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A B S T R A C T

Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training
in natural language processing (NLP). In general, developing and applying new NLP pipelines in domain-
specific contexts for tasks often requires custom-designed datasets to address NLP tasks in a supervised machine
learning fashion. When operating in non-English languages for medical data processing, this exposes several
minor and major, interconnected problems such as the lack of task-matching datasets as well as task-specific
pre-trained models.

In our work, we suggest to leverage pre-trained large language models for training data acquisition in order
to retrieve sufficiently large datasets for training smaller and more efficient models for use-case-specific tasks.
To demonstrate the effectiveness of your approach, we create a custom dataset that we use to train a medical
NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our
obtained dataset as well as our pre-trained models are publicly available at https://github.com/frankkramer-
lab/GPTNERMED.
1. Introduction

In situations of low-resource languages, neural baseline techniques
for specific tasks in natural language processing (NLP) are often difficult
to be applied successfully due to the lack of sufficient and adequately
annotated training data. While English can be perceived as the most
relevant language in the field of NLP research as being a high-resource
language, effectively any other language can be considered as a rather
low-resource language in contrast. Yet the abundance of plain textual
resources is no uniquely decisive factor when it comes to dealing
with embedded NLP problems in real-life applications. In this regard,
a domain-specific dataset needs to be obtained to match the applied
context, and the underlying data acquisition process can involve access
to highly restricted data, manual engagements from domain experts or
time- and cost-intensive data gathering. Another concern relates to the
actual NLP objective of the use case and usually heavily determines the
final design of the obtained dataset and its collection of task-related
annotations.

We study the use case to annotate certain medical entity classes in
German throughout this paper since it is an instance that suffers from
all formerly mentioned challenges. In this work, we demonstrate an ef-
fective method for synthesizing a custom, domain-aligned dataset with
annotation information in an unsupervised fashion. Furthermore, we

∗ Corresponding author.
E-mail addresses: johann.frei@informatik.uni-augsburg.de (J. Frei), frank.kramer@informatik.uni-augsburg.de (F. Kramer).

1 UFAL Medical Corpus (accessed at 22.08.2022): https://ufal.mff.cuni.cz/ufal_medical_corpus.

show evidence of its effectiveness by training a generic medical model
for German medical named entity recognition (NER) by finetuning a
pre-trained BERT language model along with a classification head for
NER. Due to the inherently generic nature of our work, we do not see
fundamental obstacles in applying the approach to related entity classes
in medical or even non-medical tasks, or for different non-English
languages of similar quantitative levels of resource abundance.

2. Background and related work

2.1. Medical datasets

In NLP, deep learning-based methods have been proven highly ef-
fective in order to tackle frequent tasks, most notably the self-attention-
mechanism-based transformer architecture [1]. One fundamental prob-
lem of deep learning-based methods remains to be the need for vast
amounts of data for training, including corresponding annotations for
supervised learning.

In English medical NLP, these challenges have been addressed to
a certain extent by the availability of annotated datasets, such as
the MIMIC-III [2] and MIMIC-IV [3] datasets or n2c2 datasets from
the i2b2 challenges [4]. In general, multilingual textual datasets are
vailable online 23 August 2023
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available that carry medical texts from multiple languages. The datasets
often entail parallel corpora for translation tasks and lack semantic
annotation like the UFAL Medical Corpus1 for the WMT’17 biomedical
hallenge [5]. Driven by manual annotation work, Mantra GSC [6] is
public gold-standard annotated corpus with multilingual texts based

n prior parallel corpora and provides limited UMLS information.
For German medical NLP, the field has made notable advances

n terms of available datasets. While work in this field of NLP has
een published, internal and proprietary datasets are frequently used
s underlying datasets [7–17]. In recent years, semi-publicly available
atasets like BRONCO [18] and GGPONC 1.0 [19] and 2.0 [19] have
een made available. While BRONCO is advertised as based on real
ischarge letters with annotations, other datasets like GGPONC origi-
ate from non-clinical or synthetic data sources like clinical practice
uidelines or are assembled from multiple, diverse sources or crawled
ata from the web. If annotation data is provided, such metadata differ
n terms of entity types, entity type definitions or their overall task
bjectives. Hence, a direct comparison of datasets and corresponding
odels cannot be made directly with respect to NER F1/tagging scores,

r entity linking to different ontologies. Only metrics of rather limited
nterest such as test set performance of trained models, or token size
nd number of entities for a dataset are directly derivable for compar-
son. For an extensive overview of the recent state of German medical
atasets, we point to Borchert et al. [19].

