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A B S T R A C T

This paper proposes the implementation of various metaheuristic algorithms in solving the opti-
mal power flow (OPF) with the presence of Flexible AC Transmission System (FACTS) devices in
the power system. OPF is one of the well-known problems in power system operations and with
the inclusion of the FACTS devices allocation problems into OPF will make the solution more
complex. Thus, seven metaheuristic algorithms: Barnacles Mating Optimizer (BMO), Marine
Predators Algorithm (MPA), Moth–Flame Optimization (MFO), Particle Swarm Optimization
(PSO), Gravitational Search Algorithm (GSA), Teaching–Learning-Based Optimization (TLBO)
and Heap-Based Optimizer (HBO) are used to solve two objective functions: power loss and
cost minimizations. These algorithms are selected from the different metaheuristics classification
groups, where the implementation of these algorithms into the said problems will be tested on
the modified IEEE 14-bus system. From the simulation results, it is suggested that TLBO and
HBO perform better compared to the rest of algorithms.

1. Introduction

In modern power system planning and operations, the Optimal Power Flow (OPF) emerged as one of the complex problems
o be solved. It is expected that the power system needs to be operated at optimal condition so that the maximum security and
eliability can be achieved. OPF problem solution involving the non-convex, large scale and non-linear constrained optimization
roblems. It is aimed to find the optimal control variables of power systems’ components such as real power generations, generator’s
oltages, transformers setting, reactive compensation elements etc. so that the minimization of objective functions can be obtained.
n addition, electronically controlled Flexible AC Transmission System (FACTS) devices can mitigate most of the problems associated
ith power quality and overload in the power network. Proper allocation of these devices may increase the efficient utilization of

he existing facilities [1]. Thus, the optimal solution that integrating the FACTS devices’ allocation into OPF problems becoming one
f interesting research topics to be addressed since the implementation of FACTS devices has been proved to improve the power
uality of the power system network [2,3].

To date, there are various approached to solve OPF with the presence of FACTS devices that have been proposed in literature
ainly using metaheuristic such as Particle Swarm Optimization (PSO) [4], Opposition Krill Herd Algorithm (OKHA) [5], Symbiotic
rganisms Search (SOS) [6], Efficient Parallel Genetic Algorithm (EPGA) [7], Success History-based Adaptive Differential Evolution

SHADE) [1], Integrated Ant Lion Optimizer (IALO) and Grasshopper Optimization Algorithm (GOA) called as IALGOA [8] and
any more apart from using the conventional techniques such as sequential quadratic programming that has been proposed in [9]

nd Newton method which has been proposed in [10].
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In related works for metaheuristic algorithms’ performance in solving engineering problems, several comparative studies have
een discussed and performed such as in [11–18]. From the literature reviews, it can be noticed that the application of metaheuristic
lgorithms into engineering problems is ever-increasing interest, year by year especially in OPF solution. Thus, this paper proposes
n application of seven recent metaheuristic algorithms namely Barnacles Mating Optimizer (BMO), Marine Predator Algorithm
MPA), Moth–Flame Optimization (MFO), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching–
earning-Based Optimization (TLBO) and Heap Based Optimizer (HBO) to solve OPF problem which considering the presence of
ACTS devices in the power system network. The contributions of this paper can be listed as follow:

• The implementation of seven selected metaheuristic algorithms into OPF solution on the well-known IEEE 14-bus system with
considering the integration of FACTS devices allocation problem.

• Conducting comparative studies among seven recent metaheuristic algorithms in the OPF solution field.
• Four cases of single objective of OPF solution by metaheuristic algorithms: loss and cost minimizations problems.

he rest of the paper is organized as follows: Section 2 discusses the OPF formulation followed by the brief description of seven
etaheuristic algorithms in Section 3. The implementation of selected metaheuristic algorithms in solving OPF is presented in

ection 4 and followed by the simulation studies in Section 5. Finally, Section 6 states the conclusion of this paper.

. Optimal power flow problem formulation

The main purpose of OPF is to find the optimal setting of control variables in power system components to minimize the selected
bjective functions while satisfying all the equality and inequality constraints. In this paper, two objectives are identified to solve
PF for the system that considering the allocation problem of FACTS devices: (1) loss minimization and (2) cost of generation
inimization.

.1. Minimization of power loss

The first objective function is the total power loss minimization, 𝐹𝐿𝑜𝑠𝑠, as follows:

𝐹𝐿𝑜𝑠𝑠 =
𝑛𝑙
∑

𝑖=𝑗

𝑛𝑙
∑

𝑗≠𝑖
𝐺𝑖𝑗

[

𝑉 2
𝑖 + 𝑉 2

𝑗 − 2𝑉𝑖𝑉𝑗 cos
(

𝛿𝑖 − 𝛿𝑗
)

]

(1)

where nl is the number of transmission line of the power system, 𝐺𝑖𝑗 is the conductance at the transmission line i-j, 𝑉𝑖, 𝛿𝑖, 𝑉𝑗 and 𝛿𝑗
are the sending end voltage, phase angle of sending end, receiving end voltage, and phase angle of receiving ends respectively.

