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Abstract
Providing sophisticated web Quality of Experience (QoE) has become paramount for web service providers and network 
operators alike. Due to advances in web technologies (HTML5, responsive design, etc.), traditional web QoE models focus-
ing mainly on loading times have to be refined and improved. In this work, we relate Google’s Core Web Vitals, a set of 
metrics for improving user experience, to the loading time aspects of web QoE, and investigate whether the Core Web Vitals 
and web QoE agree on the perceived experience. To this end, we first perform objective measurements in the web using 
Google’s Lighthouse. To close the gap between metrics and experience, we complement these objective measurements 
with subjective assessment by performing multiple crowdsourcing QoE studies. For this purpose, we developed CWeQS, a 
customized framework to emulate the entire web page loading process, and ask users for their experience while controlling 
the Core Web Vitals, which is available to the public. To properly configure CWeQS for the planned QoE study and the 
crowdsourcing setup, we conduct pre-studies, in which we evaluate the importance of the loading strategy of a web page 
and the importance of the user task. The obtained insights allow us to conduct the desired QoE studies for each of the Core 
Web Vitals. Furthermore, we assess the impact of cookie consent banners, which have become ubiquitous due to regulatory 
demands, on the Core Web Vitals and investigate their influence on web QoE. Our results suggest that the Core Web Vitals 
are much less predictive for web QoE than expected and that page loading times remain the main metric and influence fac-
tor in this context. We further observe that unobtrusive and acentric cookie consent banners are preferred by end-users and 
that additional delays caused by interacting with consent banners in order to agree to or reject cookies should be accounted 
along with the actual page load time to reduce waiting times and thus to improve web QoE.
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Introduction

Since browsing the web is one of the most popular activities 
on the Internet, understanding Quality of Experience (QoE) 
for the web has become essential for web service providers 
and network operators. While currently proposed models 
approximate web QoE [1] either based on perceived loading 
times [2, 3] or on interactivity [4], no holistic approaches 
exist yet considering multiple potential influence factors like 
perceived loading time, interactivity, and visual stability.

In 2020, Google introduced the Web Vitals, a set of met-
rics supposed to provide guidance on how to guarantee a 
great user experience (UX) for web pages [5]. The Core Web 
Vitals (CWV) are a subset of these Web Vitals and are con-
sidered essential for every web page. The CWV consist of 
the largest contentful paint (LCP), the first input delay (FID), 
and the cumulative layout shift (CLS). The LCP is defined as 
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the loading time of the largest visible text or image element 
in the viewport, and thus, is an indicator for perceived load-
ing time. The FID describes interactivity and is defined as 
the period between the first user input and the page response 
to said input. Finally, the CLS is an indicator for visual sta-
bility and describes the maximum layout shift of visible ele-
ments in the viewport during page load. Consequently, as the 
CWV cover different aspects that are also related to QoE, the 
CWV may have the potential to provide guidance not only 
for improving UX, but also for improving web QoE assess-
ment. In this article we focus on the network-influenced 
aspects of web QoE and investigate the relationship between 
CWV and web QoE along the following research question: 
To which extent do the CWV metrics correlate with the end-
user’s web QoE? To answer this question, we perform both 
objective and subjective measurements in different Quality 
of Service (QoS) scenarios, which allow to understand the 
relationship between CWV and web QoE. The results of 
our work are relevant for researchers aiming to assess and 
quantify the QoE of interactive Web browsing as well as 
practitioners who want to choose the right models and met-
rics for optimizing the delivery of Web content.

Our objective measurements are performed using Goog-
le’s Lighthouse and the top 50 Tranco web pages [6]. In 
particular, we analyze the sensitivity of the CWV in the net-
work by emulating various QoS conditions. These objective 
measurements are complemented by QoE crowdsourcing 
studies, in which we emulate different LCP, FID, and CLS 
conditions for three custom web pages with CWeQS, our 
custom Crowdsourcing Web QoE Study framework, which 
we present in detail.

Extending our previous work on this subject [7], in this 
article we also discuss the results of pre-studies which 
investigated fundamental aspects of the parmaetrization of 
CWeQS, as required for optimizing the design of the actual 
CWV crowdsourcing studies. Firstly, we determine the influ-
ence of the loading strategy of the web page elements on 
web QoE. In particular, we assess whether image elements 
or text elements should be loaded first on our custom web 
pages. Secondly, we investigate whether the study task of a 
participant directly affects web QoE, i.e., whether a different 
focus of participants on finding and clicking hyperlinks vs 
images during the study validation tasks leads to different 
web QoE results. This allows us to obtain better measure-
ments by avoiding strong biases.

Addressing the relationship between the CWV and web 
QoE, we subsequently present the design and results of the 
actual CWeQS-based crowdsourcing studies for each CWV, 
in which participants subjectively rate the QoE as perceived 
after loading and interacting with the web pages. Using both 
kinds of measurements, we evaluate the utility of the CWV 
to assess web QoE. Our results suggest that the CWV seem 
to be less insightful for understanding and estimating web 

QoE than expected and, in particular, inferior to traditional 
metrics like Page Load Time (PLT) or Speed Index (SI).

In addition to the CWV page loading studies (and as 
second extension of [7]), we also investigate the influence 
of cookie consent banners on web QoE and the CWV. In 
Europe, consent banners have become ever-present due to 
legislation and they directly influence CWV metrics [8]: 
often, consent banners immediately become the largest ele-
ment in the viewport, especially on mobile devices, there-
fore affecting the LCP. Furthermore, the first interaction on 
a web page is due to their omnipresence often performed 
with consent banners and FID is therefore determined by the 
responsiveness of the consent banner. Finally, consent ban-
ners often cause undesired layout shifts, directly affecting 
CLS. Considering three different consent banner types and 
loading times, we evaluate the impact of consent banners on 
web QoE and CWV in crowdsourcing studies with CWeQS, 
in particular the relevance of consent banner position, size, 
and loading time.

The remainder of this article is structured as follows: 
Sect. 2 discusses related work. The objective Lighthouse 
measurements and the corresponding results are presented 
in Sect. 3. This is followed by the description of our novel 
study framework CWeQS in Sect. 4. A description of our 
pre-studies as well as the corresponding results are described 
in Sect. 5. Afterwards, the CWV page loading studies are 
conducted in Sect. 6 and their results are discussed in Sect. 7. 
Finally, the CWV consent banner studies are presented in 
Sect. 8 and their evaluation is performed in Sect. 9, before 
the results are discussed in Sect. 10. Section 11 concludes 
the article by summarizing its key findings and implications 
for future work.

