19 branches, 17 sectionalizing switches with 2 tie
witches represented in dot lines. The peak load at each nodes and
he line parameters are based on [37]. The simplified load profile for
his system for the surveyed 24-h period is shown in Fig. 4 and the
etailed load data for real and reactive power is tabulated in Table A.1.
t is evident that the peak hours occur at hours 10.00–11.00 and
8.00–20.00, where the peak power is recorded at 7850 kW for these
ours. The minimum power is at 1570 kW which is occurred at hours
.00–01.00, 01.00–02.00 and 23.00–24.00.

From the simulation, the optimal location for installing the BESS
btained by TLBO is at node 18 where the optimal operating power
f BESS in percentage for the 24-h are tabulated in Table 1. From the
able, it can be confirmed that the cumulative power for 24-h period
s equal to zero, as follows: [100 200 100 200 100 157 57 157 169 69
31 68 168 74 164 88 188 88 −12 −112 −12 −112 −12 0] so that the

BESS can effectively operate for the next day. It also can be noticed that
4

the operating power of BESS (%) at each interval hour does not violate
the rated limits that have been set. From this result also can be noted
that the maximum value in the cumulative sum array for this system is
200% which means that the capacity of the BESS obtained by TLBO is
2 MWh which has been discussed in Eq. (4). The comparison results
obtained by other algorithms also have been included in this table
where TLBO outperformed others in terms of obtaining the minimum
cost of objective function which is highlighted in bold. It is worth to
highlight that the results obtained by CSA are taken directly from [24]
where the objective function is recalculated for confirmation of using
the similar set-up for all algorithms under studied.

The optimal results of BESS’s power for this case study for the 24-h
period are depicted in Fig. 5, where it can be confirmed that at each
interval, the operating power of BESS does not exceed the rated limits
of 2 MWh that has been set up for all simulations. This result ensures
that the BESS can operate for the next day plan, which are conformed
with the results presented in Table 1 for TLBO. The impact of BESS’s
power contribution to the original load profiles before and after BESS’s
installation at node 18 is visualized in Fig. 6. From this figure, it
can be noticed that during peak hours especially at hours 10th, 11th,
18th, 19th, and 20th, the power is totally supplied by the BESS (fully
discharge) which is 100% of its rated power. This will reduce the cost
incurred for power purchasing from the utility. It also can be seen
that the BESS is fully charged during the standard-hour and off-peak
hour, where the detail charged distributions shown at the 1st, 2nd, 4th,
6th, 8th, and 9th intervals with 100%, 100%, 100%, 57%, 100% and
12% from its rate power, respectively. Therefore, it can be concluded
that the appropriate installation of BESS into the optimal node of the
distribution system has contributed significantly to minimize the peak
of the load profiles during peak hours.

Further analysis of the statistical results from 30 run of simulations

obtained by TLBO together with the compared algorithms are tabulated
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Fig. 4. Load profile for the 18-node system for the 24-h period.
Table 1
Detail results obtained by TLBO and compared algorithms for the 18-node system.

Hour\Algorithms TLBO BMO SSA GBO PSO CSA*

Bus 18 4 18 18 13 15
1 100 9 98 100 50 −24
2 100 100 −89 0 −57 49
3 −100 −11 45 100 100 24
4 100 38 26 −100 93 100
5 −100 −29 69 100 −10 −25
6 57 −16 −79 −100 −100 −8
7 −100 28 66 100 61 −37
8 100 39 4 −100 21 81
9 12 −44 6 100 −83 3
10 −100 −100 −100 −100 −97 −38
11 −100 −18 −24 −100 −100 −100
12 99 100 95 −100 68 42
13 100 19 18 100 77 −35
14 −94 39 −99 100 −100 1
15 90 −75 67 100 99 −66
16 −76 68 −20 −7 97 11
17 100 −100 72 −100 44 28
18 −100 −97 −100 −100 −100 −82
19 −100 27 −99 −93 −100 −97
20 −100 −100 −100 −100 −85 −4
21 100 25 27 100 96 9
22 −100 −3 97 −100 −89 48
23 100 100 −68 100 95 100
24 12 1 88 100 20 20

