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Abstract
Multi-scale problems arise in many scientific and engineering applications, where
the effective behavior of a system is determined by the interaction of effects at
multiple scales. To accurately simulate such problems without globally resolving
all microscopic features, numerical homogenization techniques have been devel-
oped. One such technique is the Localized Orthogonal Decomposition (LOD).
It provides reliable approximations at coarse discretization levels using problem-
adapted basis functions obtained by solving local sub-scale correction problems.
This allows the treatment of problems with heterogeneous coefficients without
structural assumptions such as periodicity or scale separation.

This thesis presents recent achievements in the field of LOD-based numerical
homogenization. As a starting point, we introduce a variant of the LOD and
provide a rigorous error analysis. This LOD variant is then extended to the
multi-resolution setting using the Helmholtz problem as a model problem. The
multi-resolution approach allows to improve the accuracy of an existing LOD
approximation by adding more discretization levels. All discretization levels are
decoupled, resulting in a block-diagonal coarse system matrix. We provide a
wavenumber-explicit error analysis that shows convergence under mild assump-
tions. The fast numerical solution of the block-diagonal coarse system matrix
with a standard iterative solver is demonstrated.

We further present a novel LOD-based numerical homogenization method
named Super-Localized Orthogonal Decomposition (SLOD). The method iden-
tifies basis functions that are significantly more local than those of the LOD,
resulting in reduced computational cost for the basis computation and improved
sparsity of the coarse system matrix. We provide a rigorous error analysis in
which the stability of the basis is quantified a posteriori. However, for chal-
lenging problems, basis stability issues may arise degrading the approximation
quality of the SLOD. To overcome these issues, we combine the SLOD with a
partition of unity approach. The resulting method is conceptually simple and
easy to implement. Higher order versions of this method, which achieve higher
order convergence rates using only the regularity of the source term, are derived.

Finally, a local reduced basis (RB) technique is introduced to address the chal-
lenges of parameter-dependent multi-scale problems. This method integrates a
RB approach into the SLOD framework, enabling an efficient generation of re-
liable coarse-scale models of the problem. Due to the unique localization prop-
erties of the SLOD, the RB snapshot computation can be performed on partic-
ularly small patches, reducing the offline and online complexity of the method.
All theoretical results of this thesis are supported by numerical experiments.
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1 Introduction

1.1 Motivation
The interplay of effects at different scales plays an important role in many
scientific and engineering applications. One example is the fluid flow in porous
media, such as groundwater flow through heterogeneous geological subsurface
formations composed of sediment and rock. Here, a reliable model must account
for effects on multiple length scales, ranging from the micrometer scale to the
meter scale [Hel97]. Another prominent example is the use of short fibers to
reinforce materials such as concrete or polymers. In this application, the fiber
microstructure increases the tensile strength of the resulting composite material,
see for example [FL96; BS07; Lau+21]. A particularly surprising example comes
from optics. As shown in [PE03; EP04], materials with certain microstructures
can cause interactions of effects on different length scales, resulting for example
in negative effective refractive indices. Such materials, known as metamaterials,
have extraordinary properties that do not exist in nature. They can be used to
construct perfectly flat lenses [Pen00] and invisibility cloaks [PSS06].

In the above mentioned applications, a complex interplay of effects on multi-
ple scales determines the effective flow or material properties. Mathematically,
one describes the underlying physical processes as solutions to partial differen-
tial equations (PDEs) with coefficients varying on multiple scales. Because of
the nature of the coefficients, such PDEs are typically referred to as multi-scale
PDEs or multi-scale problems. The direct numerical solution of such problems
by means of classical finite element methods (FEMs) is very challenging due
to the presence of microstructures that need to be resolved, resulting in a very
large, possibly intractable number of degrees of freedom. In addition, the coeffi-
cients often have a high contrast, which makes the numerical solution even more
difficult. Since in practice, one is mainly interested in the effective behavior of
the PDE solution, one may try to average the coefficients at a macroscopic scale.
However, the naive averaging of the coefficients generally produces a macroscopic
problem with significantly different effective properties than the original prob-
lem, see, e.g., [MP20, Ch. 2]. Under strong assumptions on the coefficients (i.e.,
periodicity and scale separation), sophisticated analytical averaging techniques,
known under the term homogenization, can be used to construct macroscopic
coefficients, see, e.g., [Tar09]. However, such approaches fail whenever one leaves
the idealized periodic regime. We note that the groundwater flow example has
non-periodic coefficients due to the heterogeneous subsurface geology, while the
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1 Introduction

coefficients for a reinforced material and a metamaterial may be non-periodic
due to material imperfections.

In the general setting with minimal structural assumptions on the coefficients,
so-called numerical homogenization methods provide an alternative to analytical
homogenization. Given a coarse mesh, the idea is to construct problem-adapted
coarse approximation spaces whose basis functions are obtained by solving local
PDEs. Because of the microscopic information encoded in the approximation
space, numerical homogenization methods are able to provide reliable approxi-
mations even on coarse meshes that do not resolve the coefficients. Note that
for numerical homogenization methods, the coarse scale is not predetermined
by the problem. Instead, it is a design choice made by the user, depending
on the available computational resources and the desired accuracy. Numeri-
cal homogenization methods typically have a moderate computational overhead
compared to classical FEMs, e.g., a slightly larger support of the basis functions
or a moderately increased number of basis functions per mesh entity.

Surprisingly, numerical homogenization methods also prove to be effective be-
yond homogenization problems. An inconspicuous application is the stabiliza-
tion of numerical schemes for time-harmonic wave propagation problems, such
as the Helmholtz problem. To obtain a reliable approximation, classical FEMs
require the mesh size to be much smaller than the minimal requirement needed
to resolve the oscillatory nature of the solution. This is known as the pollution
effect [BS97]. Numerical homogenization methods, however, are able to sup-
press the pollution effect at a moderate wavenumber-dependent computational
overhead, see for example [Pet17]. An overview of the origin and development
of numerical homogenization methods is given in the next section.

1.2 Literature review
Analytical techniques such as G- and H-convergence [Spa68; MT78] provide a
fairly general framework for the homogenization of elliptic operators. Given a se-
quence of elliptic differential operators indexed by a fine-scale parameter ε tend-
ing to zero, they establish the existence of an elliptic limit problem along with
weak and strong convergence results. This limit problem, called homogenized
PDE, describes the effective behavior of the solution. Furthermore, the concept
of Γ-convergence [DG75] can be used for the homogenization of ε-dependent
energy functionals, e.g., in nonlinear elasticity, see [BD98]. Note that the above
analytical homogenization techniques are generally non-constructive unless the
coefficient of the elliptic problem allows a separation of scales into a slow vari-
able and a fast ε-periodic variable. Under this assumption, popular analytical
tools, such as the energy method [MT78], two-scale convergence [Ngu89; All92],
and periodic unfolding [CDG02] can be used to derive implicit characterizations
of the homogenized coefficient. Note that such a clear separation of scales is
not satisfied in many applications, such as groundwater flow. Furthermore, one
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1.2 Literature review

may not be interested in the limit problem a priori, but rather in the problem
for a fixed value of ε.

Besides these analytical techniques, there are various numerical approaches
to homogenization. In the following, we give an overview of these numerical
homogenization approaches using a classification inspired by [AHP21].

Homogenization-based approaches

Popular numerical homogenization approaches based on the above-mentioned
analytical homogenization results include the Multiscale Finite Element Method
(MsFEM) [HW97], the Two-Scale Finite Element Method [MS02], and the Het-
erogeneous Multiscale Method (HMM) [EE03]. The idea of the MsFEM is to
solve local versions of the considered PDEs on all elements of a given coarse
mesh. The solutions of these local PDEs are then used as basis functions of the
method. Choosing the boundary conditions of the local PDEs is delicate, since
a mismatch between the coarse mesh and the periodic microstructure can lead
to large errors, so-called resonance errors. An oversampling approach, where
the local PDEs are solved on domains that are a few ε-layers larger than the
original elements, can be used to reduce these resonance errors. For advances
in the homogenization-based error analysis of the MsFEM and further devel-
opments, see for example [HWC99; HWZ04; Glo12] and [LBLL13; LBLL14;
HOS14; CL18; Leg+22].

The Two-Scale Finite Element Method is inspired by the concept of two-
scale convergence. More specifically, for the construction of its coarse basis
functions, the method mimics the choice of test functions in the theory of two-
scale convergence. Note that, by definition, the method is limited to periodic
microstructures. Later, in [HS05; Hoa08; HS11], the method was extended to
the concept of multi-scale convergence [AB96].

The idea of the HMM is to compute a macroscopic FEM approximation of the
homogenized PDE. This requires approximations of the homogenized coefficients
at the quadrature points, which are computed by solving local PDEs on small
cells around the quadrature points. This method is particularly efficient since
these cells are typically much smaller than the coarse elements. Similar to the
MsFEM, resonance errors can be reduced by oversampling. For results on the
error analysis of the HMM, see for example [Abd05; Ohl05]. A review of the
HMM can be found in [Abd+12]. We emphasize that the analysis of the above
methods is based on (constructive) homogenization techniques and therefore
strong structural assumptions on the coefficients of the considered problem are
necessary.

Variational approaches

These strong structural assumptions are overcome by another class of numerical
homogenization methods that can be derived from the Variational Multiscale

3



1 Introduction

Method (VMM) [Hug+98]. This class includes methods such as the popular Lo-
calized Orthogonal Decomposition (LOD) [MP14; HP13]. The construction of
the VMM is based on a decomposition of the solution space into a coarse finite
element (FE) space and a fine-scale space. In order to obtain an accurate ap-
proximation in the underresolved regime, it incorporates the fine-scale Green’s
function of the residual into the discrete bilinear form. Note that the VMM can
be viewed as a generalization of the local Green’s function approach [Hug95],
which avoids the original limitation that microscopic features must be strongly
localized to coarse elements. In [HS07], it was discovered that projection op-
erators from FE theory are particularly useful for constructing decompositions
of the solution space. More specifically, it was suggested to choose the coarse
space and the fine-scale space as the image and kernel of a projection operator.
The empirical observation that the fine-scale Green’s operator applied to FE
shape functions decays exponentially fast justifies its localized computation on
patches of the coarse mesh. This results in a practical variant of the VMM that
requires only local fine-scale computations. A posteriori error control strategies
for this method were developed in [Mål05; LM05; Mål11]. The first rigorous
proof of the exponential decay properties of the fine-scale Greens operator was
presented in [MP14], which led to the introduction of the LOD. Note that in
the context of the LOD, the fine-scale Green’s operator is usually referred to
as corrector, since it is used to correct coarse FE shape functions. The LOD
uses a problem-adapted approximation space defined as the span of corrected
coarse FE shape functions. Under minimal structural assumptions on the co-
efficients, the LOD achieves optimal orders of convergence, provided that the
support of the basis functions (the patch size) is increased logarithmically with
the desired accuracy. More precisely, given a coarse mesh of mesh size H, an
accuracy of O(H) is achieved when using basis functions with supports of di-
ameter O(H log( 1

H
)). This results in a moderate (logarithmic) computational

overhead compared to the coarse-scale FEM. The original construction of the
LOD was later refined in [HP13; HM14]. The LOD can be interpreted as an
additive Schwarz method, allowing an alternative proof of its exponential lo-
calization properties, see [KY16; KPY18]. Higher order variants of the LOD
were first introduced in [Mai21] and later refined in [DHM22]. For a complete
overview of LOD-based numerical homogenization, see [MP20; AHP21].

Although the LOD provided the first constructive exponential localization
result, the general question of localization was already theoretically studied
in [GGS12], where so-called Adaptive Local Bases (ALB) were introduced. Un-
der minimal structural assumptions, the ALB achieve an accuracy of O(H)
using O((log 1

H
)d+1) local basis functions per mesh entity. Note that this is only

a theoretical result, since the computation of the local basis functions requires
the solution to global problems. This problem is later addressed in [Wey17],
where a practical variant of the ALB is introduced.

Another related approach with many conceptual similarities to the LOD are
the so-called Rough Polyharmonic Splines (RPS) introduced in [OZB14]. The

4



1.2 Literature review

basis functions of this method, which are determined by constrained energy
minimization problems, can be viewed as generalized problem-adapted splines.
Note that the decay properties of the basis functions and the resulting compu-
tational overhead are similar to the LOD. The extension of the game-theoretic
interpretation of the RPS in [Owh15] to hierarchical information games led to
the multi-resolution numerical homogenization approaches [Owh17; OS19], also
known as gamblets. This also gave rise to the multi-resolution method [FP20]
in the context of the LOD.

Spectral approaches

Another class of methods are spectral numerical homogenization methods, known
as Multiscale Spectral Generalized Finite Element Methods (MS-GFEMs). This
class of methods goes back to [BL11] and has been further developed in [BHL14;
Bab+20; MSD22; MS22; SS22; MAS23]. In the spirit of generalized finite ele-
ment methods [MB96; BM97], the domain is divided into a collection of over-
lapping subdomains using a partition of unity (PU). The idea of the MS-GFEM
is then to decompose the solution to be approximated locally (on each subdo-
main) into a local particular function solving a local version of the considered
PDE and an operator-harmonic part. Optimal approximation spaces for the
approximation of the operator-harmonic part can be constructed by solving lo-
cal spectral problems. This is done using the concept of Kolmogorov n-widths
[Pin85] for a compact restriction operator defined on an oversampling domain.
For strategies that allow the efficient practical computation of the optimal ap-
proximation spaces, we refer for example to [BS18]. By multiplication with a
PU, the local approximation spaces are made conformal. The resulting set of
local basis functions can then be used in a standard Galerkin approach. The
MS-GFEM achieves a sub-exponential rate of convergence in the number of lo-
cal basis functions per subdomain. More precisely, to achieve an accuracy of
O(H), one needs O((log 1

H
)d+1) local basis functions, where d denotes the spa-

tial dimension. Note that for the MS-GFEM, convergence is established in the
number of local basis functions and not in the diameter of the subdomains.

We also mention the Generalized Multiscale Finite Element Method (GMs-
FEM) introduced in [EGH13], which combines features of the MsFEM and the
MS-GFEM. The idea of the GMsFEM is to select a few relevant basis functions
from a typically large local snapshot space by solving local spectral problems.
For further developments related to the GMsFEM, see for example [Cal+16;
CEL18; CEL19].

Numerical homogenization for stabilization purposes

The numerical solution of problems such as convection-dominated flow problems
or time-harmonic wave propagation problems is particularly challenging since
the mesh size must satisfy very restrictive assumptions in order to obtain a re-
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1 Introduction

liable approximation. For convection-dominated flow problems, classical FEMs
exhibit spurious oscillations unless the mesh size resolves the thin boundary
layers of the solution, see [Mel02]. For time-harmonic wave propagation prob-
lems, accurate approximations with classical FEMs even require a mesh size
much smaller than that one needed to resolve the oscillations of the solution. If
such strong mesh size requirements are not met, the numerical approximation
exhibits accumulating phase errors due to numerical dispersion, see [IB95]. Pop-
ular techniques for dealing with the above problems include hp-FEMs [Mel02;
MS10; MS11; MPS13], the Streamline Upwind Petrov–Galerkin method [BH82;
HMA86; Hug87] for convection-dominated flow problems and Trefftz methods
[Moi11; HMP14; HMP16] for time-harmonic wave-propagation problems.

The relevance of numerical homogenization in this context was recognized
for example in [Bre+97], where the equivalence of the local Green’s function
approach (the origin of the VMM) to the residual-free bubble stabilization of
FEMs introduced in [BR94] was shown. At that time, residual-free bubbles were
a popular tool for stabilizing the numerical solution of convection-dominated
flow problems, see [FNS98; Bre+99]. A particularly powerful framework in this
context is the VMM, which has given rise to a number of LOD-based stabi-
lization approaches for convection-dominated flow problems [LPS18] and time-
harmonic wave propagation problems [GP15; Pet16; BG22]. For the latter class
of Helmholtz-type problems, the LOD achieves an accuracy of O(H), provided
that a minimum resolution condition is satisfied and that the diameter of the
supports of the basis functions is increased like O(H log( κ

H
)), where κ denotes

the wavenumber. Note that also the MS-GFEM can be used to stabilize the nu-
merical solution of Helmholtz problems, see [MAS23]. For an accuracy of O(H),
it requires that the number of local basis functions per subdomain is increased
like O((log κ

H
)d+1).

Numerical homogenization for parametric problems

Parameter dependence adds another layer of complexity to multi-scale prob-
lems. Classical model order reduction techniques such as the reduced basis
(RB) method, which typically rely on direct numerical simulations, require the
repeated computation of global snapshots. For multi-scale problems where even
one global solve is considered challenging, the repeated solution of global prob-
lems is intractable. Approaches capable of dealing with parameter-dependent
multi-scale problems perform a localization of the snapshot computation to sub-
domains. Such a localization is typically achieved by either domain decomposi-
tion techniques or numerical homogenization methods.

Approaches based on domain decomposition construct local reduced spaces
on subdomains and couple these local reduced spaces across interfaces in either
a conforming or non-conforming manner. A prominent example is the Reduced
Basis Element Method, which was first introduced in [MR02] and further devel-
oped in [KOH11; APQ16; HKP12; IQR12]. It uses a non-overlapping domain
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decomposition and glues the reduced spaces together using Lagrange multipliers
in a Mortar-like fashion, cf. [BMP93]. Further related methods are the Local-
ized Reduced Basis Multiscale method [Alb+12; OS15] and the Arbitrary Local
Modifications method [Buh+17].

Approaches that use numerical homogenization to localize the snapshot com-
putation employ RB techniques within a numerical homogenization method to
accelerate the typically costly basis computation. For numerical homogeniza-
tion methods such as the MsFEM, the HMM, and the LOD, this led to the
development of the RB-MsFEM [HZZ15], the RB-HMM [AB12; AB13], and
the RB-LOD [AH15; KR21], respectively. Clearly, the properties of the above
methods depend strongly on the properties of the underlying numerical homog-
enization method. While the RB-MsFEM and the RB-HMM are restricted to
settings with (spatial) periodicity and scale separation, the RB-LOD is able to
handle more general settings. For a review of localized model reduction tech-
niques for parameter-dependent PDEs, see [Buh+21].

1.3 Outline and contributions
The goal of this thesis is to present recent achievements in the field of LOD-
based numerical homogenization. As a starting point, Chapter 2 introduces
prototypical approximation spaces obtained by applying the solution operator of
the considered PDE to classical FE spaces such as piecewise constants. We prove
that the corresponding Galerkin method provides accurate approximations of
optimal order without having to resolve the underlying coefficients. However,
since in general global problems must be solved to compute the basis functions of
the prototypical method, such approaches are not feasible without modification.

One approach to localize the basis computation and thereby obtain a practical
method is the LOD, which is introduced in Chapter 3 in the general setting of
inf–sup stable problems. We present a variant of the LOD that uses a novel
construction based on a tailor-made quasi-interpolation operator. This allows
approximations without numerical pollution, at the cost of slightly increasing
the support of the basis functions. We present a rigorous analysis showing the
exponential localization properties of the LOD.

The LOD is then extended to the multi-resolution setting in Chapter 4 using
the Helmholtz problem as a model problem. Given an LOD approximation on
a coarse mesh, the presented Multi-resolution Localized Orthogonal Decompo-
sition (MRLOD) allows to add additional discretization levels to improve the
accuracy of the approximation. All discretization levels are decoupled, resulting
in a block-diagonal coarse system matrix. We present a rigorous wavenumber-
explicit error analysis that shows optimal order convergence of the MRLOD
without any pre-asymptotic effects under mild assumptions on the discretiza-
tion. Special emphasis is placed on the fast solution of the block-diagonal coarse
system matrix. We prove that all but the first small block can be solved with a
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standard iterative solver within a fixed number of iterations.
A very recent localization approach is the Super-Localized Orthogonal De-

composition (SLOD), which is introduced in Chapter 5 for inf–sup stable prob-
lems. The idea of the SLOD is to identify (normalized) local FE source terms
that yield responses under the local solution operator of the PDE with minimal
conormal derivatives. These responses are then used as the problem-adapted
basis functions of the method. The SLOD has significantly improved localiza-
tion properties compared to the LOD, resulting in smaller patch problems and
a sparser coarse system matrix. More precisely, numerical experiments show
that the SLOD achieves an accuracy of O(H) if the diameter of the supports
of the basis functions is increased like O(H(log 1

H
)(d−1)/d). We put special em-

phasis on the theoretical and practical study of the decay of the localization
error. We also provide an error analysis of the SLOD in which the basis sta-
bility is quantified a posteriori. For Helmholtz problems, the SLOD improves
the oversampling condition of the LOD needed for optimal order convergence
to O(H(log κ

H
)(d−1)/d).

For challenging problems, such as problems with high-contrast channeled co-
efficients, the SLOD may suffer from basis stability issues, which degrade its ap-
proximation quality. Therefore, in Chapter 6, we introduce the Super-Localized
Generalized Finite Element Method (SL-GFEM) for an elliptic model problem.
The SL-GFEM combines the SLOD with a PU approach to overcome these ba-
sis stability issues. The SL-GFEM computes local spectral problems in a space
spanned by a few deterministic snapshots. Therefore, random sampling strate-
gies as for the MS-GFEM can be avoided. From an application point of view, the
SL-GFEM is conceptually simple and easy to implement. We prove a posteriori
and a priori error estimates for the SL-GFEM showing that its approximation
quality is at least as good as that of the SLOD and at the same time not worse
than that of the LOD. Special emphasis is placed on the study of higher order
versions of the SL-GFEM, which achieve higher order convergence rates using
only the regularity of the source term.

Finally, Chapter 7 introduces the Reduced Basis Super-Localized Orthogo-
nal Decomposition (RB-SLOD) for reaction–convection–diffusion problems with
parameter-dependent multi-scale coefficients. The RB-SLOD is a local RB tech-
nique resulting from the integration of a RB approach into the SLOD frame-
work. Given a parameter, the RB-SLOD quickly generates coarse-scale models
of the considered problem that accurately capture the effective behavior of the
problem. Note that the unique localization properties of the SLOD allow one
to perform the RB snapshot computation on particularly small patches, which
is crucial to the low offline and online complexity of the RB-SLOD. A ma-
jor strength of the RB-SLOD is that it is affected only by parameters in the
PDE operator and not by parametric, possibly non-affine, source terms. In
contrast, classical RB approaches require the use of the empirical interpolation
method [Bar+04], which increases the overall computational cost.

Parts of this thesis have already been published in scientific journals. The
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work on the MRLOD has been published in Multiscale Modeling & Simula-
tion [HP22a] and the original work on the SLOD has been published in Math-
ematics of Computation [HP22b]. Furthermore, an article on the SLOD for
Helmholtz problems and the articles introducing the SL-GFEM and the RB-
SLOD have been submitted to scientific journals and are available as preprints,
see [FHP21; Fre+22a; BHP22]. The presentation of the results in this thesis fol-
lows in part the presentation in the respective journal or preprint articles. Note
that some parts have been rephrased or expanded, and that the notation may
differ for consistency. We emphasize that the research articles [HM22; DHM22],
written by the author of this thesis, are not directly included in the thesis. The
latter has been accepted for publication in SIAM Journal on Numerical Analysis.

The numerical experiments presented in this thesis were performed either in
Matlab, based on code developed at the Chair for Computational Mathematics
at the University of Augsburg, or in Python, using an adaptation of the gridlod
software from [HK17].

Notation. Throughout this work, we denote by C > 0 a constant, which is
independent of discretization parameters such as the mesh size and the over-
sampling parameter, but which may depend on the spatial dimension d and the
domain D. We emphasize that C may change from estimate to estimate. In
order to simplify the notation, we abbreviate a ≤ Cb and a ≥ Cb by a ≲ b and
a ≳ b, respectively. Further, provided that a ≲ b and a ≳ b, we write a ≈ b.
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2 Problem-adapted approximation

As mentioned in the introduction, classical FEMs based on universal polynomial
approximation spaces can perform arbitrarily poorly for multi-scale PDEs. In
fact, to obtain a reliable approximation, it is a minimal requirement for FEMs
that the underlying mesh resolves the coefficients of the considered PDE. Ad-
ditionally, the convergence of FEMs can be arbitrarily slow due to the possibly
low regularity of the solution. In order to obtain reliable approximations on
meshes that do not necessarily resolve the coefficients, problem-specific infor-
mation can be added to the approximation space. This idea was first proposed
for one-dimensional problems in [BO83].

In this chapter, we construct such problem-adapted approximation spaces by
applying the solution operator of the PDE to coarse classical FE spaces. This
is a common strategy used explicitly or implicitly in many works, see for exam-
ple [OZ11; GGS12; MP14; OZB14; Owh17]. We further prove that the Galerkin
method based on such problem-adapted spaces gives optimal convergence orders
on arbitrarily coarse meshes without any pre-asymptotic effects. This is done in
the general setting of inf–sup stable problems, which includes all PDEs consid-
ered in the remainder of this thesis (e.g., the Helmholtz problem in Chapters 4
and 5 and the reaction–convection–diffusion problem in Chapter 7).