Related work

As regards research on the QoE of web browsing, early 
studies have shown that loading times are fundamental for 
estimating web QoE [9–11]. By now, several metrics to cap-
ture web QoE have been proposed. These web QoE met-
rics can be categorized into time-instant and time-integral 
metrics [4]. Time-instant metrics denote a specific event at 
which a web page load is considered complete. The most 
prominent time-instant metric is PLT, which specifies the 
point in time at which a web page is considered to be com-
pletely downloaded. Other time-instant metrics include Time 
to First Byte (TTFB), the point in time at which the first byte 
is received, Time to First Paint (TTFP), the point in time at 
which the first pixels are rendered, Time to Interactive (TTI), 
the point in time at which the web page becomes interac-
tive, and Above the Fold (ATF), the point in time at which 
the content in the viewport is completely rendered. Newer 
metrics like ATF usually focus on the visible portions of a 
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web page only. This holds also for time-integral metrics. 
Time-integral metrics compute the integral over the comple-
mentary visual progress in the viewport by comparing mean 
pixel histograms over time. The best known time-integral 
metric is Google’s Speed Index (SI). The SI quantifies how 
fast a web page is loaded by computing the integral of com-
plementary visual progress based on a screen capture. Vari-
ous cheap computational approximations like Byte Index 
(BI), progress of byte-level completion, and Object Index 
(OI), progress of object-level completion, have been devel-
oped and were also tested within traditional web QoE mod-
els [2]. These traditional web QoE models are usually based 
on the IQX and WQL hypotheses. While the IQX hypothesis 
assumes an exponential relationship between waiting time 
and web QoE [12], the WQL hypothesis assumes a loga-
rithmic relationship on a linear ACR scale [9, 13]. Several 
works have shown that network quality fluctuations affect 
the loading process [14–16]. In addition to loading times, 
web QoE is also influenced by usability [17], aesthetics [18], 
and device type, i.e., desktop, smartphone, and tablets [1]. 
The authors of [19] also show that most web QoE metrics 
are specifically designed for desktop environments and that 
these metrics poorly reflect web QoE on mobile devices due 
to different user behavior. In this work, we focus on loading 
times and do not consider the impact of usability, aesthetics, 
and other influence factors.

In recent studies, user attention and interest have been 
included into web QoE assessment. Therefore, novel systems 
like WebGaze [20] and Eyeorg [21] have been developed. 
In contrast to earlier studies, user-perceived page load time 
(uPLT) is estimated by allowing participants to mark the 
point in time at which they consider a web page completely 
loaded. In [20], the authors show in lab and crowdsourcing 
studies that in contrast to uPLT both PLT and SI over- and 
underestimate the actual QoE severely. In [22], the authors 
perform crowdsourcing studies using Eyeorg to collect 
feedback on uPLT. They reveal that the uPLT distribution 
is often multi-modal, and thus requires different objective 
metrics for different modes.

In other works, web page contents and their influence on 
web QoE are assessed. In [23], the implications of failed to 
load web page elements are investigated. The authors show 
that PLT is no longer sufficient to predict web QoE and that 
accounting such load failures is required for improved pre-
dictions. The authors of [24] analyze not only different page 
loading strategies and varying page element timings on web 
QoE, but also the impact of the task. They reveal that QoE 
is highest when elements required for a task are shown early 
during the loading process. In general, they show that web 
QoE during page loading is influenced by various aspects, 
e.g., the page loading strategy and the total time of interac-
tion with a web page.

As shown in [25], the network itself and the used proto-
cols can be considered as additional influence factors to web 
QoE, too. In particular, the requested protocol, the number 
of accessed domains, but also the location of the web page 
affect web QoE.

Finally, user perceptual dimensions, e.g., perceived 
ease of use and perceived ease of interactivity as described 
in [26] may also affect web QoE.

In terms of standardization activities, several recommen-
dations have been published by ITU-T. ITU-T G.1030 [11] 
provides a framework to map Quality of Service (QoS) in IP 
networks to QoE. The recommendation ITU-T G.1031 [27] 
summarizes known relevant web QoE influence factors with 
respect to context influence factors, system influence factors, 
and user influence factors. A subjective testing methodology 
for web browsing is proposed by the ITU in recommendation 
P.1501 [28].

In addition to web browsing, almost any web-based mul-
timedia service incorporates loading times in one way or 
the other, e.g., video streaming or music streaming. In the 
video streaming domain, the authors of [29] related the influ-
ence of low page load times to the subsequent video QoE. 
They revealed that the page load times do not affect video 
QoE, concluding that users expect short delays during ser-
vice interaction. In the music streaming domain, the authors 
of [30] show that while browsing delays in a music stream-
ing web app, e.g., for looking for a song, do not affect music 
streaming QoE, these delays instead degrade the QoE of the 
whole application.

With the widespread introduction of Internet privacy 
legislation, consent banners became an obligatory part of 
almost every website. Consent banners appear in various 
forms. An overview on the usage of consent banners in gen-
eral is provided in [31, 32]. First performance measurements 
to quantify the influence of consent banners on web perfor-
mance have been performed in [33, 34]. A large measure-
ment campaign in Europe and the US has been performed 
in [35] to investigate the implications of consent banners. 
The authors show that web page performance declines after 
accepting privacy policies due to increased page sizes and 
thus slower page loading times. Most similar to our work 
is the work of [36], in which extensive online studies are 
conducted to assess the influence of common consent ban-
ner interface design decisions. Their assessment addition-
ally includes aspects like user awareness, comprehension of 
choices, and privacy fatigue in users. While the work of [36] 
focuses on user experience, utility, and design aspects, our 
work emphasizes the influence of consent banner loading 
times and positioning on web QoE. We further want to 
remark that, to the best of our knowledge, the influence of 
consent banners on web QoE has not been investigated in 
literature yet.
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While previous web QoE models usually rely on a sin-
gle aspect or metric expressing the complete page loading 
behavior, e.g., PLT or SI, in this work we aim to model web 
QoE based on various aspects of a page load, i.e., loading 
behavior, interactivity, and visual stability, as defined by the 
CWV. Consent banners also exert impact on the CWV and 
must therefore be additionally considered [8]. In previous 
work, however, consent banners have only been investigated 
via passive measurements without any user involvement, 
while we perform dedicated subjective measurements in 
this work.

Objective measurements with Lighthouse

Study setup

In the following, we conduct and evaluate measurements 
using Google’s Lighthouse,1 which is a tool for improving 
the quality of web pages and is able to run a variety of tests 
against a web page while monitoring various performance 
metrics like the CWV and SI. We perform these measure-
ments for two reasons. First, we are able to observe the 
potential range of CWV scores in the wild, which allows us 
to validate Google’s recommendations on the one hand, and 
which provides us guidance on how to determine the condi-
tions of the subjective studies on the other hand. Second, we 
are able to quantify the influence of QoS on the CWV, which 
may be beneficial for estimating the CWV from network 
measurements later.

Our Lighthouse study setup is a dockerized environ-
ment, in which we perform headless Lighthouse runs with 
NodeJS and use Linux tc to emulate varying network condi-
tions on the network interface, on which Lighthouse runs. 
For the purpose of emulation, we use docker-tc provided on 

GitHub.2 All Lighthouse reports are then stored in a MinIO3 
instance.

The utilized network shapings include adding one-way 
delay to the packet transmissions (50, 100, 250, and 500ms), 
introducing different packet losses (0.1, 1, and 10%), and 
limiting the available bandwidth (0.1, 0.5, 1, and 10 Mbps). 
We performed at least 30 runs for all top 50 Tranco web 
pages [6] for an emulated mobile device and an emulated 
desktop device. Our evaluation revealed that mobile and 
desktop measurements behaved similar except for increased 
PLTs on desktop and increased CLS values on mobile.

Influence of QoS on CWV and SI

Figure 1 therefore depicts only the results for selected net-
work shaping conditions of the desktop Lighthouse measure-
ments in form of CDFs. As Google recommends that 75% 
of web page visits should provide a good experience[5], for 
each web page, we consider the 75 percentile of LCP, FID, 
CLS, and SI over all measurement runs for this web page. 
The CDFs depict the distribution of these 75 percentiles 
over all 50 web pages. The CDFs are styled and labeled 
according to their network shaping conditions, whereby D 
denotes packet delays, L denotes packet losses, B denotes 
bandwidth limitations, and N denotes no shaping. Addition-
ally, the green, yellow, and red areas represent Google’s rec-
ommendations for good, moderate, and poor performance. In 
general, the CDFs indicate that most pages show good and 
moderate performance.