Obj. function ($) 10135.04 10 281.49 10 230.80 10 142.99 10 148.61 10 254.00
in Table 2. From the table, it is proven that TLBO outperformed others
by obtaining the best results in terms of the minimum, average, worst
and standard deviation of objective function results which are high-
lighted in bold. The second-best results were obtained by GBO which
obtained about $ 7.95 more than TLBO. The worse result is obtained
by BMO, which is produced more than $ 146 compared to TLBO for
the best objective function. Details cost analysis for the initial case
as well as the improvements obtained by all algorithms are tabulated
in Table 3. It can be observed that the cost of the purchased power
5

has decreased from $10, 363.11 to $ 9991.90 obtained by TLBO. After
installation of the BESS at node 18, the cost of the purchased power
has been reduced to $371.21 which is equal to 3.72% for the surveyed
24-h period. In terms of total power loss, even though the total energy
loss for TLBO is slightly higher than the initial case, the cost of energy
loss obtained by TLBO ranked as second best which is after SSA that
obtained the minimum cost of energy loss among all algorithms.

Fig. 7 shows the energy loss and the cost of energy loss incurred
obtained by the TLBO for 24-h period. From this figure, it can be
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Fig. 5. BESS power obtained by TLBO for the 24-h period.
Fig. 6. Purchased power before and after BESS placement at node 18.
proved that cost of energy loss incurred have been reduced for the
peak hours after the BESS’s installation at node 18. Despite the fact
that energy loss and cost may increase at certain hours following the
implementation of BESS, the overall energy loss and cost are minimized
due to the influence of the electricity tariff during those hours. The
6

voltage profiles for initial and after BESS installation determined by
TLBO at hour 20 are depicted in Fig. 8. As visualized in the figure, a
slight improvement of voltage magnitude is occurred at each node of
the 18-node system. The minimum voltage magnitude after load flow
solution obtained by MATPOWER is 0.9605 per unit, which is occurred
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Fig. 7. Energy loss and cost before and BESS placement at node 18.
Fig. 8. Voltage profiles before and after BESS installation.
at node 18 before the BESS installation. Following the discharging of
the BESS into the system, the voltage magnitude at node 18 increased
to 0.9675 per unit, which represents an improvement of approximately
0.73% compared to its original value. Although the improvements in
voltage magnitude may seem small, they can have a significant impact
on the reliability and stability of power system networks.
7

The best convergence curve out of 30 runs for all algorithms is
shown in Fig. 9. The figure shows that TLBO converged after 70
iterations and produced the best result among all compared algorithms.
From this figure, it can be observed that PSO converged just before 100
iterations while BMO produced the worst results compared to all other
algorithms. This performance proves that the TLBO is able to obtain
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Fig. 9. Convergence curve for all algorithms for the 18-node system.
Fig. 10. Single line diagram of the 33-node system [24,38].
Table 2
Statistical results obtained by TLBO and compared algorithms for the 18-node
system.

Algorithm Best Average Worst Std. Dev.

TLBO 10135.0414 10218.479 10292.6935 43.4480003
BMO 10 281.4908 10 384.6603 10 505.984 58.7509288
SSA 10 230.7974 10 361.0335 10 457.6433 58.4136445
GBO 10 142.9884 10 268.8343 10 383.022 61.2313359
PSO 10 148.6087 10 274.5138 10 584.4591 87.9008337

better results in optimizing the BESS’s location and operating power
compared to the results obtained by BMO, SSA, GBO and PSO.

4.2. The 33-node system

This distribution system consists of 33 nodes with a voltage level of
12.66 kV as depicted in Fig. 10. This system consists of 37 branches,
8

32 sectionalizing switches with 5 tie switches represented in dot line.
The load profiles and the transmission line parameters can be obtained
in [38]. Fig. 11 shows the load profiles for this system where the peak
loads occurred at hours 20 and 21, while the minimum load is recorded
at hour 4, which is 345.7 kW. In this system, the capacity of the BESS
is set up to 300% of its rated limit or 3 MWh for each interval period.
The optimal location for BESS installation obtained by TLBO is at node
26 where the BESS power in terms of percentage is depicted in Fig. 12.
Due to minimum load at hour 4, the BESS power for this hour is not
used whether to charge or discharge. It means that the BESS capacity
is remaining 100% from the previous hour and the power from the
node 1 is adequate to supply the total load for this hour. The BESS
power levels in each time interval for the 33-node system are similar
to those in the 18-node system, in that they do not exceed their rated
limits, which represented in percentage as follows: [99, 100, 100, 0,
−100, 100, −98, −80, 81, −100, −100, 100, −87, −6, −29, 28, 100,
−100, −100, −98, −100, 94, 100, 96] for the 24-h period and their
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Table 3
Cost analysis by TLBO and compared algorithms for the 18-node system.

