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Abstract
A binary operation f(x, y) is said to be lazy if every operation that can be obtained 
from f by composition is equivalent to f(x, y), f(x, x) or x. We describe lazy opera‑
tions by identities (i.e., we determine all varieties of lazy groupoids), and we also 
characterize lazy groupoids up to isomorphism.

Keywords Binary operation · Groupoid · Semigroup · Term operation · Clone · 
Variety · Lazy operation · Lazy groupoid

1 Introduction

Given a (not necessarily associative) binary operation f (x, y) = xy , we can form 
many other operations by composing f by itself, such as (xy)z, ((xy)(zu))(u(yv)), 
x1(x2(x3 ⋯ (xn−1xn))) , etc. These composite operations can have arbitrarily many 
variables, but sometimes it happens that they do not depend on all of their variables. 
Consider, for example, a rectangular band, i.e., a semigroup satisfying the identi‑
ties xx ≈ x (idempotency) and xyz ≈ xz . These identities imply x1x2 ⋯ xn ≈ x1xn for 
all n ∈ ℕ , thus every product can be reduced to a product of at most two variables. 
It is natural to say that the multiplication of a rectangular band is lazy, since it only 
generates the operations f(x, y) and f(x, x) (up to renaming variables), and we can get 
these from f by simply identifying variables, hence composition is “unproductive” in 
this case.
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Motivated by this example, we shall say that a binary operation f on a set A is 
lazy, if the only operations that can be obtained from f by composition are f(x, y) and 
f(x, x). We will give a more precise definition of laziness for operations of arbitrary 
arities in the Sect. 2. The main goal of this paper is to describe all lazy binary opera‑
tions and the corresponding groupoids (A;  f). In Sect.  3 we will characterize lazy 
groupoids by identities: we will prove that they fall into 15 varieties (Theorem 3.5). 
One of these varieties is the semigroup variety defined by (xy)z ≈ x(yz) ≈ xz , which 
contains rectangular bands as a subvariety. We will determine all subvarieties of the 
15 maximal lazy groupoid varieties in Sect. 4 (Theorem 4.2).

In Sect. 5 we give a more concrete description of lazy groupoids: we character‑
ize them up to isomorphism by explicitly constructing their multiplication tables. 
This description is similar in spirit to the well known construction of rectangular 
bands as groupoids of the form (A1 × A2;⋅) , where the multiplication is defined by 
(a1, a2) ⋅ (b1, b2) = (a1, b2).

Lazy operations were originally defined in [5] in connection with essentially 
minimal clones. The 15 varieties of lazy groupoids were described already in the 
conference paper [6] (but the proof of Theorem 3.5 was only sketched there), and 
then an application to essentially minimal clones was given. Thus, the present paper 
can be regarded as an extended version of [6], the new contributions being the deter‑
mination of all (sub)varieties of lazy groupoids and the explicit description of lazy 
groupoids up to isomorphism.

2  Preliminaries

An n-ary operation on a nonempty set A is a map f ∶ An → A . We denote the set of 
n‑ary operations on A by O(n)

A
 , and OA stands for the set of all finitary operations on 

A. We say that the i‑th variable of f ∈ O
(n)

A
 is essential (in other words, f depends on 

its i‑th variable) if there exist a1,… , ai, a
�
i
,… , an ∈ A such that

For 1 ≤ i ≤ n ∈ ℕ we define the i‑th n‑ary projection e
(n)

i
∈ O

(n)

A
 by 

e
(n)

i
(x1,… , xn) = xi . The set of all projections on A is denoted by JA . Observe that 

e
(1)

1
= id is the identity function on A.

A clone is a set C ⊆ OA of operations that is closed under composition and con‑
tains every projection. The clone generated by a given operation f is the clone [f ] 
containing all operations that can be obtained from f and the projections by compo‑
sition. Equivalently, [f ] is the clone of term functions of the algebra � = (A;f ) . If f 
is a binary operation, then we will use the notation f (x, y) = x ⋅ y = xy , and then the 
algebra � = (A;f ) = (A;⋅) is called a groupoid. For the sake of simplicity, let us say 
that the groupoid � is essentially binary (essentially at most unary) if f depends on 
both of its variables (f depends on at most one variable).

For f ∈ O
(n)

A
 and g ∈ O

(m)

A
 , we say that g is an identification minor (or simply a minor) 

of f (notation: g ⪯ f  ), if there exists a map � ∶ {1, 2,… , n} → {1, 2,… ,m} such that

f (a1,… , ai,… , an) ≠ f (a1,… , a�
i
,… , an).
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This means that g can be obtained from f by identifying variables, permuting vari‑
ables and introducing inessential variables. The relation ⪯ gives rise to a quasiorder 
on OA . The corresponding equivalence relation is defined by f ≡ g ⟺ f ⪯ g and 
g ⪯ f  , and it is clear that f ≡ g if and only if they differ only in inessential variables 
and/or in the order of their variables. Note that for any f ∈ OA , we have f ≡ id if 
and only if f ∈ JA . We use the notation ↓ f  for the principal ideal (downset) gener‑
ated by f in the subfunction quasiorder: ↓ f ∶=

{

g ∈ OA ∶ g ⪯ f
}

 . Note that the set 
↓ f  contains only one unary operation, namely f (x,… , x) . For more information on 
the minor quasiorder and its principal ideals, see [4].

Clearly, JA∪ ↓ f ⊆ [f ] holds for every operation f. If [f ] = JA∪ ↓ f  , then we say 
that f is a lazy operation and [f ] is a lazy clone. Thus f is a lazy operation if it does 
not generate any other operations but its identification minors and projections.