Considering the three CWV, it can be observed that only 
LCP shows a substantially different behavior when facing 
different network conditions (Fig. 1b). In particular, the LCP 
behaves very similar to the SI (cf. Fig. 1b and a), and both 
easily end up with poor performance as soon as the network 
conditions are really bad. This is reasonable as both metrics 
represent loading behavior, and thus, indicates that the LCP 
may act as a proxy for the SI. In contrast, FID and CLS are 
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Fig. 1  Distributions (CDFs) of the 75 percentile of the metrics per web page for the Lighthouse measurements where green, yellow and red areas 
represent Google’s recommendations for good, moderate, and poor performance

1 https:// devel opers. google. com/ web/ tools/ light house. 2 https:// github. com/ lukas zlach/ docker- tc.
3 https:// min. io/.
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barely influenced by deteriorating network conditions (cf. 
Fig. 1c and d). This suggests that FID and CLS strongly 
depend on the design of the individual web pages and that 
in-network monitoring of these metrics proves to be difficult.

Summarizing, we observed that most web pages align 
with Google’s recommendations and that LCP is the only 
CWV metric affected by the network. Moreover, by measur-
ing popular web pages in the wild, we identified meaningful 
study conditions for the crowdsourcing QoE studies.

Correlations of CWV and SI

Last but not least, we consider the correlations, in particular 
the Spearman Rank Order Correlation Coefficient (SROCC) 
between the CWV and the SI across the desktop and mobile 
measurements. Figure 2 depicts those correlations, whereby 
the x-axis presents the CWV and other web page metrics, 
while the y-axis corresponds to the SROCC, computed 
with respect to the SI. In addition to the CWV, the x-axis 
denotes the first contentful paint (FCP), the total blocking 
time (TBT), the time to interactive (TTI), the bandwidth, the 
packet loss, the round trip time in the network (RTT), and 
the document size in bytes. TBT is another Google metric, 
which corresponds to the time between FCP and TTI [37]. 
The correlations for the desktop measurements are provided 

in gold, while the correlations for the mobile measurements 
are provided in blue.

First of all, we can observe that all metrics except band-
width are positively correlated to the SI and that for the 
majority of metrics the SROCC for desktop and mobile 
measurements are similar. In particular, LCP (0.82), FCP 
(0.69), and TTI (0.73) are strongly correlated to the SI. 
Since LCP, FCP, and TTI are closely related, this comes 
as expected. Similar to Fig. 1, we observe that FID is only 
moderately correlated and that CLS shows no correlation 
at all. When investigating the network aspects bandwidth, 
packet loss, and RTT, we observe high negative correla-
tions for bandwidth (desktop: −0.62, mobile: −0.66), low 
positive correlations for packet loss (desktop: 0.11, mobile: 
0.12), and moderate positive correlations for RTT (desktop: 
0.54, mobile: 0.68) and for latency (desktop: 0.55, mobile: 
0.59). These findings come again as expected since network 
performance is a critical aspect for web performance. The 
low correlation between packet loss and SI may be attributed 
to the fact that the bandwidth was still sufficient to load the 
web page quickly despite packet losses. Highly interesting 
here, is the fact that the document size in bytes is barely cor-
related to the SI, in particular for the mobile measurements 
the SROCC is close to 0.

Both Figs. 1 and 2 indicated a monotone relationship 
between LCP and SI and no relationships between FID and 
SI and CLS and SI. We therefore investigate once again their 
relationships by comparing the metrics directly in Fig. 3. 
The x-axis denotes the CWV metric and the y-axis the SI. 
Green, yellow, and red areas denote good, moderate, and 
poor performance for both CWV and SI as recommended by 
Google and grey areas denote “undefined” areas, i.e., areas 
where either the performance of CWV and/or SI are incom-
patible. Again, the measurements are separated by desktop 
measurements (gold) and mobile measurements (blue). Fig-
ure 3a shows that LCP and SI result in an almost perfectly 
linear relationship (indicated by the dashed regression lines), 
which is well aligned with the Google recommendations, 
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Fig. 3  SI versus the three different Core Web Vitals (LCP, FID, CLS) as measured on different platforms using Lighthouse where green, yellow 
and red areas represent Google’s recommendations for good, moderate, and poor performance
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and that the relationship is very similar between desktop and 
mobile measurements. This verifies that LCP may defini-
tively act as a good proxy for the SI. For FID, in contrast, 
desktop and mobile measurements differ strongly and there 
is no obvious relationship between FID and SI visible (cf. 
Figure 3b). For CLS, it is even worse since Fig. 3c shows 
only a random pattern. Thus, in both Fig. 3b and c, the fit-
ted regression lines do not convey meaningful information.

This confirms our previous hypotheses that LCP acts 
as a proxy for the SI, while FID and CLS strongly depend 
on other factors, e.g., the used end-device or the web page 
design.

CWeQS: crowdsourcing web QoE studies

For our web QoE studies we rely on CWeQS,4 a custom 
crowdsourcing framework, which allows to fully control the 
loading behavior of custom web pages. Moreover, it provides 
a rich set of required features for crowdsourcing QoE stud-
ies, such as questionnaires, preparation of study conditions, 
and means to assess reliable study execution. It is based 
on JSPsych [38], a JavaScript framework for browser-based 
studies.

To exert complete control over the web page load-
ing behavior, CWeQS follows a top-down approach, i.e., 
instead of varying network conditions to generate a variety 
of web page loading behaviors, we emulate these behaviors 
independent of the network conditions by manipulating the 
appearance of the DOM elements with arbitrary timings.

In detail, these timings are realized with the setTimeout() 
functionality of JavaScript, which executes an arbitrary func-
tion after a specified timeout has been reached. Here, this 
function corresponds to the rendering of an element, i.e., set-
ting the element’s visibility in CSS to true, and the timeout 
corresponds to a specified loading time. Each page element 
is thus assigned a loading time or timeout, respectively, and 

setTimeout() is called simultaneously on all page elements as 
soon as the participant triggers the page load. Page elements 
are then rendered as soon as their timeouts have expired.

In total, we use four parameters which specify a com-
plete page load. These four parameters, named FP (first 
paint of small header elements), TTText (time to first sub-
stantial text), TTImage (time to first substantial image), and 
PLT (page load time), are sorted in ascending order, i.e., 
FP ≤ TTText ≤ TTImage ≤ PLT  . Note that PLT here cor-
responds to the ATF time, as we only show elements in the 
viewport. These parameters are evenly spaced with respect 
to the PLT, and to avoid an unrealistic step by step loading 
behavior, where many elements appear at once, we addi-
tionally use a �(7.2, 0.8)-distribution to smooth the loading 
process for around half of the elements. As a consequence, 
the mean loading time of the distributed elements is 90% of 
the actual specified loading time with a standard deviation 
of 10%.

As this approach requires us to know beforehand which 
integral elements appear on a web page, we can only use 
custom web pages in CWeQS at the moment. To rule out 
any negative network impacts during the study, we preload 
all web page elements on client-side with a JSPsych plugin 
when the framework is first loaded in the browser. We imple-
mented three custom pages, depicted in Fig. 4, which repre-
sent common web page categories, namely, an online shop 
and a news page, consisting of a mix of texts and images, 
and a blog page, consisting of much text and a single large 
picture.

