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 This paper presents a hybrid spiral dynamic algorithm with a super-

opposition spiral dynamic algorithm (SOSDA) strategy. An improvement on 

the spiral dynamic algorithm (SDA), this method uses a concept centered on 

opposition-based learning, which is used to evaluate the fitness of agents at 

the opposite location to the current solution. The SDA is a simple-structured 

and deterministic type of algorithm, which also performs competitively in 

terms of solution accuracy. However, its deterministic characteristic means 

the SDA suffers premature convergence caused by the unbalanced 

diversification and intensification during its search procedure. Thus, the 

algorithm fails to achieve highly accurate solutions. It is proposed that 

adopting super-opposition into the SDA would enable the deterministic and 

random techniques to complement one another. The SOSDA was tested on 

four benchmark functions and compared to the original SDA. To analyze the 

result statistically, the Friedman and Wilcoxon tests were conducted. 

Furthermore, the SOSDA was applied to optimize the parameters of an 

interval type-2 fuzzy logic control (IT2FLC) for an inverted pendulum (IP). 

The statistical results produced by the SOSDA for both benchmark functions 

and the IP show that the proposed algorithm significantly outperformed the 

SDA. The SOSDA-based IT2FLC scheme also produced better IP responses 

than the SDA-based IT2FLC. 
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1. INTRODUCTION  

The spiral dynamic algorithm (SDA) is a population-based metaheuristic algorithm and was 

introduced in 2011 by Nasir [1]. The main course of the SDA is the application of a spiral model equation 

that moves all the agents in the initialized populations in spiral steps within a predefined feasible region. 

During this movement, the agents’ movement trajectory is defined by the preset angle and radius of the spiral 

step. In terms of structure, the SDA is only a simple-structured algorithm and requires low computational 

resources to complete the whole searching process. Due to its simple structure, the SDA processes solutions 

at a fast convergence speed and can search a solution near the optimal location. Nonetheless, the SDA suffers 

premature convergence when dealing with multimodal and high-dimensional problems. This is due to the 

deterministic character caused by the spiral step strategy. This defect leads the algorithm to produce a local 

optimum solution that is low in accuracy. The local optimum solution is not preferable as it is the result of 

insufficient exploration and exploitation of the searching agents. In fact, a global optimum solution is 

required that is produced by an algorithm and represented by a smaller value of fitness. In recent years, 

several studies have addressed the SDA, including modifying its structure to improve it, hybridizing the SDA 

https://creativecommons.org/licenses/by-sa/4.0/
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with other algorithms to increase its efficiency, and applying it in engineering problems. These studies 

involved the modification of the SDA using a chaotic map [2], the hybridization of the SDA with the 

artificial bee colony (ABC) algorithm [3], and the application of the SDA to solve mixed-integer nonlinear 

programming problems [4]. The studies all demonstrated successful improvements to the SDA. In other 

words, they showed that the SDA solved problems with better performance at a significant level.  

Since the introduction of opposition-based learning (OBL) in 2004, it has been widely used in many 

studies, especially explorations of machine learning and metaheuristic algorithms [5]. OBL is commonly 

applied to improvise optimization algorithms such as the genetic algorithm (GA) [6], the simulated annealing 

algorithm (SAA) [7], differential evolutionary (DE) [8], and particle swarm optimization (PSO) [9]. A 

significant study involved opposite differential evolutionary (ODE) [10]. In the work, ODE applied two 

generation strategies with opposite solution candidates: i) opposite-population initialization and 2) opposite-

generation jumping. ODE was evaluated using nine benchmark functions and it was proven that it performed 

better at a significant level. In another work, OBL was adopted into the GA, which became known as the 

opposition GA (OGA) [11]. This approach applied a standard opposition to produce anti-chromosomes for 

the best and worst agents in a population. In another study, the OBL scheme was adopted into PSO to form 

opposition-based PSO (O-PSO) [12]. O-PSO only used OBL to initialize the opposition population in the 

early phase. Meanwhile, many other algorithms can be found in the literature that take advantage of OBL, 

including opposition-based harmony search (OHS) [13], opposition-based PSO with velocity clamping 

(OVCPSO) [14], enhanced-opposition-based PSO (EOPSO) [15], and the opposition-based memetic 

algorithm (OBMA) [16]. These studies concluded that OBL successfully improved the algorithms by 

increasing the convergence curve while also improving the accuracy of the final solution.  