However, this construction cannot be used in practice without modification,
since it generally requires the solution to global problems for the computation
of the basis functions. To derive a practical numerical homogenization method,
one needs to localize the basis computation. Several localization techniques are
presented in the following chapters (see Chapters 3 to 6).

2.1 Abstract model problem
We consider a linear second order PDE in weak form with possibly highly het-
erogeneous coefficients. It is posed on a bounded Lipschitz domain D ⊂ Rd

(d = 1, 2, 3), which is either an interval (d = 1), a polygonal domain (d = 2),
or a polyhedral domain (d = 3). Without loss of generality, we assume that D
is scaled such that its diameter is of order one. We define the space L2(D) as
the space of possibly complex-valued square integrable functions on D and de-
note by (· , ·)L2 and ∥ · ∥L2 the L2-inner product and the L2-norm, respectively.
Given a subdomain S ⊂ D, we write ∥ · ∥L2(S) and (· , ·)L2(S) for their restriction
to S. Furthermore, we denote by Hk(D), k ∈ N0, the Sobolev space consisting
of functions in L2(D), which have square integrable weak derivatives of order
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2 Problem-adapted approximation

up to k. We denote by ∥ · ∥Hk and | · |Hk the Hk-norm and the Hk-seminorm
on D, respectively. Note that for k = 0, it holds that H0(D) = L2(D) and that
∥ · ∥H0 = | · |H0 = ∥ · ∥L2 . For a precise introduction to Lebesgue and Sobolev
spaces, see for example [Alt16, Ch. 3].

The solution space of the considered second order PDE is a closed subspace
V ⊂ H1(D), which takes into account a possible Dirichlet boundary condition
on a relatively closed boundary segment of ∂D of positive surface measure. As
subspace of H1(D), one can equip V with the inner product

(· , ·)V := (· , ·)L2 + (∇· , ∇·)L2 , (2.1)

where ∇ is the weak gradient, and denote its induced norm by ∥ · ∥V . The
restriction of V to the subdomain S ⊂ D is denoted by V(S) := V|S. This
space can be equipped with the inner product (· , ·)V(S), which is the restriction
of (2.1) to S and its induced norm ∥ · ∥V(S). Furthermore, we denote by V∗ the
anti-dual space of V consisting of all continuous anti-linear functionals on V and
write ∥ · ∥V∗ for the operator norm on V∗.

The weak formulation of the considered PDE is based on a continuous sesquilin-
ear form a : V × V → C, which is typically a sum of integrals of its arguments,
the derivatives of its arguments, and coefficient functions. For such sesquilinear
forms, the continuity also holds in a local sense, i.e., there exists Ca > 0 such
that

|a(v, w)| ≤ Ca∥v∥V(S1∩S2)
∥w∥V(S1∩S2)

(2.2)

holds for all v, w ∈ V with supp(v) ⊂ S1, supp(w) ⊂ S2. This is an important
ingredient for the localization proof of the LOD in Chapter 3 and will therefore
be assumed in the following. Given a source term F ∈ V∗, the weak formulation
seeks a solution u ∈ V such that it holds

a(u, v) = F (v) (2.3)

for all v ∈ V .
The unique existence of a solution u ∈ V can be guaranteed by the Banach–

Nečas–Babuška theorem [Bab71]. It requires the inf–sup conditions

inf
v∈V

sup
w∈V

|a(v, w)|
∥v∥V∥w∥V

= inf
w∈V

sup
v∈V

|a(v, w)|
∥v∥V∥w∥V

≥ αc, (2.4)

where the inf–sup constant αc > 0 typically depends on the type of the problem
at hand, the bounds of the coefficients, and the geometry of the domain. Note
that the values of the inf–sup constants in (2.4) are the same as long as they do
not vanish, cf. [Dem06]. The inf–sup stability (2.4) implies the stability of the
problem (2.3), i.e.,

∥u∥V ≤ α−1
c ∥F∥V∗ . (2.5)
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2.2 Classical finite element method

2.2 Classical finite element method
This section introduces the FEM, which is one of the most common and widely
used discretization techniques for PDEs. Furthermore, we demonstrate the fail-
ure of the FEM to provide accurate approximations in the context of highly
oscillatory coefficients, which motivates numerical homogenization techniques.

The construction of the FEM is based on a sequence of meshes {TH}H>0,
where each mesh is a finite subdivision of D (the closure of D) into closed convex
elements K, and H is a mesh size parameter to be defined subsequently. For
simplicity, we restrict ourselves to Cartesian meshes, which implicitly restricts
the possible geometries of the considered domain D. We assume that all meshes
are geometrically conformal in the sense of [EG04, Def. 1.55], which means that
each face of an element is either a subset of the boundary ∂D or it coincides
with the face of another element. Let us further assume that all elements are
shape regular [EG04, Def. 1.107], i.e., there exists Crg > 0 such that

max
K∈TH

HK

ρK
≤ Crg

holds for all meshes in the sequence, where HK := diam(K) (the diameter of
the smallest ball that contains K) and ρK denotes the diameter of the largest
ball that is contained in K. Moreover, we assume that the sequence of meshes
is quasi-uniform [EG04, Def. 1.140], i.e., there exists Cqu > 0 such that

H := max
K∈TH

HK ≤ Cqu min
K∈TH

HK

holds for all considered meshes. The set of all (interior and boundary) nodes of
the mesh TH is denoted by NH .

In this thesis, we will frequently use the Q1-FEM, which is a particular FEM
based on the following approximation space:

V fem
H :=

{
v ∈ V : v|K is a polynomial of coordinate degree ≤ 1, K ∈ TH

}
.

It seeks an approximation ufemH ∈ V fem
H such that it holds

a(ufemH , v) = F (v) (2.6)

for all v ∈ V fem
H . The unique existence of a solution uH ∈ V fem

H is guaran-
teed by an inf–sup condition similar to (2.4) with the difference that, in the
finite-dimensional setting, it is sufficient to require only one of the two inf–sup
conditions in (2.4), cf. [EG04, Prop. 2.21]. More precisely, we assume that there
exists αfem > 0 such that

inf
v∈V fem

H

sup
w∈V fem

H

|a(v, w)|
∥v∥V∥w∥V

≥ αfem. (2.7)
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2 Problem-adapted approximation

Note that in the remainder of this thesis we will just write FEM for theQ1-FEM.
To derive an error estimate of the FEM, one typically uses Céa’s lemma

(see, e.g., [EG04, Lem. 2.28]), which states the quasi-optimality of the FE ap-
proximation. This means that one can estimate the approximation error of the
FEM against the approximation error for any vH ∈ V fem

H , i.e.,

∥u− ufemH ∥V ≤
(
1 +

Ca

αfem

)
min

vH∈V fem
H

∥u− vH∥V . (2.8)

The latter term can be estimated by choosing vH as quasi-interpolation of the so-
lution u, see, e.g., [EG04, Thm. 3.16 & Rem. 3.17]. To quantify the convergence
of the FEM with respect to the mesh size H, we need additional regularity of the
solution u. For non-negative s, we denote by Hs(D) the Sobolev–Slobodeckij
spaces [Rou13, Ch. 1.2.3], which are generalizations of the usual Sobolev spaces
to non-integer s. We denote by | · |Hs the Sobolev–Slobodeckij-seminorm on D.
Provided that u ∈ H1+r(D) for some r ∈ [0, 1], the quasi-interpolation operator
from [EG17, Thm. 6.4] can be used to show that

∥u− ufemH ∥V ≲

(
1 +

Ca

αfem

)
Hr|u|H1+r . (2.9)

In particular, this estimate shows optimal first order convergence provided that
u ∈ H2(D). However, the estimate also indicates, that the approximation
quality of the FEM may be poor for large seminorms or low regularity of u.

To demonstrate the failure of the FEM, we use the example in [MP20, Ch. 2],
where for a highly oscillatory coefficient Aε, the one-dimensional diffusion prob-
lem −(Aεu

′
ε)

′ = f on the interval D = (0, 1) with homogeneous Dirichlet bound-
ary conditions is considered. The coefficient Aε is smooth but highly oscillatory,
where 0 < ε≪ 1 denotes the length scale of the oscillations. It is defined by

Aε(x) =
1

2 + cos
(
2πx
ε

) . (2.10)

The weak formulation of the problem seeks uε ∈ V := H1
0 (D) such that

aε(uε, v) :=

ˆ 1

0

Aεu
′
εv

′ dx =

ˆ 1

0

fv dx =: F (v) (2.11)

holds for all v ∈ V . Using that 1
3
≤ Aε(x) ≤ 1 for all x ∈ D, we obtain that a is

continuous and that a(v, v) ≳ ∥v∥2V holds for all v ∈ V with constants indepen-
dent of ε. The latter condition is known as coercivity (see also Section 6.1) and
ensures that the inf–sup conditions (2.4) and (2.7) hold independently of ε. For
the particular choice of the source term f ≡ 1, the solution uε can be calculated
explicitly, cf. [MP20, Ch. 2]. Using the explicit form of the solution, one easily
verifies that uε ∈ H2(D) with |uε|H2 ≈ ε−1. Inserting this into estimate (2.9), we
obtain that the FEM yields reliable and first order convergent approximations
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Figure 2.1: Error of the FE approximation of (2.11) with f ≡ 1 as a function
of H for several values of ε.

provided that the resolution condition H ≲ ε is satisfied. In the pre-asymptotic
regime, where the oscillations of the coefficient are not resolved by the mesh,
i.e., H ≳ ε, the error is generally large. This can also be observed in Figure 2.1.

We emphasize that it is a general observation that FEMs based on univer-
sal polynomial approximation spaces give unsatisfactory approximations if the
coefficients are not resolved by the mesh, cf. [PS12]. In such cases, neither
the macroscopic behavior of the solution nor its microscopic features are well
approximated. Note that the previous one-dimensional example had a large
seminorm of the solution. In practice, also the regularity of the solution is typi-
cally low, i.e., r is close to zero. This creates additional difficulties for the FEM
as seen in the estimate (2.9). In fact, it is shown in [BO00] that classical FEMs
can perform arbitrarily poorly for PDEs with rough coefficients.

2.3 Prototypical problem-adapted approximation
To obtain reliable approximations even when the coefficients are not resolved
or the regularity of the solution is low, problem-specific information can be in-
corporated into the approximation space. In this section, we introduce such
problem-adapted approximation spaces and prove that the respective Galerkin
method achieves optimal convergence orders under minimal structural assump-
tions. The construction we use is inspired by that in [OS19; AHP21]. It is based
on a set of pairwise linearly independent anti-linear functionals

{qj : j ∈ J} ⊂ V∗, (2.12)
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2 Problem-adapted approximation

where J is a suitable index set. These functionals, typically called quantities of
interest (QOIs), select the information to be extracted from the solution u. To
obtain an accurate approximation of the solution on the mesh TH , one typically
uses QOIs defined with respect to TH . Note that there is much flexibility in
choosing the QOIs, see for example [AHP21, Ex. 3.1]. Throughout this thesis,
we will only use the (complex conjugate) element averages with respect to TH
as QOIs, which are for all K ∈ TH defined as

qK(v) :=
1

|K|

ˆ
K

v dx (2.13)

for all v ∈ V , where |K| denotes the volume of K and · denotes the complex
conjugation. Note that the complex conjugation ensures that the qK are anti-
linear, i.e., it holds that qK ∈ V∗, cf. (2.12).

For the definition of the problem-adapted approximation spaces, we define the
solution operator and its adjoint version by L : V∗ → V , F 7→ u and L∗ : V∗ → V ,
F 7→ w, respectively, where u and w are for all v ∈ V defined as

a(u, v) = F (v), a(v, w) = F (v). (2.14)

The well-posedness of the operators L and L∗ is an immediate consequence of
the inf–sup stability (2.4). The problem-adapted trial and test spaces are then
defined as follows:

Ua
H := span{LqK : K ∈ TH}, V a

H := span{L∗qK : K ∈ TH}. (2.15)

Note that for hermitian problems the operators L and L∗ coincide, and therefore
also Ua

H and V a
H coincide. We emphasize that such problem-adapted spaces are

not feasible in practice without modification. This is due to the typically slow
(algebraic) decay of the Green’s function corresponding to the problem (2.3),
which implies that also the canonical basis functions {LqK : K ∈ TH} and
{L∗qj : K ∈ TH} of Ua

H and V a
H decay slowly, cf. [Eva10, Ch. 2]. Therefore,

global problems need to be solved to compute the canonical basis functions,
which is considered intractable in practice. Figure 2.2 illustrates the canonical
basis functions in one dimension.

The prototypical problem-adapted approximation seeks uaH ∈ Ua
H such that

a(uaH , v) = F (v) (2.16)

holds for all v ∈ V a
H . To ensure the existence of a unique solution uaH ∈ Ua

H , we
do not require the inf–sup stability of a on Ua

H×V a
H , since in many applications,

such as Helmholtz problems, this condition may be difficult to prove. Instead,
we require an inf–sup condition of a on the subspace W ⊂ V defined by

W :=
⋂

K∈TH
ker qK , (2.17)
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Figure 2.2: Canonical prototypical basis functions for problem (2.11) with
ε = 2−6.

where ker denotes the kernel of a linear operator. The space W is a closed
subspace of V , since it is an intersection of kernels of continuous functionals.
It can be interpreted as the space of functions that are not resolved by the
prototypical method (2.16). Therefore, the space W is typically referred to as
the fine-scale space. Note that the space W will play an essential role in the
construction of the LOD in Chapters 3 and 4. We assume that a is inf–sup
stable on W ×W , i.e., there exists αf > 0 such that

inf
v∈W

sup
w∈W

|a(v, w)|
∥v∥V∥w∥V

= inf
w∈W

sup
v∈W

|a(v, w)|
∥v∥V∥w∥V

≥ αf . (2.18)

The following lemma shows that this condition ensures the inf–sup stability of a
on Ua

H × V a
H and hence the well-posedness of (2.16).

Lemma 2.3.1 (Inf–sup stability of the problem-adapted approximation). If the
inf–sup conditions (2.4) and (2.18) are satisfied, it holds that the sesquilinear
form a is inf–sup stable on Ua

H × V a
H , i.e.,

inf
v∈Ua

H

sup
w∈V a

H

|a(v, w)|
∥v∥V∥w∥V

≥ αa (2.19)

with αa := C−1
a αcαf > 0.

Proof. The proof of this lemma can be obtained by combining results from
[AHP21, Sec. 3.2 & 3.3].

The special choice of the problem-adapted approximation spaces ensures that
the prototypical approximation exactly satisfies the QOIs. This is shown in the
following lemma.

Lemma 2.3.2 (Exactness of QOIs). The prototypical approximation uaH defined
in (2.16) has the same QOIs as the solution u of (2.3), i.e., it holds that

qK(u) = qK(u
a
H) (2.20)
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2 Problem-adapted approximation

for all K ∈ TH .

Proof. For all K ∈ TH , we obtain using the Galerkin orthogonality and the
definition of the adjoint solution operator L∗ in (2.14) that

0 = a(u− uaH ,L∗qK) = qK(u− uaH).

Next, we prove the optimal order convergence of the prototypical approxi-
mation (2.16) under minimal structural assumptions. For this, we note that
the choice of the problem-adapted approximation spaces in (2.15) allows to
transform the approximation problem of the solution u in the space V into an
approximation problem of the source term F in the space V∗. In the latter
approximation problem, the source F is approximated by a linear combination
of the QOIs defined in (2.13). In order to quantify the convergence of the proto-
typical method, we need to assume additional regularity of the source term, e.g.,
L2-regularity, which means that there exists a function f ∈ L2(D) such that

F = (f , ·)L2 . (2.21)

To define an approximation of f , we introduce the space of TH-piecewise
constants as

P0(TH) := span{1K : K ∈ TH} (2.22)

with 1K denoting the characteristic function of the element K. The correspond-
ing L2-orthogonal projection Π0

H : L2(D) → P0(TH) can then be expressed ex-
plicitly in terms of the QOIs as

Π0
Hv =

∑
K∈TH

qK(v)1K . (2.23)

From its definition, it immediately follows that Π0
H is locally stable with respect

to the L2-norm, i.e., for all K ∈ TH , it holds that

∥Π0
Hv∥L2(K) ≤ ∥v∥L2(K) (2.24)

for all v ∈ L2(D). Furthermore, recalling the assumption that all elements K
are convex, we obtain by Poincaré’s inequality [PW60; Beb03] that

∥v − Π0
Hv∥L2(K) ≤ π−1H∥∇v∥L2(K) (2.25)

holds for all K ∈ TH and v ∈ H1(T ).
Using the above results, we are able to prove the desired optimal order con-

vergence result for the prototypical approximation. This result requires only
the regularity of the source term and, in contrast to the FEM, no additional
regularity assumptions on the solution are necessary.
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2.4 Overview of localization strategies

Lemma 2.3.3 (Convergence of the prototypical approximation). For any f ∈
Hk(D), k ∈ {0, 1}, the prototypical approximation (2.16) satisfies that

∥u− uaH∥V ≤ α−1
f π−1−kH1+k|f |Hk .

Proof. By Lemma 2.3.2, we obtain that u − uaH ∈ W . Thus, using the inf–sup
stability (2.18), there exists w ∈ W with ∥w∥V = 1 such that

αf∥u− uaH∥V ≤ |a(u− uaH , w)| = |(f , w − Π0
Hw)L2| ≤ π−1H∥f∥L2 .

Here, we used that a(uaH , w) = 0, Π0
Hw = 0, and (2.25) for w. In the case k = 1,

we additionally use that

(f , w − Π0
Hw)L2 = (f − Π0

Hf , w − Π0
Hw)L2 ,

which holds due to the definition of Π0
H . Applying (2.25) again then gives the

result.

Note that using interpolation techniques, one can extend this result to source
terms f ∈ Hs(D), s ∈ [0, 1], i.e., one can show convergence of order 1+s for the
prototypical approximation. The corresponding estimate is similar to the one in
Lemma 2.3.3, but it includes an additional constant resulting from the interpola-
tion. We emphasize that choosing the QOIs as in [AHP21, Ex. 3.1b] yields proto-
typical approximations with higher orders of convergence, see [Mai21; DHM22].

2.4 Overview of localization strategies
To obtain a practically feasible numerical method, one needs to localize the
computation of the basis functions of the prototypical trial and test spaces Ua

H

and V a
H . In this section, we introduce the general concept of localization and

give an overview of the localization strategies presented in this thesis.

Concept of localization

When performing a localization, one usually first identifies rapidly decaying
basis functions of Ua

H and V a
H , where we assign each basis function to a mesh

entity (elements in our case). Despite their fast decay, these basis functions
are usually globally supported. However, the fast decay allows one to construct
accurate local approximations of the basis functions by localizing their compu-
tation to patches. For this, one typically chooses patches of m ∈ N layers of
coarse elements around the respective elements. The error resulting from this
approximation, the so-called localization error, is determined by the choice of
the basis functions of the trial and test spaces and the oversampling parame-
ter m. We define the localized trial and test spaces as the span of the respective
localized basis functions. Finally, a practical method can be defined as the
Galerkin approximation with respect to these localized trial and test spaces.
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2 Problem-adapted approximation

Figure 2.3: Prototypical basis functions of the LOD for problem (2.11) with
ε = 2−6.

Figure 2.4: Prototypical MRLOD basis functions for problem (2.11) with
ε = 2−6. The colors indicate the different discrete scales the basis
functions are associated to.

Ideas of the presented localization approaches

Four different localization strategies are considered in this thesis, namely the
LOD, the MRLOD, the SLOD, and the SL-GFEM. Their ideas have already
been briefly sketched in Chapter 1. In the following, we recall the main ideas
and illustrate their choice of basis functions in one dimension.

The LOD is a popular localization technique, which constructs its trial and
test spaces based on problem-adapted decompositions of the solution space into
a coarse approximation space and an infinite-dimensional remainder space. By
adding fine-scale corrections to classical FE shape functions, the LOD constructs
exponentially decaying prototypical basis functions of the coarse approximation
space. These functions are shown in Figure 2.3 in one dimension. The prototyp-
ical basis functions are then localized to patches in order to obtain a practical
method. The LOD is discussed in detail in Chapter 3.

In the spirit of gamblets [Owh17], the LOD is extended to the multi-resolution
setting in Chapter 4. For this, we employ a discrete hierarchy of scales induced
by a Haar basis. The resulting MRLOD has the desirable property that its
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2.4 Overview of localization strategies

Figure 2.5: SLOD basis functions for problem (2.11) with ε = 2−6.

discrete scales are decoupled. More precisely, the resulting linear system is
block-diagonal with blocks that are easily invertible. For an illustration of the
prototypical basis functions of the MRLOD, see Figure 2.4. To obtain a practical
method, the prototypical basis functions are localized using LOD techniques at
each discretization level.

Another localization approach is the SLOD introduced in Chapter 5. For
all patches of elements in the coarse mesh, the SLOD solves a local minimiza-
tion problem. More precisely, it minimizes the conormal derivative among the
responses to local piecewise constant functions under the local solution oper-
ator. The resulting local responses are then used as the basis function of the
SLOD. Compared to the exponential decay of the localization error for the LOD,
we observe a super-exponential decay for the SLOD. In one dimension, super-
exponential means that the basis is truly local, i.e., the localization error is zero.
Figure 2.5 shows the local SLOD basis functions in one dimension. Note that
the stability of the basis of the SLOD can only be guaranteed a posteriori. To
overcome this, the SLOD is combined with a partition of unity in Chapter 6,
resulting in the SL-GFEM.
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3 Localized Orthogonal
Decomposition

This chapter gives a brief introduction to the Localized Orthogonal Decompo-
sition (LOD), which was originally introduced in [MP14; HP13] for an ellip-
tic model problem. Given a coarse mesh, the idea of the LOD is to decom-
pose the solution space of the considered problem into an infinite-dimensional
fine-scale space consisting of functions not resolved by the coarse mesh and
a finite-dimensional complement space. If this decomposition is chosen in a
problem-adapted way, the finite-dimensional complement space contains fine-
scale information of the problem at hand and allows an accurate approximation
of the solution to the problem. To obtain a practical method, the LOD approx-
imates the complement space by a localized version, whose basis functions can
be computed by solving sub-scale correction problems on patches of the coarse
mesh. The LOD approximation is then obtained by performing a Galerkin ap-
proach using the localized complement space as approximation space. We note
that for non-hermitian problems, the LOD uses two different decompositions of
the solution space, resulting in different trial and test spaces. While the classi-
cal FEM yields reliable approximations only if the mesh resolves all fine-scale
features of the considered problem (see for example Figure 2.1), the LOD yields
reliable approximations for arbitrarily coarse meshes. More precisely, provided
that the diameter of the patches for the local sub-scale correction problems is
increased logarithmically with the desired accuracy, the LOD is able to achieve
optimal orders of convergence independent of the smoothness of the coefficients.

In the following, we use the LOD to localize the problem-adapted approxima-
tion spaces introduced in Chapter 2 and to obtain a practically feasible variant
of the prototypical method defined in (2.16). For this, we again consider the
general setting of inf–sup stable problems, which includes all PDEs considered in
the remainder of this thesis. We emphasize that the presentation of this chapter
is inspired by [Mai20; AHP21]. In contrast to these works, however, we include a
tailor-made quasi-interpolation operator in the definition of the method, which
cures numerical pollution effects as observed for example in [Mai21]. This ap-
proach goes back to [HP22a]. Note that most of the proofs presented are based
on rather standard LOD theory and are adaptations of for example those in
[MP20; AHP21] to the present setting.
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3 Localized Orthogonal Decomposition

3.1 Correctors
The LOD uses correctors to incorporate fine-scale information of the considered
problem into its coarse approximation space. Recalling the definition of the
fine-scale space W in (2.17), we define the correctors C, C∗ : V → W such that

a(Cv, w) = a(v, w), a(w, C∗v) = a(w, v) (3.1)

holds for all v ∈ V and w ∈ W . Due to the inf–sup stability of a on W ×W ,
cf. (2.18), the correctors C and C∗ are well-defined and continuous, i.e., it holds
for all v ∈ V that

∥Cv∥V ≤ α−1
f Ca∥v∥V , ∥C∗v∥V ≤ α−1

f Ca∥v∥V . (3.2)

The following lemma characterizes the images and kernels of C and C∗. We
denote by im and ker the image and kernel of a linear operator, respectively.

Lemma 3.1.1 (Properties of C and C∗). The operators C and C∗ are projection
operators with

im(C) = im(C∗) =W , ker(C) = Ua
H , ker(C∗) = V a

H .

Furthermore, it holds for the complementary projection operators that

im(id−C) = Ua
H , im(id−C∗) = V a

H , ker(id−C) = ker(id−C∗) =W ,

where id denotes the identity operator.