Example 2.1 A unary operation f ∈ O
(1)

A
 is lazy if and only if the algebra (A; f) sat‑

isfies f 2(x) ≈ x or f 2(x) ≈ f (x) (where f 2(x) stands for f(f(x))). Indeed, if f is lazy, 
then f 2 ∈ JA∪ ↓ f  , and the latter set contains only two operations up to equiva‑
lence, namely id and f. Thus we have f 2 ≡ *id (hence f 2(x) ≈ x ) or f 2 ≡ f  (hence 
f 2(x) ≈ f (x) ). Conversely, each one of the given identities implies that [f ] = {id, f } , 
and thus f is lazy.

Example 2.2 If f is idempotent, i.e., f (x,… , x) ≈ x , then JA ⊆↓ f  , hence in this case 
laziness is equivalent to [f ] =↓ f  . Lazy idempotent operations can be constructed as 
follows. Let A1,… ,An be nonempty sets, and let us define an n‑ary operation f on 
A1 ×⋯ × An by

for all aj
i
∈ Ai (i, j = 1, 2,… , n) . Note that the algebra (A1 ×⋯ × An;f ) is the 

direct product of the algebras 
(

Ai;e
(n)

i

)

(i = 1, 2,… , n) . These algebras were called 
n‑dimensional diagonal algebras in [7] and n‑ary rectangular bands in [6] (cf. the 
construction of binary rectangular bands in Sect. 1). It was shown in [6, 7] that an 
idempotent operation f ∈ O

(n)

A
 is lazy if and only if (A; f) is (isomorphic to) an n‑ary 

rectangular band.

Remark 2.3 For f ∈ O
(n)

A
 and k ∈ {1, 2,… , n} , let fk ∈ O

(2n−1)

A
 denote the function 

obtained from f by substituting f for its k‑th variable; more precisely,

Clearly, if the operation f ∈ O
(n)

A
 is lazy then fk ⪯ f  or fk ∈ JA for every 

k ∈ {1, 2,… , n} . This is a simple necessary condition for laziness, and it will serve 
as a starting point for our investigation of lazy binary operations. Note, however, 
that this condition is not sufficient for laziness, as it is shown by the following exam‑
ple. Let us consider the binary operation f (x, y) = xy on the set A = {0, 1, 2} that is 
defined by the multiplication table below.

g(x1,… , xm) = f (x�(1),… , x�(n)).

f
(

(a1
1
,… , a1

n
),… , (an

1
,… , an

n
)
)

= (a1
1
,… , an

n
)

fk(x1,… , x2n−1) ∶= f (x1,… , xk−1, f (xk,… , xk+n−1), xk+n,… , x2n−1).
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One can verify that this groupoid satisfies the identities (xy)z ≈ z2 and x(yz) ≈ x2 , 
which means that the functions f1(x, y) = (xy)z and f2(x, y) = x(yz) are both minors 
of f. However, f is not a lazy operation, because g(x, y, z, u) ∶= (xy)(zu) is constant 1, 
and g ∉ JA∪ ↓ f .

3  Characterizing lazy groupoids by identities

Let f (x, y) = x ⋅ y = xy denote a binary operation on an arbitrary nonempty set A, and 
let � denote the groupoid (A;f ) = (A;⋅) . The dual of � is the groupoid �d = (A;g) , 
where g(x, y) = yx , and the dual of a groupoid variety V is Vd =

{

�
d ∶ � ∈ V

}

 . 
Clearly, a groupoid is lazy if and only if its dual is lazy.

If f depends only on at most one variable, then we have either f (x, y) = g(x) or 
f (x, y) = g(y) for some unary operation g. According to Example  2.1, f is lazy if 
and only if g satisfies either g(g(x)) ≈ g(x) or g(g(x)) ≈ x . This yields the following 
description of essentially at most unary lazy groupoids.

Lemma 3.1 If � is a lazy essentially at most unary groupoid, then � belongs to one 
of the following four varieties:

Proof The fact that f does not depend on its second variable can be expressed by the 
identity xy ≈ xz . Using the unary operation g as above, g(g(x)) ≈ g(x) translates to 
(xy)z ≈ xy and g(g(x)) ≈ x translates to (xy)z ≈ x , yielding the varieties U and Ũ . If f 
does not depend on its first variable, then we obtain the dual varieties Ud and Ũd .  
 ◻

In the sequel, we will assume that f depends on both of its variables. We have 
f1(x, y) = (xy)z and f2(x, y) = x(yz) ; see Remark  2.3. If f is a lazy operation then 
f1, f2 ∈ JA∪ ↓ f  , hence � satisfies the identities (xy)z ≈ t1 and x(yz) ≈ t2 for some 
choice of the terms t1, t2 ∈

{

x, y, z, x2, y2, z2, xy, yx, yz, zy, xz, zx
}

 . This gives us 144 
possibilities; we will prove that only 20 of these are possible. Examining these 
cases, we will find that essentially binary lazy groupoids belong to 13 varieties, each 
being defined by two identities.

Lemma 3.2 If the binary operation f (x, y) = xy satisfies the identity (xy)z ≈ t1 for 
some t1 ∈ {x, y, z, zy, zx, yx} , or it satisfies x(yz) ≈ t2 for some t2 ∈ {z, y, x, yx, zx, zy} , 
then f is essentially at most unary.

0 1 2

0 1 1 0

1 1 1 0

2 0 0 0

U ∶ xy ≈ xz, (xy)z ≈ xy; Ud ∶ xy ≈ zy, x(yz) ≈ yz;

Ũ ∶ xy ≈ xz, (xy)z ≈ x; Ũd ∶ xy ≈ zy, x(yz) ≈ z.
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Proof The identity (xy)z ≈ t1(x, y, z) implies

If t1 = x , then we obtain xy ≈ xu , which shows that xy does not depend on y. If 
t1 = zy , then we get uz ≈ (zy)u , which yields uz ≈ uy after applying (zy)u ≈ t1(z, y, u) , 
hence f does not depend on its second variable.

