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Abstract. Given our modern society's level of dependency on IT tech-
nology, high quality and security are not just desirable but rather vital
properties of current software systems. Empirical methods leveraging the
available rich open-source data and advanced data processing techniques
of ML algorithms can help software developers ensure these properties.
Nonetheless, state-of-the-art bug and vulnerability prediction methods
are rarely used in practice due to numerous reasons. The predictions are
not actionable in most of the cases due to their level of granularity (i.e.,
they mark entire classes/�les to be buggy or vulnerable) and because the
methods seldom provide explanation why a fragment of source code is
problematic. In this paper, we present a novel Java vulnerability detec-
tion method that addresses both of these issues. It is an adaptation of
our previous method for JavaScript that is capable of pinpointing vul-
nerable source code lines of a program together with a prototype-based
explanation. The method relies on the word2vec similarity of code frag-
ments to known vulnerable source code lines. Our empirical evaluation
showed promising results, we could detect 61% and 41% of the vulnera-
ble code lines by �agging only 43% and 22% of the program code lines,
respectively, using two of the best detection con�gurations.

Keywords: software security; vulnerability prediction; explainable pre-
diction model, empirical study

1 Introduction

Software systems have become a fundamental part of our every-day lives. They
not only control critical infrastructure (power plants, air tra�c, manufacturing)
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or handle and store sensitive data (bank card details, health records, personal
documents) but serve our convenience as well (smart TV, smart watches, smart
homes, etc.).

The abundance of research results in the area promises a decent practical
solution for managing bugs and security issues at the development phase (i.e.
before the system goes public). Bug and vulnerability prediction models can be
used during the development, even integrated within the CI/CD pipelines, to
detect problematic or vulnerable code introduced by the developers on-the-�y.
Having such an early alarming mechanism could help in �xing critical problems
fast in an early phase, before malicious users even have the chance to exploit
them.

In this paper, we focus on a line-level vulnerability detection method that is
tailored to Java programs, which addresses both of the above mentioned short-
comings of existing approaches. The proposed technique builds on, adapts and
improves our very promising previous work [11] on detecting vulnerable lines in
JavaScript programs together with a prototype based explanation. We use the
project KB [15] manually validated vulnerability dataset containing hundreds
of vulnerability �xing commits (that can be mapped to a CVE [10] entry) as
a basis of creating a set of known vulnerable line repository (VLR). Using the
word2vec [9] embedding technique on the lexical tokens of these lines, we build
a golden set of vectorized features of vulnerable lines. Then, we scan the sub-
ject systems line by line and determine the line in our golden set that is the
most similar to the analyzed line. If the cosine distance is below an empirically
established threshold, we declare the line to be vulnerable.

To adapt our JavaScript approach to Java, we had to perform the following
steps:

� Create an entirely new VLR, a golden set of vulnerable Java lines;
� Adapt our code lexing approach to produce Java tokens and re-train the
word2vec embeddings on a large Java corpus;

� Develop an approach for reducing the size of the VLR to maintain practical
performance while keeping the prediction performance.

We ran an empirical evaluation on the created method, where we scanned 1282
commits' lines form 205 Java projects. Our method proved to be generalizable,
meaning that we were able to adapt it to Java programs and re-run a similar ex-
periment to evaluate its performance. We found that our method works slightly
worse for Java programs, but it could be improved by �ne tuning the dictio-
nary of tokens we take into consideration. It shows that di�erent tokens play a
major role in vulnerability prediction in the di�erent languages, which is quite
intuitive. We were able to reduce the large size of our Java VLR (from 10,000
to 3,200) to maintain practical applicability of the method without losing sig-
ni�cant predictive power. In the two best setups, our line-level prediction model
was able to identify 61% and 41% of the vulnerable code lines by �agging only
43% and 22% of the program code lines, respectively.

The remaining of the paper is organized as follows. In Section 4 we list the
works related to our approach. Section 2 describes the methodology we used to
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build the prediction model. We present and explain the results of our empirical
evaluation in Section 3. Section 5 lists the possible threats to validity of our
work, while Section 6 concludes the paper.