Proof. Note that the codimension ofW ⊂ V (the dimension of any complement
space of W in V) is equal to the number of elements in TH . The proof of this
result can be found in [AHP21, Thm. 3.5]. The identity im(C) = W holds by
definition since C is a projection onto W . To prove that ker(C) = Ua

H , we first
show the inclusion “⊃”. Since any v ∈ Ua

H can be written as v =
∑

K∈TH cKLqK
for some coefficients (cK)K∈TH , we obtain for all w ∈ W that

a(Cv, w) = a(v, w) =
∑
K∈TH

cKqK(w) = 0,

where we used definitions (2.17) and (3.1). This directly implies that v ∈ ker(C)
and thus, since v ∈ Ua

H was arbitrary, that ker(C) ⊃ Ua
H . Since C is a projection,

we have that V = im(C) ⊕ ker(C) (see, e.g., [Alt16, Thm. 9.13]). Using this
and the fact that the codimension of W is equal to the number of elements
in TH , it follows that ker(C) = Ua

H . The result for the complementary projection
(id−C) follows using standard identities for the kernel and image of projections,
cf. [Alt16, Thm. 9.13]. The proof for C∗ is analogous.

The following corollary states problem-adapted decompositions of V .
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3.2 Coarse-scale bases

Corollary 3.1.2 (Decomposition of V). The solution space can be decomposed
as follows:

V = Ua
H ⊕W = V a

H ⊕W . (3.3)

These decompositions are “a-orthogonal” (recall that a is in general not an inner
product) in the sense that

a(Ua
H ,W) = 0, a(W , V a

H) = 0. (3.4)

Proof. The proof of this corollary uses exactly the same arguments as the proof
of Lemma 3.1.1 and is therefore omitted.

3.2 Coarse-scale bases
In this section, we construct basis functions of the problem-adapted trial and
test spaces Ua

H and V a
H by applying the operators (id−C) and (id−C∗) to coarse

V-conforming functions. In Section 3.3 it is then proved that basis functions
constructed in this way decay exponentially fast, which justifies their localization
in Section 3.4.

As coarse V-conforming functions we use non-negative bubble functions. The
bubble function corresponding to the element K ∈ TH is chosen such that it
holds bK ∈ H1

0 (K) and Π0
HbK = 1K as well as

∥bK∥L2(K) ≤ π−1H ∥∇bK∥L2(K) ≲ ∥1K∥L2(K), (3.5)

where the hidden constant depends only on the shape regularity of TH . There are
many reasonable choices of bubble functions. For example one can choose bK
as the appropriately scaled product of the FE hat functions associated with
nodes contained in K. We define the operator BH : L2(D) → V , which maps
an L2-function to its V-conforming bubble companion with the same element
averages by

BH(v) :=
∑
K∈TH

qK(v)bK , (3.6)

where the qK are the QOIs defined in (2.13). It is a direct consequence that the
kernels of BH and Π0

H coincide, i.e., kerBH = kerΠ0
H . Using estimate (3.5), one

can prove the local stability of BH , i.e., there exists CBH
> 0 such that

∥BHv∥L2(K) +H∥BHv∥V(K) ≤ CBH
∥v∥L2(K) (3.7)

holds for all K ∈ TH and v ∈ L2(D), where the constant CBH
depends only on

the shape regularity of TH . Note that in (3.7) we give a bound on the local V-
norm of BHv (instead of the localH1-seminorm), which will simplify the analysis
in the following sections.

We define the space of bubble functions by

UH := span{bK : K ∈ TH}. (3.8)
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3 Localized Orthogonal Decomposition

Figure 3.1: Prototypical LOD basis functions for several coarse meshes for the
problem considered in Section 3.6.

The following lemma provides alternative characterizations of the problem-
adapted trial and test spaces Ua

H and V a
H .

Lemma 3.2.1 (Characterizations of Ua
H and V a

H). The spaces Ua
H and V a

H can
alternatively be characterized as

Ua
H = (id− C)UH , V a

H = (id− C∗)UH . (3.9)

In particular, it holds that{
(id− C)bK : K ∈ TH

}
,

{
(id− C∗)bK : K ∈ TH

}
(3.10)

are bases of the spaces Ua
H and V a

H , respectively.

Proof. Using (id−BH)V ⊂ W , which implies that (id−C)(id−BH)V = 0, we
obtain the first identity in (3.9) as follows:

Ua
H = (id− C)V = (id− C)(id− BH)V + (id− C)BHV = (id− C)UH .

The second identity in (3.9) can be proved analogously and (3.10) is an imme-
diate consequence of (3.9).

For a depiction of the basis functions (3.10), see Figure 3.1. These basis
functions are typically called prototypical LOD basis functions due to their
generally global support.

3.3 Decay and localization
In this section, we prove the exponential decay of the prototypical LOD basis
functions, which justifies their localization in Section 3.4. To this end, we in-
troduce patches with respect to the coarse mesh TH . We define the first order
element patch N(S) = N1(S) of a union of elements S ⊂ D as follows:

N1(S) :=
⋃
{K ∈ TH : K ∩ S ̸= ∅} .

For any m ≥ 2, the m-th order patch Nm(S) of S is then recursively given as

Nm(S) := N1(Nm−1(S)). (3.11)
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3.3 Decay and localization

3.3.1 Splitting into element correctors

To construct localized correctors, we use the concept of element correctors,
cf. [HP13]. Note that the use of element correctors allows for improved stability
properties of the resulting LOD method. To define the element correctors, we
decompose the sesquilinear form a into the element sesquilinear forms

aK : V × V → C (3.12)

for any K ∈ TH . Recalling that a is typically a sum of integrals of its arguments,
the derivatives of its arguments, and coefficient functions, we can define the
form aK by appropriately restricting the integrals to the element K. It then
holds that

a(v, w) =
∑
K∈TH

aK(v, w) (3.13)

for all v, w ∈ V . We require that for all K ∈ TH the sesquilinear forms aK are
locally continuous in the sense that

|aK(v, w)| ≤ Ca∥v∥V(K)∥w∥V(K) (3.14)

holds for all v, w ∈ V . In practice, the constant Ca is usually the same as the
constant in (2.2). Therefore, for simplicity, we will not introduce a new constant.

For any K ∈ TH , we define the element correctors CK , C∗K : V → W such that

a(CKv, w) = aK(v, w), a(w, C∗Kv) = aK(w, v) (3.15)

is satisfied for all v ∈ V and w ∈ W . Note that the inf–sup stability of a on
W ×W , cf. (2.18), and the local continuity (3.14) ensure the well-posedness
of the operators CK and C∗K . Furthermore, by (3.13) the sum of the element
correctors CK and C∗K is equal to the correctors C and C∗, respectively, i.e.,

C =
∑
K∈TH

CK , C∗ =
∑
K∈TH

C∗K . (3.16)

3.3.2 Exponential decay of element corrections

To prove the exponential decay of the element corrections, we require that the
sesquilinear form a is inf–sup stable on local subspaces of W , defined for any
K ∈ TH and m ∈ N as

Wc
K,m := {w ∈ W : supp(w) ⊂ D\Nm(K)}, (3.17)

i.e., we assume that there exists αd > 0 such that

inf
v∈Wc

K,m

sup
w∈Wc

K,m

|a(v, w)|
∥v∥V∥w∥V

= inf
w∈Wc

K,m

sup
v∈Wc

K,m

|a(v, w)|
∥v∥V∥w∥V

≥ αd (3.18)

holds for all K ∈ TH and m ∈ N.
Under this assumption, the following lemma shows that the element correc-

tions decay exponentially fast away from their associated elements.
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3 Localized Orthogonal Decomposition

Lemma 3.3.1 (Exponential decay of element corrections). There exists Cd > 0
depending only on Ca and αd and the shape regularity of TH , such that

∥CKv∥V(D\Nm(K)) ≤ exp(−Cdm)∥CKv∥V
holds for all K ∈ TH , v ∈ V, and m ∈ N. An analogous result holds for C∗K.

Proof. To simplify the notation, we abbreviate φ := CKv and denote by NH the
set of all (interior and boundary) nodes of TH . We define η as the FE cut-off
function with η(z) = 0 for all z ∈ NH ∩ Nm−1(K) and η(z) = 1 for all other
nodes, i.e.,

η ≡ 0 in Nm−1(K),

η ≡ 1 in D\Nm(K),

0 ≤ η ≤ 1 in R := Nm(K)\Nm−1(K).

Its gradient satisfies that ∥∇η∥L∞(D) ≤ CηH
−1 with Cη > 0 depending only on

the shape regularity of TH .
By the local inf–sup stability (3.22), there exists w ∈ Wc

K,m−1 with ∥w∥V = 1
such that

αd∥φ∥V(D\Nm(K)) = αd∥(id− BH)φ∥V(D\Nm(K))

≤ αd∥(id− BH)ηφ∥V
≤ |a((id− BH)ηφ,w)|
= |a((id− BH)φ,w)− a((id− BH)(1− η)φ,w)|, (3.19)

where we used that BHφ = 0 and (id−BH)ηφ ∈ Wc
K,m−1. For the first term on

the right-hand side of (3.19), we use that BHφ = 0 and supp(w) ⊂ D\Nm−1(K),
as well as (3.14) and (3.15), to obtain that

a((id− BH)φ,w) = a(φ,w) = aK(v, w) = 0.

For the second term in (3.19), we note that

supp((id− BH)(1− η)φ) ∩ supp(w) ⊂ Nm(K) ∩D\Nm−1(K) = R.

Using this, (2.2), the properties of η, as well as (2.25) and (3.7), we obtain that

|a((id− BH)(1− η)φ,w)| ≤ Ca∥(id− BH)(1− η)φ∥V(R)

≤ 2Ca(1 + π−1(Cη + CBH
))∥φ∥V(R),

where we recall that ∥w∥V = 1 and that D is scaled to unit size. Defining

C :=
(
2Ca(1 + π−1(Cη + CBH

))
/
αd

)2
,
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3.3 Decay and localization

we obtain, using the previous estimates, that

∥φ∥2V(D\Nm(K)) ≤ C∥φ∥2V(R) = C∥φ∥2V(D\Nm−1(K)) − C∥φ∥
2
V(D\Nm(K)).

After some algebraic manipulations, we get that

∥φ∥V(D\Nm(K)) ≤
√

C

1 + C
∥φ∥V(D\Nm−1(K)).

Iterating the last inequality yields that

∥φ∥V(D\Nm(K)) ≤
(

C

1 + C

)m/2

∥φ∥V = exp(−Cdm)∥φ∥V ,

where Cd := 1
2
log 1+C

C
> 0. An analogous result for C∗K can be proved using the

same arguments.

3.3.3 Localized corrections

The exponential decay of the element corrections shown in the previous lemma
motivates their localization to patches in the coarse mesh. We introduce for all
K ∈ TH and m ∈ N local subspaces of W as

WK,m := {w ∈ W : supp(w) ⊂ Nm(K)} (3.20)

and define the localized element correctors CK,m, C∗K,m : V → WK,m such that

a(CK,mv, w) = aK(v, w), a(w, C∗K,mv) = aK(w, v) (3.21)

is satisfied for all v ∈ V and w ∈ WK,m. The localized element correctors are
well-defined and continuous provided that a is inf–sup stable on WK,m×WK,m,
i.e., there exists αfp > 0 such that

inf
v∈WK,m

sup
w∈WK,m

|a(v, w)|
∥v∥V∥w∥V

= inf
w∈WK,m

sup
v∈WK,m

|a(v, w)|
∥v∥V∥w∥V

≥ αfp (3.22)

holds for all K ∈ TH and m ∈ N. Under this condition, the following lemma
shows that the localized element correctors (3.21) exponentially approximate
their global counterparts (3.15) in the operator norm.

Lemma 3.3.2 (Localization error of element corrections). For all K ∈ TH ,
v ∈ V, and m ∈ N, it holds that

∥(CK − CK,m)v∥V ≲ exp(−Cdm)∥CKv∥V ,

where Cd is the constant from Lemma 3.3.1 and the hidden constant depends
only on Ca, αfp, and the shape regularity of TH . An analogous result holds for
the difference C∗K − C∗K,m.
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3 Localized Orthogonal Decomposition

Proof. Note that φm := CK,mv ∈ WK,m can be interpreted as the Galerkin
approximation to φ := CKv ∈ W in the subspace WK,m ⊂ W . Hence, Céa’s
lemma (see, e.g., [EG04, Lem. 2.28]) yields for all w ∈ WK,m that

∥φ− φm∥V ≤
(
1 +

Ca

αfp

)
∥φ− w∥V .

To estimate the right-hand side, we choose w := (id − BH)(1 − η)φ ∈ WK,m,
where η is the FE cut-off function from the proof of Lemma 3.3.1. Recall that η
is defined by η(z) = 0 for all z ∈ NH ∩ Nm−1(K) and η(z) = 1 for all other
nodes and that ∥∇η∥L∞(D) ≤ CηH

−1. Using that φ ∈ W , which implies that
φ = (id− BH)φ, we get by (2.25) and (3.7) and Lemma 3.3.1 that

∥φ− φm∥V ≤
(
1 + Ca

αfp

)
∥φ− w∥V

=
(
1 + Ca

αfp

)
∥(id− BH)ηφ∥V(D\Nm−1(K))

≤ 2
(
1 + Ca

αfp

)
(1 + π−1(Cη + CBH

))∥φ∥V(D\Nm−1(K))

≲ 2
(
1 + Ca

αfp

)
(1 + π−1(Cη + CBH

)) exp(−Cdm)∥φ∥V ,

which is the assertion. Using the same arguments, an analogous result can be
concluded for C∗K − C∗K,m.

Without localization, the correctors C and C∗ are equal to the sum of the
element correctors CK and C∗K , respectively, cf. (3.16). Therefore, we also define
the localized correctors Cm and C∗m as the sum of the localized element correctors
CK,m and C∗K,m, i.e.,

Cm :=
∑
K∈TH

CK,m, C∗m :=
∑
K∈TH

C∗K,m. (3.23)

The following lemma shows that these localized correctors approximate the cor-
rectors (3.1) exponentially well in the operator norm.

Lemma 3.3.3 (Localization error). For all v ∈ V and m ∈ N, it holds that

∥(C − Cm)v∥V ≲ md/2 exp(−Cdm)∥v∥V ,

where Cd is the constant from Lemma 3.3.1 and the hidden constant depends
only on Ca, αf , and αfp as well as the quasi-uniformity and shape regularity
of TH . An analogous result holds for the difference C∗ − C∗m.

Proof. Abbreviating z := (C −Cm)v and zK := (CK−CK,m)v for all K ∈ TH , the
inf–sup stability (2.18) implies the existence of w ∈ W with ∥w∥V = 1 such that

αf∥z∥V ≤ |a(z, w)| ≤
∑
K∈TH

|a(zK , w)|.
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3.4 Practical multi-scale method

For the moment, we fix an element K ∈ TH and define the FE cut-off function η
in a similar way as in the proof of Lemma 3.3.1 by setting η(z) = 0 for all
z ∈ NH ∩ Nm(K) and η(z) = 1 for all other nodes.

Using that supp((id − BH)ηw) ⊂ D\Nm(K) and supp(CK,mv) ⊂ Nm(K), as
well as (id− BH)(ηw) ∈ W and (3.14) and (3.15), we obtain that

a(zK , (id− BH)(ηw)) = a(CKv, (id− BH)(ηw)) = aK(v, (id− BH)(ηw)) = 0.

This, and the identity w = (id− BH)w for all w ∈ W , yields that

a(zK , w) = a(zK , w − (id− BH)(ηw)) = a(zK , (id− BH)((1− η)w)).
Using that supp((id − BH)((1 − η)w)) ⊂ Nm+1(K) as well as (2.2), (2.25),
and (3.7), we obtain that∣∣a(zK , (id− BH)((1− η)w))∣∣ ≤ 2Ca(1 + π−1(Cη + CBH

))∥zK∥V∥w∥V(Nm+1(K)).

To show the continuity of CK , we use the inf–sup stability (2.18), which implies
the existence of q ∈ W with ∥q∥V = 1 such that

αf∥CKv∥V ≤ |a(CKv, q)| = |aK(v, q)| ≤ Ca∥v∥V(K),

where we used (3.14) and (3.15). Combining the above estimates and using
Lemma 3.3.2 as well as the discrete Cauchy–Schwarz inequality, we obtain after
summing over all elements that

αf∥z∥V ≤
∑
K∈TH

|a(zK , w)| ≤ Ca

∑
K∈TH

∥zK∥V∥w∥V(Nm+1(K))

≲ Ca exp(−Cdm)
∑
K∈TH

∥CKv∥V∥w∥V(Nm+1(K))

≲ C2
aα

−1
f exp(−Cdm)

∑
K∈TH

∥v∥V(K)∥w∥V(Nm+1(K))

≲ C2
aα

−1
f md/2 exp(−Cdm)∥v∥V ,

where in the last step we used that∑
K∈TH

∥w∥2V(Nm+1(K)) ≲ md∥w∥2V = md.

This proves the assertion. Using the same arguments, an analogous result can
be derived for the difference C∗ − C∗m.

3.4 Practical multi-scale method
In this section, we introduce the LOD based on the considerations in the pre-
vious sections. The LOD uses localized versions of the prototypical basis func-
tions (3.10) as its basis functions. These functions can be computed by solving
local problems only, which makes the LOD feasible for practical computations.
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3 Localized Orthogonal Decomposition

To define the localized basis functions of the LOD, we use a custom quasi-
interpolation operator, which has the same kernel as Π0

H . This operator cures
numerical pollution effects at the cost of slightly increasing the support of the
LOD basis functions, see [HP22a; DHM22]. The construction of PH is based
on another quasi-interpolation operator defined by IH := EH ◦ Π0

H , where EH
denotes an averaging operator that maps piecewise constants to the space of
continuous piecewise linear functions. For nodes z that are not on the Dirichlet
boundary, it is defined as

(EHv)(z) :=
1

#{K ∈ TH : z ∈ K}
∑

K∈TH : z∈K
v|K(z),

while for nodes on the Dirichlet boundary we set (EHv)(z) := 0. The opera-
tor EH is well known from the theory of domain decomposition methods, see,
e.g., [Osw93; Bre94]. Using the bubble operator BH , we can locally manipu-
late the operator IH so that its kernel coincides with the kernel of Π0

H . More
precisely, we define PH for any v ∈ L2(D) as

PHv := IHv + BH(v − IHv). (3.24)

Since the operator IH is quasi-local in the sense that it extends the support of
a function by only one layer of elements, the same property also holds for PH .
Furthermore, the operator PH is a projection (i.e., P2

H = PH) and satisfies that

∥PHv∥V(K) ≤ CPH
∥v∥V(N(K)) (3.25)

for all K ∈ TH and v ∈ V , where CPH
> 0 depends only on the quasi-uniformity

and shape regularity of TH , see [AHP21, Sec. 3.4].
Given an oversampling parameter m ∈ N, we define the localized problem-

adapted trial and test spaces of the LOD as

U lod
H,m := (id− Cm)PHUH , V lod

H,m := (id− C∗m)PHUH , (3.26)

where, compared to (3.9), we have used the localized correctors and the addi-
tional operator PH . The corresponding LOD basis functions are{

(id− Cm)PHbK : K ∈ TH
}
,

{
(id− C∗m)PHbK : K ∈ TH

}
. (3.27)

These basis functions are supported on (m + 1)-th order patches and can be
computed by solving local problems on m-th order patches. For an illustration
of the LOD basis functions, see Figure 3.2.

The LOD method then performs a Galerkin approach using the localized trial
and test spaces defined in (3.26), i.e., it seeks ulodH,m ∈ U lod

H,m such that

a(ulodH,m, v) = (f, v)L2 (3.28)

holds for all v ∈ V lod
H,m.

The well-posedness of the LOD approximation is guaranteed by the following
lemma provided that m is chosen sufficiently large.
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3.4 Practical multi-scale method

Figure 3.2: LOD basis functions for several coarse meshes and the oversampling
parameter m = 1 for the problem considered in Section 3.6.

Theorem 3.4.1 (Inf–sup stability of the LOD). Assume that the oversampling
parameter m satisfies that

αam
d/2 exp(−Cdm) ≲ 1, (3.29)

where Cd is the constant from Lemma 3.3.1 and the hidden constant depends
only on Ca, αf , and αfp as well as the quasi-uniformity and shape regularity
of TH . Then, the sesquilinear form a is inf–sup stable on U lod

H,m × V lod
H,m, i.e.,

there exists αlod > 0 such that

inf
v∈U lod

H,m

sup
w∈V lod

H,m

|a(v, w)|
∥v∥V∥w∥V

≥ αlod (3.30)

holds with αlod ≈ αa, where αa is the constant from Lemma 2.3.1.

Proof. Given an arbitrary vm ∈ U lod
H,m, we define v := (id− C)PHvm. Note that

it holds v ∈ Ua
H due to Lemma 3.1.1. Using the inf–sup stability (2.19), we

obtain that there exists w ∈ V a
H such that

|a(v, w)| ≥ αa∥v∥V∥w∥V .

We define wm := (id − C∗m)PHw and note that vm = (id − Cm)PHvm since the
function vm ∈ U lod

H,m is uniquely determined by its QOIs defined in (2.13). The
above identity for vm implies that v − vm = (Cm − C)PHvm ∈ W , which gives
that a(v − vm, w) = 0 by (3.4) since w ∈ V a

H . Using this, we obtain that

a(vm, wm) = a(vm, w) + a(vm, wm − w) = a(v, w) + a(vm, wm − w).

The second term on the right-hand side can be bounded using Lemma 3.3.3
and (3.25) as follows:∣∣a(vm, wm − w)

∣∣ ≤ Ca∥vm∥V∥wm − w∥V = Ca∥vm∥V∥(C∗ − C∗m)PHw∥V
≲ md/2 exp(−Cdm)∥vm∥V∥w∥V .
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3 Localized Orthogonal Decomposition

Next, we estimate the V-norms of v and w against the V-norms of their localized
counterparts and vice versa. Since C is a projection (which is neither the zero
projection nor the identity), it has the same operator norm as its complementary
projection id− C, cf. [Szy06]. Using this and (3.2) and (3.25), we obtain that

∥v∥V = ∥(id− C)PHvm∥V ≤ α−1
f Ca∥PHvm∥V ≲ α−1

f Ca∥vm∥V .

Furthermore, using similar arguments as above, Lemma 3.3.3 and the identity
PHv = PHvm, which holds since v − vm ∈ W , we get that

∥vm∥V = ∥(id− Cm)PHvm∥V ≤ ∥(id− C)PHvm∥V + ∥(Cm − C)PHvm∥V
≲
(
α−1
f Ca +md/2 exp(−Cdm)

)
∥v∥V .

In total, we have that ∥v∥V ≲ ∥vm∥V and ∥vm∥V ≲ ∥v∥V , where the constants of
order one are hidden in the tilde notation. Using similar arguments, the same
estimates can be proved for w and wm. Combining the above estimates, we
obtain that

|a(vm, wm)| ≥ |a(v, w)| − |a(vm, wm − w)|
≳ αa∥v∥V∥w∥V −md/2 exp(−Cdm)∥vm∥V∥w∥V
≳ (αa −md/2 exp(−Cdm))∥vm∥V∥wm∥V
≳ αlod∥vm∥V∥wm∥V .

In the last estimate, we have absorbed the second term into the first term, using
that m is sufficiently large, cf. (3.29). Note that the inf–sup constant αlod has
the same scaling as αa, i.e., αlod ≈ αa.

The next theorem proves that the LOD provides optimal order approxima-
tions under minimal structural assumptions if the oversampling parameter is
increased logarithmically with the mesh size.

Theorem 3.4.2 (Convergence of the LOD). For any f ∈ Hk(D), k ∈ {0, 1},
the LOD approximation (3.28) satisfies that

∥u− ulodH,m∥V ≲ H1+k|f |Hk +md/2 exp(−Cdm)∥f∥L2 .

Moreover, if m ≳ log( 1
H
), we get that

∥u− ulodH,m∥V ≲ H1+k∥f∥Hk .

Note that Cd is the constant from Lemma 3.3.1 and that the above hidden con-
stants depend only on Ca, αf , αfp, and αa as well as the quasi-uniformity and
shape regularity of TH .
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3.5 Fine-scale discretization

Proof. Using the triangle inequality, we obtain that

∥u− ulodH,m∥V ≤ ∥u− u
a
H∥V + ∥uaH − ulodH,m∥V . (3.31)

The first term can be estimated using Lemma 2.3.3. For the second term, we
apply Strang’s lemma (see, e.g., [EG04, Lem. 2.25]) using that ulodH,m ∈ U lod

H,m

can be interpreted as a non-conforming and non-consistent approximation to
uaH ∈ Ua

H . We obtain that

∥uaH − ulodH,m∥V
≤
(
1 + Caα

−1
lod

)
inf

vm∈U lod
H,m

∥uaH − vm∥V + α−1
lod sup

wm∈V lod
H,m

|a(uaH , wm)− (f , wm)L2|
∥wm∥V

,

where the first term can be estimated choosing vm := (id − Cm)PHu
a
H . Using

that uaH = (id− C)PHu
a
H and (2.19) and (3.25) and Lemma 3.3.3, we get that

∥uaH − vm∥V = ∥(C − Cm)PHu
a
H∥V ≲ md/2 exp(−Cdm)∥uaH∥V

≤ α−1
a md/2 exp(−Cdm)∥f∥L2 .

For the second term, algebraic manipulations yield for all w ∈ V a
H that

a(uaH , wm)− (f , wm)L2 = (f , w − wm)L2 − a(uaH , w − wm).