Let us now consider the case t1 = yx . Then we have

which immediately implies (vw)(xy) ≈ xy. On the other hand, we have 
(vw)(xy) ≈ t1(v,w, xy) ≈ wv . Thus xy ≈ wv , i.e., f is a constant operation.

Similar arguments work for the remaining three cases; we summarize them in 
Table 1 of “Appendix 1”. The identities x(yz) ≈ t2 are the duals of the above ones.  
 ◻

Now we are left with 36 pairs (t1, t2) ; these possibilities are summarized in 
Table  2. We will prove in the next two lemmas that the entries marked by ‘−’ 
contradict the assumption that f is essentially binary, while the other cases give 
rise to 7 varieties L1,… , L7 of lazy groupoids together with their duals (note that 
L7 is selfdual).

Lemma 3.3 Let � be an essentially binary groupoid. If � is lazy, then it belongs 
to one of the 13 varieties L1,… , L7, L

d
1
,… , Ld

6
 , which are defined by the following 

identities:

Proof We can derive the following three identities from (xy)z ≈ t1 and x(yz) ≈ t2 : 

In all the 16 cases marked by ‘−’ in Table 2, at least one of the above three identities 
contradicts the essentiality of the operation f. We work out the details only for the 
case t1 ≈ y2, t2 ≈ xy (here we will need the identity (3.1c)); the other cases are simi‑
lar or even simpler (see Table 3): 

t1(xy, z, u) ≈ ((xy)z)u ≈ t1(x, y, z) ⋅ u.

z(xy) ≈ t1(xy, z, u) ≈ ((xy)z)u ≈ t1(x, y, z) ⋅ u ≈ (yx)u ≈ t1(y, x, u) ≈ xy,

L1 ∶(xy)z ≈ x2, x(yz) ≈ x2;

L2 ∶(xy)z ≈ x2, x(yz) ≈ xy;

L3 ∶(xy)z ≈ xy, x(yz) ≈ x2;

L4 ∶(xy)z ≈ xz, x(yz) ≈ x2;

L5 ∶(xy)z ≈ xy, x(yz) ≈ xy;

L6 ∶(xy)z ≈ xz, x(yz) ≈ xy;

L7 ∶(xy)z ≈ xz, x(yz) ≈ xz.

(3.1a)t1(x, y, zu) ≈ (xy)(zu) ≈ t2(xy, z, u);

(3.1b)t1(x, yz, u) ≈ (x(yz))u ≈ t2(x, y, z) ⋅ u;

(3.1c)x ⋅ t1(y, z, u) ≈ x((yz)u) ≈ t2(x, yz, u).
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Now it only remains to verify the entries marked by L1 ∩ Ld

1
 in Table 2. These can 

be handled with the help of the identities (3.1); again, we provide details only for 
one case, namely for t1 ≈ y2, t2 ≈ x2 , and refer to Table 3 for the remaining cases. 
Note that the variety L1 ∩ Ld

1
 is axiomatized by the identities (xy)z ≈ x(yz) ≈ x2 ≈ z2 . 

This means that a groupoid � belongs to L1 ∩ Ld
1
 if and only if � is a semigroup and 

there is a constant c ∈ A such that xyz ≈ x2 ≈ c . It is clear that such semigroups sat‑
isfy (xy)z ≈ y2 and x(yz) ≈ x2 . Conversely, assume now that (xy)z ≈ y2 and x(yz) ≈ x2 
hold in a groupoid � . Let us write out (3.1b):

We can conclude that (yz)2 depends neither on y nor on z, hence there is a constant 
c ∈ A such that (yz)2 ≈ c . Now let us use (3.1a):

This implies that z2 is constant c, hence � satisfies (xy)z ≈ x(yz) ≈ x2 ≈ c ; therefore, 
� ∈ L1 ∩ Ld

1
.

The entry marked by L1 ∩ Ld
1
(!) in Table 2 is special in the sense that the identi‑

ties (xy)z ≈ z2, x(yz) ≈ x2 do not guarantee laziness (see the example in Remark 2.3). 
Here (3.1a) yields (zu)2 ≈ (xy)2 , i.e., (xy)2 is constant. Since the only constant in 
JA∪ ↓ f  is the diagonal operation f (x) = x2 , laziness implies that x2 must be con‑
stant. Then we have (xy)z ≈ x(yz) ≈ x2 ≈ z2 , hence � ∈ L1 ∩ Ld

1
 .   ◻

In order to complete the description of lazy groupoids, we still need to verify that 
every groupoid in the varieties L1,… , L7, L

d
1
,… , Ld

6
 defined in Lemma 3.3 is indeed 

lazy. In the following, whenever we use one of the two defining identities for any 
one of our varieties, we write “ 

1.

≈ ” or “ 
2.

≈ ” to indicate whether we have used the first 
or the second identity (as listed in Lemma 3.3).

Lemma 3.4 If a groupoid � belongs to one of the 13 varieties L1,… , L7, L
d
1
,… , Ld

6
 , 

then � is lazy.

Proof Assume that � is a groupoid in L4 (the proof for the other varieties is very 
similar; see Table 4). We prove by term induction that every term of � is equivalent 
to x or xy (allowing that x and y are the same variable). Let t be a term that contains 
at least two multiplications (i.e., at least three, not necessarily distinct variables). 
Then t = s1 ⋅ s2 , where the terms s1 and s2 are shorter than t, hence, by the induction 
hypothesis, they are equivalent to a variable or to a product of two variables. There‑
fore, we have the following three possibilities with some (not necessarily distinct) 
variables x, y, z, u:

xz2 ≈ x ⋅ t1(y, z, u) ≈ x((yz)u)

≈ t2(x, yz, u) ≈ x(yz) ≈ xy.