2.2. Minimization of generation cost

Second objective function that consider in this paper is the total cost that include the valve loading effects, 𝐹𝐶𝑜𝑠𝑡 (𝑃𝐺𝑖), which is
expressed as follows:

𝐹𝐶𝑜𝑠𝑡
(

𝑃𝑇𝐺
)

=
𝑁𝐺
∑

𝑖=1
𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃

2
𝐺𝑖 +

|

|

|

𝑑𝑖 ⋅ 𝑠𝑖𝑛
[

𝑒𝑖 ⋅
(

𝑃𝑚𝑖𝑛
𝐺𝑖 − 𝑃𝐺𝑖

)]

|

|

|

(2)

where 𝑃𝑇𝐺 is the total power output of generators, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑒𝑖 denote the cost coefficients of respected generator 𝑃𝐺𝑖 with
valve loading effect consideration and 𝑃𝑚𝑖𝑛

𝐺𝑖 is the minimum setting of power of 𝑖-th generator.

.3. Model of FACTS devices

In this paper, three FACTS devices will be considered which are Static VAR compensator (SVC), Thyristor-Controlled Series
ompensation (TCSC) and Thyristor Controlled Phase Shifter (TCPS). Shunt compensation device SVC supplements the reactive
ower of the system while TCSC and TCPS are the series compensation devices which are used to enhance the loading capability
nd power flow of the line. Basically, the modeling of these devices are based on [1].

For SVC, it consists of a fixed capacitor with a thyristor-controlled reactor. The reactance is varied by controlling the thyristor
iring angle. SVC can be utilized for both inductive and capacitive compensation. In power flow study, reactive power provided by
VC, 𝑄𝑆𝑉 𝐶 can be expressed as follows:

𝑄𝑆𝑉 𝐶 = −𝑉 2
𝑖 .𝐵𝑆𝑉 𝐶 (3)

here 𝐵𝑆𝐶𝑉 is the equivalent susceptance.
For TCSC on the other hand, it consists of a fixed series capacitor (𝑋𝐶 ) in parallel with a thyristor-controlled reactor (𝑋𝐿). Similar

with [1], the reactance is considered as 𝑋𝐶 < 𝑋𝐿 so that the TCSC acts as a variable capacitive reactance. The inductive reactance
is varied by controlling the firing angle of the thyristors (𝛾). The effective reactance of TCSC can be expressed as follows:

𝑋𝑇𝐶𝑆𝐶 (𝛾) =
𝑋𝐶𝑋𝐿(𝛾) (4)
𝑋𝐿 (𝛾) −𝑋𝐶

2
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The modified equivalent reactance (𝑋𝑒𝑞) of the transmission line after incorporating TCSC can be expressed as follows:

𝑋𝑒𝑞 = (1 − 𝜏)𝑋𝑖𝑗 (5)

where 𝜏 = 𝑋𝑇𝐶𝑆𝐶
𝑋𝑖𝑗

, which is termed as the degree of series compensation with 𝑋𝑖𝑗 being the line inductive reactance. The power flow
quations of the line incorporating

TCSC as well as the model of TCPS integration into the existing system can be obtained in details in [1].

.4. Constraints

In solving the OPF problem, all the feasible solutions need to fulfill all the equality and inequality constraints. For equality
onstraint, the power balance equation for real and reactive power must be satisfied and expressed as follow:

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗𝑌𝑖𝑗 cos

(

𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗
)

= 0 ∀𝑖 ∈ 𝑛𝐵 (6)

𝑄𝐺𝑖 −𝑄𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗𝑌𝑖𝑗 sin

(

𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗
)

= 0 ∀𝑖 ∈ 𝑛𝐵 (7)

where 𝑃𝐺𝑖 and 𝑄𝐺𝑖 are the real and reactive power generation at bus i, 𝑃𝐷𝑖 and 𝑄𝐷𝑖 are the real and reactive load at bus i and nB
is the total number of buses in the system.

When the FACTS devices are considered, the following equality constraints are used:

𝑃𝐺𝑖 + 𝑃𝑖𝑠 − 𝑃𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗𝑌𝑖𝑗 cos

(

𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗
)

= 0 ∀𝑖 ∈ 𝑛𝐵 (8)

𝑄𝐺𝑖 +𝑄𝑖𝑠 +𝑄𝑆𝑉 𝐶𝑖 −𝑄𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗𝑌𝑖𝑗 sin

(

𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗
)

= 0 ∀𝑖 ∈ 𝑛𝐵 (9)

where 𝑃𝑖𝑠 and 𝑄𝑖𝑠 are the active and reactive power respectively, injected by the TCPS at bus i [1] and 𝑄𝑆𝑉 𝐶𝑖 is the injected reactive
power at bus i by the SVC.

The inequality constraint on the other hand, are the operating limits of the power system components which can represented as
follow:

𝑃𝑚𝑖𝑛
𝐺𝑖 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝑚𝑎𝑥

𝐺𝑖 𝑖 = 1,… , 𝑁𝐺 (10)

𝑄𝑚𝑖𝑛
𝐺𝑖 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝑚𝑎𝑥

𝐺𝑖 𝑖 = 1,… , 𝑁𝐺 (11)

𝑉 𝑚𝑖𝑛
𝐺𝑖 ≤ 𝑉𝐺𝑖 ≤ 𝑉 𝑚𝑎𝑥

𝐺𝑖 𝑖 = 1,… , 𝑁𝐺 (12)

𝑉 𝑚𝑖𝑛
𝐿𝑖 ≤ 𝑉𝐿𝑖 ≤ 𝑉 𝑚𝑎𝑥

𝐿𝑖 𝑖 = 1,… , 𝑁𝐿𝑜𝑎𝑑 (13)

𝑄𝑚𝑖𝑛
𝐶𝑘 ≤ 𝑄𝐶𝑘 ≤ 𝑄𝑚𝑎𝑥

𝐶𝑘 𝑘 = 1,… , 𝑁𝑄𝐶 (14)