We choose w := (id− C∗)PHwm and note that it holds wm = (id− C∗m)PHwm,
since the function wm ∈ V lod

H,m is uniquely determined by its QOIs. Using (2.2),
(2.19), and (3.25) and Lemma 3.3.3, we obtain that

|a(uaH , wm)− (f , wm)L2 | ≲ md/2 exp(−Cdm)
(
1 + Caα

−1
a

)
∥wm∥V∥f∥L2 .

Combining the above estimates yields the assertion.

At first glance, this proof may seem unnecessarily complicated, since Céa’s
lemma (see, e.g., [EG04, Lem. 2.28]) could have been used directly. However, for
the Helmholtz problem, for example, this would lead to an inf–sup constant in
front of the optimal order term in the estimate of Theorem 3.4.2, which depends
on the wavenumber in an undesirable way.

3.5 Fine-scale discretization
The computation of the LOD basis functions (3.27) requires the computation
of localized element corrections defined in (3.21). However, this step would
require the solution of (local) infinite-dimensional problems. In this section, we
perform a fine-scale discretization of these corrector problems, which results in
a practically computable method.
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3 Localized Orthogonal Decomposition

For the fine-scale discretization, we consider a fine mesh Th, which resolves
all fine-scale features of the problem. For multi-scale problems, its mesh size h
is typically much smaller than the coarse mesh size, i.e., h ≪ H. We assume
that Th is obtained by refining the coarse mesh TH . In the following, we denote
by V fem

h ⊂ V the Q1-FE space with respect to Th, cf. Section 2.2. We emphasize
that there is great flexibility in the choice of the FE space, e.g., one could also
consider higher order or adaptive FEs, cf. [Pet16; Eng+19].

A fully discrete version of the LOD is obtained by replacing the space V in
its derivation by the finite-dimensional space V fem

h . As a consequence, the com-
putation of the element correctors (3.21) only requires computations involving
the finite-dimensional spaces WK,m ∩ V fem

h . Denoting by Cm,h, C∗m,h : V
fem
h →

W ∩ V fem
h the fully discrete counterparts of Cm and C∗m, we define the fully

discrete trial and test spaces of the LOD by

U lod
H,m,h := (id− Cm,h)PHUH , V lod

H,m,h := (id− C∗m,h)PHUH . (3.32)

Here, UH and PHUH must be subspaces of V fem
h , which however is not a restric-

tion, since the bubble function bK corresponding to the element K ∈ TH can be
chosen as an element of H1

0 (K)∩V fem
h . This is possible if Th is obtained from TH

by at least one uniform (global) refinement.
The fully discrete LOD seeks ulodH,m,h ∈ U lod

H,m,h such that

a(ulodH,m,h, v) = (f , v)L2 (3.33)

holds for all v ∈ V lod
H,m,h. If discrete versions of the inf–sup conditions (2.4),

(2.18), (3.18), and (3.22) are satisfied, the results from Lemmas 3.3.1 to 3.3.3
and Theorems 3.4.1 and 3.4.2 carry over to the fully discrete setting, which
ensures the well-posedness of (3.32) and (3.33). The proofs of these results
are similar to the continuous setting, with the minor difference that products of
functions in V fem

h are generally not in V fem
h , but in a higher order FE space. This

technical issue can be solved using a fine-scale interpolation, see, e.g., [MP20,
Sec. 4.4]. For an efficient implementation of the LOD, see [Eng+19].

Henceforth, we denote by ufemh ∈ V fem
h the fine-scale FE solution, which satis-

fies that
a(ufemh , v) = (f , v)L2 (3.34)

for all v ∈ V fem
h . Note that the fine-scale FE solution is needed only for the-

oretical purposes, and its computation is not required for the LOD. Applying
Theorem 3.4.2 in the fully discrete setting shows that the fully discrete LOD
approximation converges to ufemh . Thus, the fully discrete LOD provides an ac-
curate approximation of the solution u only if the error of the fine-scale FE
approximation is small. This can be seen in the following theorem.

Theorem 3.5.1 (Convergence of the fully discrete LOD). Assume that the
solution u to (2.3) is H1+r-regular for some r ∈ (0, 1] and let m ≳ log( 1

H
). Then,
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3.6 Numerical experiments

for any f ∈ Hk(D), k ∈ {0, 1}, the fully discrete LOD approximation (3.33)
satisfies that

∥u− ulodH,m,h∥V ≲ hr|u|H1+r +H1+k∥f∥Hk . (3.35)

The hidden constant has the same dependencies as in Theorem 3.4.2 and also
depends on the inf–sup constant of a on V fem

h × V fem
h .

Proof. The triangle inequality yields that

∥u− ulodH,m,h∥V ≤ ∥u− u
fem
h ∥V + ∥ufemh − ulodH,m,h∥V .

Since by assumption u ∈ H1+r(D), we obtain using estimate (2.9) that

∥u− ufemh ∥V ≲ hr|u|H1+r .

For the second term, we use Theorem 3.4.2 in the fully discrete setting, where we
absorb the localization error into the optimal order term using that m ≳ log( 1

H
).

We obtain that
∥ufemh − ulodH,m,h∥V ≲ H1+k∥f∥Hk .

Combining the above estimates yields the assertion.

3.6 Numerical experiments
This section numerically investigates the LOD using an elliptic model problem
posed on the domain D = (0, 1)2. For this, we consider uniform Cartesian
meshes of D, where the mesh size denotes the side length of the elements instead
of their diameter. We impose homogeneous Dirichlet boundary conditions, i.e.,
V := H1

0 (D). The weak formulation then seeks u ∈ V such that

a(u, v) :=

ˆ
D

A∇u · ∇v dx =

ˆ
D

fv dx =: F (v) (3.36)

holds for all v ∈ V . The diffusion coefficient used in the following numerical
experiments is depicted in Figure 3.3. It is piecewise constant with respect to
the mesh T2−7 with element values chosen as realizations of independent random
variables uniformly distributed in the interval [0.01, 1]. The source term f will
be specified in the respective numerical experiments.

The natural norm for this problem is the energy norm defined by

∥ · ∥a := ∥A1/2∇ · ∥L2 , (3.37)

which is equivalent to the V-norm. This can be proved using Friedrichs’ inequal-
ity (recall that D is scaled to unit size) and the uniform bounds of A. It holds
that A is coercive and continuous on V with respect to the energy norm with
constants one. Thus, by the Lax–Milgram theorem (see, e.g., [Alt16, Thm. 6.2]),
problem (3.36) is well-posed. Since the coercivity also holds for all subspaces of
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3 Localized Orthogonal Decomposition

Figure 3.3: Piecewise constant coefficient A used in the numerical experiments.

Figure 3.4: Prototypical LOD basis function (left) and corresponding localized
basis function for m = 2 (right) for the coarse mesh T2−5 .

V , all corrector problems and discrete approximations of them are well-posed,
see Section 6.1 for more details.

For the discretization, we consider a coarse uniform Cartesian mesh TH of
the domain D and the fine Cartesian mesh T2−9 obtained by uniform refinement
of TH . The fine mesh is used for the fine-scale discretization of the LOD as
described in Section 3.5. Note that henceforth, all errors are computed with
respect to the FE reference solution on the same fine mesh T2−9 , which means
that the fine-scale discretization error is not visible. Furthermore, all errors are
relative errors with respect to the energy norm (3.37).

Exponential decay and localization

Figure 3.4 illustration one prototypical basis function of the LOD and its lo-
calized counterpart. Taking into account the logarithmic color scaling, one
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Figure 3.5: Error of the LOD as a function of H for several oversampling param-
eters m. The dotted line indicates the expected rate of convergence.

clearly observes the exponential decay of the prototypical LOD basis function,
as predicted theoretically in Lemma 3.3.1. Furthermore, one observes that for
the oversampling parameter m = 2 the considered localized basis function is
supported on a third order patch, demonstrating the increased support of the
localized basis functions due to the operator PH , cf. (3.27).

Optimal order convergence

For the numerical investigation of the convergence properties of the LOD, we
consider the smooth source term defined as

f(x1, x2) = (x1 + cos(3πx1)) · x32.

Provided that the oversampling parameter m is chosen sufficiently large, Fig-
ure 3.5 shows second order convergence for the LOD. Since f ∈ H1(D), this is
consistent with the theoretical prediction in Theorem 3.4.2. Furthermore, one
observes the effect of the quasi-interpolation operator PH in the definition of
LOD, since the numerical pollution effect observed, e.g., in [Mai21] is eliminated.

Exponential localization

To investigate the localization properties of the LOD, we consider the source
term f ≡ 1. For this particular choice, the optimal order term in Theorem 3.4.2
vanishes since f ∈ P0(TH), i.e., only the localization error is present. Figure 3.6
shows the exponential decay of the localization error of the LOD, which is con-
sistent with the exponential localization properties of the LOD, see Lemma 3.3.1
and Theorem 3.4.2.
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Figure 3.6: Error of the LOD as a function of m for several coarse meshes. The
dotted line indicates the expected exponential decay.
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4 Multi-resolution Localized
Orthogonal Decomposition for
Helmholtz problems

The previous chapter introduced the LOD for the reliable coarse-scale approx-
imation of PDEs under minimal structural assumptions. In this chapter, we
derive a multi-resolution variant of the LOD referred to as Multi-resolution Lo-
calized Orthogonal Decomposition (MRLOD). Given a LOD approximation on
a coarse mesh, it allows one to flexibly add additional discretization levels to
improve the accuracy of the approximation. The construction of the MRLOD is
inspired by the framework of operator-adapted wavelets [OS19], which in turn
is motivated by a game-theoretic interpretation of numerical homogenization,
see [Owh15; Owh17]. We emphasize that up to now the latter approaches have
mostly been applied for the numerical homogenization of elliptic problems.

The MRLOD is applicable to a large class of possibly complex-valued, non-
hermitian, and indefinite problems. In the following, however, we restrict our-
selves to Helmholtz problems for demonstration purposes. The numerical so-
lution of Helmholtz problems is challenging, especially for large wavenumbers.
This is due to the typically strict requirements on the mesh size of the under-
lying mesh, which go far beyond the minimal requirements needed to resolve
the oscillatory nature of the solution. This effect is known as pollution [BS97].
Similar to other multi-scale methods [GP15; Pet16; Pet17; MAS23], the MR-
LOD has stabilizing properties for high-frequency Helmholtz problems. More
precisely, the MRLOD is able to suppress the pollution effect, provided that
the oversampling parameter is increased logarithmically with the wavenumber
and that the coarsest discretization level satisfies a minimal resolution condi-
tion. Note that the suppression of the pollution effect is not a unique feature
of multi-scale methods. For example, also Trefftz methods [Moi11; HMP14;
HMP16] and hp-FEMs [MS10; MS11; MPS13] are able to cure the pollution
effect under mild additional assumptions on the discretization parameters.

The MRLOD identifies hierarchical bases of the prototypical problem-adapted
trial and test spaces that block-diagonalize the discrete Helmholtz operator.
These basis functions are then localized using LOD techniques. To compute the
localized basis functions, one solves local (coercive) sub-scale corrector prob-
lems with a relatively small effective wavenumber. Such problems can be solved
efficiently using standard preconditioners, cf. [GZ19]. A special feature of the
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4 Multi-resolution LOD for Helmholtz problems

MRLOD is that it condenses all undesirable properties of the discrete linear
system (indefinite, deteriorating condition for increasing κ) to its first (compa-
rably small) block, while all other blocks are coercive and can be solved within
a few iterations of a standard iterative solver. In the following, the MRLOD is
introduced for Helmholtz problems in homogeneous media. However, the theo-
retical results also carry over to the case of heterogeneous media provided that
the underlying problem is well-posed and certain stability assumptions are sat-
isfied, see Section 4.7 for numerical experiments. For a theoretical investigation
of heterogeneous Helmholtz problems, see [ST18; GPS19; GS19].

The content and presentation of the following chapter is primarily based on
the journal article

[HP22a] M. Hauck and D. Peterseim. “Multi-resolution localized orthogo-
nal decomposition for Helmholtz problems”. In: Multiscale Model.
Simul. 20.2 (2022), pp. 657–684

4.1 Model Helmholtz problem
The Helmholtz problem models the propagation of time-harmonic acoustic waves
in homogeneous media. We consider a bounded polytopal Lipschitz domain
D ⊂ Rd, which we assume to be scaled to unit size. Given a wavenumber
κ ∈ (κ0,∞) with κ0 > 0, the Helmholtz problem on D reads

−∆u− κ2u = f in D

with boundary conditions of Neumann, Robin, and Dirichlet type

∇u · ν = 0 on Γ1,

∇u · ν − iκu = 0 on Γ2,

u = 0 on Γ3,

where i denotes the imaginary unit and ν is the outer unit normal vector. Note
that the second boundary condition is typically referred to as impedance bound-
ary condition. We assume that the boundary ∂D can be decomposed into the
closed boundary segments Γ1,Γ2, and Γ3, i.e., ∂D = Γ1 ∪ Γ2 ∪ Γ3 such that the
intersection of the interior of the components is pairwise disjoint. We allow Γ1

and Γ3 to be empty, but assume a positive surface measure for Γ2. Note that
other types of boundary conditions such as perfectly matched layers could also
be considered, cf. [Ber94; Ber+07].

As solution space of the Helmholtz problem, we use

V :=
{
v ∈ H1(D,C) : v|Γ3 = 0

}
,

where we write H1(D,C) to emphasize that we consider complex-valued func-
tions. Contrary to (2.1), we endow V with the Helmholtz-specific κ-dependent
norm, defined as

∥ · ∥2V := ∥∇ · ∥2L2 + κ2∥ · ∥2L2 . (4.1)
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4.1 Model Helmholtz problem

The weak formulation of the Helmholtz problem is based on the sesquilinear
form a : V × V → C, which is for all v, w ∈ V defined as

a(v, w) := (∇v , ∇w)L2 − κ2(v , w)L2 − iκ(v , w)L2(Γ2)
. (4.2)

Using the multiplicative trace inequality (see, e.g., [BS08, Thm. 1.6.6]), one can
show that the sesquilinear form a is continuous with respect to (4.1) with a
κ-independent continuity constant Ca, cf. (2.2).

The weak formulation of the Helmholtz problem seeks u ∈ V such that

a(u, v) = (f , v)L2 (4.3)

holds for all v ∈ V . We note that the well-posedness of this weak formulation
depends on the geometry of D and the choice of boundary conditions. For
example, the presence of Robin boundary conditions ensures the well-posedness
of (4.3). However, the stability constant may depend on the wavenumber, i.e.,
for all f ∈ L2(D), the corresponding solution u ∈ V satisfies that

∥u∥V ≤ Cst(κ)∥f∥L2 (4.4)

with a κ-dependent constant Cst > 0. In the following, we assume that Cst

depends polynomially on κ, i.e., there exists n ∈ N0 such that

Cst(κ) ≲ κn. (4.5)

This assumption is important for the stability and error analysis of the MR-
LOD. We emphasize that (4.5) does not hold in general, since, e.g., for trapping
domains counterexamples with an exponential-in-κ growth of Cst can be con-
structed, cf. [Bet+11]. Nevertheless, (4.5) can be proved under certain geometric
assumptions. In [Mel95], it is proved with n = 0 for bounded star-shaped do-
mains with smooth boundary or bounded convex domains. Among the known
admissible setups is also the case of Lipschitz domains with pure impedance
boundary conditions, i.e., Γ2 = ∂D, see [EM12]. Another possible example are
truncated exterior Dirichlet problems with a star-shaped polytopal scatterer,
cf. [Het07]. Such problems arise when approximating the Sommerfeld radiation
condition by truncating the unbounded exterior domain and applying impedance
boundary conditions on the artificial boundary.

A direct consequence of (4.4) is the inf–sup stability of the sesquilinear form a
of the Helmholtz problem, i.e.,

inf
v∈V

sup
w∈V

Ra(v, w)

∥v∥V∥w∥V
= inf

w∈V
sup
v∈V

Ra(v, w)

∥v∥V∥w∥V
≥ αc (4.6)

with αc = (2Cst(κ)κ)
−1 > 0, see [Mel95], where R denotes the real part of a

complex number. Note that (4.6) in particular implies (2.4), since it holds that
|a(v, w)| ≥ Ra(v, w) for all v, w ∈ V .
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4.2 Multi-resolution decomposition
In this section, we perform a multi-resolution decomposition of the trial and
test spaces of the LOD for the Helmholtz problem. First, we introduce a pro-
totypical multi-resolution decomposition, which block-diagonalizes the discrete
operator and thereby decouples the discretization scales. The basis functions
of the prototypical multi-resolution trial and test spaces are generally globally
supported and therefore not directly suitable for practical computations. In
Section 4.3, we prove that they decay exponentially fast, which justifies their
localization in Section 4.4.

4.2.1 Haar basis

The construction of the multi-resolution decomposition is based on a Haar basis
defined with respect to a hierarchy of nested meshes. Given L ∈ N, we consider
the hierarchy {Tℓ}ℓ=1,...,L obtained by uniformly refining the quasi-uniform and
shape regular coarse mesh T1, cf. Section 2.2. We denote by Hℓ the mesh size
of Tℓ. Furthermore, we denote by Π0

ℓ : L
2(D) → P0(Tℓ) the L2-orthogonal pro-

jection onto Tℓ-piecewise constants, which satisfies (2.25) with the mesh size Hℓ.
The following definition of the Haar basis is similar to [FP20]. Starting with

the L2-normalized characteristic functions of the elements of T1, given by

H1 := {|K|−1/21K : K ∈ T1}, (4.7)

we successively add L2-orthogonal functions on finer meshes. For this, we define
the descendants of the element K ∈ Tℓ by des(K) := {T ∈ Tℓ+1 : T ⊂ K} and
denote by {ϕK,j : j = 1, . . . ,#des(K) − 1} a set of L2-orthonormal functions
in P0(Tℓ+1 ∩ des(K)) whose integrals equal zero. The latter condition ensures
the L2-orthogonality to piecewise constant functions on coarser levels. For ℓ =
1, . . . , L− 1, we consider the following sets of functions:

Hℓ+1 :=
⋃

K∈Tℓ
{ϕK,j : j = 1, . . . ,#des(K)− 1}. (4.8)

The Haar basis is then obtained as

H := H1 ∪ · · · ∪ HL. (4.9)

By construction, H is an orthonormal basis of P0(TL). Note that similar con-
structions can be performed for unstructured quadrilateral/hexahedral or sim-
plicial meshes. For tensor-product meshes also higher order Haar basis functions
can be constructed, cf. [Alp93].

Since the Haar basis functions are non-conforming with respect to V , we
need to construct V-conforming companions. In the one-level setting, this was
done by the operators BH and PH defined in (3.6) and (3.24). Their multi-
level analogues, denoted by Bℓ and Pℓ, can be defined at each level of the
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4.2 Multi-resolution decomposition

hierarchy exactly as in the one-level case. Also the estimates (3.7) and (3.25)
can be transferred to the multi-level setting. More precisely, for all levels, the
operator Bℓ satisfies for all K ∈ Tℓ and v ∈ L2(D) that

∥Bℓv∥L2(K) +Hℓ∥∇Bℓv∥L2(K) ≤ CBℓ
∥v∥L2(K). (4.10)

Furthermore, for all levels, the operator Pℓ satisfies that

∥Pℓv∥V(K) ≤ CPℓ
∥v∥V(N(K)) (4.11)

for all K ∈ Tℓ and v ∈ V , where we recall that the V-norm is now κ-dependent,
cf. (4.1). The constants CBℓ

and CPℓ
have the same dependencies as their coun-

terparts CBH
and CPH

in the one-level setting.

4.2.2 Level correctors

The construction of the multi-resolution decomposition employs correctors at
each level of the mesh hierarchy. At the level ℓ, these correctors are projections
onto the closed subspaceWℓ ⊂ V consisting of functions that cannot be resolved
by the mesh Tℓ, i.e.,

Wℓ := kerΠ0
ℓ . (4.12)

This space is the multi-resolution analogue to W defined in (2.17). Using the
nesting of the meshes in the hierarchy, we obtain that

W1 ⊃ · · · ⊃ WL. (4.13)

Following (3.1), we define for all levels the correctors Cℓ, C∗ℓ : V → Wℓ such that

a(Cℓv, w) = aK(v, w), a(w, C∗ℓ v) = aK(w, v) (4.14)

holds for all v ∈ V and w ∈ Wℓ.
For the well-posedness of the corrector problems (4.14), we assume that T1

satisfies the following resolution condition:

H1κ ≤
π√
2
. (4.15)

The following lemma proves that a is coercive on W1 ×W1.

Lemma 4.2.1 (Coercivity of a on W1 × W1). Under the resolution condi-
tion (4.15), it holds that a is coercive on W1 ×W1, i.e., it holds that

Ra(w,w) ≥ 1

3
∥w∥V . (4.16)

for all w ∈ W1. Furthermore, the norms ∥·∥V and ∥∇·∥L2 are equivalent onW1

independently of κ.
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4 Multi-resolution LOD for Helmholtz problems

Proof. Using (2.25) and (4.15), we obtain for all w ∈ W1 that

Ra(w,w) ≥ ∥∇w∥2L2 − κ2∥w∥L2 = ∥∇w∥2L2 − κ2∥(id− Π0
1)w∥

2

L2

≥ ∥∇w∥2L2 − π−2(H1κ)
2∥∇w∥2L2 ≥

1

2
∥∇w∥2L2 .

The equivalence of the norms ∥∇ · ∥L2 and ∥ · ∥V on W1 can be proved in a
similar way. For all w ∈ W1, we obtain that

∥∇w∥2L2 ≤ ∥w∥2V = ∥∇w∥2L2 + κ2∥(id− Π0
1)w∥

2

L2 ≤
3

2
∥∇w∥2L2 .

Combining both estimates yields the assertion.

From the coercivity of a on W1 × W1, the following corollary deduces the
well-posedness of the corrector problems (4.14) for all levels.

Corollary 4.2.2 (Inf–sup stability of the corrector problems). If the resolution
condition (4.15) is satisfied, it holds for all levels ℓ that the sesquilinear form a
is inf–sup stable on Wℓ ×Wℓ, i.e., the condition (2.18) holds for Wℓ with the
inf–sup constant

αf =
1

3
.

Furthermore, the inf–sup conditions (3.18) and (3.22) for local subspaces of Wℓ

hold with the inf–sup constants

αd = αfp =
1

3
.

Proof. Using (4.13) and the coercivity of a on W1 ×W1, the coercivity of a on
Wℓ ×Wℓ follows for all levels ℓ. Since coercivity implies inf–sup stability with
the inf–sup constant equal to the coercivity constant, we obtain the inf–sup
stability of the real part of a. Using that |a(v, w)| ≥ Ra(v, w) for all v, w ∈ V ,
the first assertion follows. The second assertion, which is the inf–sup stability
on certain local subspaces of Wℓ, follows similarly.

4.2.3 Multi-resolution spaces

We construct the prototypical basis functions of the multi-resolution trial and
test spaces by adding corrections to conforming versions of the Haar basis func-
tions. At each level, we define the following two sets of basis functions:

Bℓ :=
{
(id− Cℓ)Bℓϕ : ϕ ∈ Hℓ

}
, B∗

ℓ :=
{
(id− C∗ℓ )Bℓϕ : ϕ ∈ Hℓ

}
. (4.17)

The prototypical multi-resolution trial and test spaces at level ℓ are then defined
as the span of the above bases, i.e.,

Umr
ℓ := span(Bℓ), V mr

ℓ := span(B∗
ℓ).
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4.2 Multi-resolution decomposition

Figure 4.1: Real part of the prototypical MRLOD basis functions for the
Helmholtz problem on the unit square with impedance boundary
conditions and κ = 4.

For a depiction of selected basis functions, see Figure 4.1. We define the trial and
test spaces of the prototypical MRLOD as the sum of the above multi-resolution
spaces, i.e.,

Umr := Umr
1 ⊕ · · · ⊕ Umr

L , V mr := V mr
1 ⊕ · · · ⊕ V mr

L . (4.18)

The multi-resolution spaces Umr
ℓ and V mr

ℓ and the kernels Wℓ satisfy certain
“a-orthogonality” relations (recall that a is not an inner product). Using the
nesting of the kernels (4.13) and the definition (4.17), we obtain that for all
levels k and ℓ with k ≤ ℓ it holds that

a(Umr
k ,Wℓ) = 0, a(Wℓ, V

mr
k ) = 0. (4.19)

These relations can be used to establish a connection to the prototypical problem-
adapted approximation (2.16) on the mesh TL, as shown in the following lemma.

Lemma 4.2.3 (Equivalence to prototypical approximation). We denote by Ua
L

and V a
L the prototypical problem-adapted trial and test spaces with respect to the

mesh TL defined analogously to (2.15). Then, the following identities hold:

Ua
L = Umr, V a

L = V mr. (4.20)

Proof. We apply (4.19) for ℓ = L, which shows that the spaces Umr and V mr

satisfy a(Umr,WL) = 0 and a(WL, V
mr) = 0. Using Lemma 3.1.1 and Corol-

lary 3.1.2, we obtain the inclusions Umr ⊂ Ua
L and V mr ⊂ V a

L . Since the spaces
have the same dimension, the assertion follows.