To align with best practices for crowdsourced QoE stud-
ies [39], CWeQS requires a method for evaluating the valid-
ity of participants. Our framework provides two different 
types of validation: image validation and hyperlink valida-
tion. With both types, participants have to interact with the 
web pages, which provides the additional benefit of making 
the study tasks more realistic. With image validation, par-
ticipants are primed in the instructions to mark target images 
on a web page by clicking them. A random number (up to 
three) of these target images are inserted in the web page 
by randomly exchanging the actual images with the target 

Fig. 4  Custom web page types implemented in CWeQS

4 https:// github. com/ lsinf o3/ CWeQS.

https://github.com/lsinfo3/CWeQS
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images. Any image on the page that is clicked is then framed 
with a red border. The number of total target images as well 
as correctly identified target images are then used to identify 
unreliable study participants, which are excluded before the 
evaluation. Hyperlink validation works the same way except 
that hyperlinks, i.e., pieces of highlighted text, are supposed 
to be clicked by participants. Both a marked and a not yet 
marked hyperlink are illustrated in Fig. 4c.

Finally, CWeQS can be operated in two different execu-
tion modes: study mode and standalone mode.

Study mode

The procedure in study mode consists of seven phases: 
First, during study startup, a chain of checks is performed 
whether a user is allowed to participate in the study. This 
includes, for example, the verification of the participant ID 
and browser size requirements. After providing a first set of 
instructions, participants are asked for demographic infor-
mation and browsing habits. This is followed by instruc-
tions, in which the actual study procedure is explained and 
in which participants are briefed what they are supposed to 
do. Then, training stimuli are shown to the participants to 
prime them on the task. This is again followed by another set 
of instructions, before the actual test stimuli are shown to the 
participants. Participants are asked for their opinion imme-
diately after each stimulus. After observing all test stimuli, 
participants are rewarded with a verification code. A training 
or test stimulus hereby consists of the emulated page load 
and the subsequent questionnaire, in which participants rate 
the perceived loading time on the Absolute Category Rating 
scale [40].

Standalone mode

To perform a single page load in standalone mode, only the 
loading parameters of each element have to be passed via 
the URL. With these URL parameters, we are then able to 
populate CWeQS with the required configuration and start 
the timings of a page as usual. This mode allows us to replay 
the stimuli observed by the participants during the study 
locally in order to compute additional metrics. Using this 
method, we additionally compute the SI of all stimuli in this 
work. This is achieved by performing screen captures while 
replaying the logged configurations and then computing the 
SI with existing scripts provided by WebPageTest5 based on 
these screen captures. We automate this task with Selenium6 
and FFmpeg.7

Pre‑studies using CWeQS

First of all, we conduct pre-studies, in which we evaluate 
the influence of the loading strategy and the influence of the 
validation task when using CWeQS. It is important to under-
stand and quantify these two phenomena in order to avoid 
any unwanted influences on the results of the planned web 
QoE crowdsourcing studies. For the loading strategy, we 
investigate whether the order of the loading times of images 
and text elements in a web page influence the user ratings. 
For the validation task, we compare hyperlink validation 
with image validation as described in the previous section.

For these pre-studies, we use CWeQS in its most generic 
configuration without emulating specific metrics, i.e., the 
custom web pages are simply loaded according to the con-
figured element timings.

For the investigation of the loading strategy, we consider 
a full factorial design of our four parameters FP, TTText, 
TTImage, and PLT using a step size of either 0.5 s or 2.5 s 
between the parameters. This results in the sixteen condi-
tions presented in Fig. 5. We conduct two studies, whereby 
in the first study the text elements are shown first and in 
the second study the image elements are shown first. This 
means, we simply swap the TTText and TTImage values. 
These conditions apply for each of our three custom web 
pages. For both studies, participants have to perform image 
validation.

For the analysis of the validation task, we select only a 
subset consisting of four conditions of all sixteen condi-
tions. This subset consists of the fastest loading strategy, 
the slowest loading strategy, and two loading strategies in 
between. Here, we select a subset only to save time since 
we expect that the validation tasks result in marginal dif-
ferences only.

The pre-studies were conducted in March 2021 with the 
crowdsourcing platform Microworkers.8 Participants were 
shown six to eight randomly selected test stimuli in total. 
The selected types of pages were uniformly distributed. 
After each stimulus, participants answered a single ques-
tion How did you experience the loading of the last page? 
on a classical five-point ACR scale.

We excluded participants if they marked less than 80% 
of the displayed hyperlinks or images correctly and we 
excluded participants giving the same rating for each test 
stimuli, even though the stimuli differed strongly. After this 
very strict filtering, 92 unique participants and 951 rated test 
stimuli remained after filtering for the loading strategy inves-
tigation, while 137 unique participants and 979 test stimuli 
ratings remained for the task investigation.

5 https:// github. com/ WPO- Found ation/ visua lmetr ics.
6 https:// www. selen ium. dev/.

7 https:// www. ffmpeg. org/. 8 https:// www. micro worke rs. com/.

https://github.com/WPO-Foundation/visualmetrics
https://www.selenium.dev/
https://www.ffmpeg.org/
https://www.microworkers.com/
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Influence of loading strategy

First, we analyze the influence of loading strategy, i.e., 
whether there is a difference when image elements appear 
before text elements or vice versa. We therefore depict the 
results of our pre-studies in Fig. 6, in which the MOS is 
provided along with the 95% confidence intervals on the 
y-axis. Each bar is colored depending on the loading strategy 
(text elements first in blue, image elements first in gold). The 
bars show that no significant differences between the load-
ing strategies can be observed. This is also confirmed when 
performing condition-wise Mann-Whitney-U tests between 
the two groups. It is further clearly visible that conditions 
with a low PLT (2–4 s) result in a significantly higher MOS, 

independent of the loading strategy. Our results therefore 
indicate that the order of elements is not relevant here com-
pared to influencing factors like PLT.

Influence of validation task

Next, we investigate whether the crowdsourcing task itself, 
i.e., hyperlink validation or image validation, affects the rat-
ings of the participants. We therefore consider the selected 
conditions in Fig. 7, in which again the MOS along with the 
95% confidence intervals is provided. This time, bars colored 
in blue correspond to image validation, while golden bars 
correspond to hyperlink validation. Here, we observe that 
the task does not affect the MOS significantly for any of the 
four selected conditions. A Mann-Whitney U test confirms 
this notion. As a consequence, we observe no impact of the 
validation task on the MOS.

For the remaining studies of this article, we use hyperlink 
validation since no differences between the validation meth-
ods were found and hyperlinks are more unobtrusive. This 
unobtrusiveness may be beneficial when investigating the 
CWV later to be able to highlight occurring effects better.

Fig. 5  Pre-study conditions covering different combinations of load-
ing times (in seconds) where values from left to right denote FP, 
TTText/TTImage, TTImage/TTText, and PLT

Fig. 6  Web QoE (MOS) for different loading strategies (bar colours) 
and text/image positionings where each study condition is denoted as 
tuple of FP, TTText/TTImage, TTImage/TTText, PLT (in seconds)

Fig. 7  Web QoE (MOS) for the validation task for selected loading 
time conditions
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CWV page loading studies

We conduct a QoE study for each of the three CWV with 
CWeQS. For this, we select a subset of realistic parameter 
values from the parameter ranges observed in the Lighthouse 
measurements. In particular, we test three different PLTs 
(2, 5, and 10 s) in each study and test no more than five 
manifestations of each CWV. A comprehensive overview 
on all crowdsourcing study conditions and CWV parameters 
is given in Table 1. In the following, the realization of the 
CWV metrics in CWeQS is outlined.