(yz)2 ≈ t1(x, yz, u) ≈ (x(yz))u ≈ t2(x, y, z) ⋅ u ≈ x2u.

z2 ≈ t1(y, z, vu) ≈ (yz)(vu) ≈ t2(yz, v, u) ≈ (yz)2.
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Thus, every term over L4 is indeed equivalent to a variable or a product of two vari‑
ables, showing that every member of L4 is a lazy groupoid.   ◻

Theorem 3.5 A groupoid � is lazy if and only if it belongs to one of the 15 varieties 
L1,… , L7, L

d
1
,… , Ld

6
, Ũ, Ũd.

Proof For essentially binary groupoids the “only if” part is covered by Lemma 3.3, 
while the “if” part follows from Lemma  3.4 and its dual. For essentially unary 
groupoids we can use Lemma 3.1. We do not need to list U and Ud , since U ⊆ Li for 
every i (cf. Fig. 1).   ◻

4  Varieties of lazy groupoids

It is easy to verify that the proper subvarieties of U, Ũ and their duals are the varie‑
ties LZ (left zero semigroups), RZ (right zero semigroups), Z (zero semigroups) and 
T (trivial semigroups), as shown in Fig. 1:

Having determined all varieties of essentially at most unary lazy groupoids, let us 
now deal with subvarieties of L1,… , L7 . We get such subvarieties by adding some 
extra identities to the defining two identities of Li (i = 1,… , 7) . Let V be the inter‑
section of Li and the variety defined by the identity p ≈ q (we assume p ≠ q ). Lazi‑
ness of Li implies that p and q are both equivalent to a product of two (not necessar‑
ily distinct) variables over V. If one of p and q involves two different variables, say 
p = xy , but q does not involve both x and y, then p ≈ q implies that f is essentially 
at most unary, hence V is a subvariety of U, Ud , Ũ or Ũd . If x and y both occur 
in q, then we get xy ≈ yx (commutativity). The remaining cases, when at most one 
variable occurs on both sides, are the following: x2 ≈ y2 (the main diagonal of the 
multiplication table is constant), x2 ≈ y (satisfied only by trivial groupoids), x2 ≈ x 
(idempotency), x ≈ y (satisfied only by trivial groupoids). Thus, in order to deter‑
mine all non‑unary subvarieties of Li , we need to compute the intersection of Li by 
one or more of the following three varieties:

Lemma 4.1 If a groupoid  � belongs to one of the 21 varieties 
Li ∩ V (i = 1,… , 7,V = I,D,C) , then � is essentially at most unary, with the 

s1 ≈ xy, s2 ≈ z ⟹ s1s2 ≈ (xy)z
1.

≈ xz;

s1 ≈ x, s2 ≈ yz ⟹ s1s2 ≈ x(yz)
2.

≈ x2;

s1 ≈ xy, s2 ≈ zu ⟹ s1s2 ≈ (xy)(zu)
1.

≈ x(zu)
2.

≈ x2.

LZ ∶ x ≈ xy; RZ ∶ x ≈ yx; Z ∶ xy ≈ zu; T ∶ x ≈ y.

I ∶ x2 ≈ x; D ∶ x2 ≈ y2; C ∶ xy ≈ yx.
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exception of the 3 varieties  L1 ∩ D , L1 ∩ C and L7 ∩ I = RB (here, and in the sequel, 
RB denotes the variety of rectangular bands).

Proof We consider only L3 ; the other cases can be seen in Table 5. Recall that L3 is 
defined by (xy)z ≈ xy and x(yz) ≈ x2 . As before, we will use 

1.

≈ and 
2.

≈ when we use 
one of these two identities, and we write 

I
≈ , 

D
≈ and 

C
≈ to indicate that we use the defin‑

ing identity of I, D and C, respectively. In the variety L3 ∩ I we have xy
I
≈ (xx)y

1.

≈ xx , 

showing that xy does not depend on y. In L3 ∩ D we have xy
1.

≈ (xy)(zu)
2.

≈ (xy)2
D
≈ x2 , 

which means again that xy does not depend on y. Finally, in L3 ∩ C we can deduce 
xy

1.

≈ (xy)z
C
≈ z(xy)

2.

≈ z2 , thus xy depends neither on x nor on y.   ◻

Theorem 4.2 There are 24 varieties of lazy groupoids, and they form the meet sem-
ilattice shown in Fig. 1 (semigroup varieties are indicated by filled circles).

Proof By Theorem  3.5 every lazy groupoid belongs to L1,… , L7,U, Ũ or to the 
duals of these varieties. We have already determined the subvarieties of U and Ũ , 
and Lemma 4.1 describes all subvarieties of L2,… , L7 (and their duals). Lemma 4.1 
also implies that for L1 and its dual we need to consider L1 ∩ D , L1 ∩ C , Ld

1
∩ D , 

Ld
1
∩ C and any intersections of these. It is clear that L1 ∩ C is selfdual, i.e., 

L1 ∩ C = Ld
1
∩ C . The variety L1 ∩ D is defined by (xy)z ≈ x(yz) ≈ x2 ≈ z2 , hence 

it it also selfdual: L1 ∩ D = Ld
1
∩ D . Therefore, the only variety that could be pos‑

sibly missing from Fig.  1 is L1 ∩ D ∩ C . However, this coincides with L1 ∩ C , as 
L1 ∩ C ⊆ L1 ∩ D . Indeed, we can derive x2 ≈ y2 from commutativity and the two 
defining identities of L1:

To prove that the 24 varieties in Fig. 1 are all distinct, we give the operation tables 
of their two‑generated free algebras in “Appendix 2” (we include only one member 
of each pair of dual varieties, and we omit T). It remains to prove the containments 
indicated in Fig. 1. All of these are straightforward to verify, with the exception of 
L1 ∩ C ⊆ L1 ∩ D , which we have already proved.   ◻

5  Characterizing lazy groupoids up to isomorphism

We will give a concrete description of groupoids in the varieties L1,… , L7 in this 
section (we do not write out the details for the dual varieties Ld

1
,… , Ld

6
 , and we also 

ignore the trivial unary cases Ũ and Ũd).
Let us start with the variety L7 , which is the semigroup variety defined by 

xyz ≈ xz . If � ∈ L7 , then the set E of the idempotent elements in � forms a rec‑
tangular band. We will prove below in Theorem  5.1 that � is an inflation of 
the rectangular band � = (E;⋅) . This means that each idempotent e ∈ E has a 

x2
1.