4.2.4 Decoupling of scales

The above “a-orthogonality” relations also imply that the discrete Helmholtz
operator is block-diagonal with respect to the prototypical multi-resolution test
and trial spaces defined in (4.18). This is proved in the following lemma.
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4 Multi-resolution LOD for Helmholtz problems

Figure 4.2: Block-diagonal discrete Helmholtz operator with respect to the trial
and test spaces Umr and V mr. The magnitude of the matrix entries
is indicated by a logarithmic color map.

Lemma 4.2.4 (“a-orthogonality” of levels). For all levels k and ℓ with k ̸= ℓ,
it holds that

a(Umr
k , V mr

ℓ ) = 0.

Proof. For levels k and ℓ with k > ℓ, we first show that Umr
k ⊂ Wℓ. Using that

all uk ∈ Umr
k can be written as uk = (id−Ck)Bkϕk for some ϕk ∈ span(Hk) and

definition (4.14), we obtain that

Π0
ℓ(id− Ck)Bkϕk = Π0

ℓΠ
0
k(id− Ck)Bkϕk = Π0

ℓϕk = 0.

Together with (4.19), this implies the assertion. If k < ℓ, one can similarly show
that V mr

ℓ ⊂ Wk, which again gives the assertion.

As a consequence, computing the Galerkin approximation with respect to the
trial and test spaces Umr and V mr boils down to solving sub-scale problems at
each level of the hierarchy and adding up the sub-scale solutions. The sub-scale
problem at level ℓ seeks umr

ℓ ∈ Umr
ℓ such that

a(umr
ℓ , v) = (f, v)L2 (4.21)

holds for all v ∈ V mr
ℓ . The prototypical MRLOD approximation is then obtained

by adding up these sub-scale solutions, i.e.,

umr := umr
1 + · · ·+ umr

L ∈ Umr. (4.22)

For a visualization of the block-diagonal discrete Helmholtz operator, see Fig-
ure 4.2.

The following lemma proves the well-posedness of the sub-scale problems.

Lemma 4.2.5 (Inf–sup stability of the sub-scale problems). Let the resolution
condition (4.15) be satisfied. Then, for all levels, the sesquilinear form a is
inf–sup stable on Umr

ℓ × V mr
ℓ , i.e., there exists αa,ℓ > 0 such that

inf
v∈Umr

ℓ

sup
w∈V mr

ℓ

Ra(v, w)

∥v∥V∥w∥V
≥ αa,ℓ,
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4.3 Decay and localization

where
αa,ℓ ≈

{
(Cst(κ)κ)

−1 ℓ = 1,
1 ℓ > 1.

(4.23)

Proof. For ℓ = 1, the result can be proved using Lemma 2.3.1, which states that
the inf–sup constant is given by C−1

a αcαf . Transferred to the Helmholtz setting,
this means that αa,1 ≈ (Cst(κ)κ)

−1, where we used (4.6) and Corollary 4.2.2.
For ℓ > 1, we note that any vℓ ∈ Umr

ℓ can be written as vℓ = (id−Cℓ)Bℓϕℓ for
some ϕℓ ∈ span(Hℓ). Defining wℓ := (id− C∗ℓ )Bℓϕℓ and using (4.19), we obtain
that

a(vℓ, wℓ) = a((id− Cℓ)Bℓϕℓ, (C∗ℓ − Cℓ)Bℓϕℓ) + a(vℓ, vℓ) = a(vℓ, vℓ).

Since ℓ > 1, it holds that vℓ ∈ Umr
ℓ ⊂ W1, which can be concluded in a similar

way as in the proof of Lemma 4.2.4. This allows us to apply Lemma 4.2.1, which
yields that

Ra(vℓ, wℓ) = Ra(vℓ, vℓ) ≥
1

3
∥vℓ∥2V .

It also holds that wℓ ∈ V mr
ℓ ⊂ W1, which can be shown in a similar way as

for vℓ. Using this, Lemma 4.2.1 and (4.19), we obtain that

1

3
∥wℓ∥2V ≤ Ra(wℓ, wℓ) = Ra((Cℓ − C∗ℓ )Bℓϕℓ, (id− C∗ℓ )Bℓϕℓ) +Ra(vℓ, wℓ)

= Ra(vℓ, wℓ) ≤ Ca∥vℓ∥V∥wℓ∥V .

Combining the previous estimates yields the inf–sup stability with the inf–sup
constant αa,ℓ ≈ 1 for ℓ > 1.

We obtain the following convergence result for the prototypical MRLOD ap-
proximation.

Corollary 4.2.6 (Convergence of the prototypical MRLOD). For any f ∈
Hk(D), k ∈ {0, 1}, the prototypical MRLOD approximation (4.22) satisfies that

∥u− umr∥V ≤ 3π−1−kH1+k
L |f |Hk .

Proof. Since by Lemma 4.2.3, the prototypical MRLOD is equivalent to the
prototypical problem-adapted approximation (2.16), we can apply Lemma 2.3.3.
The desired estimate then follows by Corollary 4.2.2.

4.3 Decay and localization
In this section, we show that the prototypical multi-resolution basis functions
decay exponentially fast, which justifies their localization in Section 4.4.
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4 Multi-resolution LOD for Helmholtz problems

For this, we apply LOD techniques at each discretization level. Note that
the resolution condition (4.15) guarantees that all inf–sup conditions required
by the LOD are satisfied, cf. Corollary 4.2.2. To apply the LOD in the multi-
resolution setting, we first extend the definition of patches in (3.11). For all
levels, we denote by Nℓ,m(K) the m-th order patch of the element K ∈ Tℓ with
respect to the mesh Tℓ. Furthermore, we adapt the definition of the element
correctors in (3.15) to the multi-resolution setting. For all levels, we define for
any K ∈ Tℓ the element correctors CK,ℓ, C∗K,ℓ : V → Wℓ so that

a(CK,ℓv, w) = aK(v, w), a(w, C∗K,ℓv) = aK(w, v) (4.24)

holds for all v ∈ V and w ∈ Wℓ. For the Helmholtz problem, the restricted
sesquilinear form aK is given by

aK(v, w) := (∇v , ∇w)L2(K) − κ2(v , w)L2(K) − iκ(v , w)L2(∂K∩∂D).

The following corollary states the exponential decay of the element corrections
at all levels.

Corollary 4.3.1 (Exponential decay of element corrections). If the resolution
condition (4.15) is satisfied, there exists Cd > 0 depending only on the shape
regularity of T1, such that for all levels ℓ it holds that

∥CK,ℓv∥V(D\Nℓ,m(K)) ≤ exp(−Cdm)∥CKv∥V

for all K ∈ Tℓ, v ∈ V, and m ∈ N. An analogous result holds for C∗K,ℓ.

Proof. For each level, this result can be proved similarly to Lemma 3.3.1 with
the only difference that the V-norm is now κ-dependent, cf. (4.1). To deal
with this κ-dependence, one can use that for functions in W1 the norms ∥ · ∥V
and ∥∇ · ∥L2 are equivalent, cf. Lemma 4.2.1. The resulting constants have the
same dependencies as in Lemma 3.3.1. The constant Cd depends only on αd and
the shape regularity of Tℓ. By Corollary 4.2.2, it holds that αd = 1

3
. Since the

mesh hierarchy is constructed by uniform refinement, the shape regularity of Tℓ
is the same as for T1. Thus, Cd depends only on the shape regularity of T1.

Next, for all levels, we perform a localization of the element correctors CK,ℓ

and C∗K,ℓ to m-th order patches in the mesh Tℓ. For this purpose, we define local
subspaces of Wℓ for all K ∈ Tℓ and m ∈ N as follows:

WK,ℓ,m := {w ∈ Wℓ : supp(w) ⊂ Nℓ,m(K)}. (4.25)

For all levels, we then define for any K ∈ Tℓ the localized element correctors
CK,ℓ,m, C∗K,ℓ,m : V → WK,ℓ,m such that

a(CK,ℓ,mv, w) = aK(v, w), a(w, C∗K,ℓ,mv) = aK(w, v) (4.26)
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4.4 Practical multi-resolution method

holds for all v ∈ V and w ∈ WK,ℓ,m. Finally, the localized correctors at level ℓ
are obtained as the sum of the localized element correctors at level ℓ, i.e.,

Cℓ,m :=
∑
K∈Tℓ
CK,ℓ,m, C∗ℓ,m :=

∑
K∈Tℓ
C∗K,ℓ,m.

The following corollary shows that the localized correctors are exponentially
good approximations of their global counterparts.

Corollary 4.3.2 (Localization error). If the resolution condition (4.15) is sat-
isfied, it holds for all levels ℓ that

∥(Cℓ − Cℓ,m)v∥V ≲ md/2 exp(−Cdm)∥v∥V
for all v ∈ V and m ∈ N. The constant Cd is from Corollary 4.3.1 and the hidden
constant depends only on the quasi-uniformity and shape regularity of T1. An
analogous result holds for the difference C∗ℓ − C∗ℓ,m.

Proof. For each level, this result can be proved similarly to Lemma 3.3.3 with
the only difference that the V-norm is now κ-dependent, cf. (4.1). Similar to the
proof of Corollary 4.3.1, one can deal with this κ-dependence, by using that for
functions in W1 the norms ∥ · ∥V and ∥∇ · ∥L2 are equivalent, cf. Lemma 4.2.1.
All resulting constants have the same dependencies as in Lemma 3.3.3. The
hidden constant depends only on αf , αfp, and the quasi-uniformity and shape
regularity of Tℓ. By Corollary 4.2.2, it holds that αf = αfp = 1

3
. The quasi-

uniformity and shape regularity constants of Tℓ are the same as for the mesh T1.

4.4 Practical multi-resolution method
In this section, we introduce the MRLOD based on the considerations in the
previous sections. To solve the sub-scale problems (4.21) in practice, the MR-
LOD uses localized versions of the prototypical multi-resolution basis functions
defined in (4.17). These localized basis functions are for all levels defined as

Bℓ,m :=
{
(id− Cℓ,m)Pℓϕ : ϕ ∈ Hℓ

}
, B∗

ℓ,m :=
{
(id− C∗ℓ,m)Pℓϕ : ϕ ∈ Hℓ

}
.

(4.27)
For all levels, the trial and test spaces of the MRLOD are then obtained as the
span of the localized basis functions defined above, i.e.,

Umr
ℓ,m := span(Bℓ,m), V mr

ℓ,m := span(B∗
ℓ,m). (4.28)

For a depiction of selected MRLOD basis functions, see Figure 4.3. Practical
aspects regarding the computation of the basis functions (4.27) are discussed in
Section 4.6.
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4 Multi-resolution LOD for Helmholtz problems

Figure 4.3: Real part of the MRLOD basis functions for the oversampling pa-
rameter m = 1 for the Helmholtz problem on the unit square with
impedance boundary conditions and κ = 4.

Figure 4.4: Localized discrete Helmholtz operator for m = 1, where we set the
neglected off-diagonal blocks to zero. The magnitude of the matrix
entries is indicated by a logarithmic color map.

Note that the discrete Helmholtz operator is no longer block-diagonal after
localization. However, the entries of the off-diagonal blocks decay exponentially
as the oversampling parameter m is increased. Thus, for a sufficiently large m,
one can neglect the off-diagonal blocks without a notable loss of accuracy. As
a consequence, the MRLOD first seeks, for all levels, the sub-scale solutions
umr
ℓ,m ∈ Umr

ℓ,m, which satisfy that

a(umr
ℓ,m, v) = (f, v)L2 (4.29)

for all v ∈ V mr
ℓ,m. The MRLOD approximation is then obtained as the sum of

these sub-scale solutions, i.e.,

umr
m := umr

1,m + · · ·+ umr
L,m. (4.30)

For a visualization of the localized block-diagonal discrete Helmholtz operator,
see Figure 4.4.

If the oversampling parameter m is chosen large enough, the MRLOD is
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sufficiently close to its prototypical counterpart so that the stability result from
Lemma 4.2.5 also holds for the MRLOD. This is shown by the following theorem.

Theorem 4.4.1 (Inf–sup stability of the localized sub-scale problems). Let (4.5)
and (4.15) be satisfied, as well as the oversampling condition

m ≳

{
log(κ) ℓ = 1,
1 ℓ > 1.

(4.31)

Then, for all levels ℓ, the sesquilinear form a is inf–sup stable on Umr
ℓ,m × V mr

ℓ,m,
i.e., there exists αmr,ℓ > 0 such that

inf
v∈Umr

ℓ,m

sup
w∈V mr

ℓ,m

Ra(v, w)

∥v∥V∥w∥V
≥ αmr,ℓ

with αmr,ℓ ≈ αa,ℓ, where αa,ℓ is the constant from Lemma 4.2.5. Note that the
hidden constants depend only on the quasi-uniformity and shape regularity of T1.
Proof. At each level ℓ, the inf–sup stability of a on Umr

ℓ,m × V mr
ℓ,m can be proved

in exactly the same way as in the proof of Theorem 3.4.1. To derive the condi-
tion (4.31), we obtain, following the lines of this proof, for any vℓ,m ∈ Umr

ℓ,m the
existence of wℓ,m ∈ V mr

ℓ,m such that

Ra(vℓ,m, wℓ,m) ≳ (αa,ℓ −md/2 exp(−Cdm))∥vℓ,m∥V∥wℓ,m∥V , (4.32)

where αa,ℓ is defined in (4.23). The hidden constant depends only on αf , αfp,
and the quasi-uniformity and shape regularity of T1. By Corollary 4.2.2, it holds
that αf = αfp = 1

3
. Using the assumption (4.5), one obtains that exactly the

condition (4.31) is required to absorb the second term into the first.

Similarly, for sufficiently large oversampling parameters, also the optimal or-
der convergence of the prototypical MRLOD, cf. Corollary 4.2.6, carries over to
the localized setting. This is shown by the following theorem.

Theorem 4.4.2 (Convergence of the MRLOD). If assumptions (4.5) and (4.15)
hold, then for any f ∈ Hk(D), k ∈ {0, 1}, the MRLOD approximation (4.30)
satisfies that

∥u− umr
m ∥V ≲ H1+k

L |f |Hk + (κ2n+2 + L)md/2 exp(−Cdm)∥f∥L2 . (4.33)

Moreover, if we treat L as a constant and if the oversampling condition

m ≳

{
log( κ

HL
) ℓ = 1,

log( 1
HL

) ℓ > 1,
(4.34)

is satisfied, we get the estimate

∥u− umr
m ∥V ≲ H1+k

L ∥f∥Hk . (4.35)

Note that Cd is the constant from Corollary 4.3.1 and that the above hidden
constants depend only on the quasi-uniformity and shape regularity of T1.
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Proof. To prove the error estimate (4.33), we first add and subtract the proto-
typical MRLOD approximation umr defined in (4.22) and decompose umr and umr

m

into their level contributions, cf. (4.22) and (4.30). Using the triangle inequality,
we obtain that

∥u− umr
m ∥V ≤ ∥u− umr∥V + ∥umr − umr

m ∥V ≤ ∥u− umr∥V +
L∑

ℓ=1

∥umr
ℓ − umr

ℓ,m∥V .

The first term on the right-hand side can be estimated with Corollary 4.2.6.
For the second term, we proceed for each summand exactly as in the proof of
Theorem 3.4.2. More precisely, we use that umr

ℓ,m ∈ Umr
ℓ can be viewed as a

non-conforming and non-consistent approximation to umr
ℓ ∈ Umr

ℓ,m. This allows
one to apply Strang’s lemma (see, e.g., [EG04, Lem. 2.25]), which yields the
following estimate for the ℓ-th summand:

∥umr
ℓ − umr

ℓ,m∥V ≲ α−1
a,ℓα

−1
mr,ℓm

d/2 exp(−Cdm)∥f∥L2 ,

where we use that κ ∈ (κ0,∞) for some fixed κ0 > 0, cf. Section 4.1. The hidden
constant depends only on αf , αfp, and the quasi-uniformity and shape regularity
of T1. By Corollary 4.2.2, it holds that αf = αfp = 1

3
. Using the polynomial-in-κ

stability assumption (4.5) and the dependence of the constants αa,ℓ and αmr,ℓ

on κ as stated in Lemma 4.2.5 and Theorem 4.4.1, one obtains that α−1
a,ℓα

−1
mr,ℓ

scales like O(κ2n+2) for ℓ = 1 and like O(1) for ℓ > 1. Combining the above
estimates gives the error bound (4.33).

Provided that the oversampling condition (4.34) is satisfied, the estimate (4.35)
is a direct consequence of (4.33), if we treat L as a constant.

4.5 Fast solvers
In this section, we study the efficient numerical solution of the localized sub-
scale problems (4.29). We show that the sub-scale problems corresponding to
levels ℓ > 1 can be solved by the Generalized Minimal Residual (GMRES)
method, cf. [Saa03], up to a given tolerance within a few iterations. The rather
low-dimensional first sub-scale problem can be solved with a direct solver.

Subsequently, we denote the number of Haar basis functions at level ℓ by
Nℓ := #Hℓ. Furthermore, we denote the prototypical basis functions at level ℓ
for j = 1, . . . , Nℓ by bℓ,j and b∗ℓ,j, cf. (4.17). Similarly, we denote their localized
counterparts for j = 1, . . . , Nℓ by bℓ,m,j and b∗ℓ,m,j, cf. (4.27). The sub-scale
problems (4.29) can then be rewritten as the linear system of equations

Aℓ,mxℓ,m = fℓ,m, (4.36)

where

Aℓ,m :=
(
a(bℓ,m,k, b

∗
ℓ,m,j)

)
j,k=1,...,Nℓ

, fℓ,m :=
(
(f, b∗ℓ,m,j)L2

)
j=1,...,Nℓ

.
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4.5 Fast solvers

The convergence properties of the GMRES method are determined by the
field of values of the considered matrix. For an invertible matrix A ∈ CN×N , we
define the field of values by

F(A) :=
{
(Aξ, ξ) : ξ ∈ CN , |ξ| = 1

}
,

where (·, ·) denotes the Euclidean inner product on CN and | · | denotes its
induced norm. Let us consider a right-hand side f ∈ CN and denote by x(k) the
k-th GMRES iterate (without restart) applied to Ax = f . Then, the residuals
r(k) := Ax(k) − f converge to zero with

|r(k)|
|r(0)| ≤

(
1− minξ∈F(A) |ξ|2

∥A∥2
)k/2

, (4.37)

where ∥ · ∥ denotes the spectral norm of a matrix, cf. [LT20].
Using this convergence result, the following theorem proves the uniform con-

vergence of the GMRES method applied to the sub-scale problems (4.29).

Theorem 4.5.1 (Uniform convergence of the GMRES). We consider the sub-
scale problems (4.29) for ℓ > 1. If (4.15) and m ≳ 1 (the hidden constant
depends only on the quasi-uniformity and shape regularity of T1) is satisfied, the
linear system (4.36) can be solved with the GMRES method up to a given relative
tolerance within a fixed number of iterations depending only on the tolerance.

Proof. Let the level ℓ > 1 be fixed. First, we consider the prototypical setting,
i.e., we prove upper and lower bounds for the field of values of the matrix

Aℓ :=
(
a(bℓ,k, b

∗
ℓ,j)
)
j,k=1,...,Nℓ

.

Denoting by ϕℓ,j the Haar basis functions at the level ℓ (i.e., the elements of Hℓ),
we obtain for any ξ ∈ CNℓ the upper bound

| (Aℓξ, ξ) | =
∣∣∣∣a
(

Nℓ∑
j=1

ξjbℓ,j,

Nl∑
j=1

ξjb
∗
ℓ,j

)∣∣∣∣ = ∣∣∣∣a
(

Nℓ∑
j=1

ξjbℓ,j,

Nℓ∑
j=1

ξjbℓ,j

)∣∣∣∣
≲

∥∥∥∥∥
Nℓ∑
j=1

ξjbℓ,j

∥∥∥∥∥
2

V
=

∥∥∥∥∥(id− Cℓ)
(

Nℓ∑
j=1

ξjBℓϕℓ,j

)∥∥∥∥∥
2

V

≲

∥∥∥∥∥
Nℓ∑
j=1

ξjBℓϕℓ,j

∥∥∥∥∥
2

V
= κ2

∥∥∥∥∥
Nℓ∑
j=1

ξjBℓϕℓ,j

∥∥∥∥∥
2

L2

+

∥∥∥∥∥∇
(

Nℓ∑
j=1

ξjBℓϕℓ,j

)∥∥∥∥∥
2

L2

≲
(Hℓκ)

2 + 1

H2
ℓ

∥∥∥∥∥
Nℓ∑
j=1

ξjϕℓ,j

∥∥∥∥∥
2

L2

≲
1

H2
ℓ

|ξ|2,

where we used (2.2), (4.10), (4.15), and (4.19) and the continuity of id − Cℓ,
which holds due to Corollary 4.2.2 and the fact that Cℓ and id − Cℓ have the
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4 Multi-resolution LOD for Helmholtz problems

same operator norms, cf. [Szy06]. Using similar arguments, as well as (2.25)
and Lemma 4.2.1, we obtain the lower bound

| (Aℓξ, ξ) | =
∣∣∣∣a
(

Nℓ∑
j=1

ξjbℓ,j,

Nl∑
j=1

ξjb
∗
ℓ,j

)∣∣∣∣ = ∣∣∣∣a
(

Nℓ∑
j=1

ξjbℓ,j,

Nl∑
j=1

ξjbℓ,j

)∣∣∣∣
≳

∥∥∥∥∥∇
(

Nl∑
j=1

ξjbℓ,j

)∥∥∥∥∥
2

L2

≳
1

H2
ℓ

∥∥∥∥∥(id− Π0
ℓ−1)

(
Nl∑
j=1

ξjbℓ,j

)∥∥∥∥∥
2

L2

=
1

H2
ℓ

∥∥∥∥∥
Nl∑
j=1

ξjbℓ,j

∥∥∥∥∥
2

L2

≥ 1

H2
ℓ

∥∥∥∥∥
Nl∑
j=1

ξjΠ
0
ℓbℓ,j

∥∥∥∥∥
2

L2

=
1

H2
ℓ

∥∥∥∥∥
Nl∑
j=1

ξjϕℓ,j

∥∥∥∥∥
2

L2

=
1

H2
ℓ

|ξ|2.

The next step is to transfer the field of values bound for the prototypical
approximation to the localized setting. Using (4.19), we obtain that

(Aℓ,mξ, ξ) = a

(
Nℓ∑
j=1

ξjbℓ,m,j,

Nl∑
j=1

ξjb
∗
ℓ,m,j

)

= a

(
Nℓ∑
j=1

ξjbℓ,j,

Nl∑
j=1

ξjbℓ,j

)
+ a

(
Nℓ∑
j=1

ξj(bℓ,m,j − bℓ,j),
Nl∑
j=1

ξjb
∗
ℓ,m,j

)
.

For the first term, we apply the field of values bounds for the prototypical
approximation. In the following, we show that the second term is exponentially
small. Using (2.2), (4.10), (4.11), and (4.15) and Corollary 4.3.2, we obtain that∣∣∣∣a

(
Nℓ∑
j=1

ξj(bℓ,m,j − bℓ,j),
Nl∑
j=1

ξjb
∗
ℓ,m,j

)∣∣∣∣
≲

∥∥∥∥∥(Cℓ,m − Cℓ)
(

Nℓ∑
j=1

ξjPℓBℓϕℓ,j

)∥∥∥∥∥
V

∥∥∥∥∥ (id− C∗ℓ,m)
(

Nℓ∑
j=1

ξjPℓBℓϕℓ,j

)∥∥∥∥∥
V

≲ md/2 exp(−Cdm)

∥∥∥∥∥Pℓ

(
Nℓ∑
j=1

ξjBℓϕℓ,j

)∥∥∥∥∥
2

V

≲ md/2 exp(−Cdm)

(
κ2

∥∥∥∥∥
Nℓ∑
j=1

ξjBℓϕℓ,j

∥∥∥∥∥
2

L2

+

∥∥∥∥∥∇
(

Nℓ∑
j=1

ξjBℓϕℓ,j

)∥∥∥∥∥
2

L2

)

≲ md/2 exp(−Cdm)
((Hℓκ)

2 + 1)

H2
ℓ

∥∥∥∥∥
Nℓ∑
j=1

ξjϕℓ,j

∥∥∥∥∥
2

L2

≲
md/2 exp(−Cdm)

H2
ℓ

|ξ|2.
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In the estimate above, we also used the continuity of id − C∗ℓ,m, which can be
proved using Corollary 4.3.2 and the continuity of id−C∗ℓ . Note that the conti-
nuity of id−C∗ℓ can be shown similarly as described above using Corollary 4.2.2
and the fact that C∗ℓ and id− C∗ℓ have the same operator norms, cf. [Szy06].

Combining the previous estimates, we obtain that

minξ∈F(Aℓ,m) |ξ|2
maxξ∈F(Aℓ,m) |ξ|2

≳
1−md/2 exp(−Cdm)

1 +md/2 exp(−Cdm)
|ξ|2.