Largest contentful paint

We simulate LCP by randomly selecting one of the available 
images on a web page and by increasing width and height of 
this image significantly to fixed values. Width and height of 
the LCP are not varied throughout the study. This enlarged 
image is then rendered as usual to a specified time. We design 
these rendering times in dependency of the PLT. In detail, we 
use 50%, 75%, and 100% of the PLT as time for displaying the 
LCP. For PLTs of 5 and 10 s, we additionally use LCPs of 1 
and 1.5 s to be able to compare LCP across the different PLTs.

First input delay

To simulate FID, we monitor the user interactions with a 
web page and artificially delay the web page response to the 
first user interaction, i.e., a click to an image or a hyperlink, 
by again utilizing the setTimeout() functionality of JavaS-
cript. All additional user interactions occurring after the first 
interaction and during the FID are blocked and queued. All 
user interactions are then responded to, i.e., by marking the 
clicked element with a red box, simultaneously as soon as 
the FID timeout has passed.

Note that FID is triggered by the user’s first click on a 
visible interactive event, which can happen at any time (even 

after the PLT). However, participants are supposed to experi-
ence the FID during the page load, as it would be unnatural 
to have an input delay after the page is completely loaded. 
Thus, we additionally instructed the participants to click the 
targets as fast as possible after their appearance.

The selected FID values are partly recommended by 
Google, and partly determined in dependency of a PLT of 
2 s.

Cumulative layout shift

CLS represents the largest observed layout shift score during 
the entire page load. A page load can hence contain multiple 
layout shifts. Layout shift scores are computed by multi-
plying the impact fraction with the distance fraction. The 
impact fraction defines the fractional area of the viewport, 
in which unstable elements have moved between two frames. 
If the viewport is already filled completely during a layout 
shift, the impact fraction is 1. The distance fraction defines 
the largest fractional distance any of the unstable elements 
has moved in the viewport.

To simplify the emulation of CLS, which depends on 
basically all elements in the viewport, we perform layout 
shifts by displaying a banner with a specific height on top 
of the original page at a specific time. An example can be 
seen in Fig. 4c, where the CLS is caused by displaying the 
blue banner above the actual page content, shifting all other 
elements, including headline, image, and text, towards the 
bottom. We consider two points in time for performing the 
layout shift. In the first case, we perform the layout shift 
at the end of the page load. Since the whole viewport is 
occupied then, the impact fraction is automatically 1. Conse-
quently, the distance fraction, i.e., the banner height relative 
to the viewport size, fully determines the CLS score. In the 
second case, we perform the layout shift at half of the PLT, 
at which time only the first row of elements and the header 
are in the viewport. This gives a fixed impact fraction, which 
can now be multiplied with the distance fraction from above 
to obtain the desired CLS score.

In our CLS study, we provide stimuli of both use cases to 
the participants and use the CLS values provided in Table 1, 
which are again aligned to the recommendations of Google.

Results of CWV page loading studies

All three studies were conducted in December 2021 and 
January 2022 using the crowdsourcing platform Microwork-
ers.9 All Microworkers meeting the hardware requirements, 
e.g., a minimum screen size, were allowed to participate and 

Table 1  CWV page loading study conditions

CWV Parameter values PLT [s]

LCP [s] (1.00, 1.50, 2.00) 2.0
(1.00, 1.50, 2.50, 3.75, 5.00) 5.0
(1.00, 1.50, 5.00, 7.50, 10.00) 10.0

FID [s] (0.1, 0.3, 0.5, 1.0, 2.0) 2.0
(0.1, 0.3, 0.5, 1.0, 2.0) 5.0
(0.1, 0.3, 0.5, 1.0, 2.0) 10.0

CLS (0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 2.0
(0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 5.0
(0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 10.0

9 https:// www. micro worke rs. com/.

https://www.microworkers.com/
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were rewarded with 0.25 U.S. dollar. After ensuring that 
the browser size was large enough to fully display the page, 
participants were shown six randomly selected test stimuli in 
total. The selected types of pages, i.e., news, shopping, and 
blog page, used for these stimuli were also uniformly distrib-
uted. After each stimuli, participants answered a single ques-
tion How did you experience the loading of the last page? 
on a five-point ACR scale ranging from bad to excellent.

512 participants completed the LCP study, while the 
FID study had 227 participants and the CLS study had 417 
participants. We excluded participants if they marked less 
than 80% of the displayed hyperlinks correctly. For the FID 
study, we additionally removed participants who took longer 
than five seconds to perform the first click after the first 
hyperlink was rendered. Finally, we excluded participants 
giving the same rating for each test stimuli, even though 
the stimuli differed strongly. After this very strict filtering, 
183 participants remained for the LCP study, which rated a 
total of 1098 test stimuli. For the FID study, 140 participants 
and 840 rated test stimuli remained, and for the CLS study, 
207 participants and 1014 rated test stimuli remained after 
filtering.

All valid 323 participants were older than 18 years. 33.9% 
were women, 65.5% were men, and the rest were diverse. 
54.7% of participants were from Asia, followed by 18.6% 
and 17.5% from Europa and South America, respectively. 
More than 93% of the participants use the Internet daily.

Relation of CWV to web QoE

Figure 8 shows the mean opinion score (MOS) along with 
the 95% confidence intervals for each crowdsourcing study 
in dependency of the PLT. The x-axis describes the CWV 
conditions, while the y-axis denotes the MOS. The differ-
ent colors of the bars illustrate the total PLT. As we tested 
two different event times for CLS, we added an additional 
legend in Fig. 8c, which states the time of the layout shift 
in dependency of the PLT. Thin bars correspond to PLT/2, 
while regular bars correspond to PLT.

In all three figures, it can be observed that PLT is the 
main influence factor, as indicated by the different MOS 
regions around 4.5 for a PLT of 2 s (green), around 3.5 for 
5 s (yellow), and around 2 for 10 s (red). What is highly sur-
prising is that these MOS regions are stable with respect to 
the CWV conditions. This means that, considering the same 
PLT value, no variation of the LCP, FID, or CLS parameters 
has a significant impact on the MOS. This also holds when 
considering Google’s recommended parameter ranges for 
good, moderate, and poor performance highlighted by the 
green, yellow, and red areas. Thus, these results indicate that 
the CWV metrics do not properly express the actual web 
QoE in terms of MOS.

Impact of PLT and SI on web QoE

As our crowdsourcing studies found no significant impact 
of CWV on web QoE, we will now investigate the impact of 
PLT and SI in more detail. We use the standalone mode of 
CWeQS and compute the SI observed by participants dur-
ing the studies by replaying logged configurations locally. 
Figure 9 depicts the SROCC for the CWV, the PLT, the SI, 
and the MOS. Both PLT (− 0.74) and SI (− 0.70) show a 
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Fig. 8  Web QoE (MOS) for different settings of Google’s Core Web Vitals (LCP, FID, CLS) and PLTs in page loading studies
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high negative SROCC to the user ratings, which comes as 
expected considering results of previous QoE studies [2, 10].