≈ (xz)y
C
≈ y(xz)

2.

≈ y2.
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“neighborhood” Ne containing e such that 
{

Ne ∶ e ∈ E
}

 is a partition of A (in 
particular, the only idempotent in Ne is e), and for each a ∈ Ne , b ∈ Nf  we have 
ab = ef  . In other words, � can be constructed from the rectangular band � by 
“inflating” each element e ∈ E to a set Ne . Together with the well‑known charac‑
terization of rectangular bands as direct products of a left zero semigroup and a 
right zero semigroup, this provides an explicit description of the members of L7 . 
This result appeared in [1] (and perhaps it has been known even earlier), but we 
include the proof for completeness.

Theorem 5.1 A groupoid � belongs to the variety L7 if and only if there is a subset 
E ⊆ A and a partition 

{

Ne ∶ e ∈ E
}

, such that � = (E;⋅) is a rectangular band, and

Proof Suppose that � ∈ L7 , let E =
{

e ∈ A ∶ e2 = e
}

 and let Ne =
{

a ∈ A ∶ a2 = e
}

 . 
Clearly, the sets Ne (e ∈ E) are pairwise disjoint and nonempty (since e ∈ Ne ); more‑
over, for all a ∈ A we have (a2)2 = (aa)(aa)

1.
= a(aa)

2.
= a2 , hence e ∶= a2 is idempo‑

tent and a ∈ Ne . This shows that 
{

Ne ∶ e ∈ E
}

 is indeed a partition of A. The set E is 
closed under multiplication, as (ef )2 = (ef )(ef )

1.
= e(ef )

2.
= ef  for all e, f ∈ E . There‑

fore (E;⋅) is a subsemigroup, and it satisfies the identities xyz ≈ xz and x2 ≈ x , hence 
it is a rectangular band. It only remains to prove ab = ef  for all a ∈ Ne , b ∈ Nf :

Now assume that E ⊆ A such that � = (E;⋅) is a rectangular band, and 
{

Ne ∶ e ∈ E
}

 is a partition of A such that (5.1) holds. In order to verify that � sat‑
isfies the identity (xy)z ≈ xz , let us consider arbitrary elements a, b, c ∈ A . Then 
a ∈ Ne , b ∈ Nf  and c ∈ Ng for some e, f , g ∈ E . From the second equality of (5.1) 
it follows that ab = ef  and ac = eg . Since E is closed under multiplication, h ∶= ef  
belongs to E, and h2 = h , as � is a band. The first equality of (5.1) implies that 
h ∈ Nh , and then we have hc = hg by the second equality of (5.1). Putting every‑
thing together, we obtain (ab)c = ac:

where in the equality marked by RB we used the assumption that � is a rectangu‑
lar band. We have proved that � satisfies the identity (xy)z ≈ xz , and the identity 
x(yz) ≈ xz can be verified in a similar way, proving that � ∈ L7 .   ◻

For the varieties L1,… , L6 , we will give similar characterizations in the follow‑
ing six theorems. Groupoids belonging to L6 were described in [3] as unions of 
constant semigroups, which is essentially the same as Theorem 5.9 below, but our 
proof is different. Semigroups satisfying xyz ≈ xy were investigated and character‑
ized in [2]; our Theorem 5.8 gives a different (and perhaps simpler) description. 

(5.1)for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a
2 = e and ab = ef .

ab
1.
= (aa)b

2.
= (aa)(bb) = a2b2 = ef .

(ab)c = (ef )c = hc = hg = (ef )g
RB
= eg = ac,
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The characterizations will be given in terms of a partition 
{

Ne ∶ e ∈ E
}

 similarly 
to Theorem 5.1, but we will also need to specify a subset Se ⊆ Ne for all e ∈ E . 
Let us fix the notation for later reference:

Notation 5.2 Let E ⊆ A , and let 
{

Ne ∶ e ∈ E
}

 be a partition of A; moreover, for 
every e ∈ E , let Se ⊆ Ne such that e ∈ Se.

Remark 5.3 Most of the time (with the exception of L5 ), the setup will be the same 
as in Theorem 5.1: E will be the set of idempotents, Ne =

{

a ∈ A ∶ a2 = e
}

 and Se 
will be the set of factorizable elements in Ne , i.e., Se = Ne ∩ {ab ∶ a, b ∈ A} . To 
see that 

{

Ne ∶ e ∈ E
}

 is indeed a partition of A, it suffices to note that (xx)(xx) ≈ xx 
holds in L1,… , L6 (by the same argument as in the second sentence of the proof of 
Theorem 5.1). This implies that the square of any element is idempotent, therefore 
the sets Ne cover A.

Theorem 5.4 A groupoid � belongs to the variety L1 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

(5.2)

for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a
2 = e and

ab = e, if a ∈ Se, b ∈ Sf ;

ab = e, if a ∈ Se, b ∈ Nf ⧵ Sf ;

ab = e, if a ∈ Ne ⧵ Se, b ∈ Sf ;

ab ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Nf ⧵ Sf .