𝑇 𝑚𝑖𝑛
𝑙 ≤ 𝑇𝑙 ≤ 𝑇 𝑚𝑎𝑥

𝑙 𝑙 = 1,… , 𝑁𝑇 (15)

SVC: 𝑄𝑚𝑖𝑛
𝑆𝑉 𝐶 ≤ 𝑄𝑆𝑉 𝐶 ≤ 𝑄𝑚𝑎𝑥

𝑆𝑉 𝐶 (16)

TCSC: 𝛷𝑚𝑖𝑛
𝑇𝐶𝑆𝐶 ≤ 𝛷𝑇𝐶𝑆𝐶 ≤ 𝛷𝑚𝑎𝑥

𝑇𝐶𝑆𝐶 (17)

TCPS: 𝜏𝑚𝑖𝑛𝑇𝐶𝑃𝑆 ≤ 𝜏𝑇𝐶𝑃𝑆 ≤ 𝜏𝑚𝑎𝑥𝑇𝐶𝑃𝑆 (18)

where (10) and (11) represent the real and reactive power generations limits for thermal generation, respectively. Constraints on
voltage of generator buses is expressed in (12), while (13) defined as the voltage limits at load buses with 𝑁𝐺 is the number of
generator and 𝑁𝐿𝑜𝑎𝑑 is the number of load buses. The limitation of injected MVAR and transformer tap setting are shown in (14)
and (15), respectively while 𝑁𝑄𝑐 is the total number of injected MVAR and 𝑁𝑇 is the number of transformers in the system network.

It is worth to mention that all these constraints are satisfied by using the power flow program (MATPOWER) [19] to ensure the
accurate results can be obtained.

3. Metaheuristic algorithms

3.1. Barnacles mating optimizer

Barnacles Mating Optimizer (BMO) has been proposed by [20–22] where it mimics the mating concept of barnacles. Barnacles
are hermaphroditic organisms where they have both male and female reproduction organs. They are mating in two ways which are
by copulate with the near neighbors by knocking their penis to allow the mating process and there is rare probability of sperm cast
mating, where this is happened for isolate barnacles. These behaviors are inspired for exploitation and exploration process to be

included in the BMO for solving optimization problems. In BMO, the exploitation process is adopted the concept of Punnet square

3
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by Hardy–Weinberg principle and the exploration process is adopted from sperm-cast mating. Only one parameter needs to be tuned
namely pl, apart of number of population and maximum iteration in BMO. The concept of exploitation and exploration proposed in
BMO can be obtained in details in [20].

3.2. Marine Predators Algorithm (MPA)

Next bio-inspired algorithm that will be used for solving OPF problem with FACTS devices is called Marine Predators Algorithm
(MPA) that has been proposed in [23]. This algorithm is based on the marine behavioral of ocean predators by imposing the Brownian
and Levy motions concepts in the algorithm. It follows the rules that naturally govern in optimal foraging strategy and encounters
rate policy between predator and prey in marine ecosystem. The three phases of optimization are schematically proposed which are
(1) prey movement using Brownian motion for exploration phase followed by (2) predator starts searching for its prey in Brownian
motion while prey switches to Levy to efficiently search its close neighborhood and (3) finally the predator starts switching its
behavior from Brownian to Levy strategy to more efficiently search a certain neighborhood. Another point which causes a behavioral
change in marine predators is environmental issues such as the eddy formation or Fish Aggregating Devices (FADs) effects. The FADs
are considered as local optima and their effect as trapping in these points in search space. Consideration of these longer jumps during
simulation avoids stagnation in local optima.

3.3. Moth–Flame optimization (MFO)

Moth–Flame Optimization (MFO) algorithm is inspired from the moths’ navigation method at night by maintaining a fixed angle
with respect to the moon called transverse orientation proposed by Mirjalili [24]. However, they are trapped in a useless or deadly
spiral path around artificial lights. In MFO, a logarithmic spiral equation is used for evaluating the moths’ movement because it
dictates how the moths update their positions around flames. The spiral equation allows a moth to fly ‘‘around’’ a flame and not
necessarily in the space between them, where from this condition the exploration and exploitation of the search space can be
guaranteed. It is assumed that the candidate solutions are moths and the problem’s variables are the position of moths in the space.
Therefore, the moths can fly in 1-D, 2-D, 3-D, or hyper dimensional space with changing their position vectors due to the MFO
algorithm is also known as one of the population-based algorithms.

3.4. Particle Swam Optimization (PSO)

The comparison performance of the OPF analysis is not complete if not comparing the performance using the Particle
Swam Optimization (PSO) algorithm. PSO is the most well-known algorithm that forming the Swarm Intelligence (SI) group of
metaheuristic algorithms in solving optimization problems. It has been invented by Eberhart and Kennedy in 1995 where the
algorithm is based on the social behavior of animals like a flock of birds or school of fishes [25]. PSO introduces the position
and velocity of particles swarm in finding the optimal solution where it become the major influence in enhancing the exploitation
and exploration abilities in searching for the optimality. All these particles will move within the searching space towards the location
of food (optimal location) in a specific speed and continuously change their respective positions to arrive at the destination. Their
movement is guided by their own experience namely 𝑃𝑏𝑒𝑠𝑡, and the experience of the other particles in a group known as 𝐺𝑏𝑒𝑠𝑡.
Each particle will update its velocity as well as its position in order to obtain the next best search solution. In PSO, there are
five parameters need to set viz. inertia weight, w, acceleration coefficients for cognitive and social components, 𝑐1 and 𝑐2, and
independently random vectors, 𝑟1 and 𝑟2 which are uniform distributed random numbers between [0, 1].