Figure  10 visualizes the relationship between aver-
aged user ratings and SI as light blue dots on the con-
tinuous SI scale. We also bin the SI in 1 s intervals, and 
visualize the MOS along with the 95% confidence inter-
vals for each bin in black. When fitting the MOS values 
for every bin, we observe that both IQX [12] and WQL 
hypothesis  [9, 13] clearly apply for SI, which confirms 
the results of [2]. The best fit, slightly better than WQL, 
is IQXSI(t) = 4.424 ⋅ exp(−0.189 ⋅ t) + 0.724 , which gives a 
very high coefficient of determination R2 = 0.9544 . Com-
paring this fit with the previous work of [2], we see that our 
model shows a steeper slope and uses almost the full range 
of MOS in the considered SI range, which indicates that the 
participants in our studies are less tolerant with respect to 
the page loading times as expressed by SI.

Still, when visualizing the MOS and 95% confidence 
intervals for all three investigated PLT values, as depicted 
in yellow, we clearly see a linear trend. This is confirmed 
by an almost perfect fit LINPLT (t) = −0.320 ⋅ t + 5.137 with 
R2 = 0.9998 . This is a surprising finding considering that 
previous web QoE studies did not find linear relationships 
between PLT and MOS. When comparing our PLT model to 
the PLT models of [2] and [13], our model is more tolerant 
with respect to short waiting times. However, the covered 
MOS range of our model is higher than in [2] and more 
similar to the PLT models of [13].

CWV consent banner studies

Finally, we use CWeQS to conduct crowdsourcing studies 
in which we investigate the influence of consent banners on 
web QoE. Consent banners are closely related to the CWV 
since they often cause layout shifts (CLS), become the 
largest element in the viewport (LCP), have to be accepted 
first (FID), and sometimes even hide relevant content. Due 
to legislation in Europe, consent banners are nowadays 

omnipresent and a conscious usage with respect to web QoE 
is therefore crucial.

Consent banners come in many different forms and may 
appear at various points in time during a page load, even 
though it is common that they are usually loaded in the 
beginning of the page loading and rendering cycle. Poten-
tial factors that may affect web QoE are therefore position 
and size of consent banners as well as their loading time. For 
example, consent banners which are loaded late can prolong 
the experienced page load process in a negative way or hide 
to the user that the page load is still going on in a positive 
way. Google summarizes their best practices for consent 
banners with respect to performance and UX in [8].

Being guided by Google’s best practices, we consider 
three of the proposed consent banner types in our crowd-
sourcing studies. In detail, we focus on header, modal, and 
interstitial as shown in Fig. 11. We chose these three ban-
ner types since they strongly differ in position and size and 
since they are the most common types observed in the field 
by ourselves. We emulate these banner types in CWeQS 
by simply overlaying an additional element in the case of 
modal and interstitial and by adding a header element on 
top of the page, identical to what we did when emulating 
CLS. The header element hereby has a height of 20% of 
the actual viewport height. The interstitial element covers 
the viewport fully without showing any website contents 
and the modal element has a width and height of 50% of 
the viewport width and height, respectively, and is centered 
in the viewport. With respect to the loading times of the 

Fig. 10  Relation of PLT and SI to MOS in page loading studies

Fig. 11  Considered banner types of [8]

Table 2  Conditions for CWV consent banner studies

Banner type Banner time [s] PLT [s]

Header, Modal, Interstitial 0.50, 1.00, 2.00 2.00
1.25, 2.50, 5.00 5.00
2.50, 5.00, 10.0 10.0
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consent banners, we consider three different points in time 
relative to the PLT: 0.25 ⋅ PLT  , 0.5 ⋅ PLT  , and 1.0 ⋅ PLT  . In 
a full-factorial design, this leads us to 27 study conditions 
as indicated in Table 2.

We again adopt the study and stimuli design of CWeQS, 
but add the obligatory additional task of accepting or reject-
ing the loaded consent banner, before being able to perform 
the validation task, for each stimulus.

Results of CWV consent banner studies

The CWV consent banner studies were conducted in June 
and July 2022, again using CWeQS and the crowdsourc-
ing platform Microworkers10 for recruiting and managing 
participants. Again, all Microworkers meeting the hardware 
requirements, e.g., a minimum screen size, were allowed to 
participate and were rewarded with 0.25 U.S. dollar. After 
the common checks, participants were shown five randomly 
selected test stimuli in total. The selected types of pages 
were uniformly distributed. After each stimulus, participants 
answered three questions:

• How was your overall experience of the last page?
• How did you experience the loading of the last page in 

terms of speed?
• How annoying was the consent banner of the last page?

Both the overall experience and loading speed question 
are answered on the classical five-point ACR scale, rang-
ing from bad to excellent, while the annoyance question is 
answered on a five-point DCR scale, ranging from extremely 
annoying to not annoying at all.

We excluded participants if they marked less than 80% 
of the displayed hyperlinks correctly or if they took longer 
than five seconds to click the consent banner after its load-
ing. Finally, we excluded participants giving the same speed 
rating for each test stimuli, even though the stimuli differed 
strongly. After this very strict filtering, 87 participants and 

455 rated test stimuli remained after filtering, so 17 ratings 
on average for the 27 conditions and around 100 ratings per 
PLT. The demographic information in these studies is very 
similar to the one stated above for the CWV page loading 
studies.

Relationship between consent banner type and MOS

First, we compare the three different banner types across the 
different ratings. Figure 12 depicts the distributions of rat-
ings for each banner type. The x-axis denotes the considered 
rating of experience, speed, or annoyance, and the y-axis 
corresponds to the share of ratings in percent. Hatched bars 
correspond to the consent banner type header, plain bars to 
modal, and dotted bars to interstitial. The stacked bars are 
colored according to ratings, whereby 1 is bad and extremely 
annoying and 5 is excellent and not annoying at all.

The figure reveals that the ratings for speed and experi-
ence are highly similar for all three banner types. More inter-
esting is the fact that around half of the participants experi-
enced the banner type interstitial as extremely annoying to 
annoying (1–3). In contrast, only 25% experienced header 
as extremely annoying to annoying (1–3), while modal is in 
between header and interstitial. Since experience does not 
seem to be affected by any banner type, we thus conclude 
that header should be chosen as banner type as it reduces 
the remaining factor annoyance strongly. This result is not 
completely surprising since header is the most unobtrusive 
banner type of the three due to its limited size and marginal 
position here.

Additionally, Fig. 13 compares the MOS of the CWV 
page loading studies, the CWV consent banner studies, and 
each consent banner type, grouped by PLT and along with 
the 95% confidence intervals. The dotted lines represent the 
trend for each group. Note that the bars for the page loading 
studies correspond to the values for PLT depicted in Fig. 10. 
The figure shows that all banner types behave similarly and 

Fig. 12  Distributions of user ratings (1 = bad, 5 = excellent) of dif-
ferent QoE dimensions for different banner types

Fig. 13  QoE (MOS in terms of overall experience) at different page 
load times for CWV page loading and CWV consent banner studies 
and additionally, split by banner type

10 https:// www. micro worke rs. com/.

https://www.microworkers.com/
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that the MOS of the CWV page loading studies studies and 
the MOS of the CWV consent banner studies are slightly 
different, in particular for higher PLTs. Only for a PLT of 
2 s, the MOS of the CWV page loading studies is slightly 
higher than the MOS of the CWV consent banner studies. 
For PLTs of 5 and 10 s, participants in the CWV consent 
banner studies seemed to be more tolerant with respect to 
long loading times as the MOS is here slightly higher. This 
more tolerant behavior can be likely ascribed to the obfus-
cation of the actual PLT due to distracting consent banners. 
Therefore, we conclude that consent banners affect web QoE 
in general, but only marginal.