Fig. 1  The semilattice of lazy groupoid varieties
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Proof First assume that � ∈ L1 and recall that L1 is defined by (xy)z ≈ x2 and 
x(yz) ≈ x2 . Let us consider the partition described in Remark  5.3; then the first 
equality of (5.2) is automatically satisfied. For the other four statements, let a ∈ Ne 
and b ∈ Nf  . We have (ab)2 = (ab)(ab)

1.
= a2 = e , thus ab ∈ Ne . Therefore ab ∈ Se , 

as ab is obviously factorizable, and this verifies the last statement of (5.2). If 
b ∈ Sf  , i.e., b = b1b2 for some b1, b2 ∈ A , then ab = a(b1b2)

2.
= a2 = e . Similarly, if 

a = a1a2 ∈ Se , then ab = (a1a2)b
1.
= a2

1

1.
= (a1a2)

2 = a2 = e . This proves that (5.2) is 
satisfied.

Conversely, suppose that 
{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.2) holds. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . From 
(5.2) we see that ab ∈ Se and bc ∈ Sf  , and then, again from (5.2), we obtain

This shows that � satisfies (xy)z ≈ x(yz) ≈ x2 , hence � ∈ L1 .   ◻

Theorem 5.4 allows us to construct the multiplication table of any groupoid in L1 
as follows. Fix an arbitrary nonempty set A, and choose a partition 

{

Ne ∶ e ∈ E
}

 of 
A as in Notation 5.2. Then define a multiplication on A such that (5.2) is satisfied (if 
a ∈ Ne ⧵ Se and b ∈ Nf ⧵ Sf  , then we can choose ab to be any element of Se ). This 
gives a groupoid in L1 , and every member of L1 can be obtained this way. A part of 
such an operation table can be seen in “Appendix 3”. Only two blocks of the parti‑
tion are displayed; the elements of Se are denoted by e = s0, s1,… and the elements 
of Ne ⧵ Se are denoted by a1, a2,… (and similarly for Sf  and Nf ⧵ Sf  ). However, 
this is only for notational convenience: these sets can have arbitrary cardinalities 
(not necessarily countable). “Appendix 3” contains similar tables for the varieties 
L2,… , L6 , illustrating the following five theorems.

Theorem 5.5 A groupoid  � belongs to the variety L2 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

Proof First assume that � ∈ L2 and recall that L2 is defined by (xy)z ≈ x2 and 
x(yz) ≈ xy . Let us consider the partition described in Remark  5.3. Let a ∈ Ne 
and b ∈ Nf  . We have (ab)2 = (ab)(ab)

1.
= a2 = e , hence ab ∈ Se . Moreover, 

ab
2.
= a(bb) = af  , and if a = a1a2 ∈ Se , then ab = (a1a2)b

1.
= a2

1

1.
= (a1a2)

2 = a2 = e . 
This proves that (5.3) is satisfied.

(ab)c = e = a2, a(bc) = e = a2.

(5.3)

for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a
2 = e and

ab = af = e, if a ∈ Se, b ∈ Sf ;

ab = af = e, if a ∈ Se, b ∈ Nf ⧵ Sf ;

ab = af ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Sf ;

ab = af ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Nf ⧵ Sf .
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Conversely, suppose that 
{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.3) holds. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . From 
(5.3) we see that ab ∈ Se and bc ∈ Sf  , and then, again from (5.3), we obtain

This shows that � satisfies (xy)z ≈ x2 and x(yz) ≈ xy , hence � ∈ L2 .   ◻

Theorem 5.6 A groupoid � belongs to the variety L3 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

Proof First assume that � ∈ L3 and recall that L3 is defined by (xy)z ≈ xy and 
x(yz) ≈ x2 . Let us consider the partition described in Remark 5.3. Let a ∈ Ne and 
b ∈ Nf  ; then (ab)(ab)

1.
= ab , which means that every product is idempotent (this 

already proves the last statement of (5.4)). In particular, if a = a1a2 ∈ Se , then 
a2 = a . However, the construction of the partition implies that a2 = e , thus we can 
conclude that a = e . (Note that this means that Se = {e} .) Now we can write ab as 
ab = (a1a2)b

1.
= a1a2 = a = e . If b = b1b2 ∈ Sf  , then ab = a(b1b2)

2.
= a2 = e , hence 

(5.4) holds.
Conversely, suppose that 

{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.4) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . 
From (5.4) we see that ab =∶ e� and bc =∶ f � belong to E, and the construction of 
the partition implies that e� ∈ Se� and f � ∈ Sf � (cf. Notation 5.2). Now we can calcu‑
late using (5.4) as follows:

This proves that � satisfies (xy)z ≈ xy and x(yz) ≈ x2 , hence � ∈ L3 .   ◻

In the first half of the proof we observed that if the partition is chosen as in 
Remark 5.3, then each Se is a singleton. However, if we choose an arbitrary partition as 
in Notation 5.2 and we define the multiplication according to (5.4), then the resulting 
groupoid will be in L3 . This is not a contradiction: given such an operation table (like 
the one in “Appendix 3”), we can redefine the set Se so that Se = {e} (i.e., we “move” 
all elements of Se to Ne ⧵ Se except for the element e) for each e ∈ E , without changing 
the multiplication table. Then the groupoid will still satisfy (5.4) for these new sets.

(ab)c = e = a2, a(bc) = af = ab.

(5.4)

for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a
2 = e and

ab = e, if a ∈ Se, b ∈ Sf ;

ab = e, if a ∈ Se, b ∈ Nf ⧵ Sf ;

ab = e, if a ∈ Ne ⧵ Se, b ∈ Sf ;

ab ∈ E, if a ∈ Ne ⧵ Se, b ∈ Nf ⧵ Sf .