3.5. Gravitational Search Algorithm (GSA)

Gravitational Search Algorithm (GSA) is inspired by the law of Newtonian gravity and mass interaction. It can be categorized as
physics-based metaheuristic algorithm and the algorithm is proposed in 2009 by [26] where can be recognized as the first algorithm
to solve optimization problem that fall under this category. In GSA, each mass (agent or candidate of solution) has four specifications:
position, inertial mass, active gravitational and passive gravitational masses. The position of the mass corresponds to a solution of
the problem and its gravitational and inertia masses are determined using a fitness or objective functions. Each mass is treated as
a solution and the optimal solution is navigated by properly adjusting the gravitational and inertia masses. By lapse of time, it is
expected that masses be attracted by the heavier mass and this mass can be considered as an optimum solution in the search space.
The GSA could be considered as an isolated system of masses, which is like a small artificial world of masses obeying the Newtonian
laws of gravitation and motion.

3.6. Teaching-Learning Based Optimization (TLBO)

A TLBO is inspired by the teaching and learning process in the classroom invented by [27,28] where later had numerous
debate regarding the discrepancies arose such as the terms, flowchart, pseudo code and the program code as mentioned in [29,30].
Nevertheless, as far as NFL theorem is concerned, the different types of setting and problems also can give different results and
interpretations. Thus, this work is using the program that has been developed by [31] which has catered all the issues raised
by [29].

Similar with other metaheuristic algorithms, TLBO uses population-based solution where the population is treated as a group
or a class of learners, the design variables are analogues to subjects offered to learners and the learners’ result is analogues to the
4
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‘fitness’. The process of acquiring knowledge is divided into teacher and learner phases and the teacher is considered as the best
solution so far [32]. This algorithm can be said classified as a non-parameter algorithm since apart of number of population and
maximum iteration, there is no parameter need to be adjusted or tuned to obtain the optimal results. This algorithm is fall under
human-based metaheuristic algorithm group.

3.7. Heap-Based Optimizer (HBO)

Heap-Based Optimizer (HBO) utilizes the heap data structure to map the concept of Corporate Rank Hierarchy (CRH) [33]. HBO
can be classified as human-based metaheuristic algorithm group. The development of HBO is based on three pillars, which are the
interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of
the employees in the corporate company. The primary objective of this CRH is giving the formal activities an organized shape and
achieving the end goals optimally. CRH manifests the population while the search agent represents a heap node. The search agent’s
fitness is the master of the heap node, and the population index of the search agent is the value of the heap node. In HBO, to
obtain an appropriate balance between exploration and exploitation, the mathematical equations are carefully derived from three
major CRH activities. In addition, a self-adaptive parameter called Gamma is designed to escape local optima and avoid premature
convergence without compromising the exploitation capability of the HBO.

4. Metaheuristic optimizers for OPF solution with FACTS devices allocation problem

In general, OPF solution can be defined as follows:

Minimize 𝐹 (𝑥, 𝑢)

𝑠.𝑡 𝑔(𝑥, 𝑢) = 0

ℎ(𝑥, 𝑢) ≤ 0 (19)

where F (x, u) is the objective function, g(x, u) is the equality constraints and h(x, u) is the inequality constraints. x and u are
he control and state variables respectively since in power system, to obtain the optimality, not only the control variable; the state
ariables also play a vital role for the security of the power system operation. In this paper, four case studies will be implemented
n IEEE 14-bus system where the OPF with FACTS devices will be solved by all six selected metaheuristic algorithms, as follows:

Case 1: OPF problems with SVC and TCSC for loss minimization
Case 2: OPF problems with SVC and TCPS for loss minimization
Case 3: OPF problems with SVC and TCSC for cost minimization
Case 4: OPF problems with SVC and TCPS for cost minimization
So, the set of control and state variables in OPF solution can be expressed as follow:

𝒙𝑻 =
[

𝑷𝑮𝟐
⋯𝑷𝑮𝑵𝑮

,𝑽 𝑮𝟏
⋯𝑽 𝑮𝑵𝑮

,𝑻 𝟏 ⋯𝑻𝑵𝑻 ,𝑩𝒖𝒔𝑺𝑽 𝑪 ,𝑸𝑺𝑽 𝑪 ,𝑩𝒓𝒂𝒏𝒄𝒉𝑻𝑪𝑺𝑪∕𝑻𝑪𝑷𝑺 ,𝜱𝑻𝑪𝑺𝑪∕𝝉𝑻𝑪𝑷𝑺

]

(20)

𝑢𝑇 =
[

𝑃𝐺1
, 𝑄𝐺1

⋯𝑄𝐺𝑁𝐺
, 𝑉𝐿1

⋯𝑉𝐿𝑁𝐿

]

(21)

where 𝑃𝐺1 is the slack bus generation, 𝑃𝐺𝑖 = the real power generation at voltage controlled buses at the slack bus, 𝑉𝐺𝑖 = the voltage
magnitude at voltage controlled buses, 𝑇𝑖 = the tap settings of transformer, 𝐵𝑢𝑠𝑆𝑉 𝐶 is the location of the SCV to be installed, 𝑄𝑆𝑉 𝐶
= the shunt injected VAR, 𝐵𝑟𝑎𝑛𝑐ℎ𝑇𝐶𝑆𝐶∕𝑇𝐶𝑃𝑆 is the location of TCSC or TCPS at which branch to be installed, 𝑉𝐿𝑖 = the voltage
magnitude at load buses and 𝑄𝐺𝑖 is the reactive power generation for all generator units.

