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Background and Hypothesis:  Cognitive impairment is 
a hallmark of schizophrenia, but no effective treatment 
is available to date. The underlying pathophysiology in-
cludes disconnectivity between hippocampal and pre-
frontal brain regions. Supporting evidence comes from 
diffusion-weighted imaging studies that suggest abnormal 
organization of frontotemporal white matter pathways in 
schizophrenia. Study Design:  Here, we hypothesize that 
in schizophrenia, deficient maturation of oligodendrocyte 
precursor cells (OPCs) into mature oligodendrocytes sub-
stantially contributes to abnormal frontotemporal macro- 
and micro-connectivity and subsequent cognitive deficits. 
Study Results:  Our postmortem studies indicate a reduced 
oligodendrocyte number in the cornu ammonis 4 (CA4) 
subregion of the hippocampus, and others have reported 
the same histopathological finding in the dorsolateral pre-
frontal cortex. Our series of studies on aerobic exercise 
training showed a volume increase in the hippocampus, 
specifically in the CA4 region, and improved cognition in 
individuals with schizophrenia. The cognitive effects were 
subsequently confirmed by meta-analyses. Cell-specific 
schizophrenia polygenic risk scores showed that exercise-
induced CA4 volume increase significantly correlates with 
OPCs. From animal models, it is evident that early life 
stress and oligodendrocyte-related gene variants lead to 
schizophrenia-related behavior, cognitive deficits, impaired 
oligodendrocyte maturation, and reduced myelin thickness. 
Conclusions:  Based on these findings, we propose that pro-
myelinating drugs (e.g., the histamine blocker clemastine) 
combined with aerobic exercise training may foster the 
regeneration of myelin plasticity as a basis for restoring 
frontotemporal connectivity and cognition in schizophrenia. 
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Introduction

Each year, more than one-third of the European pop-
ulation experiences a mental disorder.1 Among those 
disorders, schizophrenia (SZ) has the most unfavorable 
long-term outcome, and SZ is one of the 10 leading med-
ical causes of years lived with disability worldwide.2 The 
disease primarily affects young adults and leaves many of 
them with lifelong, untreatable deficits that are socially 
detrimental and cause high direct and indirect costs.3 
The costs are high because more than 50% of individ-
uals with SZ develop residual symptoms, namely negative 
symptoms and, in particular, cognitive dysfunction, for 
which no effective pharmacological or psychotherapeutic 
treatment is available.4,5 In addition, cognitive deficits are 
present before the onset of SZ and persist after sympto-
matic remission, further supporting the view that SZ is 
a cognitive illness.6 Although individuals with SZ show 
deficits in all cognitive domains, the greatest deficits are 
seen in working and episodic memory, executive func-
tioning, attention, and processing speed.7

Together, these symptoms lead to severe social disabilities 
and, ultimately, unfavorable social outcomes. In observa-
tional long-term studies, only 20% of patients show recovery, 
i.e., can maintain an unimpaired life despite residual symp-
toms, including cognitive dysfunction.8 Although this 
finding emphasizes the critical role of cognitive deficits 
in SZ, we neither understand their pathophysiology nor 
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have a psychopharmacological treatment for them.9,10 
Unfortunately, the initial hope that second-generation anti-
psychotics would substantially improve cognitive and neg-
ative symptoms was not fulfilled.4,11 Furthermore, over the 
past decade the pharmacological industry has largely with-
drawn from the mental health field.12 Thus, there is clear 
a need for drugs that (1) have a mode of action strongly 
rooted in the pathophysiology of SZ, (2) target symptom 
domains not really accessible with antipsychotics, and (3) 
are of no financial interest to pharmaceutical companies 
because the drugs are repurposed and thus lack commer-
cial potential, allowing academic psychiatry to study them 
in preclinical and clinical research. Psychopharmacological 
treatment should be combined with evidence-based add-on 
treatment approaches, e.g., cognitive remediation or aer-
obic exercise, which have been shown in meta-analyses to 
have beneficial effects on global cognition, everyday func-
tioning, and negative symptoms.13–15 Overall, delivering an 
understanding of the pathophysiology of cognitive dys-
function and introducing mechanistically informed, causal 
treatments may turn SZ from a devastating mental illness 
that leads to social disability into a treatable disease with a 
fair outcome for many patients.