.2. Medical models and applications

We restrict our focus on models and applications to items of gen-
ral interest and practical applicability. Most works from the pre-
ented dataset section develop accompanied models to the datasets
nd publish internally evaluated scores. However, in many cases, the
eproducibility of the described results is not possible since models
re not made publicly available along with the paper. Furthermore,
ome models or systems are designed for narrow NLP tasks and are
ot of interest for general application in the field, like cardiography
exts [11]. Since models are trained on sensitive training data, privacy
oncerns arise from the fact that potential training data extraction
ttacks could uncover patient-related data. This concern is amplified
y the increasing use of fine-tuning larger language models that are
usceptible to such attacks [20]. In the German domain, the neural
erman model GERNERMED [21] avoids this issue by using public
ata from English in combination with neural machine translation
o be the first publicly available model with unrestricted access and
urther improved their method for stronger models [22]. Authors from
GPONC [19] and BRONCO [18] provide access to their own models
fter registration or signed user agreement. On a broader perspective,
he software mEx [23] provides an entire stack of different models
nd dockerized software layers to serve an integrated text processing
ystem, their models can be obtained on request through signed user
greement [24]. Commercial applications from Health Discovery (Aver-
is)2 and SparkNLP (John Snow labs)3 are available but are purely
roprietary applications. Contrary to perceptions of domain experts
nd reviewers, Amazon Comprehend Medical4 does not support Ger-
an texts at the time of writing. Popular, open solutions like Apache

TAKES [25] and MetaMaps [26] do not exist for the German com-
unity. Due to the rapid change in the field, we do not consider this

ist of available models and software as conclusive. We point to Roller
t al. [24] and Borchert et al. [19] for a more exhaustive enumeration
f available models and systems.

2 https://averbis.com/de/health-discovery/
3 https://nlp.johnsnowlabs.com/analyze_medical_text_german
4 https://docs.aws.amazon.com/comprehend-medical/latest/dev/

omprehendmedical-welcome.html
2

2.3. Language model-based dataset generation

Data augmentation is a popular technique in the Machine Learning
community, in which the objective is to sample new data points from
the manifold that models the set of known data points. In computer
vision, semantic invariance applies to basic image transformation in
many situations [27]. However in NLP, such basic techniques cannot
always be applied if semantic information of sentences needs to be
preserved, but more sophisticated approaches are used such as back-
translation [28] of words or phrases through translation, yet failures in
translation can jeopardize the augmentation method [29]. The idea to
use pre-trained language models for data augmentation has been pro-
posed as an effective method for augmenting small datasets [30,31] or
even creating datasets nearly from scratch [32,33]. With the increasing
popularity of large, prompt-based language models like GPT-2/3 [34,
35] and open source counterparts [36,37], methods with various objec-
tives have been developed to improve the quality and usefulness of the
models in different contexts such as sentence similarity estimation [33].
In addition to classical few-shot text generation, task instruction-driven
zero-shot methods are likewise an active field of research [33,38,39].
For medical NLP purposes, text generation has been shown for synthe-
sizing EHR reports [40] and its application for downstream tasks [41]
using a GPT-2 model. To the best of our knowledge, we are the first
team to expand the general idea to the field of German medical NLP.

3. Methods

In this work, we leverage the capabilities of pre-trained language
models in regard to their example-driven few-shot learning for text
generation. The method follows the basic idea implemented in various
related contexts [30,33,40]. We apply the GPT NeoX language model
from EleutherAI [37] for input processing and text generation. The
model implementation is kept close to the GPT-2/3 architecture, an
autoregressive model which is closely related to the vanilla Transformer
architecture [1] with decoder-only blocks. Note that we do not perform
gradient-based fine-tuning of the model on novel data, but the model is
only used for inference. In difference to other models like GPT-3 [35],
the internal model weights are publicly available similar to its smaller
GPT-J [36] model. We decided to use the NeoX model over GPT-J due
to its larger size5 which has been shown to exceed the performance of
GPT-J on several tasks [37] yet being sufficiently small to run on our
local instance. In addition, large multilingual language models are able
to improve task performance on low-resource languages (e.g. German)
by the multilingual knowledge transfer from a high-resource language
(e.g. English) [42].