The application of the selected metaheuristic optimizers in solving OPF problem is to find the optimal values of control variables
to minimize all the objective functions that have been discussed in previous section while fulfilling all the constraints. Initially,
number of search agents or population and the maximum iteration are set. Then, all the function details such as boundary of
searching areas and the function evaluation (minimization of objective functions) are determined. Each set of solution are mapped
into the load flow data and load flow MATPOWER program is executed to obtain the selected objective (Cases 1 and 2). It is worth
to highlight that the penalty function is enforced for the violation of inequality constraints of real power at slack bus, voltage
magnitude at load buses and reactive power generations, which can be expressed as follows:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆𝑃
(

𝑃𝐺1 − 𝑃 𝑙𝑖𝑚
𝐺1

)2 + 𝜆𝑉
𝑁𝐿
∑

𝑖−1

(

𝑉𝐿𝑖 − 𝑉 𝑙𝑖𝑚
𝐿𝑖

)2 + 𝜆𝑄
𝑁𝐺
∑

𝑖−1

(

𝑄𝐺𝑖 −𝑄𝑙𝑖𝑚
𝐿𝑖

)2 (22)

where 𝜆𝑃 , 𝜆𝑉 , and 𝜆𝑄 are the penalty factors. General flow of metaheuristic optimizers’ application into OPF problem is depicted
in Fig. 1.

5. Results and discussion

Case 1: OPF problems with SVC and TCSC for loss minimization
Simulations for solving OPF are executed using MATLAB and the modified IEEE 14-bus system is used for all cases. IEEE 14-

bus system can be considered as small-scale problem that consists of 14 buses, 5 generators, 3 transformers and 11 loads. The
modification is to change the synchronous compensator at buses 3, 6 and 8 to a thermal generator as shown in Fig. 2. As both the
location and rating of FACTS devices are yet to be optimized, those are indicated with dotted lines in the diagram.
5
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Fig. 1. Flow of metaheuristic algorithms for solving OPF problem with FACTS devices’ allocation.

Table 1
Coefficients for thermal generators for modified IEEE 14-bus system.

Generator Bus a b c d e

𝑇𝐺1 1 0 20 0.0430292599 18 0.037
𝑇𝐺2 2 0 20 0.25 16 0.038
𝑇𝐺3 3 0 40 0.01 12 0.045
𝑇𝐺4 6 0 40 0.01 13.5 0.041
𝑇𝐺5 8 0 40 0.01 13.5 0.041

All simulations for solving OPF problem with FACTS devices using all metaheuristic optimizers are implemented using MATLAB
n a MacBook Pro Processor 2.40 GHz Quad-Core Intel Core i5, 8 GB RAM. For all four cases, the control variables to be optimized is
6 variables that consist of the components that have been discussed previously. Table 1 shows the coefficients of thermal generators
ith valve-loading effects. The population of all algorithms is set to 30 and the maximum iteration is set to 100. For all simulations,
6 control variables need to be optimized that consist of real power generation, voltage at generator buses, transformers tap setting
nd FACTS devices’ allocation while the number of state variables are 15 viz. real power generation at slack bus, reactive power
eneration and voltage at load buses. All these setting have been used for all cases to obtain fair results for all simulations. It is
orth to mention that the following assumptions have been made while adding the FACT devices [1]:
• SVC is not installed on generator buses as the generator itself can exchange reactive power.
• TCSC/ TCPS are not installed on branches having tap changing transformers.
Table 2 shows the detail results of the control variables with slack generator at bus 1 as well as reactive power generations

btained by all algorithms viz. BMO, MPA, MFO, PSO, GSA, TLNO and HBO. These results are the best result obtained from 30 free
unning of simulations. From this table, it can be seen that TLBO outperformed other compared algorithms which is highlighted in
oldface. TLBO achieved the minimum total power loss, 0.918 MW and the second-best result is obtained by MFO which produced
.949 MW. The difference results obtained between TLBO with the MFO is 0.031 MW. The worst result is obtained by GSA where
he significant loss minimization from TLBO compared to GSA is about 49% reduction of power loss. This shows the effectiveness
f TLBO compared to other algorithms. It is worth to mention that the total power loss for original condition without optimization
f OPF and FACTS devices’ allocation is 10.218 MW. Thus, from the simulations that have been conducted, it can be concluded that
his is tremendous improvement of power loss reduction.

It also can be noted from the table that all algorithms gave the optimal results within the specified limits that have been set for
he simulation. Most algorithms determined the SVC are located at bus 14 which are resulted from BMO, PSO, TLBO and HBO while
PA and MFO suggested the SVC should located at bus 13. Only GSA proposed to install the SVC at bus 7. These locations are not

nstalled at generator buses. For TCSC, the location for install it varies for all algorithms which contributed significantly different
or minimizing the power loss for this system. The convergence curve for all algorithms in solving this case is depicted in Fig. 3. It
an be concluded that all algorithms are converged within 100 iterations.