SZ is a Dysconnectivity Disorder

Functional neuroimaging and neurophysiology find-
ings led to SZ being considered as a disorder of 
dysconnectivity.16 A meta-analysis of more than 8000 
patients and 8000 controls across psychiatric disorders, 
including SZ, provided evidence for alterations of resting-
state functional connectivity in brain networks underlying 
cognitive dysfunction.17 In animal models and patients 
with SZ, a disturbance of prefrontal-hippocampal func-
tional connectivity underlies working memory deficits18,19; 
and in patients, reduced volumes of the dorsolateral pre-
frontal cortex (DLPFC) and hippocampus, including its 
subfields, are associated with disturbed cognition.20,21

Supporting evidence comes from diffusion-weighted 
magnetic resonance imaging (dMRI) studies that char-
acterize structural connectivity and white matter mi-
crostructure.22 Most dMRI studies in SZ report lower 
fractional anisotropy (FA) across the lifespan23,24 and in-
terpret findings as indicators of abnormal fiber density, 
myelination, or tract coherence.25 White matter abnor-
malities are widespread,24 but findings suggest that FA re-
ductions are particularly pronounced in the white matter 
of the left frontal and temporal lobes,26 as well as in 
frontolimbic and frontotemporal circuitries.27,28 Notably, 
white matter microstructural abnormalities are more 
pronounced in individuals with lower cognitive perfor-
mance,29,30 are associated with the level of functioning,30 
and indicate a deficit subtype of SZ.31

At the cellular level, macro-connectivity in the central 
nervous system is mediated through oligodendrocytes 
(OLs), which form myelin sheaths around multiple axons, 

facilitate rapid excitation conduction, and maintain ax-
onal integrity.32 OLs arise from maturation and differen-
tiation of oligodendrocyte precursor cells (OPCs) during 
development and are also critical for efficient regenera-
tion of myelin in demyelinating diseases.33 Myelination of 
axons and development of white matter occur at a high 
rate in the first years of childhood34 and continue until 
young adulthood.35 Myelination depends on proper OL 
function at all stages of neurodevelopment. Consequently, 
OL dysfunction leads to disturbances in myelination and 
connectivity, and—at the functional level—may also 
lead to cognitive deficits.36 We hypothesize that disturbed 
neurodevelopment involving genetic and environmental 
factors may negatively modulate connectivity-related 
adaptations, including OL function and myelination. This 
pathophysiological process may also contribute to the 
failure of circuit functions at later stages of experience-
dependent shaping of higher-order neural networks.

OL-Related Genetic Variants in SZ

SZ has a multifactorial origin, and genetic and environ-
mental factors are important risk factors that may interact 
during neurodevelopment to induce symptoms of the dis-
ease in early adulthood.37 Over the last few years, large-
scale genomics approaches have examined 69 369 patients 
and 236 642 controls and identified 270 independent ge-
netic risk loci for SZ.38 OL-related risk variants are not 
among the top associations in genome-wide association 
studies. However, in an enrichment analysis study of cell 
type-specific gene expression in humans, OLs and OPCs 
showed enrichment in genes associated with SZ.39 In a 
dMRI study, OL-related gene variants, such as myelin-
associated glycoprotein (MAG), were associated with 
white matter microstructure and cognitive performance in 
patients with SZ.31 Interestingly, a single nucleotide poly-
morphism of the gene OL lineage transcription factor 2 
(OLIG2), which is predominantly expressed in and required 
for the maturation of OPCs, was also associated with re-
duced white matter FA, indicating impaired myelination 
in SZ.31 Single nucleotide polymorphisms in the OLIG2 
gene have been identified as risk factors in Caucasian pa-
tients with SZ.40 An OLIG2 risk variant has been associ-
ated with abnormal white matter structure41 and reduced 
whole-brain functional connectivity.42 In the DLPFC, this 
risk allele predicted low expression of OLIG2.43 In patients 
with SZ, the density of OLIG2 immunoreactive cells was 
reduced in the white matter of the DLPFC,44 suggesting 
that postmortem studies are important for understanding 
the underlying cellular pathology.