Influence of consent banner time on MOS

Next, we investigate the influence of the loading time of a 
consent banner on the MOS. The results for each rating are 
illustrated in Fig. 14. The x-axis denotes the time when the 
consent banner was displayed and the y-axis denotes the 
MOS. Each error bar shows the MOS along with the 95% 
confidence intervals per banner time, banner type, and PLT. 
Error bars are colored according to the PLT of each condi-
tion and the markers of the error bars change for each banner 
type (header: square, modal: circle, interstitial: cross). When 
observing the results for the experience rating and the speed 
rating in Fig. 14a and Fig. 14b, respectively, it is visible that 
again the PLT has the highest impact on the MOS and that 
experience rating and speed rating are quite similar. We can 
see that the MOS is stable across the different consent ban-
ner loading times and that it only depends on PLT. Also, 
no consent banner type is outperforming others in terms of 
MOS. When relating the consent banner loading time and 
the annoyance rating, we note that the annoyance differs 
between the individual consent banner types slightly and 
that some trends are visible. In particular, the header consent 
banner seems to be the least annoying banner type when 
participants are confronted with higher PLTs and higher ban-
ner times in general. In contrast, with a banner time of 0.5 s 
or 1.0 s and a PLT of 2.0 s, header is no longer considered 
better than the other banner types, but instead modal seems 

to be preferred. Even though the question about annoyance 
has not been tailored towards loading speed, there is also a 
weak negative linear relationship between MOS and PLT 
visible. This indicates that high PLTs also affect participants 
subconsciously. Summarizing, we note that banners of type 
header should likely be used to optimize QoE and that the 
point of time when a consent banner appears does not affect 
experience, but annoyance only.

Analysis of clicking behavior

In the following, we analyze the clicking behavior of the 
participants for the consent banner studies. In particular, we 
analyze the reaction times, i.e., first clicks on banners, of 
participants to the varying banner types and we quantify 
the additional delay until first content interaction caused by 
consent banners. Let us denote BT as the loading time of 
the consent banner and BC as the point in time when a par-
ticipant clicks on a banner. The metric BC-BT thus quanti-
fies the reaction time of a user after the consent banner has 
loaded. The relation between PLT and BC and BT is denoted 
by PLT-BC and PLT-BT, which denote the remaining time 
of the PLT after consent banner click or after consent banner 
loading time. Note that PLT-BC might become negative if a 
user clicks on the consent banner after the PLT has passed.

First, we analyze the distribution of the reaction times for 
each banner type in Fig. 15. The figure shows the CDFs for 

(a) Overall experience (b) Loading speed QoE (c) Banner annoyance

Fig. 14  MOS for different QoE dimensions as influenced by consent banner time and banner type

Fig. 15  Distributions (CDF) of reaction time for each banner type
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the reaction time (BC-BT) grouped by banner type. We can 
observe that reaction times for modal (mean: 2.17, std: 1.34, 
median: 1.77) and interstitial (mean: 2.10, std: 1.17, median: 
1.82) are very similar, while the CDF for header deviates 
significantly. Here, the reaction times are in general higher 
with a mean of 3.02 s and a median of 2.39 s. This can be 
likely attributed to the positioning of the banner and buttons, 
respectively. While the buttons for the modal and interstitial 
banner are centered, the buttons for the header banner are in 
the upper left of the viewport, thus taking more time to be 
located and clicked.

Secondly, we quantify the additional delay caused by 
consent banners. For this purpose, we compare in Fig. 16 
the distributions of the first content clicks of the FID study 
from Sect. 6, where no consent banners had been shown, 
with the distributions of the first consent banner clicks and 
the first content clicks. A content click hereby describes the 
first interaction with an arbitrary web page element (except 
for the consent banner), e.g., a hyperlink or an image. Note 
that in the consent banner studies, the first content click actu-
ally is the user’s second click as the consent banner has to be 
clicked first. The CDFs denote the passed time between the 
start of the page load and the corresponding kind of interac-
tion. We can easily see that the first clicks on a web page 
(content element for FID study in golden and consent ban-
ner for consent banner studies in dashed blue) are similarly 
distributed. The results therefore suggest that users in our 
study interact with consent banners in the same way as with 
actual content. When comparing the first content click of the 
FID study (golden) with the first content click of the consent 
banner studies (second web page interaction, solid blue), 
we observe high additional delays caused by the required 
consent banner interactions before being able to interact with 
the web page. In our study, consent banners cause users to 
take about 2.9 s on average and 3.1 s on median longer to 
perform the first content interaction. Note that these delays 
also depend on the loading times of varying web page ele-
ments as well as on user behavior, so our additional delays 
are not generally valid. Nonetheless, our results demonstrate 

that consent banners may lead to additional delays which 
should be kept in mind when optimizing web page loading 
times and subsequently web QoE.

Correlations between ratings, click behavior, 
and consent banner metrics

Now, we consider the correlations between the user rat-
ings, consent banner related metrics, and click behavior as 
depicted in Fig. 17.

Regarding the ratings, we can first of all observe that the 
speed and the experience rating correlate strongly positive 
(0.78), while the annoyance rating and the experience rating 
correlate moderately negative ( −0.50). Further, we can see 
that PLT and speed rating correlate strongly ( −0.72), while 
experience ratings correlate moderately to strong with PLT 
( −0.58), which is lower than in the previous studies. This can 
again be explained by the fact that the actual PLT was often 
obfuscated due to suddenly loading consent banners, and 
thus, users experienced PLT differently than in our previ-
ous studies. With respect to the other consent banner related 
metrics, we observe no strong correlations between them 
and the ratings. In particular, the ratings and the remaining 
time after consent banner click (PLT-BC) are also not cor-
related at all. Due to the relationships of speed rating, PLT, 
and consent banner loading time, consent banner and time 
related metrics (BT and BC) are naturally moderately cor-
related, too.

Relation between consent banners and CWV

Finally, we relate the consent banners and the CWV. Here, 
we consider only LCP and CLS since no artificial input 
delays had been added to the consent banner buttons during 

Fig. 16  Distributions of content and banner click delays for condi-
tions with (blue) and without (yellow) consent banner

Fig. 17  Correlation (Spearman) between objective and subjective 
metrics used in the CWV consent banner studies
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these studies. Since each type of consent banner is always 
the largest element in the viewport, the LCP simply corre-
sponds to the appearance time of the consent banner. CLS 
is for both modal and interstitial zero because these consent 
banners are overlays on top of a page, thus not causing a 
layout shift. For header, there is a layout shift towards the 
bottom of the page and CLS here depends on the height of 
the consent banner and the point in time at which the consent 
banner appears. The appearance of the consent banner (BT) 
has to be considered in relation to the CWeQS parameters 
FP, TTText, TTImage, and PLT, since these parameters are 
decisive for the amount of elements visible in the viewport. 
Due to equal spacing of these parameters in our study, PLT 
and BT are sufficient to compute CLS. For BT equal to 
PLT/2, we obtain a CLS of 0.05 and for BT equal to PLT, 
we obtain a CLS of 0.21.

The relationship between LCP and MOS for the consent 
banner studies is illustrated in Fig. 18. The figure shows 
again the MOS for each rating along with the 95% confi-
dence intervals colored according to the PLT. Identical to the 
CWV page loading studies, we observe that LCP does not 
affect the MOS for the experience and speed rating at all and 
that the conditions are stable across Google’s recommen-
dations. Both the ratings for experience and speed behave 
similar and depend only on PLT. For the annoyance rating, 
we identify neither an influence of LCP nor an influence of 
PLT. This can be explained by the fact that the question for 

annoyance has not been tailored towards loading speed, but 
instead more towards UX.