Case 2: OPF problems with SVC and TCPS for loss minimization
In this case, the TCPS is considered that replacing the TCSC as in Case 1, where the optimal location and angle of TCPS be

ptimized by all algorithms. Table 3 shows the best of detail results obtained for all algorithms in 30 runs of simulation. Again,
t can be noted that TLBO outperformed other compared algorithms in terms of obtaining the minimum loss production, which is

ighlighted in boldface. For this case, it can be noted that all algorithms able to obtain the optimal results within the boundaries,

6
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Fig. 2. Modified IEEE 14-bus system.

Table 2
Detail results for different algorithms on Case 1.

Control variables Min Max BMO MPA MFO PSO GSA TLBO HBO

𝑃𝐺2 10 140 10.0000 12.9168 10.0000 11.6665 32.3766 10.0000 10.0000
𝑃𝐺3 10 100 88.7592 92.3804 100.0000 78.8669 59.3109 82.4516 82.1314
𝑃𝐺6 10 100 32.5512 35.4701 28.4597 39.7532 46.8738 34.1794 38.4139
𝑃𝐺8 10 100 78.4944 69.1903 71.4546 79.1750 61.3109 83.2532 79.1186
𝑉1 0.95 1.1 1.0613 1.0624 1.0516 1.0709 1.0445 1.0649 1.0293
𝑉2 0.95 1.1 1.0521 1.0545 1.0430 1.0630 1.0338 1.0561 1.0234
𝑉3 0.95 1.1 1.0433 1.0522 1.0449 1.0550 1.0224 1.0503 1.0146
𝑉6 0.95 1.1 0.9824 1.0260 1.0486 1.0351 1.0304 1.0371 1.0262
𝑉8 0.95 1.1 0.9583 1.0392 1.0579 1.0297 1.0245 1.0590 1.0174
𝑇4−7 0.9 1.1 1.1 1.06 1.04 1.1 1.04 1 1
𝑇4−9 0.9 1.1 0.9 0.96 0.9 0.9 1 1 0.98
𝑇5−6 0.9 1.1 1.1 1 0.98 1 0.98 1 0.98
SVC bus no. 14 13 13 14 7 14 14
𝑄𝑆𝑉 𝐶 (MVAR) −10 10 10.0000 9.9587 7.6357 4.0764 −0.9047 2.0756 10.0000
TCSC branch 13 (6–13) 20 (13–14) 2 (1–5) 3 (2–3) 12 (6–12) 11 (6–11) 20 (13–14)
𝜏TCSC1(%) 0 50% 0.12 0.19 0.17 0.02 0.23 0.50 0.10

Loss (MW) 1.013 0.958 0.949 0.95 1.784 0.918 0.969
State variables

𝑃𝐺1 50 332.4 50.21 50 50.03 50.49 60.91 50.03 50.31
𝑄𝐺1 −40 50 2.08 0.10 0.98 0.28 2.72 1.41 −4.85
𝑄𝐺2 −40 40 5.05 0.51 −3.81 6.19 −3.84 1.32 10.23
𝑄𝐺3 −6 40 13.59 16.10 17.80 15.44 16.65 15.53 13.46
𝑄𝐺6 −6 24 23.47 0.14 5.70 8.14 15.37 11.27 11.47
𝑄𝐺8 −6 24 1.14 16.90 16.22 16.72 15.02 14.39 7.47

whether for control variables as well as for state variables. The convergence curve for all algorithms in solving this case is depicted
in Fig. 4. It can be seen that GSA converged too soon which is less than 10 iterations which resulted the worst results compared to
others.

Case 3: OPF problems with SVC and TCSC for cost minimization
For this case, the minimization of generator cost is considered as stated in Eq. (2) which including the valve-loading effects of

he power generation. The control variables to be optimized is similar with Case 1, only the objective now is to find minimum cost
eneration. Detail optimal results obtained by all algorithms are tabulated in Table 4, where the best cost minimization is achieved
y TLBO which is 5943.47 $/hour and the worst result is obtained by GSA, 5978.56 $/hour. The difference results obtained between
7
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Fig. 3. Convergence curve for all algorithms of Case 1.

Table 3
Detail results for different algorithms on Case 2.

Control variables Min Max BMO MPA MFO PSO GSA TLBO HBO

𝑃𝐺2 10 140 10.0000 14.8119 10.0000 10.0000 38.4064 10.2753 10.0000
𝑃𝐺3 10 100 84.2983 96.6241 80.3790 85.0134 59.2636 87.6470 91.0320
𝑃𝐺6 10 100 35.2974 23.2973 19.5523 47.4428 42.3520 33.3663 34.1893
𝑃𝐺8 10 100 80.0688 75.2264 99.7471 67.4491 62.1601 78.6063 74.6654
𝑉1 0.95 1.1 0.9819 1.0484 1.0380 1.0506 1.0299 1.0575 1.0462
𝑉2 0.95 1.1 0.9734 1.0406 1.0277 1.0414 1.0204 1.0489 1.0380
𝑉3 0.95 1.1 0.9620 1.0396 1.0192 1.0448 1.0113 1.0437 1.0340
𝑉6 0.95 1.1 1.0447 1.0593 1.0342 1.0107 1.0275 1.0462 0.9794
𝑉8 0.95 1.1 1.0547 1.0685 1.0408 1.0239 1.0252 1.0617 1.0093
𝑇4−7 0.9 1.1 0.9 1 0.94 1 0.98 0.98 1.02
𝑇4−9 0.9 1.1 0.9 0.94 1.02 1.1 1 0.98 1.04
𝑇5−6 0.9 1.1 0.92 0.96 1 1.02 0.96 1 1.06
SVC bus no. 4 14 7 10 9 7 13
𝑄𝑆𝑉 𝐶 (MVAR) 5.4418 5.9269 10.0000 6.1182 1.3519 −8.0615 7.7771
TCPS branch 20 (13–14) 15 (7–9) 15 (7–9) 15 (7–9) 11 (6–11) 15 (7–9) 4 (2–4)
𝛷TCSPS(deg.) −5 5 1.1121 1.0517 4.4096 −2.3108 0.3972 0.4510 0.3412