As previously discussed, LM-based text generation models are used
to generate their respective text output by conditioning on an input text
sequence, highlighting two main aspects of the input sequence design.
First, the sequence can carry a task description in natural language
to advise the model on its task objective. While writing an obvious
prompt command seems obvious to a normal person, the performance
of language models varies between different semantically equivalent
task instructions [33]. Second, the input can inject information on the
task during the prediction of the next word by providing text examples
in the input sequence.

In this work, we do not focus on tuning task instructions in nat-
ural language but rather demonstrate that straightforward few-shot-
learning-based example prompting as model input suffices for synthetic
dataset generation within the scope of our use case. To avoid the
issue of only generating plain natural text without valuable annotation
metadata, we design our input prompt in the style of a simple markup
language, where the language model reads the data as a collection
of sentences. Each sentence is enclosed by <s> and </s> signs and

5 Model parameter size (billions): GPT-J: 6B, GPT NeoX: 20B, GPT-3: 175B.
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Fig. 1. Synthesis of markup-based text with annotation information: The input prompt
consists of the markup-encoded text of a few pre-written sentences. The set of sentences
is augmented by the language model that generates new data (red) token-wise in an
autoregressive fashion.

separated by a line break. For each sentence, every word from a certain
label class 𝑙 is enclosed by <class="𝑙"> and </class> respectively.
We select a small set of exemplary sentences, encode them according
to the basic markup rules and append the opening sentence tag <s> to
the prompt to indicate the start of an additional sentence. The whole
process is illustrated in Fig. 1.

In language generation, the unnormalized probabilities over tokens,
referred to as logits, are normalized and smoothed by the last softmax
layer in the network

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑖) =
𝑒𝑙𝑖∕𝜏

∑𝑛
𝑗 𝑒

𝑙𝑗∕𝜏
(1)

where 𝑛 is the number of tokens in the vocabulary, 𝑙𝑖 is the unnor-
malized predicted probability for token 𝑖. The temperature parameter
𝜏 is used for smoothing the normalized probability distribution. In this,
higher values of 𝜏 increase the probabilities for less probable tokens at
the expense of highly probable tokens. We can utilize the parameter to
reduce the risk of generating invalid markup-based text data by setting
the temperature to 0 < 𝜏 < 1.0 in combination with 𝑡𝑜𝑝 − 𝑝 < 1.0 prior
to token sampling.

After collecting the output data, we parse the markup text to obtain
a synthetic, silver-standard corpus along with its corresponding anno-
tations. For further data cleansing, we only keep sentences that fulfill
the following requirements: First, the sentence needs to have a closing
</s> tag. Second, the parsing of the sentence can succeed and the
annotations are provided by valid <class="𝑙"> and </class> tags.
Third, the sentence has at least one annotation. Fourth, all annotation
labels are part of the pre-defined set of label classes. Fifth, duplicate
sentences are reduced to unique occurrences (deduplication).

The synthesis of annotated sentences from a large language model
and its transfer to a smaller, more efficient model can be consid-
ered a high-level form of knowledge distillation: For the very pur-
pose of developing a German NER model for medical entities, we
are able to transform the implicit knowledge of the 20B parameter
model about this very context into a dedicated NER model with a
faster, less resource-intensive computational footprint. In fact, these
properties align well with the aim of the practical applicability of our
method and its resulting model in dedicated domain contexts. For the
development of a robust NER model, we train a neural-based NER
parser from the open-source SpaCy NLP library on our dataset. While
3

Table 1
Iterative data cleansing: About half of the predicted sentences have been removed. The
majority of sentence removals are due to the duplicate removal filter. All percentage
numbers are rounded.

Applied Filter #Sentences % of Baseline Impact

Baseline 17776 100%

↪ No </s> tag 16603 93% 15%
↪ Duplicates removal 11328 64% 66%
↪ Invalid syntax removal 11326 64% 0%
↪ Invalid or no labels 9845 55% 18%

⟹ Final 9845 55%

Table 2
Annotation statistics: Number of counts and tokens of each label class.
The SpaCy tokenizer is used for tokenization.