2 Methodology

2.1 Background

In a previous work [11], we have created a method to e�ectively mark vulnerable
lines in JavaScript programs. We used a simple word2vec based solution, where
we took the average vectors of words found in code lines and checked whether
there were similar code lines in a pre-constructed vulnerable line repository. The
solution includes several rules that we created to re�ne the prediction, such as
not leting the method mark lines that are only one word long, or preferring lines
that consisted of more unique tokens.

In this paper, we present the results of our e�orts to transfer our method
to Java. Examining our �ndings both in terms of creating a valuable tool and
gaining a deeper understanding of the complex structures of programming lan-
guages.

2.2 Motivation

Advantages of Java and limits of JavaScript. Our JavaScript results, while
promising, were not indicative of the true potential of our approach, since the
available data was limited. JavaScript is not widely used for critical systems,
as such, it contains relatively few known and documented vulnerabilities. This
limited our abilities to provide our method with vulnerable lines to be used as
prediction bases, and to run tests of the proper size.

Project KB [15] provides a large and validated knowledge base of vulnera-
bilities in Java programs.3 Using this, a more realistic testing environment can
be set up, making the results more likely to re�ect the real capabilities of our
approach.

Testing the Generalizability. Changing the examined language is a step to-
wards understanding our method's limitations in terms of generalizability. Our
approach does not clearly rely on any language speci�c properties of the exam-
ined JavaScript projects. Knowing how easily the model can be adapted, if it is
even needed, can also show a direction for future improvements. Not relying on
language speci�c information would keep a generalizable model �exible, which
would be important to keep in mind.

However, if the method proves ine�ective in its new application, the results
it produces can still be used to push our progress forward. Failure in this case
could be caused by the method using structural information yet unnoticed. If
these hidden properties indeed exist, they could be used to augment our current
method or be taken into account during later projects.

3 https://sap.github.io/project-kb/
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2.3 Highlights of the Original Algorithm

In this section, we will discuss the method [11] we have developed for JavaScript
in detail to introduce the terminology already established in our previous work.
The process of vulnerability prediction can be broken down into 3 phases (for
an overview, see Figure 1), two of which do not need to be repeated every time.

Fig. 1: Overview of our process

Phase 1. The �rst, and the most crucial step when it comes to getting ac-
curate predictions is creating a word2vec model to be used to represent lines as
vectors. This will be used to determine whether lines are similar to one an other.
Word or token type count should be reduced to a point where it becomes man-
ageable, since the complexity of code in term of words used can vary greatly. We
used ANTLR4 as a tokenizer, which allowed us to create the corpora for training
word2vec models with di�erent levels of abstraction. We used the GitHub Java
Corpus [1] for training the word2vec model as a representative sample of Java
code from open source projects.5

Phase 2. As mentioned before, our method looks for similarities between
lines that are known to be vulnerable and the line that is being processed. To do
this, we need a set of lines that are known to be vulnerable to serve as a ground
truth. So naturally, the next step is to create a Vulnerable Line Repository or
VLR for short that will serve as the basis of our prediction. As mentioned in
Subsection2.2, we used the manually curated data published in project KB for
this purpose. This data set contains 1,282 commits from 205 open-source Java
projects, which �x 624 publicly disclosed vulnerabilities (i.e. CVEs). The testing
environment was set up by randomly splitting up the vulnerability database so
that 90% of it would go in the VLR and 10% could be used for testing.

4 https://www.antlr.org/
5 https://groups.inf.ed.ac.uk/cup/javaGithub/
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The knowledge base does not directly contain the vulnerable lines we need,
only the projects and commits that contain their �xes. To extract the information
we need, we simply clone the repository, checkout to the given commit, get its
parent, and using the git diff command get the lines that have been removed
or changed. We ignore any lines that originate from test �les or that are one token
long. Assuming that only the given vulnerability has been �xed in a commit, this
heuristic would collect all lines that contributed to the vulnerable behavior of
the code. To minimize the chance of a commit inducing other changes next to
vulnerability �xes, we looked through every commit to check if they were merges
or containing additional code changes other than vulnerability �xes based on
their commit messages. After removing the duplicate lines, our VLR contained
around 10,000 vulnerable lines.6

Phase 3. Once �nished with the preparation, we can apply our method for
predictions. This is done by taking a �le from the System Under Test (SUT)
and comparing each of its lines' word2vec representation to those in the VLR.
A line's word2vec value is determined by the average of its words' vectors.