Algorithm The capacity of BESS in MWhr Objective function in $ Cost of the purchased power in $ Cost saving in $ Energy loss in kWh Cost of energy loss in $

Initial – 10 514.04 10 363.11 – 1596.40 150.93
TLBO 2.00 10135.04 9991.90 371.21 1649.10 143.18
BMO 1.58 10 281.49 10 135.00 228.11 1588.50 146.31
SSA 1.55 10 230.80 10 089.00 274.11 1593.00 141.43
GBO 2.00 10 142.99 9998.90 364.21 1658.80 144.05
PSO 1.86 10 148.61 10 005.00 358.11 1638.50 143.44
CSA* 1.77 10 253.74 10 108.00 255.11 1577.60 145.87
Table 4
Cost analysis by TLBO and compared algorithms for the 33-node system.

Algorithm The capacity of BESS in MWhr Objective function in $ Cost of the purchased power in $ Cost saving in $ Energy loss in kWh Cost of energy loss in $

Initial – 3991.50 3855.00 – 1495.50 136.49
TLBO 2.99 3569.36 3439.90 415.10 1626.70 129.49
BMO 2.29 3652.83 3517.20 337.80 1494.90 135.61
SSA 2.66 3658.84 3530.60 324.40 1610.50 128.25
GBO 2.94 3590.69 3456.60 398.40 1690.90 134.08
PSO 3.00 3573.92 3438.20 416.80 1499.20 135.72
CSA* 3.73 3687.90 3552.00 303.00 1495.90 135.91
Fig. 11. Load profiles for the 33-node system.
otal power over the survey period sums to zero. The combined optimal
ower output as represented by the cumulative sum of its components,
s as follows: [99, 199, 299, 299, 199, 299, 201, 121, 202, 102, 2, 102,
5, 9, −20, 8, 108, 8, −92, −190, −290, −196, −96, 0] with a maximum

value of 299. Therefore, the storage capacity of the BESS required for
the operation is 2.99 MWh, which is less than the maximum capacity
viz. 3 MWh.

Fig. 13 shows the initial, before and after BESS installation at
node 26. As highlighted previously, the aim of the proper optimal
installation and operating power of BESS is not only can reduce the
cost of purchased power, but also can reduce the peak load profiles
during peak hours. This is proved by the results shown in Tables 4 and 5
where all the algorithms managed to reduce the power purchased when
installing the BESS at the respective node. From the tables also show
the superiority of TLBO compared to other algorithms by obtaining
the minimum objective function as well as the second highest cost
9

saving for power purchased for the surveyed 24-h period, which is
about 12.07% cost reduction. Table 4 indicates that the outcomes are
comparable to those of the 18-node system. In both cases, the SSA
algorithm was the most effective in generating the lowest energy loss
cost, at $128.25, with the TLBO algorithm being the second-best option,
yielding $129.49. In order to measure the robustness of the proposed
solution, 30 runs of simulations have been performed for all algorithms
and the statistical results obtained by all algorithms are tabulated in Ta-
ble 6. TLBO emerged as the best algorithm followed by the PSO, GBO,
BMO and SSA if the best result is taken as the reference of the analysis.
This table also demonstrates that TLBO achieved reliable outcomes
in relation to objective functions, as evidenced by its low standard
deviation, making it superior to all other algorithms considered. While
Table 4 reveals that SSA performed the best in minimizing the cost of
energy loss, it also yielded the poorest objective function results, viz.
$3658.84, which was the lowest among all algorithms evaluated.
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Fig. 12. BESS power obtained by TLBO for the 24-h period.
Fig. 13. Purchased power before and after BESS placement at node 26.
Fig. 14 shows the graph of the energy loss and the cost of energy
oss obtained by the TLBO during 24-h period for the 33-node system.
gain, it can be observed that the cost of energy loss incurred have
een reduced for the peak hours after the BESS’s installation at node 26.
ven though the energy loss peaked at hour 17 after BESS placement,
he cost of energy loss is compensated for the peak hours which are
10
at hours 20 and 21. Thus this will minimize the total loss cost overall.
The voltage profiles for initial and after BESS installation determined
by TLBO at hour 20 is visualized in Fig. 15. Slight improvements of
voltage magnitude at each node of the 33-node system can be seen in
this figure. The load flow solution obtained by MATPOWER found that
the voltage at node 18 had a minimum magnitude of 0.9243 per unit
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Fig. 14. Energy loss and cost before and BESS placement at node 26.
Fig. 15. Voltage profiles before and after BESS installation.
efore the installation of BESS. However, after the BESS was discharged
nto the system, the voltage magnitude at node 18 increased to 0.9390
er unit, resulting in a slight improvement. Even though the increase in
11
voltage magnitude may seem insignificant, again, similar with case 18-
node system, it can greatly affect the reliability and stability of power
systems.
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Fig. 16. Convergence curve for all algorithms for the 33-node system.
Table 5
Detail results of obtained by TLBO and compared algorithms for the 33-node system.