OL Deficit in SZ: Evidence From Human Postmortem 
Studies

Over the last 15 years, our working group has focused 
on understanding the underpinnings of cognitive 
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dysfunction in SZ. In design-based stereology studies, we 
found a significant reduction of the number of OLs post-
mortem in the cornu ammonis 4 (CA4) subregion of the 
hippocampus in SZ,45,46 and we were able to replicate this 
finding in an independent sample.47 This finding was not 
present in patients with bipolar disorder or major depres-
sion,48 and in patients with SZ, it significantly correlated 
with a presence of “definite cognitive dysfunction” in 
the patients’ medical records.49 A previous stereological 
study targeting the DLPFC in SZ revealed a loss of OLs, 
indicating a network problem involving frontotemporal 
regions.50 Moreover, electron microscopy studies provided 
evidence of damaged myelin sheaths, myelin degenera-
tion, and apoptosis/necrosis of perineuronal OLs in the 
prefrontal cortex of patients with SZ.51,52 Transcriptomic 
studies showed decreased expression of myelin- and 
OL-related proteins, such as MAG and myelin basic pro-
tein (MBP).53,54 In our own proteomic studies, we were 
able to replicate decreased expression of myelin- and 
OL-related proteins, such as myelin OL glycoprotein and 
MBP.55 As a final point, postmortem studies have shown 
that a reduced number of OLs in the hippocampus cor-
relates with a volume decrease in connected brain regions 
of the Papez circuit, particularly in the hypothalamus 
and mediodorsal thalamus, indicating that OLs are pos-
sibly to be essential for proper cognitive processing.49,56

Animal Models Help to Understand the Molecular 
Basis of Myelin Plasticity and Cognition

Myelination in the brain is experience dependent and 
can be influenced by environmental factors during 
neurodevelopment.37 In nonhuman primates and mouse 
models, maternal immune activation induces mild in-
flammation and is known to cause SZ-related behavior 
(in early adulthood), demyelination, and alterations in 
synaptic and oligodendrocyte-related gene expression.57,58 
In a meta-analysis, obstetric complications were shown 
to be a risk factor for SZ59 and to be accompanied by 
white matter injury, inflammation, impaired OL matura-
tion, and myelin damage.60 In addition, disturbances in 
myelination caused by stress during neurodevelopment 
have been hypothesized to play an essential role in SZ. 
Epidemiological studies clearly show that exposure to 
early life stress in the form of childhood abuse and ne-
glect increases the risk for later development of SZ61 and 
negatively influences cognition in patients with SZ.62,63 
A mouse model of juvenile social isolation (SI) mimics 
this feature and shows that application of SI immediately 
after weaning leads to SZ-related behavior (ie, deficits in 
prepulse inhibition of the acoustic startle response and 
in working memory), deficits in OL morphology, reduced 
myelin thickness, and decreased MBP and MAG expres-
sion.64,65 Importantly, in contrast to the effects of SI in 
adults, this early induced phenotype cannot be rescued 
by later social reintegration,65 which might reflect poor 

functional remission rates in SZ. Besides the SI model, 
mutant mouse models also support the role of OLs in the 
pathophysiology of SZ. One earlier study showed that in 
cortices of Olig2 knockout animals, myelination was ar-
rested at the progenitor stage.66 Recently, another study 
in adult Olig2 knockout mice showed that myelination 
was inhibited in the cortex and hippocampus, and im-
portantly, that mutant mice had a pronounced working 
memory deficit.67

One of the most replicated SNP-associated SZ risk 
genes is transcription factor 4 (TCF4),68 a gene that is 
also related to cognitive deficits.69 TCF4 encodes a class 
I basic helix-loop-helix transcription factor. If  com-
bined with social defeat in mice, Tcf4 single nucleotide 
polymorphisms significantly contribute to SZ-relevant 
endophenotypes, such as deficits in prepulse inhibition 
and cognitive flexibility.70–74 Recently, in double heterozy-
gous Tcf4/Olig2 null mutant mice, TCF4 was shown to 
be the preferred heterodimerization partner for OLIG2 
in OLs and required for oligodendrocyte precursor cells 
(OPC) differentiation.75 Double heterozygous Tcf4/Olig2 
mice have defects in OPC generation and display reduced 
numbers of OLs.75

Animal models do not entirely map SZ phenotypes 
but may express species-overlapping phenotypes of 
specific behavioral domains, including cognition. The 
mouse models described above are thus context-specific 
and possibly to be suitable for mirroring the disturbed 
neurodevelopmental trajectories in OPC development 
and OL differentiation, forming the basis for developing 
new treatment strategies targeting myelin plasticity in SZ.