Using this distance, we can calculate a con�dence value that will be used to
decide whether a line should be marked vulnerable or not. The con�dence value
is calculated as follows:

Conf(linecode) = 1−mine(cos(v(linecode),v(lineV LRe
)))

Using the con�dence value a prediction can already be made. For this how-
ever, a threshold value is required to decide which line to be considered vulner-
able. We will refer to this threshold as the method's trip value. The con�dence
value of the method will fall between 0 and 1, so it naturally follows that the
trip value will also be within this range.

Nonetheless, we do not use this con�dence score directly to make the predic-
tion as our previous empirical evaluations showed, that this alone produces lots
of false positives. Therefore, we have created multiple so called �rules�, which can
be used to decrease the false positive rate of our method. They are not speci�c
to JavaScript, therefore they can be applied in this new environment without
major modi�cations. The rules are applied after the initial prediction phase, and
modify the base con�dence score to decrease the method's false positive rate.

We have tested all of our previous rules [11], from which we kept the three
most e�cient ones: no_one_word_line, prefer_complex, and surrounded.
The rules are applied by taking the average of the rules' score and the word2vec
prediction's values, while the no_one_word_line rule is applied as a direct �lter-
ing or in combination with every other rule. The application of prefer_complex
rule and the surrounded rule together did not produce productive results, there-
fore it will not be discussed.

2.4 Changes to Adjust our Method to the New Language

During the �rst tests we ran in the new environment, it became clear that the
method as it was in JavaScript needs adjustments to work well in Java.

6 https://doi.org/10.5281/zenodo.5761680
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Using the adapted model, we examined a reduction in the model's ability
to properly determine similarity between lines. Lines that, to the human eye,
have no connection have started getting matched as being close to one another.
The reason for this behavior was an increase in the average lines' complexity
that got lost during the pre-processing stage of prediction. Java code tends to
be more verbose, therefore more readable to human eyes. Our simple method of
comparing the averages of lines' words was not prepared for the sudden increase
in token count, especially without any change in the amount of unique tokens.
Even a task as simple as printing out a string to the default output takes 9 tokens
in Java, as opposed to the 6 in JavaScript. This was a drawback in our original
case since even though the line became more complex and verbose, our model
did not gain any extra information. To address this issue, we had to investigate
our �rst research question:

RQ1: Does extending the dictionary used by the word2vec model help
in capturing the nuances of the language at hand?

Our VLR in JavaScript contained a few hundred lines and the �les examined
were also relatively short. In this new setting however, the size of our knowledge
base grew to over 10 times of its previous size. The examined �les also increased
in size, while retaining the same vulnerable line count. Not only is it more dif-
�cult to �nd the lines we are looking for, but it takes signi�cantly more time
since our method is essentially a matching algorithm with an O(N ∗M) time
complexity, where N is the number of lines in the SUT and M is the size of
the VLR. Reducing the time it takes to create predictions is crucial not only
for the development of the method but for its usability as well. To increase the
performance without changing the fundamentals of our algorithm, we had to
reduce the size of the VLR. This however, can not be done by simply removing
some lines randomly, since that might impact performance. Therefore, we faced
our second research question:

RQ2: Is it possible to reduce the size of the VLR without losing predic-
tive power?

Reducing the Size of the VLR. The problem of the overly large VLR as
mentioned in Subsection 2.4 causes signi�cant slowdown. To combat this, we
aimed to decrease the size of the VLR without signi�cantly reducing the amount
of information it contains. We did this by removing lines that are not likely to
take productive part in the prediction process.

We created a second repository of lines, this time saving those that were
not vulnerable. This was done by collecting the lines that replaced the vulner-
able ones in �x commits. Since these lines were created for removing issues,
they can be considered to be non-vulnerable. Simply adding random lines from
the repositories would have not been a good strategy as they may contain yet
unknown vulnerabilities. This risk is present with the �xing lines as well since
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they may have some hidden �aws, which only get uncovered later in the project
development, however the probability of this should be minimal.