In the same manner, the effect of CLS on MOS for the 
consent banner studies is depicted in Fig. 19. Again, we 
observe that only PLT affects the MOS and that the MOS is 
stable across Google’s recommendations. Interesting though 
is that for a PLT of 5 s and a CLS of 0.05, participants were 
least annoyed. This suggests that users prefer consent ban-
ners (and here also layout shifts) not too early and not too 
late if the PLT is sufficiently high, but not too high.

Summarizing, we nonetheless observe that the CWV also 
do not affect web QoE in terms of MOS when using consent 
banners.

Discussion

As regards the relationship between the CWV and web 
QoE, the main finding of our page loading studies is that 
the CWV do not seem to be good indicators for web QoE 
in terms of MOS, despite the fact that the CWV are influ-
enced by site loading and rendering behavior. In the dif-
ferent experimental conditions, user QoE ratings depended 
only on PLT and SI, respectively. In this context, the IQX 
and WQL hypotheses from previous work  [9, 12, 13] 
also apply to relationship between MOS and SI, which 
confirms the validity of our measurements. These results 

(a) Overall experience (b) Loading speed (c) Banner annoyance

Fig. 18  MOS for the three QoE dimensions assessed at different LCP and PLT settings

(a) Overall experience (b) Loading speed (c) Banner annoyance

Fig. 19  MOS for the three QoE dimensions assessed at different CLS and PLT settings
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consequently lead us to the question why Google’s recom-
mendation for good, moderate, and poor experience for the 
CWV are not at all reflected in our subjective measure-
ments. After all, Google also relied on human perception 
and Human-Computer Interaction research to establish 
these recommendations [41].

A key reason might be differences in overall study designs 
and data collection approaches. While Google relied on field 
data focusing on engagement [41], we performed crowd-
sourcing studies, in which users were not able to stop a web 
page load without quitting the study and losing their pro-
gress. Thus, our studies evaluated instantaneous user opinion 
ratings, while Google focused more on (longer term) user 
behavior. These differences of study setups seem to influence 
the results significantly. As a consequence, we cannot rule 
out a potential influence of the CWV on the MOS, that we 
might have not been able to detect due to our study design. 
Further, we observed a linear relationship between PLT 
and MOS in our study, which contradicts previous studies. 
We explain these differences also mainly through the study 
design. In other studies, participants usually waited passively 
for the completion of the web page load, while in our studies 
participants actively searched for the target elements, which 
they were instructed to click. As a consequence, they experi-
enced the web load in a different context compared to previ-
ous studies. Finally, we have tested only three PLTs (2 s, 5,s 
and 10 s), which strictly limits the general validity of our 
finding of a linear relationship between PLT and MOS here.

Our follow-up studies focused on the influence of consent 
banners and investigated the relationship between banner 
type, web QoE and the CWV, too. Here we again observed 
that the CWV, this time determined by the rendering process 
of consent banners, do not correlate with web QoE ratings, 
which corroborates the findings of the CWV page loading 
studies. Nonetheless, a comparison of the ratings from the 
CWV page browsing studies with those from the consent 
banner studies reveals that web QoE is indeed affected by 
consent banners. Specifically, consent banners appearing 
during the page load seem to be beneficial when experi-
encing higher PLTs as participants became more tolerant 
to slower page loading. In contrast, consent banners seem 
to negatively affect web QoE when pages load rapidly. We 
explain these findings in the following way: As shown above, 
participants take significantly longer to interact with content 
if they have to handle a consent banner first. Thus, the delay 
of accepting or rejecting a consent banner should be consid-
ered along with or even on top of the PLT. Rapid page loads 
with short PLTs may be therefore perceived longer due to 
suddenly appearing consent banners, which have to be han-
dled first. In contrast to the PLT, the time of appearance of 
the consent banner did not affect web QoE at all.

Finally, with respect to the type of consent banner, we 
observed that participants prefer unobtrusive and acentric 

consent banners like header, even though it takes them more 
time to react to acentric consent banners.

Our consent banner studies were limited in the way that 
we used very simple consent banners featuring only a small 
amount of content. Consent banners nowadays are often 
confusing, sometimes even offering nested configuration 
options. According to [8], cookie consent banners from 
third-party providers usually affect web page performance 
stronger than custom built consent banners, too. In our stud-
ies, we did not consider third-party consent banners at all. 
Further, users were obliged to click on the appearing consent 
banners before being able to interact with the actual web 
page. This is in many cases no necessity in reality, but may 
be an important factor with respect to web QoE. Last but 
not least, our consent banner studies were limited by the fact 
that we could test only a few parameter combinations, e.g., 
only three different PLTs, banner types, and banner appear-
ance times, in our studies. More exhaustive studies are thus 
required in the future.

Conclusion

In this article, we related Google’s Core Web Vitals (CWV) 
to web QoE by analyzing the results of a series of objective 
measurement and subjective crowdsourcing campaigns. We 
presented CWeQS, a novel open-source study framework 
that we used to perform the subjective web QoE crowdsourc-
ing studies discussed in this work. The framework allows 
for exerting full control over the loading behavior of cus-
tom web pages, a prerequisite for conducting CWV-related 
experiments. Our objective measurements based on Google 
Lighthouse revealed that only the LCP metric is actually 
affected by network conditions, while FID and CLS behave 
differently for each web page, depending on factors like spe-
cific page design and implementation. These findings sug-
gest that accurate in-network monitoring of the CWV on 
service provider level might actually be very challenging to 
implement in practice.

Our subjective study results suggest that the CWV met-
rics do not seem to correlate with web QoE at all. In addi-
tion, no QoE impact of Google’s recommendations for poor, 
moderate, and bad CWV scores could be detected. Instead, 
PLT and SI proved to remain superior indicators for web 
QoE. This is a surprising result that raises questions regard-
ing the causes behind such discrepancies. We primarily 
explain these results discrepancies between our studies and 
Google’s CWV-related work with differences in terms of 
research designs and means of data collection.

Consequently, our next steps for upcoming research 
include a direct comparison with Google studies by adjust-
ing CWeQS and our CWV studies towards parallel assess-
ment of user engagement and web QoE. In the future, we 
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also plan to utilize techniques from explainable AI (XAI) to 
analyze and model the collected data to avoid the introduc-
tion of modelling preferences or biases [42].

In addition, we investigated the impact of consent banners 
on web QoE and the CWV because consent banners repre-
sent a content category which has been severely neglected 
by experience research so far, despite their omnipresence 
on the web. In dedicated subjective crowdsourcing stud-
ies based on CWeQS, we emulated three different types of 
consent banners, which appeared at different points in time 
during a page load. Our evaluation results show that con-
sent banners can affect web QoE in both directions in terms 
of MOS, depending on the PLT. On the one hand, consent 
banners may lead to slightly more tolerant users when it 
comes to higher PLTs, while on the other hand, experience 
slightly decreases with consent banners for fast page loads. 
In alignment with these findings, we also reveal that the 
additional time required by users to interact with consent 
banners should be considered along with the PLT as it may 
directly influence web QoE. Our results also suggest that 
unobtrusive and acentric consent banners are perceived the 
best, even though it takes slightly more time to interact with 
them. Finally, we reinforced our findings of the CWV page 
loading studies since we again found no correlation between 
the CWV, this time determined by consent banners, and web 
QoE in terms of MOS.
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