Using the oversampling condition m ≳ 1, we further get that

0 < C <
1

4

minξ∈F(Aℓ,m) |ξ|2
maxξ∈F(Aℓ,m) |ξ|2

≤ minξ∈F(Aℓ,m) |ξ|2
∥Aℓ,m∥2

< 1,

where we applied the inequality

max
ξ∈F(Am

ℓ )
|ξ| ≤ ∥Am

ℓ ∥ ≤ 2 max
ξ∈F(Am

ℓ )
|ξ|,

see [HJ90, Ch. 1]. The constant C depends only on the quasi-uniformity and
shape regularity of T1 and, in particular, is independent of κ. Applying the
GMRES convergence result (4.37), yields the assertion.

4.6 Implementation aspects
In this section we discuss aspects related to the practical implementation of
the MRLOD. First, we note that all the element corrector problems (4.26) are
independent of each other and thus can be solved in parallel. Furthermore,
since the coefficient κ of the Helmholtz problem is constant in space (and thus
in particular periodic with respect to TL), only the solution to O(md) corrector
problems is required at each level. The solution to the other problems can
be obtained by translation, cf. [GP15]. Moreover, using the properties of the
Helmholtz sesquilinear form, one can show that C∗K,ℓ,mv = CK,ℓ,mv holds for all
v ∈ V , cf. [Pet16]. Note that such an identity is well known for the solution
operator of Helmholtz problems, see, e.g., [MS11, Lem. 3.1]. Using this identity,
we can show that for any ϕ ∈ Hℓ it holds that

(id− C∗ℓ,m)Pℓϕ = (id− Cℓ,m)Pℓϕ,

where we used that Pℓϕ = Pℓϕ. A direct consequence of this identity is that
only one of the two sets of basis functions in (4.27) needs to be computed, and
the other one can be obtained by complex conjugation.

Another important aspect is the fine-scale discretization of the MRLOD,
which can be done similarly as described in Section 3.5. For this, we replace the
space V in the derivation of the MRLOD by its fine-scale FE counterpart V fem

h
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4 Multi-resolution LOD for Helmholtz problems

defined with respect to the fine mesh Th obtained by refining TL. For a reliable
MRLOD approximation, the fine-scale FEM solution must be an accurate ap-
proximation of the continuous solution, cf. Theorem 3.5.1. For the Q1-FEM,
a classical assumption that guarantees stability and convergence is that κ2h is
sufficiently small, see [Mel95]. This assumption is much stronger than the re-
quirement needed to resolve the oscillations of the solution, which is known as
the pollution effect. Note that for the Helmholtz problem it may be particularly
useful to use hp-FEMs for the fine-scale discretization, as these methods are able
to achieve stability and convergence under more moderate assumptions on the
discretization parameters, cf. [MS10; MS11; MPS13]. However, this is not done
here, since the focus lies on the construction of the MRLOD and the efficient
solution of the coarse system matrix rather than the fine-scale discretization.

In Lemma 4.2.1 it was shown that all corrector problems are coercive. How-
ever, this has no real practical benefit, since the explicit construction of the
spaces Wℓ and their local counterparts WK,ℓ,m is difficult. It is more practi-
cable to use a saddle-point formulation of the corrector problems with O(md)
constraints enforcing that the solution is in WK,ℓ,m, see, e.g., [Eng+19] and
[MP20, Ch. 7]. Due to the small number of constraints, one typically computes
the Schur complement of the saddle point problem explicitly by solving O(md)
local Helmholtz problems on each patch. Since the patches have at most a di-
ameter of the order O(mH1), the effective wavenumber of the patch problems
is at most O(m) by (4.15). For such Helmholtz problems there are effective
preconditioners, see for example the review article [GZ19].

4.7 Numerical experiments
This section numerically studies the MRLOD for Helmholtz problems. We con-
sider uniform Cartesian meshes of the domain D, where the mesh size denotes
the side length of the elements instead of their diameter. Note that for sim-
plicity, we use the same oversampling parameter on all levels. The fine-scale
discretization of the MRLOD is performed similarly as described in Sections 3.5
and 4.6. It is based on a fine Cartesian mesh Th obtained by uniform refinement
of the finest mesh in the hierarchy TL. Henceforth, unless otherwise stated, all
errors are relative errors with respect to the κ-dependent norm (4.1) computed
with the fine-scale FE solution as the reference solution.

Optimal order convergence

First, we numerically study the convergence properties of the MRLOD in de-
pendence of the wavenumber κ. We consider the domain D = (0, 1)2 with
homogeneous impedance boundary conditions, i.e. Γ2 = ∂D. For consistency
reasons, we use the same source term as in Section 3.6, namely:

f(x1, x2) = (x1 + cos(3πx1)) · x32.
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Figure 4.5: Error of the MRLOD as a function of HL for several oversampling
parameters m and wavenumbers κ. The dotted line indicates the
expected rate of convergence.

For κ = 2j, j = 0, . . . , 3, we consider the hierarchy of meshes obtained by uni-
formly refining the uniform Cartesian mesh T1 with H1 = 2−1κ−1. We note
that the κ-dependent choice of the mesh size H1 satisfies the resolution condi-
tion (4.15). For the fine-scale discretization we use the Cartesian mesh T2−9 .

Figure 4.5 shows the convergence of the MRLOD as successively finer mesh
levels are added to the hierarchy. The finest considered mesh has the mesh
size HL = 2−7. If the oversampling parameter m is chosen sufficiently large,
one observes convergence of second order. Recalling that f ∈ H1(D), this is
consistent with the theoretical prediction in Theorem 4.4.2. For small m and
comparably large κ, one observes that the error of the MRLOD remains of order
one as finer mesh levels are added to the hierarchy. The reason for this effect
is that m may not satisfy the condition (4.31). Therefore, convergence cannot
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4 Multi-resolution LOD for Helmholtz problems

Table 4.1: Properties of the sub-scale problems (4.36) and GMRES iterations
needed for reaching a relative residual of 10−6.

ℓ 1 2 3 4 5

Hℓ 2−5 2−6 2−7 2−8 2−9

#Hℓ 240 720 2880 11520 46080

cond2(Aℓ,2) 198 23 17 16 16

iterations 176 21 17 16 15

be expected.

Uniform number of GMRES iterations

Next, we numerically investigate the number of GMRES iterations needed to
solve the sub-scale problems (4.29) up to a given tolerance. We consider the
domain D = (0, 1)2\S with the scatterer S = [3

8
, 5
8
]2. At the boundary of S,

we impose homogeneous Dirichlet boundary conditions, i.e., Γ3 = ∂S. Further-
more, at the remaining boundary ∂D\∂S, we impose homogeneous impedance
boundary conditions, i.e., Γ2 = ∂D\∂S. For this numerical experiment, we
choose κ = 25 and consider the source term

f(x) =

 104 × exp

(
1

1− |x−x0|2
r2

)
if |x− x0| < r,

0 else,
(4.38)

where r = 1
20

and x0 = (1
8
, 1
8
). The hierarchy of meshes used is specified in

Table 4.1. We choose the oversampling parameter m = 2 and use the Cartesian
mesh T2−12 for the fine-scale discretization. To avoid excessive memory con-
sumption, we restart the GMRES method every 50 iterations. The GMRES
method terminates if a relative residual of 10−6 is reached.

Table 4.1 shows the number of GMRES iterations needed to solve the sub-
scale problems (4.36) up to the prescribed accuracy. The uniform boundedness
of the number of iterations for ℓ > 1 is in line with the theoretical prediction
in Theorem 4.5.1. The high number of iterations for ℓ = 1 shows that the
GMRES method performs poorly when applied to the first level. Note that
the poor performance of the GMRES for the first sub-scale problem is strongly
related to the unfavorable scaling of the corresponding inf–sup constant in κ,
see Theorem 4.4.1. Therefore, it is recommended to solve this relatively small
linear system with a direct solver. The spectral condition numbers of the sub-
scale problems (4.36), which are typically a good indicator of the convergence
behavior of iterative solvers, support the above observations.
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Figure 4.6: Error of the MRLOD as a function of HL for several oversampling
parameters m. The dotted line indicates the expected rate of con-
vergence.

High-frequency Helmholtz problem

In the next numerical experiment, we again consider the domainD = (0, 1)2, but
this time with the relatively large wavenumber κ = 26. We impose homogeneous
impedance boundary conditions on the whole boundary, i.e., Γ2 = ∂D. As
source term, we use the one defined in (4.38) with r = 1

8
and x0 = (1

2
, 1
2
)T . The

hierarchy of meshes used in this experiment is obtained by uniform refinement
of the uniform Cartesian mesh T1 with H1 = 2−6. The finest considered mesh
in the hierarchy has the mesh size HL = 2−8. For the fine-scale discretization,
we employ the Cartesian mesh T2−10 .

Provided that the oversampling parameter m is chosen sufficiently large, Fig-
ure 4.6 shows second order convergence for the MRLOD as finer levels are added
to the hierarchy of meshes. This is again consistent with the theoretical predic-
tions in Theorem 4.4.2.

Heterogeneous media

This numerical example shall illustrate that the MRLOD is also applicable to
heterogeneous Helmholtz problems of the form

−∇ · (A∇u)− κ2u = f,

where A is a coefficient with uniform upper and lower bounds that describes the
properties of the medium at hand. We consider the domain D = (0, 1)2 with
homogeneous impedance boundary conditions, i.e., Γ2 := ∂D. For the definition
of the coefficient A, we define for j ∈ Z2 and ϵ = 2−7 the following inclusions:

Sj
ϵ := ϵ

(
j +

(
1
4
, 3
4

)2 )
.
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4 Multi-resolution LOD for Helmholtz problems

Figure 4.7: Heterogeneous coefficient A used in the numerical experiment.

For all inclusions contained in D, the coefficient A then takes constant values
that are obtained as realizations of independent and uniformly distributed ran-
dom variables in the interval [1, 16]. Elsewhere, the coefficient A is set to 1.
For a visualization of A, see Figure 4.7. We remark that, since A|∂D = 1, the
coefficient is compatible with the impedance boundary conditions introduced in
Section 4.1. In the heterogeneous setting, one typically uses the norm

∥ · ∥2V = ∥A1/2∇ · ∥2L2 + κ2∥ · ∥2L2 (4.39)

instead of the one defined in (4.1). This norm is henceforth used for the error
computation. We choose κ = 24 and use the source term defined in (4.38) with
r = 1

8
and x0 = (1

2
, 1
2
)T . Note that the above choice of A results in a lower

effective wavenumber of the problem inside the inclusions. We use a hierarchy
of meshes obtained by uniform refinement of the uniform Cartesian mesh T1
with H1 = 2−4. The finest considered mesh in the hierarchy is the Cartesian
mesh with the mesh size HL = 2−7. For the fine-scale discretization we use the
Cartesian mesh T2−9 .

Quantitatively, the convergence behavior in Figure 4.8 is similar to that in the
previous numerical experiments, i.e., one observes second order convergence pro-
vided that the oversampling parameter is chosen sufficiently large. This demon-
strates the applicability of the MRLOD to heterogeneous Helmholtz problems.

Note that we have not addressed the well-posedness and the polynomial-in-κ
stability of the considered heterogeneous Helmholtz problem, cf. (4.5) and (4.6).
These properties are necessary for the theoretical results of the MRLOD to
hold also in the heterogeneous setting. We refer to [ST18; GPS19; GS19] for a
theoretical investigation of heterogeneous Helmholtz problems.
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Figure 4.8: Error of the MRLOD as a function of HL for several oversampling
parameters m. The dotted line indicates the expected rate of con-
vergence.
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5 Super-Localized Orthogonal
Decomposition

In Chapter 3, we have introduced the LOD, which constructs its problem-
adapted basis functions by solving local sub-scale correction problems. Equiva-
lently, the LOD basis functions can be obtained as solutions to local constraint
energy minimization problems, where the constraints impose a Kronecker delta
condition on the QOIs of the basis functions, cf. [OS19; Mai21]. The constraints
on the QOIs cause the LOD basis functions to decay exponentially fast.

In this chapter, we will introduce a novel localization approach, which we
refer to as Super-Localized Orthogonal Decomposition (SLOD). The idea of
the SLOD is to drop the constraints on the QOIs of the basis functions and
to enforce their decay in a more direct way. Given an element and its m-th
order patch, the SLOD identifies a local FE source term whose response decays
rapidly under the local solution operator. The decay is enforced by minimizing
the conormal derivative of the response at the patch boundary. The SLOD
performs this procedure for all elements and uses the resulting local responses
as its basis functions. In practice, one observes that the localization error of the
SLOD decays super-exponentially as the oversampling parameterm is increased,
i.e., it behaves like exp(−Cmd/(d−1)), where C > 0 is a constant and d denotes
the spatial dimension. In one dimension, the localization error is zero, and thus
the SLOD provides a truly local basis, see Figure 2.5. The super-exponential
localization properties of the SLOD represent a significant improvement over
other state-of-the-art localization techniques, such as the LOD with exponential
localization properties, cf. Theorem 3.4.2. However, a rigorous proof of the
super-exponential localization property is still open, and we can only provide
a justification using a conjecture related to spectral geometry. Nevertheless,
using LOD techniques, one can prove that the novel localization approach yields
at least exponentially decaying localization errors. The main advantages of
the novel localization strategy are its lower computational cost for the basis
computation due to the considerably smaller supports of the basis functions
and a sparser coarse system matrix.

For the LOD, the Kronecker delta property of the basis functions with respect
to the QOIs ensures the stability of the basis. For the SLOD, however, we drop
these constraints for better localization properties. As a consequence, we are no
longer able to ensure the stability of the basis a priori. This issue is resolved in
Chapter 6, where we combine the SLOD with a partition of unity approach and
thereby enforce the basis stability. In the following, we introduce the SLOD in
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the general setting from Chapter 2.
The content and presentation of the following chapter is primarily based on

the journal and preprint articles

[HP22b] M. Hauck and D. Peterseim. “Super-localization of elliptic multi-
scale problems”. In: Math. Comp. 92.341 (2022), pp. 981–1003

[FHP21] P. Freese, M. Hauck, and D. Peterseim. “Super-localized orthog-
onal decomposition for high-frequency Helmholtz problems”. In:
arXiv preprint 2112.11368 (2021)

5.1 Localized spaces and operators
Before we present the novel localization approach of the SLOD, we introduce
some notation and preliminaries. As usual, localization is based on the concept
of patches. In the following, we fix the element K ∈ TH and abbreviate its m-th
order patch by S := Nm(K). We denote the space of TH-piecewise constants
restricted to S by P0(S). Furthermore, we denote by Π0

H,S : L
2(S)→ P0(S) the

L2(S)-orthogonal projection onto P0(S). Recalling that V(S) := V|S, we define
the sesquilinear form aS : V(S) × V(S) → C by restricting the integrals in the
definition of a to S. Similar to (3.14), we require that aS is continuous, i.e., it
holds that

|aS(v, w)| ≤ Ca∥v∥V(S)∥w∥V(S) (5.1)

for all v, w ∈ V(S). Since the constant Ca is typically the same as the constant
in (2.2), we will not introduce a new constant for simplicity. The novel localiza-
tion approach uses local versions of the solution operators L and L∗. We define
the local solution space by

VS := {v ∈ V(S) : v|∂S\∂D = 0} (5.2)

whose boundary conditions are chosen such that an extension by zero yields a
conforming subspace of V . The local solution operator and its adjoint counter-
part are then defined by L∗

S : V∗
S → VS, FS 7→ uS and L∗

S : V∗
S → VS, FS 7→ wS,

respectively, where uS and wS satisfy for all v ∈ VS that

aS(uS, v) = FS(v), aS(v, wS) = FS(v). (5.3)

To ensure that the operators LS and L∗
S are well-defined and continuous, we

assume that aS is inf–sup stable on VS × VS, i.e., there exists αp > 0 such that

inf
v∈VS

sup
w∈VS

|aS(v, w)|
∥v∥V∥w∥V

= inf
w∈VS

sup
v∈VS

|aS(v, w)|
∥v∥V∥w∥V

≥ αp. (5.4)

While for coercive problems this condition follows immediately since VS ⊂ V ,
it must be proved separately for indefinite problems. The following remark
discusses the validity of the condition (5.4) for Helmholtz problems.
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5.2 Localization approach

Remark 5.1.1 (Local inf–sup stability for the Helmholtz problem). For the
Helmholtz problem introduced in Section 4.1, the inf–sup stability (5.4) can be
shown under the resolution condition κHm ≲ 1, which is a slightly stronger
condition than (4.15). The proof requires Friedrichs’ inequality for functions
in VS, i.e., for all v ∈ VS it holds that

∥v∥L2(S) ≤ CF diam(S)∥∇v∥L2(S),

cf. [FHP21, Rem. 4.1]. Using this inequality and the above resolution condition,
we obtain for all v ∈ VS that

Ra(v, v) = ∥∇v∥2L2(S) − κ2∥v∥
2
L2(S) ≳ (1− C2

Fκ
2H2m2)∥∇v∥2L2(S) ≳ ∥∇v∥

2
L2(S)

Recalling the definition of the κ-dependent Helmholtz norm in (4.1), one can
show that the norms ∥ · ∥V(S) and ∥∇ · ∥L2(S) are equivalent on VS, i.e., for all
v ∈ VS it holds that

∥v∥2V(S) ≲ (1 + C2
Fκ

2H2m2)∥∇v∥2L2(S) ≲ ∥∇v∥
2
L2(S) ≤ ∥v∥

2
V(S).

Combining the previous estimates shows the coercivity of a on VS × VS, which
implies the inf–sup condition (5.4).

5.2 Localization approach
For the derivation of the SLOD basis functions, we make the assumption that
the patch S does not coincide with the whole domain D. Henceforth, we only
present the derivation of the basis functions of the trial space, noting that the
basis functions of the test space can be derived analogously. For the basis
function of the trial space, which corresponds to the element K, we make the
ansatz

φ := Lg, (5.5)

where g ∈ P0(S) is a L2(S)-normalized source term to be determined subse-
quently. Here, g is implicitly extended by zero and embedded in V∗ such that
it is compatible with the solution operator L : V∗ → V . We note that instead
of a piecewise constant source term, one could equivalently consider a linear
combination of {qT : T ⊂ S}, which are the QOIs defined in (2.13).

A local approximation ψ ∈ VS of the generally global function φ can be
obtained by using the local solution operator instead of the global one, i.e.,

ψ = LSg. (5.6)

Note that the local function ψ is in general a poor approximation of the global
function φ. However, by an appropriate choice of g, one can obtain highly
accurate approximations in the V-norm. Following classical textbooks (see,
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5 Super-Localized Orthogonal Decomposition

e.g., [LM72]), we define the local trace operator restricted to the boundary
segment Σ := ∂S\∂D by

trΣ : V(S)→ X := im(trΣ) ⊂ H1/2(Σ). (5.7)

Furthermore, we denote by tr−1
Σ : X → V(S) the operator-harmonic extension,

which defines a continuous right-inverse of trΣ. Given w ∈ X, it satisfies the
boundary condition trΣ tr−1

Σ w = w and is (adjoint) operator-harmonic in the
sense that

aS(v, tr
−1
Σ w) = 0 (5.8)

holds for all v ∈ VS. The well-posedness of tr−1
Σ follows by (5.1) and (5.4).

Given the trace and extension operators, we can conclude from (5.6) and (5.8)
that it holds

a(ψ, v) = aS(ψ, v) = aS(ψ, v − tr−1
Σ trΣ v) = (g, v − tr−1

Σ trΣ v)L2(S)

for all v ∈ V , using that (v − tr−1
Σ trΣ v)|S ∈ VS for any v ∈ V . We emphasize

that we do not distinguish between functions in VS and their V-conforming
extensions by zero. The previous identity, (5.5), and supp(g) ⊂ S yield for
any v ∈ V the crucial observation

a(φ− ψ, v) = (g, v)L2(S) − a(ψ, v) = (g, tr−1
Σ trΣ v)L2(S), (5.9)

which rephrases the smallness of the localization error as the (almost) L2(S)-
orthogonality of g to the space

Y := tr−1
Σ X ⊂ V(S). (5.10)

The space Y is the space of (adjoint) operator-harmonic functions on S, which
satisfy the global boundary conditions of the considered problem at ∂S ∩ ∂D.
We emphasize that (5.9) coincides with the (negative) conormal derivative of ψ,
which is an element of X∗, where X∗ denotes the anti-dual space of X. This
means that the smallness of the localization error is also equivalent to a small
X∗-norm of the conormal derivative of ψ at the patch boundary segment Σ.

For an optimal choice of g, we perform a singular value decompsition (SVD)
of the operator Π0

H,S|Y . Since this operator has finite rank less or equal to
R := dimP0(S), its SVD is given by

Π0
H,S|Y v =

R∑
k=1

σk(v, wk)V(S) qk (5.11)

with the singular values σ1 ≥ · · · ≥ σR ≥ 0, the L2(S)-orthonormal left singular
vectors q1 . . . , qR, and the V(S)-orthonormal right singular vectors w1 . . . , wR.
The left singular vector qR corresponding to the smallest singular value σR
satisfies

qR ∈ argmin
g∈P0(S) : ∥g∥L2(S)=1

sup
v∈Y : ∥v∥V(S)=1

|(g, v)L2(S)|. (5.12)
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5.2 Localization approach

Figure 5.1: SLOD basis function and corresponding local source term for the
oversampling parameter m = 1 for the problem (2.11).

In this sense, the choice g := qR is optimal and we define

σK = σK(H,m) := σR = sup
v∈Y : ∥v∥V(S)=1

|(g , v)L2(S)|. (5.13)

The value of σK is used in the remainder as a measure of the orthogonality
between g and Y . It coincides with the X∗-norm of the conormal derivative
of ψ up to a constant, which may depend on the geometry of the patch.

In one dimension, the trace space X is at most two-dimensional, which implies
that the space Y is also at most two-dimensional. Therefore, already for m = 1,
one can choose a local source term g ∈ P0(S), which is L2(S)-orthogonal to Y ,
i.e., we obtain a truly local basis function. This basis function and its local
source term are shown in Figure 5.1. Truly local means that φ coincides with
its localized version ψ. Note that for the Poisson problem, the constructed basis
coincides with the quadratic B-splines [PT95, Ch. 2].

The one-dimensional case also demonstrates the possible non-uniqueness of
the smallest singular value of the operator Π0

H,S|Y , which implies the non-
uniqueness of solutions to the problem (5.12). For m ≥ 2, a simple counting
argument shows that there are multiple optimal choices of g. In higher dimen-
sions, the problem manifests itself rather in clusters of small singular values,
which may appear for large m and certain patch configurations near the bound-
ary. For a practical solution to this problem, see Section 5.5.

Above, we presented the derivation of the basis functions of the trial space.
The basis function of the test space can be constructed similarly by replacing
the operators L and LS in (5.5) and (5.6) by their adjoint counterparts L∗

and L∗
S, respectively. Furthermore, instead of the extension (5.8), one has to

consider the extension defined by swapping arguments in (5.8). The resulting
source term, global basis function, and localized counterpart are denoted by g∗,
φ∗, and ψ∗, respectively. We denote by σ∗

K the counterpart of (5.13), which
measures the orthogonality of the source term g∗ on the space Y ∗. Here, the
space Y ∗ denotes the counterpart of (5.10), which is defined as the image of the
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5 Super-Localized Orthogonal Decomposition

Figure 5.2: SLOD basis functions and the corresponding local source terms for
the oversampling parameter m = 1 for the problem (3.36).

extension with swapped arguments. For a visualization of selected SLOD basis
functions in two dimensions, see Figure 5.2.

5.3 Practical multi-scale method
In this section, we use the novel localization strategy presented in the previous
section to transform the prototypical method (2.16) into a practically feasible
method. In the following, the element K ∈ TH is not fixed but variable and
therefore has to be included in the notation. For the trial space, we denote
the local source term, the global basis function, and its localized counterpart
associated with the element K by gK,m, φK,m, and ψK,m. Similarly, we write
g∗K,m, φ

∗
K,m, and ψ∗

K,m for the test space.
We define the trial and test spaces of the SLOD as the span of the respective

localized basis functions, i.e.,

U slod
H,m := span{ψK,m : K ∈ TH}, V slod

H,m := span{ψ∗
K,m : K ∈ TH}.

The SLOD then seeks the Galerkin approximation with respect to the above
trial and test spaces, i.e., it seeks uslodH,m ∈ U slod

H,m such that

a(uslodH,m, v) = (f , v)L2 (5.14)

holds for all v ∈ V slod
H,m .