Once the new repository was set up, we used its contents to eliminate lines
from the VLR that were too similar to a non-vulnerable lines. This should not
only reduce the VLR size but may decrease the amount of false positives the
method generates as the lines that are very similar to a non-vulnerable line
cannot trigger a false prediction anymore.

New Tokens in the Lexer. Introducing new tokens that are general enough
to appear regularly but do not in�ate the dictionary is challenging. For a start,
we used the tokens with which the method performed the best in JavaScript
(adapted to Java). Our additions to an otherwise standard lexing method were
special string literals, which aim to di�erentiate between cases where the content
of the string is not necessarily relevant to its function, and cases where its value
directly in�uences functionality as it would be the case with strings containing
SQL commands, for example.

In Java the original set of tokens did not prove to be satisfactory when it
comes to capturing enough of the lines' content to allow for meaningful predic-
tions. We expanded the tokens that may abstract too much information. The
most common token was without question the Identifier token. Identi�ers are
used commonly in every language, but in Java's object oriented environment
most of the functions are created through classes, methods, and in general vari-
ables, all parsed into the token Identifier once the lexing is done.

To overcome the issue, we have introduced 4 sub-classes of identi�ers to
preserve as much of the functionality as possible, without too much of a dic-
tionary size explosion. These are the VariableIdentifier, MethodIdentifier,
ObjectIdentifier, and ArrayIdentifier.

Since unlike in C++ for example, certain operations can only be executed on
a speci�c subset of objects, we used the token following an Identifier instance
to determine its type. An Identifier will be classi�ed as a MethodIdentifier if
its following token is a (. Similarly, ObjectIdentifiers and ArrayIdentifiers

need to be followed by a . and a [, respectively. The VariableIdentifier tokens
were harder to extract, we identi�ed them by their next token being in the
possibilities displayed in Table 1. This heuristic does not guarantee that we will
be able to classify every Identifier, however, it introduces signi�cant variety
that our method leverages to produce results of a higher quality.

= += -= &=
= /= |= �=
%= �= �= �>=
++ �

Table 1: Tokens we use to identify a VariableIdenti�er

2.5 Metrics Measured

In this section, we will brie�y discuss the metrics we measured to evaluate our
models. Table 2 contains a short description for all of them.
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file_lines The total number of lines
flagged_lines The number of lines �agged as vulnerable
vuln_lines The number of lines con�rmed to be vulnerable
flagged_vuln_lines The number of con�rmed vulnerable lines �agged as vulnerable
%_flagged The percentage of file_lines

�agged as vulnerable (i.e., e�ciency)
%_is_vuln The percentage of flagged_lines

con�rmed to be vulnerable (i.e., precision)
%_vuln_flagged The percentage of vuln_lines being �agged (i.e., recall)

Table 2: Our measures and their short descriptions

It is important to mention that our goal was not necessarily to �nd all vul-
nerable lines, rather to decrease the amount of lines that need to be checked,
while still touching most if the issues.

2.6 Overview

In this section, we have discussed the method we have used previously in the
context of JavaScript, and the one we have introduced here to increase the
performance of the method in the context of Java. Taking these additional steps
was necessary as we wanted to answer a third research question:

RQ3: Can the performance of our previous method for JavaScript be
reproduced in Java?

3 Results

In this section, we discuss the results of the empirical evaluation of our proposed
method with the changes mentioned in Section 2.

3.1 The Original Method for JavaScript

At �rst, as mentioned before we have tried to port the method as it was origi-
nally published in the context of JavaScript vulnerability detection without any
major modi�cations. We used the parameters that performed best in the previ-
ous environment to test whether additional changes to the method were at all
required. The results were less than ideal, see the method variant with the O_
pre�x (O as in Original) in Table 3.

We hypothesized that the reason for these results is the method's inability to
correctly process the lines it is comparing. This could be because of the dictionary
not allowing for an expressive enough representation. Java being a more verbose
language than JavaScript leads to longer, more complex lines, and as such the
gap between our lexed lines' information content and the original may increase.
To address this, we increased the dictionary's size as described in Section 2.4
to decrease the reduction in information content between the processed and
unprocessed lines.