Based on motivation of no free lunch theorem, a theoretical knowledge finds that optimization 

algorithms perform equally good based on the mean of their performance across all possible landscapes of 

objective function. The theorem also defines that, algorithms could perform well and worst in certain problems, 

which mean that if an algorithm performed well in a problem, it does not mean that the algorithm will perform 

well in all existing problems. This paper, a variant of the SDA based on OBL is proposed, namely the super-

opposition spiral dynamic algorithm (SOSDA). It adopted super opposition-based learning to improve agent 

spread during the searching process. Thus, the diversification and intensification of the algorithm are improved, 

which leads to a global optimum location. The proposed SOSDA is used to optimize the control scheme of an 

inverted pendulum (IP) system [17]. In the work, an interval type-2 fuzzy logic controller (IT2FLC) was chosen 

to stabilize the movement of the IP cart while maintaining the upright position of the pendulum [18]. The paper 

is organized as follows: section 2 presents the description and corresponding parameters of the IP, while section 

3 elaborates the SDA and SOSDA in detail. Section 4 presents the experimental setup for the benchmark 

functions test and the setup for the IT2FLC. In section 5, the results of the SOSDA performance in relation to 

the benchmark function and application are presented, while section 6 concludes the work of the SOSDA. 

An inverted pendulum is an unstable and underactuated nonlinear system [17]. Figure 1 presents a 

schematic diagram of the IP used in this work. The IP is a machine that is widely used for testing a new control 

scheme. It consists of a freely rotating pole attached to a cart’s body, which moves back and forth in translational 

movement. In stationary conditions, the pendulum points downward. In contrast, the IP is operated by moving the 

cart from its original position to a desired position. The cart forces the pivoted pole to rotate freely around its axis 

to reach a final pendulum state in which it is pointing vertically upward. The IP is a one-input many-output, in 

which a voltage signal is considered to be the input, while the cart’s position and the pole’s position are 

considered to be the outputs [18]. Generally, the objective of a control scheme is to regulate the cart’s movement 

while maintaining the upright position of the pendulum. In terms of the application similarities, the IP represents 

two-wheel Segway transporters [19], two-wheeled chairs for disabled persons [20], and space rockets [21]. The 

physical parameters for the IP are shown in Table 1. The figure and table illustrate that the derivation of the 

system can be based on Newton’s second law of motion [22]. The expressions were derived and are simplified in 

(1)–(8). Meanwhile, F_r and F_v in the equations is expressed in (1)–(3). 
 

(𝑀 + 𝑚)�̈� + 𝑚𝑙�̈� + 𝐹𝑟�̇� = 𝐹𝑉𝑉 (1) 
 

𝐹𝑟 = 𝑏 + (2𝜋/𝑟 )2 (𝐾𝑚𝐾𝑏/𝑅) (2) 
 

𝐹𝑉 = (2𝜋𝐾𝑚)/𝑟𝑅 (3) 
 

Where b is the coefficient of friction, r is the length of the transfer per-revolution of the ball-screw, Km is the 

torque constant, 𝐾𝑏  is the back-emf constant, and 𝑅 is the armature resistance of the motor. The differential 

equation for the pendulum was derived, as shown in (4).  
 

𝑚�̈� + 𝑚𝑙�̈� = 𝑚𝑔𝜃 (4) 
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Furthermore, the previous equations of motion were converted to state-space equations, as shown in (5)-(6).  
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𝑦 = [
1 0 0 0
0 0 1 0

] [

𝑥1

𝑥2
𝑥3

𝑥4

] (6) 

 

The values in Table 1 were then substituted into (5) to (6) and formed by following (7) and (8) to 

become the final derivation from the whole system using state-space equations. 
 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

0 1
29.4200 0

0 0
0 0.3090

0 0
−196.1330 0

0 1
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0
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0
48.4844
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𝑦 = [
1 0 0 0
0 0 1 0

] [

𝑥1

𝑥2
𝑥3

𝑥4

] (8) 

 

 

 
 

Figure 1. Free-body diagram of cart-pendulum system 
 
 

Table 1. Parameter values of the inverted pendulum system 
Parameter Values 

Mass of cart, M 0.1 kg 
Mass of pendulum, m 0.05 kg 

Friction of cart, b 0.1 Nm-1 s-1 

Length of pendulum, l 0.3 m 
Motor torque constant, Km 4.9 Ncm A-1 

Motor back emf constant, Kb 0.0507 V rad-1s-1 

Motor armature resistant, R 0.3 Ω 

 

 

2. PROPOSED SUPER OPPOSITION-SPIRAL DYNAMIC ALGORITHM 

The proposed SOSDA involves coaction between the Super-opposition type of OBL and the SDA. 