(ab)c = e�c = e� = ab, a(bc) = af � = e = a2.
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Theorem 5.7 A groupoid � belongs to the variety L4 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

Proof First assume that � ∈ L4 and recall that L4 is defined by (xy)z ≈ xz and 
x(yz) ≈ x2 . Let us consider the partition described in Remark  5.3. If a ∈ Ne and 
b ∈ Nf  , then (ab)2 = (ab)(ab)

1.
= a(ab)

2.
= a2 = e , which means that ab ∈ Se . We also 

have ab
1.
= (aa)b = eb ; furthermore, if b = b1b2 ∈ Sf  , then eb = e(b1b2)

2.
= e2 = e . 

This proves that (5.5) holds.
Conversely, suppose that 

{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.5) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . 
From (5.5) we see that ab ∈ Se and bc ∈ Sf  . Therefore, using (5.5) again, we obtain

This shows that � satisfies (xy)z ≈ xz and x(yz) ≈ x2 , hence � ∈ L4 .   ◻

Theorem 5.8 A groupoid � belongs to the variety L5 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

Proof First assume that � ∈ L5 and recall that L5 is defined by (xy)z ≈ xy and 
x(yz) ≈ xy . This time our partition will be different from that of Remark 5.3. We intro‑
duce an equivalence relation on A: let us write a ∼ b if the right multiplications by a and 
b coincide, i.e., if ca = cb for all c ∈ A (in other words, the columns of a and b in the 
multiplication table are the same). Since ca

2.
= c(aa) for every c ∈ A , we have a ∼ a2 . 

As noted in Remark 5.3, a2 is idempotent: (aa)(aa)
1.
= aa . Thus every equivalence class 

with respect to ∼ contains at least one idempotent element. Therefore, we can choose a 
complete set of representatives E consisting of idempotent elements. Let Ne denote the 
equivalence class of e ∈ E , and let Se be the set of factorizable elements in Ne , as before.

If a ∈ Ne and b ∈ Nf  , then ab = af  , as b ∼ f  . Moreover, a ∼ e implies that for 
every c ∈ A , we have ce = ca

2.
= c(af ) , hence e ∼ af  , which means that af ∈ Se . If 

a = a1a2 ∈ Se , then ab = af = (a1a2)f
1.
= a1a2 = a . This proves that (5.6) holds.

(5.5)

for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a
2 = e and

ab = eb = e, if a ∈ Se, b ∈ Sf ;

ab = eb ∈ Se, if a ∈ Se, b ∈ Nf ⧵ Sf ;

ab = eb = e, if a ∈ Ne ⧵ Se, b ∈ Sf ;

ab = eb ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Nf ⧵ Sf .

(ab)c = ec = ac, a(bc) = e = a2.

(5.6)

for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have

ab = af = a, if a ∈ Se, b ∈ Sf ;

ab = af = a, if a ∈ Se, b ∈ Nf ⧵ Sf ;

ab = af ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Sf ;

ab = af ∈ Se, if a ∈ Ne ⧵ Se, b ∈ Nf ⧵ Sf .
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Conversely, suppose that 
{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.6) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . 
From (5.6) we see that ab ∈ Se and bc ∈ Sf  . Therefore, using (5.6) again, we obtain

This shows that � satisfies (xy)z ≈ x(yz) ≈ xy , hence � ∈ L5 .   ◻

Theorem 5.9 A groupoid  � belongs to the variety L6 if and only if there is a parti-
tion 

{

Ne ∶ e ∈ E
}

 as in Notation 5.2, such that

Proof First assume that � ∈ L6 and recall that L6 is defined by (xy)z ≈ xz and 
x(yz) ≈ xy . We use again the partition described in Remark 5.3. If a ∈ Ne and b ∈ Nf  , 
then (ab)2 = (ab)(ab)

1.
= a(ab)

2.
= a2 = e , therefore ab ∈ Se . On the other hand, we can 

express ab as ab
1.
= (aa)b

2.
= (aa)(bb) = ef  , which proves that (5.7) holds.

Conversely, suppose that 
{

Ne ∶ e ∈ E
}

 is a partition of A as in Notation 5.2, such 
that (5.7) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne , b ∈ Nf  , c ∈ Ng . 
From (5.7) we see that ab ∈ Se and bc ∈ Sf  . Therefore, using (5.7) again, we obtain

This shows that � satisfies (xy)z ≈ xz and x(yz) ≈ xy , hence � ∈ L6 .   ◻

Acknowledgements The authors would like to thank the anonymous referee for their careful reading of 
the manuscript and for their valuable comments. This research was partially supported by the Hungar‑
ian Research, Development and Innovation Office under Grants K115518 and K128042, and by Grants 
20391‑3/2018/FEKUSTRAT and TUDFO/47138‑1/2019‑ITM of the Ministry for Innovation and Tech‑
nology, Hungary. Open Access. FundRef: University of Szeged Open Access Fund, Grant Number: 4759.

Funding Open access funding provided by University of Szeged.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

(ab)c = ab, a(bc) = af = ab.

(5.7)for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have ab = ef ∈ Se.