During this initial run, we also encountered a major issue with the approach.
Namely, its time complexity increased rapidly as the VLR's or the SUT's size
increased. As the SUT's size cannot be in�uenced during the method run, the
only way to speed up the process was to reduce the size of the VLR. Ideally,
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this reduction should occur without losing important information. We used a
heuristic to collect the VLR's content as described in Section 2.4 so that we
are able to remove certain lines that the heuristic wrongly added to the VLR,
leading to a possible decrease in our method's false positive rate.

3.2 The Augmented Dictionary

The poor initial performance of our model as mentioned in Section 3.1 showed
that we needed to increase our method's ability to process the lines' content
accurately. Since the most common token as mentioned in Section 2.4 was
Identifier, we chose to allow for more variety within them. Our new tokens
have helped our method create more accurate predictions, as can be seen in Ta-
ble 3 with the method variant having the L_ pre�x. Here, L_ denotes lower
similarity value. (See Section 3.3)

Since the new dictionary has lead to a clear improvement over the original
version we started o� using, we took it as our baseline during the tests for the
reduction methods. As we will discuss in Section 3.3, the reduction created a
signi�cantly smaller VLR that was identical in predictive power than the full
version. As a result of that, the original prediction (with the new tokens without
VLR reduction) is not represented separately.

The improvement in performance in our opinion can be attributed to the
increased understanding our method gains as the result. We hypothesize that a
correctly extended dictionary leads to a better representation and as a result a
more accurate prediction. Lines containing more of their original informational
content should help us pair lines that are truly similar in function. The draw-
back, however, is that choosing an overly excessive dictionary might lead to an
unnecessary increase in model size and complexity, which would in turn lead to
increased prediction times. Balancing the dictionary's and in turn the model's
complexity to keep the lexed lines as close to the original ones as necessary, while
keeping the dictionaries size to a minimum could lead to further improvements
in predictive performance without too much sacri�ce on the usability front.

Based on the experiences, we can answer our �rst research question:

RQ1: Increasing the size and therefore complexity of the dictionary when
lexing and creating the word2vec model increases the methods perfor-
mance drastically. This is the case because the lexed lines created using
our original dictionary fail to capture the complexity of the new envi-
ronment (i.e. Java language).

3.3 The Impact of the Reduced VLR

As mentioned in Section 2.4, our VLR has been generated based on a heuristic.
We ignored lines from �les that can not contain relevant information, such as
non-java �les or even test �les. However, chances of including lines that are not
truly vulnerable should not be ignored. Adding non-vulnerable lines to the VLR
may increase the method's false positive rate, and due to the time complexity
of the matching algorithm any unnecessary inclusions should be avoided.
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method_variant �agged_lines vuln_lines �agged_vuln_lines
O_nr 92973 21066 2087
L_nr 37439 4934 3385
H_nr 60006 16556 1907
O_no 79331 21066 1643
L_no 31865 4934 3012
H_no 50620 16556 1600
O_pc 57839 21066 1311
L_pc 20844 4934 2296
H_pc 63254 16556 1794
O_srd 42366 21066 1045
L_srd 16664 4934 2032
H_srd 8945 16556 518

method_variant %_�agged %_is_vuln %_vuln_�agged
O_nr 40.64 2.24 9.91
L_nr 50.79 9.04 68.6
H_nr 33.67 3.18 11.52
O_no 34.68 2.07 4.03
L_no 43.23 9.45 61.04
H_no 28.41 3.16 9.66
O_pc 25.28 2.27 6.22
L_pc 28.28 11.02 46.53
H_pc 35.5 2.84 10.84
O_srd 18.52 2.47 4.96
L_srd 22.6 12.19 41.18
H_srd 5.02 5.79 3.13

Table 3: The results produced by the method with di�erent levels of reduction
and using di�erent �ltering rules

To deal with both of these issues, we created a process, described in Sec-
tion 2.4, to decrease the size of the VLR by eliminating lines that are likely to
contain patterns not related to vulnerabilities.