The addition of super-opposition OBL into the SDA led to a higher chance of producing an optimal solution as 

it helped the algorithm to generate and evaluate the agents at the opposite location. As the SDA diverges in the 

initial phase and concentrates in the end phase, unbalanced exploration and exploitation occur. It is important 

to make the agents spread well throughout the process from the beginning to the end to improve chances of 

producing a global solution. Thus, the addition of Super-opposition into the SDA improved the algorithm’s 

ability to both explore and exploit. The super-opposition formula used in this work is presented as (9). 
 

�̂�𝑆𝑂 = (𝑎 + 𝑏 − �̂�) + 𝑟𝑎𝑛𝑑(2𝑏 − 𝑎 + �̂�) (9) 
 

Where 𝑎 and 𝑏 are the lower and upper boundaries for a specific problem, 𝑥 is the current location of the 

agents, and 𝑟𝑎𝑛𝑑 is a random number between [0,1]. Conversely, the SDA is an optimization algorithm that 
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is also categorized as a population-based optimization algorithm. It implements a spiral model to move all the 

agents from one point to another. The spiral model can be mathematically expressed as (10):  
 

𝑥𝑖
𝑑(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥𝑖

𝑑(𝑘) − 𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛)�̂�∗, 𝑖 = 1,2,3, … ,𝑚 (10) 
 

where 𝑥𝑖(𝑘 +  1) is the new location of the 𝑖𝑡ℎ searching agent in a certain 𝑑𝑡ℎ dimension of 𝐷, while in the 

𝑘𝑡ℎ iteration, this is the previous location of the 𝑖𝑡ℎ searching agent, 𝐼 is the identity square matrix, 𝑟 and 𝜃 

represent the spiral radius and angle respectively. 𝑆(𝑟, 𝜃) is the rotation matrix defined in terms of 𝑟 and θ, 

while 𝑥∗ is the spiral center point. Note that 𝑥∗ is also the best solution found so far and might be the best 

solution after all the iteration has completed. 
 

 

Algorithm 1. Pseudocode of the SOSDA 
Input data: 𝑟, 𝜃, 𝑘𝑚𝑎𝑥, 𝐷,𝑚  

Initialize a population (𝑝𝑜𝑝) consisting of agents 𝑥𝑖 with a number of 𝑚 agents. 

Generate a population of opposite agents, 𝑝𝑜𝑝𝑜𝑝𝑝 based on 𝑝𝑜𝑝 using (9). 

Compute the fitness value of each agent 𝑓𝑖 = 𝑓(𝑥𝑖) and their opposite, 𝑓𝑜𝑝𝑝𝑖
= 𝑓 (𝑥𝑜𝑝𝑝𝑖

) 

Choose only the 𝑚 fittest particles, and the first ranked particles is the center, 𝑥∗ 

Set 𝑘 = 1 

While (𝑘 < 𝑘𝑚𝑎𝑥) 
  For 𝑖 = 1:𝑚 

  Apply the spiral model equation using (10). 

  Generate opposition, 𝑥𝑖𝑜𝑝𝑝
 using (9). 

 End For 

 Calculate the fitness of the agents. 

 Update the center, 𝑥∗ 

 Choose only 𝑚 of the fittest particles. 

Update 𝑘 = 𝑘 + 1 
End While 

Return 𝑥𝑏𝑒𝑠𝑡 

 

 

3. METHOD 

3.1.  Benchmark functions  

In the current work, four different test functions were utilized to examine the accuracy of the 

proposed algorithm’s performance [22]. The mathematical expressions of the test functions are expressed in 

Table 2. Functions 1 to 4 are the rotated high conditioned elliptic function, shifted, and rotated Rosebrook’s 

function, hybrid function 1 (N=3), and composition function 1 (N=5), respectively. All these functions were 

selected from different categories and landscapes of problems. This was to prove that the proposed algorithm 

would produce better solutions for different kinds of problems. The functions were tested on 100 dimensions 

and the search range was defined as [-100,100]. For a fair analysis and comparison of the results, 51 total 

runs were conducted for each benchmark function [23]. 
 

 

Table 2. Formula of each benchmark function 
 Num.  