Loss (MW) 1.0397 0.9605 0.9815 1.0367 1.9184 0.9384 0.9835
State variables

𝑃𝐺1 50 332.4 50.38 50.00 50.30 50.13 58.74 50.04 50.10
𝑄𝐺1 −40 50 0.80 0.01 3.97 0.39 3.67 1.01 −0.44
𝑄𝐺2 −40 40 9.84 −0.66 1.22 −8.76 4.80 2.19 1.08
𝑄𝐺3 −6 40 11.97 16.00 14.35 22.66 24.45 15.81 15.14
𝑄𝐺6 −6 24 14.64 8.61 23.34 15.16 18.29 19.90 11.33
𝑄𝐺8 −6 24 6.38 13.51 3.26 9.29 13.32 14.60 13.12

TLBO with the GSA is 35.09 $/hour which is significant about $35.09/hour × 8760 h (24 hour/day × 365 days) = $ 307,388.40
cost saving per year. From this table also, it can be seen that the results obtained by PSO violating the minimum state variable’s
limit for reactive power generation at bus 6 viz. 𝑄𝐺6 which is highlighted in red boldface.

The location for SVC installation is varied obtained by all algorithms where TLBO and HBO locate at bus 14, while MFO and
PSO decided to install the SVC at bus 4. For TCSC location, MPA, MFO, TLBO and HBO gave the similar results where the TCSC
need to be installed at branch 3 (line 2–3), while others gave varies results. The convergence curve for this case is plotted in Fig. 5
where all algorithms converged within less than 70 iterations.
8
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Table 4
Detail results for different algorithms on Case 3.

Control variables Min Max BMO MPA MFO PSO GSA TLBO HBO

𝑃𝐺2 10 140 101.5744 101.4882 101.4663 101.5536 81.1452 101.4167 101.3172
𝑃𝐺3 10 100 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
𝑃𝐺6 10 100 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
𝑃𝐺8 10 100 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
𝑉1 0.95 1.1 1.0903 1.1000 1.1000 1.1000 1.0873 1.0997 1.0953
𝑉2 0.95 1.1 1.0802 1.0855 1.0839 1.0913 1.0712 1.0868 1.0838
𝑉3 0.95 1.1 1.0459 1.0520 1.0486 1.0613 1.0335 1.0554 1.0512
𝑉6 0.95 1.1 1.0399 1.0182 1.0611 1.1000 1.0027 1.0605 1.0643
𝑉8 0.95 1.1 1.0668 1.0012 1.0622 1.1000 1.0225 1.0635 1.0681
𝑇4−7 0.9 1.1 0.98 1.1 1.1 1.04 1.04 1 1.06
𝑇4−9 0.9 1.1 1.04 0.92 0.9 0.9 0.96 1.02 0.94
𝑇5−6 0.9 1.1 1.02 1.02 0.98 0.9 1.02 0.96 0.96
SVC bus no. 7 10 4 4 9 14 14
𝑄𝑆𝑉 𝐶 (MVAR) −10 10 −10.0000 4.4615 −10.0000 10.0000 −1.3232 10.0000 7.1425
TCSC branch 1 (1–2) 3 (2–3) 3 (2–3) 20 (13–14) 7 (4–5) 3 (2–3) 3 (2–3)
𝜏TCSC1(%) 0 50% 0.00 0.28 0.27 0.00 0.23 0.29 0.25

Cost ($/hr) 5947.30 5944.87 5944.33 5946.23 5978.56 5943.47 5943.61
State variables

𝑃𝐺1 50 332.4 134.94 134.91 134.90 134.91 156.22 134.91 135.02
𝑄𝐺1 −40 50 −6.90 4.68 7.79 −5.58 4.70 1.89 −2.73
𝑄𝐺2 −40 40 23.22 18.70 14.48 28.47 29.57 18.80 19.26
𝑄𝐺3 −6 40 21.63 21.70 18.16 25.11 22.56 22.88 19.69
𝑄𝐺6 −6 24 20.35 8.81 12.66 −13.69 14.99 −3.20 −0.11
𝑄𝐺8 −6 24 11.94 2.36 19.20 15.02 13.68 3.80 13.73

Case 4: OPF problems with SVC and TCPS for cost minimization
In this case, the setting for control and state variables are similar with the Case 2 and the objective function is similar with Case

. The detail results of simulation for this case are depicted in Table 5. From this table, it can be noted that HBO outperformed
thers by obtaining the minimum cost of generation which is 5944.09 $/hour. The next best result is obtained by MFO followed
y TLBO, MPA, PSO and finally GSA. From this table also can be noted that the state variable for 𝑄𝐺6 by PSO and GSA is violated

the minimum boundary setting. The convergence curve for this case is shown in Fig. 6 where all algorithms converged within less
than 90 iterations.
9
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Fig. 5. Convergence curve for all algorithms of Case 3.

Table 5
Detail results for different algorithms on Case 4.