Label Count #Tokens

Medikation 9868 10138
Dosis 7547 15845
Diagnose 5996 7656

the NER parser component is trained from scratch, its input vectors
are generated through a pre-trained BERT-based encoder model to
improve the performance of the final model through transfer learning
and contextualization. The BERT-based encoder is fine-tuned to the
data by gradient update during the training procedure.

The data acquisition process and model training are shown in Fig. 2.

4. Results

4.1. Dataset sampling

We provide the GPT-based NeoX model with an input sequence
of twelve sentences in German language, encoded in the described
markup style. The sentences are pre-annotated with the label classes
Medikation (medication/drug), Dosis(dosage/strength) and Diagnose (di-
agnosis). The label classes are chosen to match the focus of the national
core dataset of the German Medizininformatik-Initiative [43] on treat-
ment (medication and strength) and diagnosis topics. The prompt
which we use for the dataset sampling is displayed in Fig. 3.

During inference, we set 𝜏 to 0.8 and 𝑡𝑜𝑝 − 𝑝 to 0.9 for language
generation and sample 1000 different outputs with a maximum length
of 768 tokens each, and additional 100 outputs with an increased
temperature 𝜏 set to 0.9. Given the parameters, we obtain a raw baseline
dataset of 17776 sentences which we reduce to 9845 sentences after the
different filters were applied, as shown in Table 1. The final dataset
consists of 121027 tokens according to the SpaCy tokenizer (245107
tokens according to the GPT tokenizer) with annotations for Dosis (#
7547), Medikation (# 9868) and Diagnose (# 5996) as shown in Table 2.

The inference was computed on an NVIDIA DGX workstation with
two NeoX models running in parallel on different A100 GPUs. Regard-
ing the ecological impact, the inference took a total of 118 h of compute
time, which results in an estimated GPU power consumption of 35,400
Wh and about 15 kg of carbon emissions.6

We randomly sampled ten sentences from the final dataset to be
presented in Fig. 4 for a demonstration of the actual sentences and
annotation structure. In general, the text structure of the ten sampled
sentences appears genuine and no obviously broken text structure
is generated, yet its medical validity is limited in some instances
(e.g. Trimethoprim with unusual 1600 mg strength). The annotation of
the drug label class (Medikation) is correct except for one false-positive

6 According to the United States Environmental Protection Agency: https:
//www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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Fig. 2. Illustration of the data acquisition and model training process: The process starts with twelve annotated sentences written by a user and ends with a final NER model.
Abbreviations: named entity recognition (NER).

Fig. 3. Input prompt: The sentences are encoded according to the markup scheme. The trailing <s> indicates the beginning of a new sentence to the model. Only the shown
sentences are used for the sentence sampling as this input prompt is directly used as input for the GPT model.
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Fig. 4. Sampled sentences: Ten randomly sampled sentences from the final dataset. The annotations are provided (green: Medikation/drug, orange: Dosis/strength, red:
Diagnose/diagnosis). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Cumulative distribution of (filtered) tokens: 0.9% of all unique tokens are part of the initial prompt but account for 33.3% of all tokens by frequency. The tokens are
counted case-insensitively and have been filtered for stop words and punctuation.
occurrence (Apotheker). Entities from the strength label class (Dosis) oc-
cur with different units (ml and mg) and are correctly annotated except
for one false-positive item (q.d.) as well. For diagnosis, only two entities
are present in the set of ten sentences but their annotations are correct.
The detection of entity boundaries is not correctly identified in two
cases when the entities should be split (Sulfamethoxazol/Trimethoprim
and 320/1600 mg). However, generic phrases from the input prompt
are repeated in some instances (ergab den Befund einer, die Einnahme
von), but specific terms from medications or diagnoses are newly gen-
erated as they are clearly not drawn from the input prompt (except for
the common Insulin term).