Unimodal Functions 1 𝑓1(𝑥) = ∑(106)
𝑖−1
𝐷−1𝑥1

2

𝐷

𝑖=1

 

Simple Multimodal Functions 2 𝑓2(𝑥) = ∑(100(𝑥1
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)

𝐷−1

𝑖=1

 

Hybrid Function [22] 3 

𝑁 =  3 

𝑝 =  [0.3,0.3,0.4] 
𝑔1: Modified Schwefel's  

𝑔2: Rastrigin’s  

𝑔3: High Conditioned Elliptic 

Composition Functions [22] 4 

N= 5， 

σ = [10, 20, 30, 40, 50] 
λ = [ 1, 1e-6, 1e-26, 1e-6, 1e-6] 

bias = [0, 100, 200, 300, 400] 

𝑔1: Rotated Rosenbrock’s 

𝑔2: High Conditioned Elliptic 

𝑔3 Rotated Bent Cigar 

𝑔4: Rotated Discus 

𝑔5: High Conditioned Elliptic 
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3.2.  IT2FLC of the inverted pendulum system 

The T2FL model is the continuation of an ordinary fuzzy logic model, also called a type-1 fuzzy 

logic (T1FL) model [24]. The main difference between the fuzzy logic models is the fuzzy set. T1FL acquires 

only a single membership function, while T2FL consists of two membership functions, which appear as 

minimum and maximum membership functions [25]. In practical terms, these membership functions 

represent, respectively, the lower and upper boundaries of the type-2 fuzzy set. Furthermore, they also define 

the primary and secondary membership functions. The area between the lower and upper boundaries is 

known as the uncertainty region or the foot of uncertainties (delta). This feature enables T2FL to handle 

uncertainty better than T1FL. In addition, T2FL undergoes a more advanced defuzzification process. This 

requires a type-reducer, which transforms the inference output of type-2 to a type-1 fuzzy set before the crisp 

output can be computed using a defuzzifier. Figure 2 presents the block diagram of T2FLC.  

 

 

 
 

Figure 2. An interval IT2FL consisting of separate fuzzifiers for the lower and upper type-2 fuzzy set inputs 

 

 

To determine the accuracy performance of the opposition-spiral algorithm, a control scheme 

involving T2FL was designed. In the study, T2FL (IT2FL) was implemented with the IP. The control scheme 

block diagram is illustrated in Figure 3. The focus of interest is the position of the cart (d=10 cm) while the 

pendulum points upward. The responses produced from the movement were the outputs, which were 

compared against the desired cart position input. As the outcome, the difference between the cart’s actual and 

desired positions is the IT2FL input. Furthermore, the SDA and proposed SOSDA were used in the searching 

process to minimize the error. Thus, a set of optimized parameters consisting of rules and gains for the IT2FL 

control could be determined. The objective of the presented optimization algorithm was to remove the error 

of the angular position of the pendulum in the vertical position while positioning the cart in the desired 

position at a certain distance from the center of horizontal. The fitness cost known as root mean square error 

(RMSE) was used in this work and the expression is stated in (11). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑒2𝑁

𝑖=1 ) (11) 

 

 

 
 

Figure 3. Block diagram of the control scheme for the inverted pendulum system 
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RMSE was used as part of the fitness function, whereas the summation of the RMSE of the cart’s 

position and the pendulum’s angle were acquired by taking the weightage of the two desired objectives by 

[w1 w2] = [0.5 0.5]. Note that w1 is the cart position weightage and w2 is the weightage of the pendulum’s 

angle. These weightage values were chosen due to the similar priority of the objective to achieve the correct 

cart position while the angle of the pendulum placed it in an upright position. The fitness function for the 

system is shown as (12). 

 

Fitness = 𝑤1𝑅𝑀𝑆𝐸1 + 𝑤2𝑅𝑀𝑆𝐸2 (12) 

 

In (12), 𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝑆𝐸2 represent the error of the cart’s position and the angular position of the 

pendulum, respectively. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Benchmark functions test 

This section presents the performance analysis of the SDA and the proposed SOSDA on four 

different landscapes of the benchmark problems. The observations from the performance tests were analyzed 

using numerical analysis tools. In the work, the Wilcoxon signed-rank test was used to determine the 

significant level of improvement [26]. Table 3 displays the mean values of the accuracy performance 

acquired from 51 independent runs. The table concludes that the new variant algorithm provided more 

accurate solutions compared to the SDA. 

 

 

Table 3. Mean accuracy produced by each algorithm 

Function 
Mean accuracy 

SDA SOSDA 

1 3.03E+09 1.18E+09 

2 5.42E+04 1.49E+04 

3 3.27E+08 1.18E+08 
4 4.06E+03 3.21E+03 

 

 

The results outlined in Table 3 were further evaluated using the Wilcoxon signed-rank test. The 

purpose of using this tool is to determine the contrast between the two algorithms. This study set a 5% 

confidence interval, so if a p-value is lower than 0.05 or 5%, the value represents a significant improvement. 