Control variables Min Max BMO MPA MFO PSO GSA TLBO HBO

𝑃𝐺2 10 140 101.4401 101.5148 101.4998 101.9774 85.8511 101.4947 101.4576
𝑃𝐺3 10 100 10.0060 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
𝑃𝐺6 10 100 10.0000 10.0000 10.0000 10.0000 10.0000 10.0002 10.0000
𝑃𝐺8 10 100 10.0000 10.0000 10.0000 10.0000 10.0000 10.0003 10.0003
𝑉1 0.95 1.1 1.1000 1.0983 1.1000 1.1000 1.0636 1.0967 1.0934
𝑉2 0.95 1.1 1.0838 1.0846 1.0838 1.0894 1.0495 1.0839 1.0797
𝑉3 0.95 1.1 1.0449 1.0487 1.0488 1.0581 1.0193 1.0510 1.0442
𝑉6 0.95 1.1 1.0301 1.0528 1.0244 1.0732 1.0228 1.0548 1.0561
𝑉8 0.95 1.1 1.0376 1.0539 1.0359 1.0739 1.0328 1.0682 1.0478
𝑇4−7 0.9 1.1 1.1 1.08 1.08 1.1 1.02 1 1.06
𝑇4−9 0.9 1.1 0.94 0.9 0.98 0.9 1 1.02 0.92
𝑇5−6 0.9 1.1 1 0.98 1 0.9 1.06 0.98 1
SVC bus no. 14 4 14 4 7 4 13
QSVC (MVAR) 5.5973 2.5071 6.2399 9.9900 −2.4268 0.5953 9.6657
TCPS branch 1 (1–2) 1 (1–2) 3 (2–3) 20 (13–14) 11 (6–11) 1 (1–2) 6 (3–4)
𝛷TCSPS(deg.) −5 5 0.38 0.75 −2.00 5.00 1.81 1.40 −2.01

Cost ($/hr) 5945.79 5945.27 5944.34 5954.96 5974.59 5945.05 5944.09
State variables

𝑃𝐺1 50 332.4 134.99 134.9 134.87 134.91 151.57 134.91 134.9
𝑄𝐺1 −40 50 8.50 3.35 8.02 0.51 −8.13 1.38 0.15
𝑄𝐺2 −40 40 14.21 17.92 13.19 29.01 6.26 16.67 14.99
𝑄𝐺3 −6 40 15.35 19.07 18.76 24.88 20.84 22.03 17.78
𝑄𝐺6 −6 24 4.06 6.40 1.83 −18.61 38.70 8.96 9.15
𝑄𝐺8 −6 24 14.54 12.84 12.87 20.77 9.72 8.39 7.89

For further analyzing the performance of all algorithms in solving the OPF with FATCS devices’ allocation problems, the statistical
esults for all cases are recoded and presented in Table 6. From this table, it can be concluded that TLBO performed better in most
f the cases especially in cases 1 and 2 while HBO able to perform better in case 4. Even though HBO performed better in case 3
or maximum and mean results, TLBO is the best in finding the minimum cost of generation in case 3. Overall, the TLBO and HBO
roduce very competitive performance and outperformed most of the algorithms for all cases.

. Conclusion

In this paper, seven metaheuristic algorithms namely BMO, MPA, MFO, PSO, GSA TLBO and HBO have been proposed to solve
PF with the FACTS allocation problems. To analyze and assess the performance of all algorithms in solving the problems, they have
10
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Table 6
Statistical results for different algorithms on all cases.

Case Statistical BMO MPA MFO PSO GSA TLBO HBO

Case 1

Min 1.0128 0.9580 0.9485 0.9496 1.7843 0.9178 0.9693
Max 3.1459 1.1476 3.1784 1.8373 4.6530 1.0989 1.5959
Mean 1.3678 1.0266 1.3529 1.3160 2.6493 0.9954 1.1579
Std Dev. 0.5094 0.0460 0.4178 0.2424 0.5270 0.0498 0.1405

Case 2

Min 1.0397 0.9605 0.9815 1.0367 1.9184 0.9384 0.9835
Max 1.9611 1.2155 2.1340 2.1959 2.9145 1.1074 1.4250
Mean 1.2613 1.0455 1.2469 1.3484 2.2952 1.0010 1.1316
Std Dev. 0.2025 0.0631 0.2676 0.2375 0.2408 0.0456 0.1118

Case 3

Min 5947.3039 5944.8731 5944.3298 5956.2265 5978.5605 5943.4727 5943.6109
Max 6005.0696 5950.7428 5958.9405 6396.1937 6845.4320 6025.7163 5949.3704
Mean 5972.1610 5946.8668 5948.8930 6031.1177 6436.6284 5982.8453 5945.8152
Std Dev. 17.9978 1.0714 3.8833 92.0980 226.4421 30.9961 1.1595

Case 4

Min 5945.7940 5945.2709 5944.3410 5959.9625 5979.5883 5945.0462 5944.0926
Max 6015.2284 5954.0831 5959.3588 6056.7575 6976.2456 6029.1131 5955.0994
Mean 5969.1528 5947.5460 5950.0005 6006.6263 6493.3314 5993.2388 5946.8637
Std Dev. 17.0312 2.3427 3.7261 32.3930 255.3215 24.1129 2.4264

been applied on two OPF objective functions viz. transmission loss as well as generation cost on modified IEEE 14-bus system through
four cases. Statistical and comparative analysis show that TLBO and HBO produce very competitive performance and outperformed
the rest of algorithms for most of the cases. Therefore, they can be an effective alternative for solving OPF problem with the presence
of FACTS devices.
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