For the investigation of the (case-insensitive) token distribution over
the dataset, we temporarily filtered the dataset to exclude all stop
word and punctuation tokens, resulting in 62520 total tokens, and 8794
unique tokens after a token deduplication. We found that 20842 total
tokens and 76 unique tokens can be also found in the input prompt
while 41678 total tokens and 8718 unique tokens are not present in the
input prompt. This implies that 0.9% of the unique tokens, yet 33,3% of
the total tokens are also found in the prompt. The cumulative histogram
of the dataset tokens is shown in Fig. 5.

Given that 99% of the unique tokens are not found in the in-
put prompt, it suggests that the dataset synthesis process is able to
effectively augment the vocabulary from the input prompt.
5

However, the share of 33% total tokens is contributed by tokens
that are also present in the input prompt and could potentially stem
from trivial token repetition from the input prompt, but also be a
well-justified use of domain-specific or use-case-specific vocabulary. In
the case of trivial token repetition, we expect the topmost tokens to
almost exclusively consist of tokens already present in the prompt and
to strictly follow the token distribution of the input prompt regardless
of the actual domain-dependent token distribution. To investigate this,
we extracted the most frequent tokens from the dataset. As a reference,
we also extracted the topmost tokens from the input prompt. The most
frequent tokens are given in Fig. 6.

From the list of top tokens, the first nine tokens can be found in
the input prompt and occur more than 500 times, yet they are rather
generic terms (e.g. unit mg or patient) and are expected to be mentioned
frequently. Still, we could identify two tokens (zervix-pe and hsil), which
are expected to be less frequent in generic medical texts, that occur
frequently in the dataset (18th and 30th most frequent token) and are
also mentioned in one of the twelve sentences from the input prompt.
Yet both of these instances occur less frequently than 500 times. In
general, the token distribution from the synthetic dataset does not
strictly match the distribution from the input prompt as we can observe
that new, frequent tokens are introduced instead (e.g. common drugs
aspirin, propranolol or new numeric values 10, 25, 50).
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Fig. 6. Top tokens (filtered): The most frequent tokens from the final dataset (left) and input prompt (right). Several top tokens from the final dataset are not part of the initial
prompt. The shown tokens are counted case-insensitively and have been filtered for stop words and punctuation.
4.2. NER training

As a follow-up step, we train three NER models on the synthesized
dataset with the pre-trained gbert-large [44], GottBERT-base [45] and
German-MedBERT7 models retrieved from the HuggingFace platform
as contextualized feature encoders. We split the dataset randomly into
(80%, 10%, 10%) sets for training, validation and test. The Adam
optimizer with an initial learning rate 5𝑒−5 and a batch size of 128
are used, as we stick close to the default hyperparameters from SpaCy
for training. We select the final model based on the highest F1-score
on the validation set. The training iterations took 55 m (gbert), 25 m
(GottBERT), 48 m (German-MedBERT).

We evaluate the performance of the respective models on precision,
recall and F1-score on the testset. The evaluation is computed in
strict mode as a character-wise classification task, meaning that exact
overlaps and label classes are considered. The results are shown in
Table 3. The results indicate strong performance of the models on
all label classes, with gbert and GottBert as the models with the best
average F1-scores. As a significant caveat, while the dataset is split into

7 German MedBERT on Huggingface (accessed 22.08.2022): https://
huggingface.co/smanjil/German-MedBERT.
6

training, validation and test set and no samples are shared across these
sets, the synthesized dataset contains structurally similar sentences and
it allows the models to potentially overfit implicitly by learning syntax
and structure of such homogeneous sentences instead of overfit to
certain words directly. The homogeneity could be reduced by various
techniques including increasing the temperature 𝜏 at the expense of
increasing the probability of generating invalid sentences.

We further evaluate the models on a small gold-standard German
dataset proposed in [22] as an out-of-distribution (OoD) dataset. Since
the dataset contains label annotations largely compatible with the n2c2
2018 ADE dataset [4], we cannot directly compare all label classes, yet
in the interest of an OoD performance evaluation, we assume that the
label class Drug shares significant semantic overlap with the label class
Medikation. The results are provided in Table 4. Beyond the expected
drop in terms of theMedikation scores across all models, the gbert-based
and GottBERT-based models are identified as the models with the best
F1-scores, with GottBERT surpassing gbert by 2.6% in F1-score (test set
reference: −0, 6%).