Alternatively, using the fact that the SLOD basis functions are localized re-
sponses of the local source terms, we can define a collocation-type SLOD ap-
proximation, which we also denote by uslodH,m, as

uslodH,m =
∑
K∈TH

cK ψK,m, (5.15)

where the (cK)K∈TH are the coefficients of the expansion of Π0
Hf in terms of the

local source terms gK,m. Thus, the collocation variant requires only the basis

70



5.3 Practical multi-scale method

functions and local source terms of the trial space of the SLOD. Note that this
variant is related to collocation in the sense that it enforces the PDE to hold on
average (up to localization errors) in each element of TH . Similar to the Galerkin
method, this variant only requires the solution of a linear system of equations
at the coarse scale. The collocation version, however, has the advantage that
the assembly of the system matrix requires only the coarse functions gK,m and
no inner products between the ψK,m and ψ∗

K,m need to be computed.
A minimal requirement for the stability and convergence of both SLOD vari-

ants is that the two sets of local source terms

{gK,m : K ∈ TH}, {g∗K,m : K ∈ TH} (5.16)

are Riesz bases of P0(TH), i.e., they span the space of piecewise constants in
a stable way. Numerically, this can by ensured a posteriori as outlined in Sec-
tion 5.5. For the subsequent stability and error analysis, we assume that there
exists a constant Cr > 0 depending polynomially on H−1 and m such that

C−1
r (H,m)

∑
K∈TH

|cK |2 ≤
∥∥∥ ∑

K∈TH
cKgK,m

∥∥∥2
L2
≤ Cr(H,m)

∑
K∈TH

|cK |2 (5.17)

holds for all (cK)K∈TH . Similarly, we assume that the estimate holds for gK,m

replaced by g∗K,m.
The subsequent stability and error analysis of the SLOD is explicit in the

quantity σ defined by

σ = σ(H,m) := max
K∈TH

max
{
σK , σ

∗
K

}
, (5.18)

where σK and σ∗
K measure the orthogonality of the source terms gK,m and g∗K,m

on the spaces Y and Y ∗, respectively, cf. (5.13). The quantity σ decays rapidly
as the oversampling parameter m is increased, see Section 5.4 for a study of the
decay of σ.

The following theorem proves the inf–sup stability of the sesquilinear form a
on U slod

H,m × V slod
H,m , if m is chosen large enough. This implies the well-posedness

of the Galerkin variant of the SLOD. The proof that the collocation variant of
the SLOD is well-posed is very similar and will be omitted.

Theorem 5.3.1 (Inf–sup stability of the SLOD). Assume that the basis stability
assumption (5.17) holds and that m is chosen sufficiently large so that

ε(H,m) := H−1md/2C1/2
r (H,m)σ(H,m) ≲ 1, (5.19)

where the hidden constant depends only on Ca, αc, αf , and αp and the quasi-
uniformity and shape regularity of TH . Then, the sesquilinear form a is inf–sup
stable on U slod

H,m × V slod
H,m, i.e., there exists αslod > 0 such that

inf
v∈Uslod

H,m

sup
w∈V slod

H,m

|a(v, w)|
∥v∥V∥w∥V

≥ αslod (5.20)

with αslod ≈ αa, where αa is the constant from Lemma 2.3.1.
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5 Super-Localized Orthogonal Decomposition

Proof. We consider the following mapping between the prototypical problem-
adapted trial space Ua

H defined in (2.15) and the SLOD trial space U slod
H,m:

ι : Ua
H → U slod

H,m, v :=
∑
K∈TH

cKφK,m 7→
∑
K∈TH

cKψK,m =: vm.

For proving the continuity of ι, we first apply the triangle inequality, which
yields that

∥vm∥V ≤ ∥v∥V + ∥v − vm∥V .

To estimate the second term, we derive a local preliminary result. We fix the
patch S = Nm(K) and denote Σ = ∂S\∂D. Using (5.13), we obtain for any
w ∈ V(S) that

|(gK,m , tr
−1
Σ trΣw)L2(S)| ≤ σK(H,m)∥ tr−1

Σ trΣw∥V(S). (5.21)

The V(S)-norm on the right-hand side can be estimated using the decomposition
tr−1

Σ trΣw = w + w0, where w0 ∈ VS satisfies that aS(w0, z) = −aS(w, z) for
all z ∈ VS. To estimate w0, we use the continuity of aS, cf. (5.1), and the
inf–sup condition (5.4). This ensures that there exists z ∈ VS with ∥z∥V(S) = 1
such that

αp∥w0∥V(S) ≤ |aS(w0, z)| = |aS(w, z)| ≤ Ca∥w∥V(S). (5.22)

Combining the estimates yields the desired local preliminary result

|(gK,m , tr
−1
Σ trΣw)L2(S)| ≤ σK(H,m)(1 + α−1

p Ca)∥w∥V(S). (5.23)

The inf–sup stability of the continuous problem (2.4) yields the existence of
w ∈ V with ∥w∥V = 1 such that

αc∥v − vm∥V ≤ |a(v − vm, w)| ≤ σ(H,m)(1 + α−1
p Ca)

∑
K∈TH

|cK |∥w∥V(Nm(K)),

where we used (5.9) and the local preliminary result (5.23).
Furthermore, we observe that by (3.7), we get for all p ∈ P0(TH) that

∥p∥L2 = sup
v∈V

(p , v)L2

∥v∥L2

≤ CBH
H−1 sup

v∈V

(p , BHv)L2

∥BHv∥V
≤ CBH

H−1∥p∥V∗ . (5.24)

Another observation, which will be used in the following, is that due to the finite
overlap of the patches and ∥w∥V = 1, it holds that∑

K∈TH
∥w∥2V(Nm(K)) ≲ md∥w∥2V = md. (5.25)
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5.3 Practical multi-scale method

Using the discrete Cauchy–Schwarz inequality, the Riesz basis assumption (5.17)
as well as (2.2), (5.24), and (5.25), we obtain that

αc∥v − vm∥V ≲ (1 + α−1
p Ca)m

d/2σ(H,m)

√∑
K∈TH

|cK |2

≤ (1 + α−1
p Ca)m

d/2C1/2
r (H,m)σ(H,m)

∥∥∥ ∑
K∈TH

cKgK,m

∥∥∥
L2

≤ (1 + α−1
p Ca)CaCBH

H−1md/2C1/2
r (H,m)σ(H,m)∥v∥V .

Using the assumption (5.19), we can then conclude the continuity of ι, i.e.,
∥vm∥V ≲ ∥v∥V . The continuity of ι−1, i.e., ∥v∥V ≲ ∥vm∥V , can be proved
similarly. Note that the same estimates can also be shown for

ι∗ : V a
H → V slod

H,m , w :=
∑
K∈TH

cKφ
∗
K,m 7→

∑
K∈TH

cKψ
∗
K,m =: wm

and its inverse.
Next, we prove the inf–sup condition (5.20) using the inf–sup stability of the

prototypical method (2.19). We consider a fixed but arbitrary vm ∈ U slod
H,m and

define v := ι−1vm ∈ Ua
H . We then set wm := ι∗w ∈ V slod

H,m , where w ∈ V a
H is

chosen such that
|a(v, w)| ≥ αa∥v∥V∥w∥V ,

cf. (2.19). Elementary algebraic manipulations and the reverse triangle inequal-
ity yield that

|a(vm, wm)| ≥ |a(v, w)| − |a(vm − v, w)| − |a(vm, wm − w)|.

Next, we estimate the terms on the right-hand side separately. For the first
term, it follows from the continuity of ι and ι∗ that

|a(v, w)| ≥ αa∥v∥V∥w∥V ≳ αa∥vm∥V∥wm∥V .

For the second term, one obtains using (5.19) that

|a(vm − v, w)| ≤ Ca∥vm − v∥V∥w∥V ≲ ε(H,m)∥vm∥V∥wm∥V .

The third term can be estimated in the same way. Using condition (5.19), we
can absorb the second and third terms into the first term. This gives the desired
inf–sup stability of the SLOD with αslod ≈ αa.

The following theorem gives an error estimate for the Galerkin variant of the
SLOD. Note that an analogous result can be proved for the collocation variant
of the SLOD using very similar arguments.
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5 Super-Localized Orthogonal Decomposition

Theorem 5.3.2 (Convergence of the SLOD). For any f ∈ Hk(D), k ∈ {0, 1},
the SLOD approximation (5.14) satisfies that

∥u− uslodH,m∥V ≲ H1+k|f |Hk + ε(H,m)∥f∥L2

with ε defined in (5.19). The hidden constant depends only on Ca, αc, αf , and αp

and the quasi-uniformity and shape regularity of TH .

Proof. In this proof, we use the notation introduced in the proof of Theo-
rem 5.3.1. We begin estimating the approximation error of the SLOD with
the triangle inequality as follows:

∥u− uslodH,m∥V ≤ ∥u− u
a
H∥V + ∥uaH − uslodH,m∥V .

The first term can be estimated using Lemma 2.3.3. For the second term, we ap-
ply Strang’s lemma (see, e.g., [EG04, Lem. 2.25]) using that uslodH,m ∈ U slod

H,m can be
interpreted as non-conforming and non-consistent approximation to uaH ∈ Ua

H .
This yields that

∥uaH − uslodH,m∥V ≤
(
1 + Caα

−1
slod

)
inf

vm∈Uslod
H,m

∥uaH − vm∥V

+ α−1
slod sup

wm∈V slod
H,m

|a(uaH , wm)− (f , wm)L2|
∥wm∥V

.

The first term can be estimated by choosing vm := ιuaH . Using the same ar-
guments as in the proof of Theorem 5.3.1 and the inf–sup stability (2.19), we
obtain that

∥uaH − ιuaH∥V ≲ ε(H,m)∥uaH∥V ≤ α−1
a ε(H,m)∥f∥L2 .

For the second term, we perform algebraic manipulations, which yields for all
w ∈ V a

H that

a(uaH , wm)− (f , wm)L2 = (f , w − wm)L2 − a(uaH , w − wm).

Choosing w := (ι∗)−1wm, we obtain using again the arguments from the proof
of Theorem 5.3.1 and the inf–sup stability (2.19) that

|a(uaH , wm)− (f , wm)L2| ≲ ε(H,m)∥f∥L2∥wm∥V + Caα
−1
a ε(H,m)∥f∥L2∥wm∥V .

Combining the estimates finishes the proof.

5.4 Decay of localization error
In this section we study the decay of σ defined in (5.18), which determines the
localization error of the SLOD. It appears in the assumptions and estimates in
Theorems 5.3.1 and 5.3.2 and is therefore essential for the stability and con-
vergence of the SLOD. We first give a justification for the super-exponential
decay of σ for diffusion-type PDEs based on a connection to spectral geometry.
Furthermore, we present a pessimistic exponential decay result for σ, which can
be rigorously proved using LOD arguments.
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5.4.1 Super-exponential decay

In the following justification of the super-exponential decay, we restrict our-
selves to diffusion-type PDEs. Note that we will only mention the main results
and refer to [HP22b, Sec. 7] for more details. The presented justification is
based on a connection between the decay of σ and the decay of Steklov eigen-
functions. Denoting Σ := ∂S\∂D, the local Steklov eigenvalue problem on the
patch S := Nm(K) seeks eigenpairs (ϕ, λ) ∈ V(S)× R such that

aS(ϕ, v) = λ(ϕ , v)L2(Σ) (5.26)

holds for all v ∈ V(S), where ϕ denotes the Steklov eigenfunction and λ the
corresponding eigenvalue. All eigenvalues of (5.26) are non-negative and it holds
that the Steklov eigenfunctions {ϕk : k ∈ N0} form a basis of the space Y defined
in (5.10), cf. [Auc05]. We assume that the eigenfunctions are ordered so that the
corresponding eigenvalues are non-increasing. For large indices, the oscillatory
nature and the operator-harmonicity, cf. (5.26), lead to a strong decay of the
eigenfunctions in the interior of the patch. For some special cases this has been
made rigorous, see for example [HL01; PST15; GT16]. These works, however,
require smoothness (or in some cases even analyticity) of the domain and the
coefficient. In [HL01] a conjecture on the decay of Steklov eigenfunctions in the
interior of a domain was formulated. Using a relaxed version of this conjecture
for the decay of the element averages of the Steklov eigenfunctions, one can
show that σ defined in (5.18) decays super-exponentially as m is increased, i.e.,

σ(H,m) ≤ Cs(H,m) exp
(
− Cm d

d−1

)
(5.27)

with Cs > 0 depending at most polynomially on H−1 and m and C > 0 inde-
pendent of H and m, cf. [HP22b, Thm. 7.3]. We remark that, in one dimension,
the fraction d

d−1
in (5.27) can be interpreted as infinity, which is consistent with

the existence of a local basis in one dimension, see Section 5.2.
For a numerical investigation of the super-exponential decay in two dimen-

sions, we refer to Figure 5.3. It can be observed that the distance between the
dashed horizontal lines becomes larger as m is increased, especially between
the oversampling parameters 3 and 4, which indicates a presumably super-
exponential decay of σ. For a more detailed numerical study of the super-
exponential decay, we refer to the numerical experiments in Section 5.6.

Remark 5.4.1 (Oversampling condition). This remark specifies the choice of
the oversampling parameter m needed to ensure the stability and optimal order
convergence of the SLOD, cf. Theorems 5.3.1 and 5.3.2. Assuming the Riesz sta-
bility of the local source terms (5.17) and the validity of the super-exponential
decay result (5.27), we obtain the oversampling condition m ≳ (log 1

H
)(d−1)/d,

which is a significant improvement compared to the oversampling condition
m ≳ log( 1

H
) for the LOD, cf. Theorem 3.4.2. For Helmholtz problems, stability
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Figure 5.3: Singular values of the operators Π0
H,S|Y for the patches S = Nm(K)

for several values of m and fixed K ∈ TH for problem (3.36). The
dashed horizontal lines indicate the smallest singular value, which
determines the value of σ defined in (5.18).

and optimal order convergence of the SLOD can be ensured under the oversam-
pling condition m ≳ (log κ

H
)(d−1)/d, while the corresponding condition for the

LOD is m ≳ log( κ
H
), cf. Theorem 4.4.2.

5.4.2 Pessimistic exponential decay

Next, we prove a pessimistic exponential decay result, which is based on LOD
techniques. More precisely, we construct local basis functions and corresponding
local source terms satisfying (5.17) for which σ decays exponentially in the over-
sampling parameter. As basis functions of the trial and test space corresponding
to the element K ∈ TH , we choose

ψK,m := (id− Cm)bK , ψ∗
K,m := (id− C∗m)bK , (5.28)

where Cm and C∗m denote the localized correction operators defined in (3.23) and
bK ∈ H1

0 (K) is the bubble function associated with the element K, cf. (3.5).
This choice is similar to that of the LOD basis functions (3.27), but without
the additional quasi-interpolation operator PH . We assume that the inf–sup
condition (3.22) holds in order for (5.28) to be well-defined.

The following lemma shows that the basis functions (5.28) have local piecewise
constant source terms gK,m and g∗K,m, which decay exponentially fast. To prove
the decay, we apply LOD theory locally, treating the patch S := Nm(K) as the
whole domain. This requires a local version of the inf–sup condition (3.18). In
the following, the corresponding inf–sup constant is denoted by αdp.
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Lemma 5.4.2 (Properties of the LOD source terms). The LOD basis functions
ψK,m and ψ∗

K,m defined in (5.28) have the local source terms gK,m, g
∗
K,m ∈ P0(S),

i.e.,
ψK,m = LSgK,m, ψ∗

K,m = L∗
Sg

∗
K,m. (5.29)

Moreover, denoting S = Nm(K), the source terms decay exponentially fast, i.e.,
it holds for all l ∈ N that

∥gK,m∥L2(S\Nl(K)) ≲ H−1 exp(−Cdll)∥gK,m∥L2(S), (5.30)

where Cdl > 0 depends only on Ca, αdp, and the shape regularity of TH and the
hidden constant depends only on Ca, αp, αfp, and the shape regularity of TH .
An analogous result holds for g∗K,m.

Proof. We fix the patch S = Nm(K) and, if not explicitly required, drop
the indices K and m. We denote the local space of fine-scale functions by
WS :=WK,m|S ⊂ VS, where WK,m is defined in (3.20). Furthermore, we define
the local correction operators CS, C∗S : VS →WS such that

aS(CSv, w) = aS(v, w), aS(w, C∗Sv) = aS(w, v) (5.31)

holds for all v ∈ VS and w ∈ WS. These operators are well-posed due to the
inf–sup condition (3.22). Using that bK ∈ H1

0 (K), we can rewrite the basis
functions (5.28) as follows:

ψ = (id− CS)bK , ψ∗ = (id− C∗S)bK . (5.32)

For proving the identity (5.29), we use a saddle point characterization of the
of the LOD basis functions ψ and ψ∗ (see, e.g., [Mai21, Eq. (4.5)]), i.e., the pair
(ψ, λ) ∈ VS × P0(S), with λ denoting a Lagrange multiplier, solves(

AS J ∗
H,S

JH,S 0

)(
ψ
λ

)
=

(
0
1K

)
, (5.33)

where AS : VS → V∗
S, v 7→ aS(v, ·) and JH,S : VS → P0(S), u 7→ Π0

H,Su. Its
adjoint J ∗

H,S : P0(S)→ V∗
S is defined such that

⟨J ∗
H,Sp, v⟩V∗

S×VS
:= (p , v)L2(S)

holds for all p ∈ P0(S) and v ∈ VS. To prove that the Schur complement
SH,S : P0(S)→ P0(S), p 7→ (JH,SLSJ ∗

H,S)p is invertible, we note that

(SH,Sp , q)L2(S) = ⟨LSJ ∗
H,Sp, J ∗

H,Sq⟩VS×V∗
S
= ⟨LSJ ∗

H,Sp, A∗
SL∗

SJ ∗
H,Sq⟩VS×V∗

S

= aS(LSJ ∗
H,Sp,L∗

SJ ∗
H,Sq)

holds for all p, q ∈ P0(S), where A∗
S : VS → V∗

S, v 7→ aS(·, v) denotes the
adjoint operator of AS. Using (5.4) and the inf–sup stability of aS onWS×WS,
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5 Super-Localized Orthogonal Decomposition

cf. (3.22), one can apply Lemma 2.3.1 in the local setting. This yields the inf–
sup stability of aS on LSJ ∗

H,SP0(S) × L∗
SJ ∗

H,SP0(S) with the inf–sup constant
αap := C−1

a αpαfp > 0. Thus, for all p ∈ L2(S), there exists q ∈ L2(S) such that

|(SH,Sp , q)L2(S)| = |aS(LSJ ∗
H,Sp,L∗

SJ ∗
H,Sq)| ≥ αap∥LSJ ∗

H,Sp∥V(S)∥L
∗
SJ ∗

H,Sq∥V(S)
≥ αapC

−2
a ∥J ∗

H,Sp∥V∗
S
∥J ∗

H,Sq∥V∗
S
,

where we used the continuity of aS, cf. (5.1).
Denoting by BH,S the restriction of BH defined in (3.6) to functions in L2(S),

we further obtain that

∥J ∗
H,Sp∥V∗

S
≥ sup

v∈VS

(J ∗
H,Sp , BH,Sv)L2(S)

∥BH,Sv∥V(S)
≥ C−1

BH
H sup

v∈VS

(J ∗
H,Sp , BH,Sv)L2(S)

∥v∥L2(S)

= C−1
BH
H∥p∥L2(S).

Combining the previous estimates proves the inf–sup stability of SH,S. The
continuity of SH,S can be proved as follows:

|(SH,Sp , q)L2(S)| = |aS(LSJ ∗
H,Sp,L∗

SJ ∗
H,Sq)| ≤ Caα

−2
p ∥J ∗

H,Sp∥V∗
S
∥J ∗

H,Sq∥V∗
S

≤ Caα
−2
p ∥p∥L2(S)∥q∥L2(S). (5.34)

From the inf–sup stability and the continuity of SH,S, we can conclude that S−1
H,S

exists and that it is continuous satisfying that

∥S−1
H,Sp∥L2(S)

≤ α−1
apC

2
aC

2
BH
H−2∥p∥L2(S) (5.35)

for all p ∈ P0(S). Using the identity

ASψ = J ∗
H,SS−1

H,S1K ,

which can be derived from (5.33), we obtain the assertion (5.29) with the local
source term g = gK,m = S−1

H,S1K .
To prove the decay result (5.30), we establish a connection of the operator S−1

H,S

to the operators CS and C∗S. We obtain that

(S−1
H,Sp , q)L2(S)

= ⟨ASLSJ ∗
H,SS−1

H,Sp, (id− C∗S)BH,Sq⟩V∗
S×VS

= aS((id− CS)BH,Sp, (id− C∗S)BH,Sq)

holds for all p, q ∈ P0(S), where we used that q and (id − C∗S)BH,Sq have the
same element averages and the identity (id− CS)BH,Sp = LSJ ∗

H,SS−1
H,Sp.

Defining g̃ := g1S\Nl(K), we obtain that

∥g∥2L2(S\Nl(K)) = (S−1
H,S 1K , g̃)L2(S)

= aS((id− CS)bK , (id− C∗S)BH,S g̃),
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5.4 Decay of localization error

which allows one to use LOD theory for proving the decay of g. Since the
remainder of this proof is based on fairly standard LOD cut-off arguments, we
only sketch the main ideas. Let us introduce the FE cut-off function η, which
is uniquely defined as follows: we set η to one for all nodes contained in the
⌊l/2⌋-th order patch of K and to zero for all other nodes. We obtain that

aS((id− CS)bK , (id− C∗S)BH,S g̃)

= aS(η(id− CS)bK , η(id− C∗S)BH,S g̃) + aS(η(id− CS)bK , η̃(id− C∗S)BH,S g̃)

+ aS(η̃(id− CS)bK , η(id− C∗S)BH,S g̃) + aS(η̃(id− CS)bK , η̃(id− C∗S)BH,S g̃),

where η̃ := 1− η. By slightly adapting the proof of Lemma 3.3.1, one can show
the following global decay result: for any v ∈ V , it holds that

∥(id− C)v∥V(D\Nm(supp(v))) ≤ exp(−Cdm)∥(id− C)v∥V (5.36)

for all m ∈ N, see for example [Mai20, Rem. 3.3.2]. An analogous result holds
for id−C∗. Treating the patch S as the entire domain, this result can be applied
to the operators id−CS and id−C∗S. Using (2.2), (2.25), (3.7), (5.1), and (5.36),
the first of the four terms above can be estimated as follows:

|aS(η(id− CS)bK , η(id− C∗S)BH,S g̃)| ≲ H−1 exp(−Cdll)∥1K∥L2(K)∥g̃∥L2(S)

with the decay rate Cdl > 0 depending only on Ca, αdp, and the shape regularity
of TH , cf. Lemma 3.3.1. Furthermore, using (5.34), we obtain that

∥1K∥L2(S) = ∥SH,Sg∥L2(S) ≤ Caα
−2
p ∥g∥L2(S).

Note that all other terms can be estimated using similar arguments. Combining
all estimates yields that

∥g∥L2(S\Nl(K)) ≲ H−1 exp(−Cdll)∥g∥L2(S),

which is the desired exponential decay result for g, cf. (5.30). For ψ∗ and g∗,
the results (5.29) and (5.30) can be shown similarly.

Using the results from the previous lemma, the following theorem shows that
the local LOD source terms (5.29) are Riesz stable in the sense of (5.17) and
that the quantity σ defined in (5.18) decays at least exponentially.

Theorem 5.4.3 (Stability and exponential decay of the LOD basis). Provided
that m is chosen such that

m ≳ log( 1
H
), (5.37)

the local LOD source terms satisfy that

H4
∑
K∈TH

|cK |2 ≲
∥∥∥∥ ∑

K∈TH
cK

gK,m

∥gK,m∥L2

∥∥∥∥2
L2

≲ H−4
∑
K∈TH

|cK |2 (5.38)
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5 Super-Localized Orthogonal Decomposition

for all (cK)K∈TH . An analogous result holds for the source terms g∗K,m. Further-
more, considering normalized versions of gK,m and g∗K,m, the quantity σ defined
in (5.13) can be estimated as follows:

σ(H,m) ≲ H−1 exp(−Cdlm) (5.39)

with Cdl from Lemma 5.4.2. Note that the hidden constants may depend on Ca,
αc, αf , αp, and αfp as well as the shape regularity of TH .

Proof. We start with the proof of (5.39). For this, we fix an element K ∈ TH
and abbreviate S := Nm(K). In the following, we drop the indices K and m,
in case they are not explicitly needed. Denoting Σ := ∂S\∂D and using that
tr−1

Σ trΣ v = v for all v ∈ Y and Y ⊂ V(S), we obtain that

σK(H,m) ≤ 1

∥g∥L2(S)

sup
v∈V(S) : ∥v∥V(S)=1

|(g , tr−1
Σ trΣ v)L2(S)|, (5.40)

where we account for possibly non-normalized g by dividing by its norm. Let
us locally on S define the FE cut-off function η by setting its nodal values to
one for all nodes at Σ and to zero for all other nodes. By the definition of η, it
holds that trΣ v = trΣ ηv for all v ∈ V(S), which implies that

(g , tr−1
Σ trΣ v)L2(S) = (g , ηv)L2(S) − aS(ψ, ηv). (5.41)

For estimating the first term, we employ Lemma 5.4.2, which yields that

|(g , ηv)L2(S)| ≤ ∥g∥L2(S\Nm−1(K))∥v∥L2(S) ≲ H−1 exp(−Cdlm)∥g∥L2(S)∥v∥V(S).
To estimate the second term on the right-hand side of (5.41), we apply the
decay result (5.36) locally on the patch S and use the inf–sup stability (5.4).
We obtain that

|aS(ψ, ηv)| ≤ Ca∥ψ∥V(S\Nm−1(K))∥ηv∥V(S)
≲ CaH

−1 exp(−Cdlm)∥ψ∥V(S)∥v∥V(S)
≤ Caα

−1
p H−1 exp(−Cdlm)∥g∥L2(S)∥v∥V(S).