Human-Induced Pluripotent Stem Cells as a Novel Tool 
to Assess OL Plasticity

Until the last decade, cellular-level research in biolog-
ical psychiatry was restricted to postmortem investiga-
tions. The advent of human induced pluripotent stem cell 
(hiPSC) technology in 2008 enabled the reprogramming 
of stem cells from peripheral tissue (eg, blood and fibro-
blasts) and their differentiation into any cell type of the 
body, including brain cells (ie, neurons, astrocytes, OPCs, 
and OLs). This approach now enables personalized dis-
ease modelling76,77 and allows OL biology to be studied 
in “living” and functional cells, thereby overcoming the 
limitations of postmortem studies, such as disease dura-
tion and confounding effects of treatment. HiPSC tech-
nology might enable the investigation of the presumed 
OL dysfunction and disturbed myelin plasticity in SZ.78 
So far, 2 studies in cohorts of sporadic SZ have high-
lighted a cell-autonomous OL deficit: In glial progenitor 
cells, Windrem et al.79 revealed a disturbed transcriptome 
with impaired differentiation, maturation, and signaling 
pathways in patients compared with healthy controls; 
moreover, implantation of OPCs from patients into mice 
showed impaired myelination potential of these cells in 
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the mouse chimeras.79 In a differentiation assay that com-
pared hiPSC lines from patients with SZ and healthy con-
trols, McPhie et al. found fewer O4-positive late OPCs 
and OLs and, in an MRI investigation, showed an asso-
ciation between individual white matter myelin content 
and the number of O4-positive cells.80

Initial differentiation protocols used cell culture media 
with chemical compositions that supported OL differ-
entiation from hiPSCs81 within 55 to 200 days. In con-
trast, recent and more efficient protocols have used the 
overexpression of lineage-determining transcription 
factors to achieve OL differentiation within 20 days.82–84 
These latter approaches may support the scalability and 
application of methods to study cellular disease mechan-
isms in translational SZ cohorts.

Aerobic Exercise Improves Cognition and Hippocampal 
Plasticity in Patients With SZ

Motivated by the seminal animal work by van Praag et al. 
showing that physical activity stimulates adult neurogen-
esis and enhances cognitive performance,85 we performed 
the first 3-arm trial of physical exercise in patients with 
SZ. We found that 3 × 30 minutes of indoor cycling per 
week over 3 months significantly increased hippocampal 
volumes in patients with multi-episode SZ.86 In parallel, 
we found that cognition improved in patients performing 
aerobic exercise and showed that this improvement was 
related to increased hippocampal volume.86 Subsequently, 
several international groups performed exercise studies in 
SZ, which fueled meta-analyses.13,87 These meta-analyses 
demonstrated that physical exercise improves cognition, 
including social cognition, and has the largest effects 
on global cognition, attention and vigilance, working 
memory, and verbal learning, all of which belong to 
the cognitive domains affected in SZ. In a second 3-arm 
study, we combined physical exercise and cognitive re-
mediation and found that the combination—but not 
cognitive remediation alone—had a significant effect on 
everyday functioning as assessed by the global assess-
ment of functioning.88,89 Improvement in global assess-
ment of functioning was related to a volume increase of 
the right hippocampal subfields CA3 and CA4.90 In a 
multicenter aerobic exercise study in patients with SZ,91 
we detected a positive association of aerobic fitness with 
right hippocampal volume and white matter volumes 
in parahippocampal regions.92 On the subfield level, we 
found associations between aerobic fitness levels and in-
creases in hippocampal volumes, with the strongest ef-
fects for the right CA3 and CA4 head.93 Furthermore, 
aerobic fitness in patients with SZ is related to widespread 
functional connectivity patterns across the whole brain, 
with the most pronounced links between the temporal 
lobe, basal ganglia, and cerebellum.94 In addition, aerobic 
exercise was shown to improve white matter organization 
in patients with SZ,95 suggesting a possible trophic effect 

of aerobic exercise on myelin structure, possibly by stim-
ulating plastic, regenerative mechanisms.