Hour\Algorithms TLBO BMO SSA GBO PSO CSA*

Bus 26 2 28 27 2 2
1 99 48 −25 100 46 82
2 100 88 98 32 100 100
3 100 0 30 62 99 100
4 0 93 −64 100 55 91
5 −100 −50 95 −95 −26 −34
6 100 −2 28 −75 −100 −38
7 −98 −15 22 93 −87 −100
8 −80 −65 72 −95 100 86
9 81 100 10 100 −100 −65
10 −100 −100 −76 −97 −100 −81
11 −100 −92 −100 −77 −100 −100
12 100 90 81 100 −17 7
13 −87 −93 71 −87 100 100
14 −6 100 −59 −88 −100 −100
15 −29 −32 −59 75 100 −100
16 28 2 68 91 100 −100
17 100 16 16 97 100 100
18 −100 −74 −91 −96 −100 81
19 −100 −32 −100 −100 −100 −100
20 −98 −100 −86 −100 −100 −75
21 −100 15 −100 −100 33 46
22 94 −88 −26 −40 −100 −100
23 100 100 98 100 100 100
24 96 91 97 100 97 100

Obj. function ($) 3569.36 3652.83 3658.84 3590.69 3573.92 3687.90

Table 6
Statistical results obtained by TLBO and compared algorithms for the 33-node
system.

Algorithm Best Average Worst Std. Dev.

TLBO 3569.36406 3650.5059 3733.37627 42.4387709
BMO 3652.83304 3835.46741 3980.44114 86.1931174
SSA 3658.83554 3778.83585 3943.28947 73.9830472
GBO 3590.68641 3730.40353 3858.77577 70.1401471
PSO 3573.92121 3649.64632 3859.15245 75.8697652
12
Fig. 16 shows the best convergence curve out of 30 runs for all
algorithms. The figure shows that all algorithms converged within 100
iterations and TLBO emerged as the best result among all compared
algorithms. This shows that TLBO is able to obtain consistent and
robust results compared to others in solving the optimal allocation and
operating power of the BESS, which have been proved in both test
cases, 18- and 33-node systems.

5. Conclusion

This paper proposed a Teaching-Learning-Based Optimization
(TLBO) algorithm for the optimal allocation of Battery Energy Stor-
age Systems (BESS) in distribution network systems. The aim was
to minimize the combined cost of power purchased and energy loss
for a 24-h period. The proposed method was tested on two case
systems, an 18-node and 33-node systems, using time-of-use electricity
charges that were divided into three periods: standard, peak, and off-
peak hours. The simulation results showed that the TLBO algorithm
outperformed other selected algorithms for both cases in terms of
optimizing the placement and operation of BESS units. Additionally, the
results from all algorithms demonstrated that determining the optimal
location of BESS units and their suitable operating power significantly
reduced costs while also curbing peak loads for the 24-h period. The
simulations indicate that TLBO is a useful technique for optimizing
the position and power of BESS. The results demonstrate that using
TLBO can lead to cost reductions of approximately 3.7% for the 18-
node system and savings of about 12% for the 33-node system power
purchased for the surveyed 24-h period. However, this study also has
some limitations that need to be addressed in future research. For
example, the uncertainties in energy prices were not considered. In
terms of practical implications, the proposed TLBO algorithm also can
be applied into energy sector to optimize the placement and capacity of
BESS units in microgrids that consider the renewable energy sources,
leading to reduced operational costs and improved performance. The
results of this study can also provide valuable insights for energy
planners and policymakers who are interested in implementing BESS
units in microgrids. Future research should focus on addressing the
limitations and expanding the scope of the study to include more

complex scenarios.



M.H. Sulaiman, Z. Mustaffa, M.M. Saari et al. Decision Analytics Journal 7 (2023) 100208
Table A.1
Real and reactive power demand for 18-node system for 24-hour period.