The results of this test are presented in Table 4. As the table shows, all the p-values are less than 0.05, while 

the 𝑍-values show positive signs for all the benchmark problems. Thus, this evidence shows that the SOSDA 

has provided more accurate solutions. Based on the test, it can be stated that the SOSDA is a considerable 

improvement and can provide better solutions at a significant level of improvement. 

 

 

Table 4. Wilcoxon test results 

Function 
Wilcoxon results 

p-value 𝑍-value 

1 7.739 E-09 5.774 

2 7.798 E-10 6.149 
3 7.340 E-5 3.965 

4 5.145E-10 6.215 

 

 

4.2.  IT2FL control of inverted pendulum system 

Other than the performance tests using benchmark functions, the presented algorithms were also 

applied to optimize the rules and gains for IT2FL of the IP. The study involved a total of 13 parameters (nine 

rules; four gains) that were to be defined. Figure 4 shows the convergence graph of the SDA and SOSDA for 

optimizing the required parameters of the control scheme. The figure illustrates that the SDA was trapped in 

local optima (3.08645) while the SOSDA continued to converge until (2.70122). This indicates that the 

synergy between the SDA and the super–opposition significantly improved the accuracy performance 

compared to the sole mechanism of the SDA. 

The optimized parameters used for the IP-produced cart positioning and pendulum response are 

illustrated in Figures 5(a) and (b). Based on the graphical representation of the response in Figure 5(a), a 

slight difference was noted between the cart positions, in which the cart positioning based on the SOSDA 
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parameters was more accurate compared to those of the SDA. This cart positioning was achieved while the 

pendulum angle was in an upright position, as shown in Figure 5(b). As can be noted in the figure, the torque 

produced by the voltage supply optimized to the motor was stable, which resulted in the pendulum oscillating 

with less of an angle. Furthermore, the stability it achieved was even better than could be optimized by the 

SDA. The analysis of the actual cart position is displayed in Table 5. The response produced by the SOSDA 

had better settling and rising times than those optimized by the SDA. 

 

 

 
 

Figure 4. Convergence curve produced by the competing algorithms for the IP control scheme 

 

 

  
(a) (b) 

 

Figure 5. The response produced by the optimized parameters for (a) cart positioning at 10 cm and  

(b) pendulum angle 

 

 

Table 5. Time response analysis of the cart performance 

Parameter 
Algorithm 

SDA SOSDA 

Settling time, 𝑡𝑠𝑒𝑡𝑡  3.7 2.7 

Rise time, 𝑡𝑟𝑖𝑠𝑒  0.744 0.771 

Overshoot, % 𝑂𝑉 13.77 0.41 

Steady state error, 𝑒𝑠𝑠 0.1377 0.0041 

 

 

5. CONCLUSION 

In conclusion, a new SDA variant based on OBL, called super-opposition-based learning, has been 

presented in this paper. This variant, called the SOSDA, can avoid premature convergence, which occurs in 

the SDA. Premature convergence occurs due to the insufficient exploration of the agents, whereby the agents 

become stuck in local optima. The synergy with super-opposition and the SOSDA created more solution 
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considerations as the OBL generated new agents in the opposite location. Moreover, super-opposition also 

improves the distribution diversity throughout the searching process. To determine the performance of the 

variant, four benchmark functions were chosen based on different landscapes of problems.  

The test outcomes show that the SOSDA produced more accurate solutions, which was proven using 

the Wilcoxon signed-rank test. From the test, the proposed algorithm has satisfied the 5% confidence interval 

and proved that it has improved SDA significantly. The algorithms can also be applied to solve various real-

world problems. In this study, the SDA and SOSDA were used to determine the best rules and gains for 

IT2FL controlling the IP. From the results, both the SDA and SOSDA provide good control parameters for 

the IT2FL and produce good cart positioning and angle control for the IP. Nonetheless, the parameters 

provided by the SOSDA proved slightly better in terms of rise and settling times. Thus, after these 

applications of the SOSDA to the benchmark functions and the IT2FL of the IP, it was concluded that the 

SOSDA is a promising and potential algorithm to use for SIMO-type problems. Despite of the promising 

feature, the computation cost of the proposed algorithm might be increased if the opposition individuals are 

not regulated by every loop. In particular, SOSDA is slightly increased in computation cost even the initial 

number of individuals was cut into half. The increasing time cost is due to the addition of time taken to 

generate opposition individuals for every generation of the population. In the future, the SOSDA will be 

modified to make it able in generating opposition individuals adaptively and planned to be adopted to solve 

more complex engineering problems and to optimize parameters of a neural network structure for the IP. 
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