Over the last few years, genome-wide association studies 
have provided solid and replicable results on the impor-
tant role of common variation in SZ.38,68 SZ polygenic 
risk scores (SZ-PRSs) represent additive weighted sums 
of SNP effects across different P-value thresholds and 
provide a measure of risk to develop SZ.96 In an attempt 
to understand the underlying mechanisms of brain plas-
ticity mediated by exercise, we performed a GWAS on all 
participants in our second exercise study and found that 
SZ-PRSs correlated negatively with the volume increase 
in the hippocampal subfields.97 This finding suggests that 
high SZ-PRSs are related to reduced levels of brain plas-
ticity; however, as described above, brain plasticity may 
be improved by physical exercise. A study on cell-specific 
PRSs showed that this effect is confined to OPCs and ra-
dial glia, indicating that the dysregulated maturation of 
OPCs might be central to understanding the pathophys-
iology of cognitive deficits in SZ.98 Future longitudinal 
studies with a deeper investigation of hiPSCs and multi-
modal neuroimaging in larger cohorts will hopefully pave 
the way for a better understanding of OPCs as cellular 
treatment targets in SZ.

Treatment Avenue: Repurposed Drugs Targeting 
Myelination

To date, no treatment is available for the myelination and 
OL-related deficits that may underly cognitive deficits in 
SZ. In this context, drug repurposing is a promising tool 
to address new treatment targets, with the aim to improve 
illness outcomes in SZ in a shorter time than is required 
for the usual drug development process, which can take 
decades. New treatment strategies targeting deficits in 
OL-related pathological processes could aim to improve 
differentiation of OPCs. Because OPCs are responsible 
for remyelination, new myelinating OLs could rescue 
deficits of white matter structures, thereby promoting 
macro-connectivity and possibly also improving cogni-
tive symptoms.

Clemastine is a safe, first-generation histamine H1 re-
ceptor antagonist with several hydrophobic functional 
groups that enable it to cross the blood-brain barrier. In 
fact, all H1 antihistamines easily cross the blood-brain 
barrier,99 where they not only bind nonselectively to H1 
receptors, but also interact with adrenergic, serotonergic, 
and cholinergic receptors.100 High-throughput screening 
of a library containing small compounds approved by the 
Food and Drug Administration identified clemastine as a 
leading candidate for enhancing myelin formation,101 and 
in mice with demyelinating lesions, clemastine was shown 
to promote OPC differentiation and remyelination.102 In 
adult mice exposed to SI, clemastine enhanced OL differ-
entiation and myelination and improved also social avoid-
ance behavior.103 In a cuprizone-induced mouse model of 
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demyelination, in which mice display SZ-like behavioral 
changes, clemastine enhanced myelin repair in demyelin-
ated regions of the brain, increased the number of mature 
OLs and amount of MBP, rescued behavioral deficits, 
including those in working memory, and improved anx-
iety.104 However, other cognitive domains need to be in-
vestigated in more detail in SZ-related animal models. 
Because of its good safety, good blood-brain barrier 
penetrance, and efficacy in promoting OPC differentia-
tion and remyelination in animal models, clemastine was 
selected by a panel of experts and people with multiple 
sclerosis as a prioritized licensed drug for repurposing 
in the treatment of progressive multiple sclerosis.105 In a 
cross-over design, patients with multiple sclerosis received 
8 mg/day clemastine, corresponding to 10.72 mg/day 
clemastine fumarate, for a total of 90 days. Participants 
showed significant shortening of P100 latency in visually 
evoked potential, indicating myelin repair even after pro-
longed damage.106

In addition to these promising clinical trials, animal 
models suggest that clemastine and aerobic exercise have 
positive bidirectional effects.107 Ideally, in patients with 
SZ, combining these interventions should increase both 
the proportion of remyelinated axons and the thickness 
of myelin and thus accelerate the conduction of impulses 
along axons and, consequently, improve cognition, and 
everyday functioning.