Hour\Load (kW) P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

1 100 100 100 100 80 90 100 80 80 80 100 80 120 120 120 120
2 100 100 100 100 80 90 100 80 80 80 100 80 120 120 120 120
3 200 200 200 200 160 180 200 160 160 160 200 160 240 240 240 240
4 215 215 215 215 172 193.5 215 172 172 172 215 172 258 258 258 258
5 215 215 215 215 172 193.5 215 172 172 172 215 172 258 258 258 258
6 225 225 225 225 180 202.5 225 180 180 180 225 180 270 270 270 270
7 265 265 265 265 212 238.5 265 212 212 212 265 212 318 318 318 318
8 285 285 285 285 228 256.5 285 228 228 228 285 228 342 342 342 342
9 300 300 300 300 240 270 300 240 240 240 300 240 360 360 360 360
10 500 500 500 500 400 450 500 400 400 400 500 400 600 600 600 600
11 500 500 500 500 400 450 500 400 400 400 500 400 600 600 600 600
12 300 300 300 300 240 270 300 240 240 240 300 240 360 360 360 360
13 400 400 400 400 320 360 400 320 320 320 400 320 480 480 480 480
14 425 425 425 425 340 382.5 425 340 340 340 425 340 510 510 510 510
15 425 425 425 425 340 382.5 425 340 340 340 425 340 510 510 510 510
16 425 425 425 425 340 382.5 425 340 340 340 425 340 510 510 510 510
17 425 425 425 425 340 382.5 425 340 340 340 425 340 510 510 510 510
18 500 500 500 500 400 450 500 400 400 400 500 400 600 600 600 600
19 500 500 500 500 400 450 500 400 400 400 500 400 600 600 600 600
20 500 500 500 500 400 450 500 400 400 400 500 400 600 600 600 600
21 425 425 425 425 340 382.5 425 340 340 340 425 340 510 510 510 510
22 150 150 150 150 120 135 150 120 120 120 150 120 180 180 180 180
23 150 150 150 150 120 135 150 120 120 120 150 120 180 180 180 180
24 100 100 100 100 80 90 100 80 80 80 100 80 120 120 120 120

Hour\Load (kVAR) Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

1 40 40 40 40 30 30 40 30 30 30 40 30 40 40 40 40
2 40 40 40 40 30 30 40 30 30 30 40 30 40 40 40 40
3 80 80 80 80 60 60 80 60 60 60 80 60 80 80 80 80
4 86 86 86 86 64.5 64.5 86 64.5 64.5 64.5 86 64.5 86 86 86 86
5 86 86 86 86 64.5 64.5 86 64.5 64.5 64.5 86 64.5 86 86 86 86
6 90 90 90 90 67.5 67.5 90 67.5 67.5 67.5 90 67.5 90 90 90 90
7 106 106 106 106 79.5 79.5 106 79.5 79.5 79.5 106 79.5 106 106 106 106
8 114 114 114 114 85.5 85.5 114 85.5 85.5 85.5 114 85.5 114 114 114 114
9 120 120 120 120 90 90 120 90 90 90 120 90 120 120 120 120
10 200 200 200 200 150 150 200 150 150 150 200 150 200 200 200 200
11 200 200 200 200 150 150 200 150 150 150 200 150 200 200 200 200
12 120 120 120 120 90 90 120 90 90 90 120 90 120 120 120 120
13 160 160 160 160 120 120 160 120 120 120 160 120 160 160 160 160
14 170 170 170 170 127.5 127.5 170 127.5 127.5 127.5 170 127.5 170 170 170 170
15 170 170 170 170 127.5 127.5 170 127.5 127.5 127.5 170 127.5 170 170 170 170
16 170 170 170 170 127.5 127.5 170 127.5 127.5 127.5 170 127.5 170 170 170 170
17 170 170 170 170 127.5 127.5 170 127.5 127.5 127.5 170 127.5 170 170 170 170
18 200 200 200 200 150 150 200 150 150 150 200 150 200 200 200 200
19 200 200 200 200 150 150 200 150 150 150 200 150 200 200 200 200
20 200 200 200 200 150 150 200 150 150 150 200 150 200 200 200 200
21 170 170 170 170 127.5 127.5 170 127.5 127.5 127.5 170 127.5 170 170 170 170
22 60 60 60 60 45 45 60 45 45 45 60 45 60 60 60 60
23 60 60 60 60 45 45 60 45 45 45 60 45 60 60 60 60
24 40 40 40 40 30 30 40 30 30 30 40 30 40 40 40 40
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