(ab)c = eg = ac, a(bc) = ef = ab.
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Table 1  Summary of the proof of Lemma 3.2

t1

x xy≈ t1(xy,z,u)≈ t1(x,y,z)u≈ xu xu does not depend on u

y z≈ t1(xy,z,u)≈ t1(x,y,z)u≈ yu yu does not depend on y,u

z u≈ t1(xy,z,u)≈ t1(x,y,z)u≈ zu zu does not depend on z

zy uz≈ t1(xy,z,u)≈ t1(x,y,z)u

≈ (zy)u≈ t1(z,y,u)≈ uy uy does not depend on y

zx u(xy)≈ t1(xy,z,u)≈ t1(x,y,z)u

≈ (zx)u≈ t1(z,x,u)≈ uz uz does not depend on z

yx wv≈ t1(v,w,xy)≈ (vw)(xy)

≈ t1(xy,vw,u)≈ t1(x,y,vw)u

≈ (yx)u≈ t1(y,x,u)≈ xy xy does not depend on x,y

Table 2  The 36 cases of Lemma 3.3

Appendix 1: Detailed case analyses for the proofs of some lemmas
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Table 3  Summary of the proof of Lemma 3.3

t1 t2

x2 yz (a) zu≈ t2(xy,z,u)≈ t1(x,y,zu)≈ x2

y2 yz (a) zu≈ t2(xy,z,u)≈ t1(x,y,zu)≈ y2

xy y2 (a) xy≈ t1(x,y,zu)≈ t2(xy,z,u)≈ z2

xy z2 (a) xy≈ t1(x,y,zu)≈ t2(xy,z,u)≈ u2

xy yz (a) xy≈ t1(x,y,zu)≈ t2(xy,z,u)≈ zu

yz x2 (b) zu≈ t1(y,z,u)≈ (yz)u≈ t1(x,yz,u)≈ t2(x,y,z)u≈ x2u

yz y2 (b) zu≈ t1(y,z,u)≈ (yz)u≈ t1(x,yz,u)≈ t2(x,y,z)u≈ y2u

yz xy (b) zu≈ t1(y,z,u)≈ (yz)u≈ t1(x,yz,u)≈ t2(x,y,z)u≈ (xy)u

xz y2 (b) xu≈ t1(x,yz,u)≈ t2(x,y,z)u≈ y2u

xz z2 (b) xu≈ t1(x,yz,u)≈ t2(x,y,z)u≈ z2u

xz yz (b) xu≈ t1(x,yz,u)≈ t2(x,y,z)u≈ (yz)u

y2 xy (c) xy≈ t2(x,y,z)≈ x(yz)≈ t2(x,yz,u)≈ xt1(y,z,u)≈ xz2

z2 xy (c) xy≈ t2(x,y,z)≈ x(yz)≈ t2(x,yz,u)≈ xt1(y,z,u)≈ xu2

x2 xz (c) xu≈ t2(x,yz,u)≈ xt1(y,z,u)≈ xy2

y2 xz (c) xu≈ t2(x,yz,u)≈ xt1(y,z,u)≈ xz2

xy xz (c) xu≈ t2(x,yz,u)≈ xt1(y,z,u)≈ x(yz)

x2 y2 (a) x2 ≈ t1(x,y,zu)≈ t2(xy,z,u)≈ z2

x2 z2 (a) x2 ≈ t1(x,y,zu)≈ t2(xy,z,u)≈ u2

y2 y2 (a) y2 ≈ t1(x,y,zu)≈ t2(xy,z,u)≈ z2

y2 z2 (a) y2 ≈ t1(x,y,zu)≈ t2(xy,z,u)≈ u2

y2 x2 (a) z2 ≈ t1(y,z,vu)≈ t2(yz,v,u)≈ (yz)2

(b) ≈ t1(x,yz,u)≈ t2(x,y,z)u≈ x2u

z2 y2 (a) y2 ≈ t2(xu,y,z)≈ t1(x,u,yz)≈ (yz)2

(c) ≈ t2(x,yz,u)≈ xt1(y,z,u)≈ xu2
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Table 4  Summary of the proof of Lemma 3.4

L1 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ x2

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ x2

L2 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ x2

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ x2

L3 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ xy

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ xy

L4 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ x(zu)

2.≈ x2

L5 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ xy

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ xy

L6 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ x(zu)

2.≈ xz

L7 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.≈ xz

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.≈ x(zu)

2.≈ xu
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Table 5  Summary of the proof of Lemma 4.1

L1 ∩ I xy
I≈ (xx)y

1.≈ x2 xy does not depend on y

L2 ∩ I xy
I≈ (xx)y

1.≈ x2 xy does not depend on y

L2 ∩D xy
2.≈ x(yy)

D≈ x(xx) xy does not depend on y

L2 ∩C xy
2.≈ x(yz)

C≈ (yz)x
1.≈ y2 xy does not depend on x

L3 ∩ I xy
I≈ (xx)y

1.≈ x2 xy does not depend on y

L3 ∩D xy
1.≈ (xy)(zu)

2.≈ (xy)2
D≈ x2 xy does not depend on y

L3 ∩C xy
1.≈ (xy)z

C≈ z(xy)
2.≈ z2 xy does not depend on y

L4 ∩ I xy
I≈ x(yy)

2.≈ x2 xy does not depend on y

L4 ∩D xy
1.≈ (xx)y

D≈ (yy)y xy does not depend on x

L4 ∩C xy
1.≈ (xz)y

C≈ y(xz)
2.≈ y2 xy does not depend on x

L5 ∩ I xy
I≈ (xx)y

1.≈ x2 xy does not depend on y

L5 ∩D xy
2.≈ x(yy)

D≈ x(xx) xy does not depend on y

L5 ∩C xy
1.≈ (xy)z

C≈ z(xy)
2.≈ zx xy does not depend on y

L6 ∩ I xy
I≈ (xy)(xy)

1.≈ x(xy)
2.≈ x2 xy does not depend on y

L6 ∩D xy
2.≈ x(yy)

D≈ x(xx) xy does not depend on y

L6 ∩C xy
2.≈ x(yz)

C≈ (zy)x
1.≈ zx xy does not depend on y

L7 ∩D xy
2.≈ x(yy)

D≈ x(xx) xy does not depend on y

L7 ∩C xy
1.≈ (xz)y

C≈ y(xz)
2.≈ yz xy does not depend on x
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