Besides clemastine, miconazole (an antifungal 
agent), and clobetasol (a corticosteroid) also improve 
remyelination and maturation of OLs: In a mouse toxin 
model of demyelination, both substances enhanced 
remyelination and increased the number of new OLs.108 
Moreover, in mouse pluripotent epiblast stem cell-
derived OPCs, treatment with these drugs enhanced the 
generation of mature OLs and thus OPC differentia-
tion.108 However, their effects on human OPCs remain to 
be determined.

A New Hypothesis for Cognitive Dysfunction in SZ

SZ is a disorder of disturbed sensory and cognitive proc-
essing that is at least partially caused by a disconnec-
tion between frontotemporal brain regions, especially 
between the hippocampus and DLPFC. A body of evi-
dence (see figure 1) suggests that cognitive deficits in at 
least a subgroup of patients with SZ may be related to a 
reduced number of OLs in the CA4 subregion of the hip-
pocampus and in the DLPFC.45,46,109

Cell-specific PRS data show that a fraction of the ge-
netic risk for SZ is linked to OPCs and radial glia in the 
CA4 subregion98 and that it likely mediates impaired 
regenerative mechanisms in the hippocampus.110 The 
OL-associated deficit in hippocampal CA4 has been 
linked to volume decreases in connected brain regions that 
are crucial for cognitive processes.56 For several reasons, 
we hypothesize that disturbed maturation of OPCs and 

Fig. 1.  Alterations of oligodendrocyte differentiation 
and myelination of axons from pyramidal neurons and 
interneurons as the basis of a new hypothesis of schizophrenia 
pathophysiology involving deficits in connectivity and cognition. 
(A) Oligodendrocytes (OL) function in healthy brains. OPC 
differentiate into OLs and are capable of myelination of 
parvalbumin-immunopositive (PV+) interneurons, a major 
subgroup of interneurons. OLs provide trophic support to 
interneurons in the form of lactate, thereby contributing 
to energy metabolism and enabling inhibitory properties 
of gamma-aminobutyric acid (GABA)ergic synapses on 
glutamatergic pyramidal neurons and micro-connectivity. 
OLs also provide trophic support by myelinating axons of 
pyramidal neurons, promoting rapid nerve cell conductance in 
long-range projecting axons in neuronal circuits and enabling 
proper macro-connectivity. (B) Proposed OL pathology in 
schizophrenia and link to the hypothesis of an inhibitory 
interneuron deficit. OPC differentiation into mature OLs is 
impaired, resulting in deficits in both myelination and trophic 
support of interneurons. The reduced number of mature OLs 
results in a functional deficit of inhibitory control of synapses 
from PV + interneurons and leads to impaired micro-connectivity. 
Impaired myelination of long-range projecting axons from 
pyramidal cells leads to deficits in macro-connectivity and is 
the basis of impaired structural and functional connectivity, 
thereby causing subsequent cognitive deficits in schizophrenia. 
OL, oligodendrocyte; OPC, oligodendrocyte precursor cell; PV+, 
parvalbumin-immunopositive.
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OLs has widespread effects on the pathophysiology of 
SZ: (1) On the macrostructural level, there is evidence 
that disturbed OPC maturation may lead to abnormal 
structural macro-connectivity of myelinated white matter 
tracts between frontal and temporal brain regions (figure 
1), (2) on the molecular level, studies have suggested that 
OLs are metabolically coupled to axons,111 and indeed, 
support for the axonal neuron metabolism is provided by 
the finding that glycolytic OLs deliver lactate as an en-
ergy source to neuronal mitochondria,32 and (3) OPCs are 
known to form a structured synaptic network with input 
from interneurons.112 A functional deficit of hippocampal 
and prefrontal inhibitory interneurons, with decreased 
expression of parvalbumin, has been proposed as a core 
part of the pathophysiology of SZ.113,114 The origin of 
the alteration of these interneurons may be the conse-
quence of multiple factors, such as deficits in glutamate 
transmission,115 oxidative stress,116 and mitochondrial 
dysregulation.117 However, myelination deficits may also 
play a role because parvalbuminergic interneurons in par-
ticular are myelinated in the cortex and hippocampus of 

mice and humans.118,119 Therefore, a disturbed cross-talk 
between interneurons and OLs may partially underlie the 
reduced micro-connectivity in SZ (figure 1).120