Before any steps were taken to reduce its size, the VLR contained over 70,000
lines. Most of these, however, were identical, so a simple elimination of those
elements greatly reduced its size. After this initial step, the non-vulnerable line
based reduction process could be started. It works similarly to the prediction
method, we check if any of the VLR's lines are close to the non-vulnerable ones,
and if so, they are removed from the VLR. Two lines are considered close, if the
distance between them is smaller than a prede�ned value, which we simply call
the similarity value. Two separate tests were carried out, one with a similarity
value of 0.01 and one with 0.1.

After the removal of repeated lines, the VLR was reduced to around 10,000
lines, and using the non-vulnerable lines, its size was further decreased to 3,200
and 350, respectively. Results of testing for both reduction methods can be seen
in Table 3. The L pre�x shows that the results belong to the test instance with
the VLR given as a result of using a similarity value of 0.01. Similarly, the H
pre�x refers to a run using a VLR generated with a 0.1 similarity value.

The results of runs with the improved dictionary and original VLR mentioned
in Section 3.2 are not represented separately, since their results were identical
with the lower similarity value runs. Meaning that using the VLR consisting of
3,200 lines is nearly equivalent to the full 10,000 line version.

Therefore, we can answer our second research question.
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RQ2: It is possible to signi�cantly reduce the size of the VLR without
losing the method's prediction performance. With a relatively high re-
duction ratio, the VLR is reduced to a third of its original size, yet the
predictions based on it are practically equivalent with the original VLR.

The results produced by the high similarity value VLR, however, marks few
lines, and even those are not usually correct. Applying that signi�cant reduction
already impacts the prediction power of the method.

3.4 Overview

We have attempted to recreate our previous success in JavaScript into a new
environment, in order to both test our methods generalizability and to gain
access to the more extensive datasets available for Java. The initial results were
not ideal, however, we have �ne-tuned our approach to get results very close to
that we got for JavaScript.

We have created a method for Java that is capable of �nding a large portion of
the vulnerabilities in a given system. This shows that our method is generalizable,
as it could be adjusted to a di�erent language with minor modi�cations achieving
comparable performance.

We have also found that the size of the VLR we use can be signi�cantly
reduced, while preserving the prediction performance.

We were able to show that while the base approach with word2vec similarity
might perform slightly worse in this context, selecting the appropriate dictionary
is crucial and boosts performance, similarly to the rules already established.

Considering the conclusions above, we can answer our third and possibly
most important research question:

RQ3: Although adopting the original algorithm without modi�cations
performed slightly worse in the context of Java vulnerable line prediction,
with small adjustments in the considered tokens and enhancing rules,
we could achieve a comparable results to that observed in the context of
JavaScript.

4 Related works

While our approach to predicting vulnerabilities using machine learning is unique,
there are already a number of related studies using other methods. We can group
the works based on the granularity of their proposed vulnerability detection
methods: �le, class, and function-level. There are much fewer works targeting
line-level prediction (mostly for bug prediction); to the best of our knowledge
ours is the �rst line-level prediction model addressing vulnerability detection.

4.1 File-level predictions

Shin et al. [17] investigated three metrics - complexity, code churn, and devel-
oper activity - to see whether they are useful at detecting vulnerabilities. In
their empirical case study, they looked at two widely used open-source projects:



12 Balázs Mosolygó, Norbert Vándor, Péter Heged¶s, and Rudolf Ferenc

the Mozilla Firefox web browser and the Red Hat Enterprise Linux kernel. The
results indicate that the metrics are discriminative and predictive of vulnerabili-
ties, with the model using all three metrics predicted over 80% of vulnerabilities
with a false positive rate of less than 25%.

In one of their other works, Shin et al. [18] found that faults (or defects) have
some similarities to vulnerabilities that may allow developers to use traditional
fault prediction models and metrics for vulnerability prediction. They again
used the Mozilla Firefox web browser to conduct an empirical study, where 21%
of �les have faults, and 3% of �les have vulnerabilities. Both of their models
provided similar results: the fault prediction model had a recall of 83% and a
precision of 11% at classi�cation threshold 0.6, and the vulnerability prediction
model had a recall of 83% and a precision of 12% at classi�cation threshold 0.5.
They concluded that, while both models behaved similarly, and traditional fault
prediction metrics can substitute for vulnerability prediction models, they still
require signi�cant improvement.