To put our results in a broader perspective, we evaluate our method
on three related external datasets and compare the obtained scores to
a pre-existing baseline model on shared drug-like entity classes. The
datasets consist of the Medline dataset (from Mantra GSC [6]), the
GGPONC [19] dataset and the BRONCO [18] ontology dataset. Since

https://huggingface.co/smanjil/German-MedBERT
https://huggingface.co/smanjil/German-MedBERT
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Table 3
Results on the test set: The total results are based on the labels’ frequency-weighted
average. The label annotations are evaluated character-wise by Precision, Recall and
1-scores Abbreviations: named entity recognition (NER).
Scores on test set NER Tags

Model Medikation Diagnose Dosis Total

gbert-large
Pr 0.870 0.870 0.883 0.918
Re 0.936 0.895 0.921 0.919
F1 0.949 0.882 0.901 0.918

GottBERT-base
Pr 0.979 0.896 0.887 0.936
Re 0.910 0.844 0.907 0.886
F1 0.943 0.870 0.897 0.910

German-MedBERT
Pr 0.980 0.910 0.829 0.932
Re 0.905 0.730 0.890 0.842
F1 0.941 0.810 0.858 0.883

Table 4
Results on the out-of-distribution dataset: As caveat, the label definitions
of Medikation (ours) and Drug(from the 2018 n2c2 ADE dataset [4]) is
inaccurately assumed to be equivalent for comparison. The label anno-
tations are evaluated character-wise by Precision, Recall and F1-scores.
Abbreviations: named entity recognition (NER).

Scores on OoD set NER Tag

Model Drug = Medikation

gbert-large
Pr 0.707
Re 0.979
F1 0.821

GottBERT-base
Pr 0.800
Re 0.899
F1 0.847

German-MedBERT
Pr 0.727
Re 0.818
F1 0.770

the entity classes vary across the external datasets, we only consider
the entity classes which are most similar to the drug/Medikation entity
class as already discussed in the OoD evaluation stage. The performance
scores are shown in Table 5. The evaluation remains similar to the OoD
evaluation strategy but also includes a token-wise label evaluation. It
should be noted that the tokens are obtained by the SpaCy tokenizer
which mainly implements a whitespace-based tokenization strategy in
contrast to other byte-pair-based tokenization strategies. In the case of
the GGPONC dataset, some annotation spans do not exactly align with
the spans of the tokens and are therefore omitted.

Our results indicate a notable drop in performance scores for the
Medikation/drug entity class across all models including the GGPONC
eference model on all three datasets. Since the GGPONC model orig-
nates from the work on the GGPONC dataset, it performs best on the
ataset and is closely followed by the German-MedBERT-based model.
owever, to our surprise, the GottBERT-based and gbert-based models
re able to clearly beat the reference model on the independent datasets
edline and BRONCO respectively, surpassing the 72% character-wise

1-score. As expected, the dataset-dependent variations in performance
cores highlight the general difficulty for all NLP models to adapt to
ataset shifts and biases as well as ill-defined entity class definitions.

. Discussion

We demonstrate the effectiveness of our method for utilizing pre-
rained large language models for dataset synthesis by training a neural
ER model on this synthesized dataset, yet the limited availability
f annotated German medical NLP datasets with ill-defined or even
issimilar label classes remains a major obstacle when it comes to a
ore exhaustive, yet reliable evaluation of the trained NER model for

ll label classes. Given the evaluation scores on the drug/Medikation
labels it must be considered that our method achieves these results
based on twelve initial sentences. Aside from the evaluation, we did
7

Table 5
Evaluation of all models on external datasets. Only drug-related label classes are
considered. The GGPONC reference model is evaluated for comparison. Precision,
Recall and F1-scores are evaluated. Annotations from the GGPONC dataset do not
align with the tokens from the SpaCy tokenizer and are therefore omitted.