In addition, we hypothesize that in at least a sub-
group of SZ patients, number of mature OLs are re-
duced because of impaired differentiation of OPCs. This 
dysmaturation of OLs may be triggered by genetic and 
epigenetic processes at different stages of brain develop-
ment and maturation. Although environment-induced 
epigenetic alterations in SZ may be independent of OLs, 
there is increasing evidence for their impact on OL dys-
function. OL differentiation is known to be regulated by 
histone deacetylases (HDACs) at the level of chromatin 
because pharmacological inhibition of HDAC activity 
causes a delay in OPC differentiation and myelina-
tion.121,122 Conditional deletion of HDAC1 and HDAC2 
in OLs leads to a loss of OLs and OPCs.123 Small-coding 
RNAs such as microRNAs are considered to be the “ep-
igenetic micromanagers” of gene expression and have 
roles in cellular differentiation and maintenance. Specific 
microRNA-target interactions are involved in the 

Fig. 2.  A proposed therapeutic approach to restore differentiation of oligodendrocyte precursor cells to oligodendrocytes and 
myelination in patients with schizophrenia. Aerobic exercise and clemastine treatment are combined to improve myelin plasticity in the 
brain, thus improving connectivity and cognitive function. The background and mechanisms of schizophrenia-related behavior and 
treatment effects can be assessed in more detail in patient-derived human pluripotent stem cells and animal models of oligodendrocyte 
pathology mirroring working memory deficits. hiPSCs, human pluripotent stem cells; OPCs, oligodendrocyte precursor cells.
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differentiation of progenitor cells into neuronal or glial 
cells, and dysregulated expression of microRNAs has been 
reported in patients with SZ.124 In SZ, research has iden-
tified a significant gene-microRNA interaction network 
that includes microRNA-92a, microRNA-134, and mi-
croRNA-495 and converges with differentially expressed 
genes involved in OL function. These microRNAs build 
a regulatory network with OL genes such as OL lineage 
transcription factor 1 (OLIG1) and myelin proteolipid 
protein (PLP).125 MicroRNAs with predicted target genes 
enriched for OL function and myelination play an impor-
tant role in OPC differentiation.126 Disturbed OL matu-
ration during vulnerable brain development periods may 
lead to reduced conductance velocities and feed into 
functionally disturbed micro- and macro-circuitry (figure 
1). Other environmental stressors of the circuitry, such as 
obstetric complications127 and trauma,63 may also inter-
rupt OL maturation.

Because OPCs are capable of remyelination upon dif-
ferentiation to OLs,33 they may be a promising cellular 
target for SZ treatment that addresses cognition, in-
cluding social cognition (figure 2). When aerobic exer-
cise is used as a regenerative stimulus, the maturational 
process is reactivated in approximately 40% of patients 
with SZ, enhancing recovery.90 In the remaining 60% of 
patients in whom the process is not reactivated, the ad-
ministration of drugs such as clemastine may enhance 
the proliferation and differentiation of OPCs, thereby 
improving the dysfunctions in regenerative processes un-
derlying the pathophysiology of SZ.110 In addition, an-
imal models with impaired myelin plasticity may provide 
insights into the neurobiological processes of treatment 
effects on cognitive function (figure 2).

In summary, research has shown that disconnectivity in 
SZ may be related to myelination deficits. So far, physical 
exercise is the only existing non-pharmacological treat-
ment to enhance myelin plasticity and consequently im-
prove cognition in SZ. Stimulating myelin plasticity and 
enhancing OPC differentiation and as yet unidentified 
OL-based molecular mechanisms by combining aerobic 
exercise with repurposed drugs represents a promising 
and unexplored approach to assess cognitive domains af-
fected in SZ, including social cognition.
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