Jimenez et al. [7] created VulData7, an extensible dataset and framework
automatically collected from software archives. The dataset contains all reported
vulnerabilities of four security-critical open-source systems: the Linux Kernel,
WireShark, OpenSSL and SystemD. The framework provides the vulnerability
report data (description, CVE and CWE number, etc.), the vulnerable code
instance and the corresponding patches, when available. Since this is a lot of data,
additional processing is required before it can be used to predict vulnerabilities.

In their work, Neuhaus et al. [12] introduced Vulture, a tool that automati-
cally mines existing vulnerability databases and version archives, and maps past
vulnerabilities to components by relying on the dependencies between them. In
their approach, a component is a header-source pair for c++ and a .java �le for
Java. They used an SVM for classifying the dependencies and function calls be-
tween the di�erent components. Their predictor correctly predicted about half of
all vulnerable components, and about two thirds of all predictions were correct.

4.2 Class-level predictions

Siavvas et al. [19] conducted a study investigating the relationship between soft-
ware metrics and vulnerability types. They studied 100 widely-used Java li-
braries and calculated a range of software metrics and quanti�ed them through
static analysis. They found that these metrics may not be su�cient indicators of
speci�c vulnerability types but are capable of di�erentiating between security-
speci�c and quality-speci�c weaknesses. They also found that there are certain
metrics which could be used to search for security issues and that between a
number of those issues there might exist some important interdependencies.

Basili et al. [2] used object-oriented design metrics described by Chidamber
and Kemerer [3] to predict fault-prone classes. With these metrics they could
make predictions in the early phases of the software life-cycle using a statistical
approach. In contrast, our approach is mainly based on machine learning.

Palomba et al. [13] built a specialized bug-prediction model that they used on
classes with code smells. They evaluated how much these code smells contributed
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towards bugs, and found that components a�ected by the smells were more bug-
prone. To achieve this, they used several prediction models, and found that the
best results were using the Simple Logistic model.

In their work, Sultana [20] proposed a vulnerability prediction model based on
traceable patterns by examining Apache Tomcat, Apache CXF and three stand-
alone Java web applications. Traceable patterns are similar to design patterns,
but they can be automatically recognized and extracted from the source code.
In their study, they compared the performance of these patterns and traditional
software metrics, concluding that patterns have a lower false negative rate and
higher recall in detecting vulnerable code than traditional metrics. Besides class-
level predictions, the study also focuses on function-level predictions as well.

4.3 Function-level predictions

Giger et al. [6] performed experiments on 21 open-source Java systems with their
model based on change- and source code metrics that are typically used in bug
prediction. Their models reached a precision of 84% and recall of 88%. They also
found that change metrics signi�cantly outperform source code metrics.

Ferenc et al. [5] compared 8 di�erent machine learning algorithms to deter-
mine the best one for predicting vulnerabilities in JavaScript functions. Their
data set consisted of static source code metrics, vulnerability data from NVD 7

and patches obtained from GitHub.
Pascarella et al. [14] replicated a previous research on function-level bug

prediction done by Giger et al. [6] on di�erent systems, then proposed a more
realistic approach. They found that the performance is similar to that of the
replicated research when using the strategy of said research. However, when suing
their more realistic approach, they experienced a dramatic drop in performance,
with results close to that of a random classi�er.

In their work, Saccente et al. [16] created Project Achilles, a Java source
code vulnerability detection tool. They used the National Institute of Standards
and Technology's Juliet Java Suite, which is a set containing thousands of ex-
amples of defective Java methods for several vulnerabilities. They implemented
an array of Long-Short Term Memory Recurrent Neural Networks, to detect the
vulnerabilities. Their tool employs various data preparation methods and can
automatically extract functions from the source code. The result of running the
tool is an n-dimensional vulnerability prediction vector. They found that this
tool can achieve an accuracy higher than 90% for most of the vulnerabilities.

Li et al. [8] created the tool VulDeePecker, a deep learning-based vulnerability
detection system that is capable of automatically extract and de�ne features.
They achieve this by de�ning so-called code gadgets: semantically related code
lines that are not necessarily consecutive. First they extract library function
calls, then generate backward slices from them. These slices then get assembled
into code gadgets and transformed into a vector representation. They train a
BLSTM neural network on the vectors, and use them to predict vulnerabilities
by transforming the target source code into vectors and classifying them. With

7 https://nvd.nist.gov
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their tool, they managed to detect 4 vulnerabilities that were not reported in
the NVD, only "silently" patched by the vendors.