Scores on Related Datasets Performance Scores

Model/Dataset Drug (char-wise) Drug (token-wise)

Medline Dataset [6] CHEM = Medikation

GPTNERMED
(gbert-large)

Pr 0.749 0.760
Re 0.711 0.745
F1 0.729 0.752

GPTNERMED
(GottBERT-base)

Pr 0.919 0.900
Re 0.468 0.529
F1 0.620 0.667

GPTNERMED
(German-
MedBERT)

Pr 0.725 0.788
Re 0.471 0.510
F1 0.571 0.619

GGPONC [19]
Pr 0.822 0.771
Re 0.488 0.529
F1 0.612 0.628

GGPONC Dataset [46] Chemicals_Drugs = Medikation

GPTNERMED
(gbert-large)

Pr 0.460 n/a
Re 0.789 n/a
F1 0.581 n/a

GPTNERMED
(GottBERT-base)

Pr 0.301 n/a
Re 0.854 n/a
F1 0.445 n/a

GPTNERMED
(German-
MedBERT)

Pr 0.569 n/a
Re 0.681 n/a
F1 0.620 n/a

GGPONC [19]
Pr 0.636 n/a
Re 0.737 n/a
F1 0.683 n/a

BRONCO Dataset [18] MEDICATION = Medikation

GPTNERMED
(gbert-large)

Pr 0.462 0.465
Re 0.911 0.864
F1 0.613 0.605

GPTNERMED
(GottBERT-base)

Pr 0.655 0.678
Re 0.809 0.750
F1 0.724 0.712

GPTNERMED
(German-
MedBERT)

Pr 0.617 0.575
Re 0.705 0.662
F1 0.658 0.615

GGPONC [19]
Pr 0.573 0.346
Re 0.449 0.430
F1 0.504 0.384

not further perform hyperparameter search for dataset synthesis on
parameters like temperature 𝜏 or top-k/top-p sampling or beam search
due to the high computational costs of running the NeoX model as well
as due to limited access to GPU resources.

Even though the initial need for computational resources is a major
downside of our method, we believe that this factor becomes negligible
with respect to the fact that the method can operate without input from
costly human annotators. For very domain-specific contexts, such as
German medical texts, this not only provides an opportunity to work
on NLP approaches independent of external monopoly-like data sources
and medical institutions that also constitute a severe asymmetry in
academic competition. Yet it also allows the further use of the dataset
without additional efforts in pseudonymization and legal ramifications
that are usually unavoidable when working with datasets originating
from real patient data. Therefore, we are able to publicly provide the
synthesized corpus and the trained models for third-party use without
further access restrictions.

While our NER model exhibits strong performance in general and
proves the dataset to comprise useful and valid data for text and corre-
sponding annotation, the dataset remains synthetic in nature and thus
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cannot be considered as gold standard-level dataset. The question to
which degree the corpus carries additional domain knowledge remains
open for future work.

This also applies to the need for further validation of the synthetic
corpus in general. The investigation of the token distribution indicates
that the text augmentation contributes additional tokens and sentences
that are not composed of trivial token repetitions from the initial
prompt. In similar ways, the NER results from the trained models
indicate semantically meaningful annotation information of the corpus
because quantitatively substantial annotation flaws impede the mod-
els’ scores on external datasets. However, a rigorous and manually
conducted assessment of the corpus, including a manual annotation
task, would be required to further minimize uncertainties about the
qualitative properties of the corpus.

In practical terms, using large language models for data augmenta-
tion can be a powerful tool to obtain synthetic, annotated datasets from
low-resource domains and languages that enables the development
of new NLP models for clinical applications and allows open model
and dataset sharing between community members, including instances
where no real-world data for training exist. Shortcomings of published
models and datasets on real-world clinical data should be fed back
to further improve these datasets and models towards more general
applicability. However, actual employments of such models beyond
research-related use cases remain subject to regulatory processes in the
clinical domain.

6. Conclusion

In this work, we leveraged the few-shot ability of the pre-trained
language model GPT NeoX to generate an annotated dataset for German
medical texts without the need for manual annotations by introducing
few annotated text samples to the language model in a simple markup
format. We further used the dataset to train NER models by fine-tuning
three pre-trained BERT encoder models combined with a classification
head for NER. Our evaluation on testset as well as OoD set indicates
a robust performance of the NER models even for smaller shifts in the
dataset. The evaluation on related datasets demonstrates the ability of
our approach to outperform a pre-existing reference model on external
datasets, yet our method remains highly data-efficient. We discussed
the disadvantages and advantages of our method as well as its potential
implications for the German medical NLP research community and
beyond.

The corpus and the trained models are publicly available on GitHub
at: https://github.com/frankkramer-lab/GPTNERMED
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