4.4 Line-level predictions

Wattanakriengkrai et al. [22] found that, on average, only 1%-3% of lines are
defective in a �le. In their work they propose a framework called Line-DP to
identify defective lines using a model-agnostic approach. In other words, they
used a state-of-the-art explainable machine learning method, called LIME to
identify so-called risky tokens and to provide information about why their model
made a prediction. First, their framework builds a �le-level model using code
token features, then it searches for the risky tokens (code tokens that lead the
�le-level defect model to predict that the �le will be defective). Any lines that
contain risky tokens will be �agged as a defect. The authors created a case
study of 32 releases of nine Java open-source systems. Their approach achieved
a recall of 61% and a false alarm rate of 47%, while needing around 10 seconds of
processing time. These results are statistically better than the six baselines they
compared their model to. Although their approach is similar to ours, they apply
it to predict defects, while we speci�cally targeting vulnerability prediction.

5 Threats to Validity

In this section, we list the major threats to our work. For evaluating our method,
we split the data randomly allowing commits of the same project to be present
in both the VLR and testing set. The likelihood of this skewing our results is
small,since the lexing of the source code will abstract away any project speci�c
patterns, like identi�er names or comments.

To derive a single vector for a whole line, we took the average of the word2vec
vectors of the tokens in that line. This is a simple, yet reductive way of repre-
senting lines as it does not take into account the order of the tokens within the
line. In our case, this does not pose a major threat as in programming languages
the order of the tokens is relatively strict.

We build a repository of non-vulnerable lines to help us reduce the size of the
VLR. However, there is a slight but non negligible chance of a non-vulnerable
line being �awed, which only gets uncovered later in the project development
(i.e. the �x for a vulnerability contains another vulnerability). Nonetheless, the
probability of this should be minimal, therefore we do not expect any major
e�ect of this threat on the �nal results.

6 Conclusions

In this paper, we presented an incremental work on our previous explainable
method for line-level detection of vulnerabilities in JavaScript programs. Our
current goal was to adapt the method to an entirely new context, namely to de-
tect vulnerabilities in Java programs. Our replicated study in this new context
addresses two issues of equal importance: i) to study and prove the generalizabil-
ity of the method, and ii) to achieve a practically applicable tool for �ne-grained
vulnerability detection leveraging the rich data sources available in Java.
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We found that adapting our previous method for Java line-based vulnerability
detection as-is is feasible but leads to somewhat degraded performance. The
major cause of this was the lack of expressiveness of our vocabulary used for
the tokenization and word2vec embedding of the Java source code. Therefore,
we extended the original vocabulary to better �t the new context and were able
to improve the performance signi�cantly. We faced another issue concerning
practical applicability, the large size of the VLR slowed down the detection
process. We proposed an enhancement of the algorithm, which reduces the size
of the VLR, while keeping its prediction performance. We also revisited and
�ne-tuned the rules we developed for reducing false positive predictions. The
explanation mechanism of the algorithm has not been changed, we can provide
the most similar vulnerable line from the VLR to serve as a prototype-based
explanation for a decision.

We ran an empirical evaluation using the 205 Java projects and 1282 vulner-
ability �xing commits contained in the project KB dataset. We used the dataset
to build the VLR (using 90% of the records) and to test our method as well
(on the remaining 10%). We were able to reduce the large size of our Java VLR
(from 10,000 to 3,200) to maintain practical applicability of the method without
loosing signi�cant prediction power. In the two best setups, our line-level pre-
diction model was able to identify 61% and 41% of the vulnerable code lines by
�agging only 43% and 22% of the program code lines, respectively. We consider
our experiment to be an overall success since we were able to � with only minor
modi�cations � port our method from a vastly di�erent environment to Java.

In the future, we plan to adapt the method to other languages as well and
further study the e�ect of token vocabulary on the performance. Improvement
and extension of the applied rules are also amongst our future plans.
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