The same result can be shown for ψ∗ and g∗. Taking the maximum over all
elements yields the assertion (5.39).

For proving the Riesz property (5.38), we first note that the prototypical (non-
localized) LOD basis functions and their corresponding global source terms can
be obtained for all K ∈ TH as

φK := LJ ∗
HgK , gK := S−1

H 1K ,

where the operators SH := JHLJ ∗
H , L, and JH are the global counterparts of

the operators used in the proof of Lemma 5.4.2. Adapting (5.34) and (5.35) to
the global setting yields for all p ∈ P0(TH) that

∥SHp∥L2 ≤ Caα
−2
c ∥p∥L2 , (5.42)

∥S−1
H p∥L2 ≤ α−1

a C2
aC

2
BH
H−2∥p∥L2 . (5.43)
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5.4 Decay of localization error

Second, we estimate the difference between gK and gK,m, where gK,m denotes
the local source term of the localized LOD basis function ψK,m. For this, we use
the following decay result: for all K ∈ TH and m ∈ N, it holds that

∥φK − ψK,m∥V ≲ exp(−Cdm)∥ψK,m∥V ,

which can be proved using that (CK − CK,m)v = (CK − CK,m)(id − CK,m)v for
all v ∈ V and by applying Lemma 3.3.2. Using this decay result and the local
supports of gK,m and ψK,m, we obtain that

∥gK − gK,m∥2L2 = (gK − gK,m , BH(gK − gK,m))L2

= a(φK ,BH(gK − gK,m))− aS(ψK,m,BH |S(gK − gK,m))

= a(φK − ψK,m,BH(gK − gK,m))

≤ CaCBH
H−1∥φK − ψK,m∥V∥gK − gK,m∥L2

≲ α−1
p CaCBH

H−1 exp(−Cdm)∥gK,m∥L2∥gK − gK,m∥L2 ,

where we used that (3.7), (5.1), and (5.4) and the abbreviation S = Nm(K). It
directly follows that

∥gK − gK,m∥L2 ≲ H−1 exp(−Cdm)∥gK,m∥L2 . (5.44)

Third, using the continuity estimates for S−1
H and SH in (5.42) and (5.43), one

can show the desired Riesz property for the normalized global source terms gK .
We obtain the following upper bound:∥∥∥∥∥ ∑

K∈TH
cK

gK
∥gK∥L2

∥∥∥∥∥
L2

=

∥∥∥∥∥S−1
H

∑
K∈TH

cK
∥gK∥L2

1K

∥∥∥∥∥
L2

≲ H−2

√∑
K∈TH

|cK |2,

where we used that

∥1K∥L2 = ∥SHgK∥L2 ≲ ∥gK∥L2 .

The lower bound in (5.38) can be obtained similarly.
Finally, we can estimate the difference between the normalized global source

terms gK and the normalized local source terms gK,m as follows:∥∥∥∥ gK
∥gK∥L2

− gK,m

∥gK,m∥L2

∥∥∥∥
L2

=

∥∥∥∥gK(∥gK,m∥L2 − ∥gK∥L2) + ∥gK∥L2(gK − gK,m)

∥gK∥L2∥gK,m∥L2

∥∥∥∥
L2

≲ H−1 exp(−Cdm),

where we used (5.44). We finally obtain that∥∥∥∥∥ ∑
K∈TH

cK

(
gK
∥gK∥L2

− gK,m

∥gK,m∥L2

)∥∥∥∥∥
L2

≲ H−1−d/2 exp(−Cdm)

√∑
K∈TH

|cK |2.
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5 Super-Localized Orthogonal Decomposition

Using the oversampling condition m ≳ log( 1
H
), cf. (5.37), the second inequality

in (5.38) can be obtained by combining the previous estimates. Note that the
first inequality in (5.38) can be proved using very similar arguments. Altogether,
we obtain the Riesz stability of the source terms gK,m. An analogous Riesz
stability estimate can be derived for the source terms g∗K,m.

Remark 5.4.4 (Pessimistic oversampling condition). The oversampling condi-
tion from Remark 5.4.1 is based on the super-exponential decay result (5.27),
which can be observed numerically (see Section 5.6), but has not yet been rig-
orously proved. Instead of (5.27), we can also use the rigorous exponential de-
cay result (5.39) to derive the pessimistic oversampling condition m ≳ log( 1

H
).

For the Helmholtz problem, one obtains the pessimistic oversampling condition
m ≳ log( κ

H
). Both conditions are the same as for the LOD, cf. Theorems 3.4.2

and 4.4.2. The numerical experiments in Section 5.6 show that these conditions
are pessimistic and that the conditions from Remark 5.4.1 seems to be more
accurate. We emphasize that regardless of the oversampling, the Riesz stabil-
ity (5.17) is still an assumption. For a method with the same super-exponential
localization properties as the SLOD, but without stability assumptions on the
basis, see Chapter 6.

5.5 Practical implementation
In this section we discuss aspects regarding the practical implementation of the
SLOD. A practical implementation of the SLOD requires, on the one hand,
that the source terms gK,m and g∗K,m can be computed with minimal communi-
cation between the patches. On the other hand, the sets {gK,m : K ∈ TH} and
{g∗K,m : K ∈ TH} need to be Riesz stable bases of P0(TH) in the sense of (5.17).
In the following, we will first demonstrate that the choice of the basis functions
in (5.12) can violate the Riesz stability (5.17) and then present an algorithm to
overcome such stability issues.

For illustration purposes, we consider an elliptic model problem as in (3.36).
It is posed on the domain D = (0, 1)2, which is equipped with the uniform
Cartesian mesh TH . For the oversampling parameter m = 2, the patches corre-
sponding to the elements with positions1 (1, 1), (1, 2), and (2, 1) are contained in
the patch corresponding to the element with position (2, 2). This nesting is prob-
lematic since, for example, the basis function corresponding to the element (2, 2)
almost coincides with the basis functions corresponding to the element (1, 1),
see Figure 5.4. To solve this problem, we consider only the (largest) patch of
the element (2, 2). On this patch, we compute four basis functions correspond-
ing to the source terms associated with the four smallest singular values on the

1The position is a vector in {1, . . . ,H−1}2, where the first and second components determine
the location in the x- and y-directions, respectively. The numbering is such that (1, 1) is
the bottom left element.
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5.5 Practical implementation

Figure 5.4: Instable choice of the SLOD basis functions corresponding to ele-
ments (1, 1) (left) and (2, 2) (right) for problem (3.36).

Figure 5.5: Stable choice of the SLOD basis functions corresponding to the
source terms for the four smallest singular values (singular values
increase from left to right) on the patch of element (2, 2).

patch. For a visualization of these four basis functions, see Figure 5.5. The
elements (1, 1), (1, 2), and (2, 1) are no longer considered. By construction, this
strategy yields four linearly independent basis functions. The span of these four
functions contains the basis functions one would intuitively expect for the four
elements.

The previously described procedure can be easily generalized. The first step
is to identify groups of patches for which the basis functions are computed
simultaneously. This can be done as follows: All patches Nm(K) for which the
element K has a distance of at least m element layers to ∂D can be considered
separately. Patches for which K has a distance of exactly m− 1 element layers
to ∂D are considered to be representatives of a corresponding group of patches.
All remaining patches Nm(K) (K has a distance of less than m−1 layers to ∂D)
are then uniquely assigned to these groups such that the patch is contained in the
representative patch of the group. We can then apply the localization approach
from Section 5.2 to the representative patches, selecting on each patch as many
basis functions as patches are contained in the respective group of patches.

For the fine-scale discretization of the SLOD, we use a fine mesh Th obtained
by uniform refinement of the coarse mesh TH and replace all infinite-dimensional
spaces by their finite-dimensional fine-scale FE counterparts. This can be done
in a similar way as for the LOD in Section 3.5. Following this procedure, we
obtain a discrete approximation of the space Y of locally operator-harmonic
functions on the patch S, by applying the discrete operator-harmonic extension
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5 Super-Localized Orthogonal Decomposition

operator (with respect to S) to fine-scale boundary hat functions supported
on ∂S\∂D. In practice, this is quite computationally expensive, and one rather
uses a sampling approach similar to [BS18; Che+20]. More precisely, we sample
fine-scale Dirichlet boundary data with nodal values independently and uni-
formly distributed in the interval [−1, 1]. Numerical experiments suggest that
it is sufficient to choose the number of samples proportional to the number of
coarse elements in the patch (we use a factor of five in the numerical experi-
ments). Note that the space Y can alternatively be approximated by harmonic
polynomials [BL11] or Steklov-type eigenfunctions [MSD22].

For the numerical realization of the SVD in (5.11), we note that suitable
weighting matrices are required to guarantee that the right (resp. left) singular
vectors are V(S)-orthogonal (resp. L2(S)-orthogonal). The computation of these
weighting matrices requires the inversion and square root of a matrix whose
size is proportional to the number of coarse elements in the considered patch,
cf. [HP22b, App. B]. In practice, the effect of the weighting matrices on the
choice of the SLOD basis functions is hardly noticeable. Therefore, for the
numerical experiments in Section 5.6, the weighting matrices are omitted in the
implementation of the SLOD.

5.6 Numerical experiments
This section numerically studies the SLOD for elliptic model problems and
Helmholtz-type problems. We consider uniform Cartesian meshes of the do-
main D, where the mesh size denotes the side length of the elements instead of
their diameter. The SLOD is implemented as described in Section 5.5, taking
into account the remarks on the stable basis selection and the fine-scale dis-
cretization. We emphasize that, similar to Section 3.5 for the LOD, we expect
the theoretical results of the SLOD to remain valid in the fully discrete setting.

Elliptic model problem

We first study the SLOD for an elliptic model problem. In the following, all
errors are relative errors with respect to the energy norm defined in (3.37). The
errors are computed using the fine-scale FE solution as the reference solution.

Optimal order convergence

To numerically study the optimal order convergence properties of the SLOD,
we consider the elliptic model problem from Section 3.6. It is posed on the
domain D = (0, 1)2 and uses homogeneous Dirichlet boundary conditions. The
coefficient is piecewise constant with respect to the mesh T2−7 , where the element
values are realizations of independent uniformly distributed random variables
in the interval [0.01, 1], see Figure 3.3. For the fine-scale discretization we use
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Figure 5.6: Errors of the SLOD and LOD as functions of H for several oversam-
pling parameters m. The dotted line indicates the expected rate of
convergence.

the mesh T2−9 . We consider the smooth source term defined by

f(x1, x2) = (x1 + cos(3πx1)) · x32, (5.45)

which, for the sake of consistency, is the same as for the numerical study of the
LOD and MRLOD in Sections 3.6 and 4.7.

Provided that the oversampling parameter m is chosen sufficiently large, Fig-
ure 5.6 shows second order convergence for the SLOD. Note that in Figure 5.6
the yellow and orange lines are difficult to see because they are partially behind
the purple line. Since f ∈ H1(D), the second order convergence is consistent
with the theoretical prediction in Theorem 5.3.2. It can be observed that the
SLOD requires much smaller oversampling parameters than the LOD to achieve
the same accuracy. However, for the parameters m = 1, 2, it is clearly visible
that the SLOD suffers from numerical pollution. To obtain optimal order con-
vergence, the oversampling parameter needs to be coupled to the mesh size as
described in Remark 5.4.1. For the LOD, numerical pollution can be avoided
by using basis functions with slightly enlarged supports, cf. Chapter 3. More
precisely, we use LOD basis functions with a support of m + 1 element layers
around the respective elements. Note that the second order convergence may be
difficult to see for the LOD, because only pairs of H and m are considered for
which no patch coincides with the entire domain. This means that the conver-
gence curves corresponding to large values of m may not start at the coarsest
mesh, but at an intermediate one.
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Figure 5.7: Errors of the SLOD and LOD as functions of H for several oversam-
pling parameters m. The dotted line indicates the expected rate of
convergence.

Super-exponential localization

Next, we want to numerically verify the super-exponential decay rates of the
localization error as stated in (5.27). Since the decay rate depends on the spatial
dimension of the PDE, we will consider elliptic problems posed on D = (0, 1)d

for d ∈ {2, 3}. For the two-dimensional problem, we consider the coefficient from
the previous numerical experiment, while for the three-dimensional problem, we
consider the periodic coefficient

A(x1, x2, x3) =
1

100
+

99

200

( 3∏
i=1

sin(28πxi) + 1
)
.

Both coefficients have the same upper and lower bounds of 0.01 and 1. We
use homogeneous Dirichlet boundary conditions and consider the source term
f ≡ 1 for which the optimal error term in Theorem 5.3.2 is zero and only the
localization error is present. For the fine-scale discretization, we again use the
mesh T2−9 . Exploiting the periodicity of the coefficient for the three-dimensional
problem allows one to consider only O(md) patch problems, while the basis
functions and local source terms corresponding to the remaining patches can
be obtained by translation. This drastically reduces the computational cost of
the SLOD. Furthermore, to avoid the costly assembly of the SLOD stiffness
matrix, we use the collocation variant of the SLOD defined in (5.15) for the
three-dimensional problem.

Figure 5.7 shows the expected super-exponential decay rates of the localiza-
tion errors of the SLOD, cf. (5.27). Note that for the two-dimensional exper-
iment, we have also included the localization errors of the LOD, which decay
exponentially in m, cf. Theorem 3.4.2. It is clearly visible that the localization
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Figure 5.8: Errors of the SLOD and LOD as functions of H for several oversam-
pling parameters m and κ = 25, 26. The dotted line indicates the
expected rate of convergence.

errors of the SLOD are of a different magnitude compared to those of the LOD.
Very large values of m are required for the LOD to match the localization errors
of the SLOD. Note that for the three-dimensional problem, the fine-scale FE
solution uses 23×9 ≈ 130M degrees of freedom to resolve the coefficient. Using
numerical homogenization, we are able to reduce this number significantly (e.g.,
to 23×4 ≈ 4K for H = 2−4) and still get a reliable approximation.

Helmholtz problem

Second, we numerically study the SLOD for Helmholtz problems. For a brief
introduction to Helmholtz problems and some theoretical background, we refer
to Section 4.1. The natural norm for Helmholtz problems is the wavenumber-
dependent norm defined in (4.1). Subsequently, all errors are relative errors with
respect to this norm. We compute the errors using the fine-scale FE solution as
the reference solution.

Optimal order convergence

To numerically investigate the optimal order convergence of the SLOD for the
Helmholtz problem, we consider the domain D = (0, 1)2 and impose homo-
geneous impedance boundary conditions (i.e., Γ2 = ∂D). We use the source
term given in (5.45) and use the mesh T2−10 for the fine-scale discretization.
Figure 5.8 shows convergence of second order for the SLOD provided that the
oversampling parameter is chosen sufficiently large. One observes that already
for the oversampling parameter m = 2, the SLOD yields better approximations
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Figure 5.9: Errors of the SLOD and LOD as functions of H for several oversam-
pling parameters m and κ = 25 and 26. The dotted line indicates
the expected rate of decay.

than the LOD for m = 5, which underlines the high potential of the SLOD.

Super-exponential localization

To numerically verify the localization properties of the SLOD for the Helmholtz
problem, we use the same setting as in the previous numerical experiment, but
with the source term f ≡ 1. Recall that for this source term, only the local-
ization error in Theorem 5.3.2 is present. Figure 5.9 shows the expected super-
exponential decay of the localization error of the SLOD also for the Helmholtz
problem. The localization errors of the SLOD are several orders of magnitude
smaller than those of the LOD.

High-contrast heterogeneous media

Next, we apply the SLOD to a Helmholtz problem in heterogeneous media,
namely −∇ · (Aε∇u) − κ2u = f on the domain D = (0, 1)2 with homogeneous
impedance boundary conditions (i.e., Γ2 = ∂D). For a given 0 < ε ≪ 1, the
coefficient Aε is defined such that it takes the value ε2 inside some periodically
aligned inclusions of size ε/2 and the value 1 elsewhere, see Figure 5.10 for a
depiction of the coefficient. For ε = 2−4 and κ = 9, a particular interaction
between the wavenumber and the periodic structure of the inclusions leads to
a negative effective wavenumber in homogenization theory, which triggers an
exponential decay of the modulus of the Helmholtz solution in the bulk domain.
This physically interesting effect is caused by so-called Mie resonances in the
inclusions, cf. [PV20]. As source term, we use the one defined in (4.38) with
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5.6 Numerical experiments

Figure 5.10: Heterogeneous coefficient A2−4 (left) and real part of the corre-
sponding SLOD solution (right) for κ = 9, m = 2, and H = 2−6.

x0 = (1
8
, 1
2
)T and r = 1

20
.

We consider the parameters H = 2−6 and m = 2. For a visualization of
the corresponding SLOD solution, see Figure 5.10. Note that the color map is
truncated to [−2.5, 2.5] for illustration purposes. With respect to the weighted
norm defined in (4.39), the SLOD approximation achieves a relative error of
3.3 × 10−3. To achieve a similar accuracy, the LOD needs an oversampling
parameter of at least m = 4.

Perfectly matched layer boundary condition

A perfectly matched layer (PML) is an artificial absorbing layer that can be used
to truncate wave propagation problems on the full space to bounded computa-
tional domains. Compared to impedance boundary conditions, which often serve
the same purpose, PMLs are able to avoid spurious reflections at the artificial
boundary of the computational domain, cf. [Ber94; GLS21]. In this numerical
experiment, we aim to demonstrate that the SLOD can be easily combined with
PMLs. For this, we consider the domain D = (0, 1)2 and the source term defined
in (4.38) with x0 = (1

2
, 1
2
)T and r = 1

20
. For the implementation of the PML,

we adapt [Ber+07] to the present setting. We use the mesh TH with H = 2−7

and divide the domain D into a physical domain DF := (4H, 1− 4H)2 and the
absorbing layer DA := D\DF. For this configuration, the absorbing layer has a
width of 4H. The (unbounded) absorbing function in x-direction is given by

ρx(x) =

{
i
κ

(
1
−x

+ 1
4H

)
if 0 < x ≤ 4H,

i
κ

(
1

1−x
− 1

4H

)
if 1− 4H ≤ x < 1.

In y-direction, the absorbing function is chosen analogously. As usual for PMLs,
we impose homogeneous Dirichlet boundary conditions on ∂D. We refer to
[Ber+07, Sec. 3] for the weak formulation of the Helmholtz problem with PML
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5 Super-Localized Orthogonal Decomposition

Figure 5.11: Real part of the PML-SLOD solution (left) and absolute value of
the difference between the PML-SLOD solution and the reference
solution (right) for κ = 26, m = 2, and H = 2−7. Both plots only
show the physical domain DF.

boundary conditions. The PML-SLOD solution is then obtained by applying the
SLOD to this problem and by restricting the resulting solution to the physical
domain DF. Using the mesh T2−10 for the fine-scale discretization, we obtain,
e.g., for κ = 26 and m = 2, a relative error of 6.5 × 10−3 with respect to the
restricted V-norm. For a visualization of the PML-SLOD solution and its error,
see Figure 5.11. Note that for the plot of the solution, we truncated the color
map to [−0.45, 0.45].
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6 Super-Localized Generalized
Finite Element Method

The SLOD introduced in the previous chapter is an enhancement of the LOD
with better localization properties. However, the main disadvantage of the
SLOD is that the stability of its basis cannot be guaranteed a priori. For ex-
ample, for high-contrast channeled coefficients or convection-dominated regimes,
these basis stability issues may degrade the approximation quality of the method.
For a numerical demonstration of this effect, see Section 6.5. This chapter in-
troduces the Super-Localized Generalized Finite Element Method (SL-GFEM),
which, in order to overcome these basis stability issues, combines the SLOD
with a partition of unity (PU) approach, cf. [MB96; BM97]. More precisely,
locally on nodal patches, we apply the respective local solution operator to clas-
sical FE source terms. Multiplying these spaces with the corresponding PU
functions yields local ansatz spaces with a low effective dimension. By solv-
ing local spectral problems, we compute corresponding low-dimensional optimal
approximation spaces. The global problem-adapted approximation space of the
SL-GFEM is then obtained by gluing together these low-dimensional approxi-
mation spaces with a PU.

Compared to the MS-GFEM [BL11; EGH13; MSD22], the SL-GFEM has the
major advantage that its local spectral problems are posed in a space spanned
by a few deterministic snapshots. Thus, random sampling strategies can be
avoided. Moreover, the local spectral problems are easily solvable, due to their
typically low dimension. From an application point of view, the SL-GFEM is
conceptually simple and straightforward to implement. Furthermore, by ad-
justing the polynomial degree of the FE source terms, one can easily construct
higher order versions of the method. Similar to the higher order LOD [Mai21;
DHM22], one obtains higher order convergence rates by exploiting only the reg-
ularity of the source term.

In this chapter, we prove that the SL-GFEM possesses the advantageous
localization and convergence properties of the SLOD, which can be quantified a
posteriori. Building on the well-understood theoretical foundation of the LOD,
we additionally perform a pessimistic a priori error analysis proving that the
SL-GFEM at least recovers the convergence and localization properties of the
LOD. For the higher order versions of the method, we observe that increasing
the polynomial degree alone significantly improves the localization properties.
The implementation of the SL-GFEM is done using the Python-library gridlod
[HK17] and supports the computation on large parallel clusters. We stress that
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6 Super-Localized Generalized Finite Element Method

although the SL-GFEM is introduced for elliptic problems only, an extension to
non-symmetric and indefinite problems such as the Helmholtz problem seems
possible.

The content and presentation of the following chapter is primarily based on
the preprint article

[Fre+22a] P. Freese, M. Hauck, T. Keil, and D. Peterseim. “A super-
localized generalized finite element method”. In: arXiv preprint
2211.09461 (2022)

6.1 Elliptic model problem
On the bounded polytopal Lipschitz domain D ⊂ Rd, which is assumed to be
scaled to unit size, we consider the following linear diffusion-type PDE with
homogeneous Dirichlet boundary conditions:

− div(A∇u) = f in D,
u = 0 on ∂D.

(6.1)

The matrix-valued diffusion coefficient A ∈ L∞(D,Rd×d) is assumed to be sym-
metric and positive definite almost everywhere. This means that there exist
constants α, β with 0 < α ≤ β <∞ such that

α|ξ|2 ≤ (A(x)ξ) · ξ ≤ β|ξ|2 (6.2)

holds for almost all x ∈ D and all ξ ∈ Rd with | · | denoting the Euclidean norm
of Rd. The weak formulation of (6.1) uses the solution space V := H1

0 (D) and
the bilinear form a : V × V → R, which is defined as

a(v, w) :=

ˆ
D

(A∇v) · ∇w dx.

Friedrichs’ inequality (see, e.g., [Alt16, Thm. 6.7]), the symmetry of a, and
condition (6.2) ensure that the bilinear form a is an inner product on V . Its
induced norm is the energy norm defined by ∥ · ∥a :=

√
a(·, ·). We denote

by ∥ · ∥a,S the restriction of the energy norm to the subdomain S ⊂ D. Applying
Friedrichs’ inequality and using (6.2), we obtain the equivalence of the energy
norm to the H1-norm.

Given a source term f ∈ L2(D), the weak formulation of (6.1) seeks u ∈ V
such that

a(u, v) = (f, v)L2 (6.3)

holds for all v ∈ V . The well-posedness of (6.3) follows from the fact that a is
coercive and continuous with constants one with respect to the energy norm,
i.e., it holds that

a(v, v) ≥ ∥v∥2a, a(v, w) ≤ ∥v∥a∥w∥a
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6.2 Derivation of multi-scale method

for all v, w ∈ V . This directly follows form the definition of the energy norm and
the Cauchy–Schwarz inequality. Note that the coercivity in fact holds with an
equality. Applying the Lax–Milgram theorem (see, e.g., [Alt16, Thm. 6.2]) then
yields the well-posedness of the problem (6.3). We emphasize that the coercivity
of the bilinear form a on V also implies the coercivity of a for all subspaces
of V . In particular, this means that all corrector problems and conforming
discretizations of the problem (6.3) are well-posed.

6.2 Derivation of multi-scale method
The SL-GFEM can be classified as PU method, cf. [MB96; BM97], since its
global approximation space is obtained by gluing together local approximation
spaces by means of a PU. For the construction of the local approximation spaces,
we first introduce discontinuous FE spaces and conforming companion spaces.

6.2.1 Higher order discontinuous finite element spaces

The local approximation spaces of the SL-GFEM are obtained by applying the
local solution operator to discontinuous FE spaces. Denoting by p ∈ N0 a fixed
but arbitrary polynomial degree, we define the space of piecewise polynomials
of degree at most p with respect to TH as

P(TH) :=
{
v ∈ L2(D) : v|K is a polynomial of coordinate degree ≤ p, K ∈ TH

}
.

Furthermore, we denote the restriction of P(TH) to a union of elements S by

P(S) := {v|S : v ∈ P(TH)}.

For any K ∈ TH , one can characterize the space P(K) in terms of a suitable
orthonormal basis {θK,j : j = 1, . . . , J}, where J := dimP(K). An example for
such an orthonormal basis are L2-normalized shifted tensor-product Legendre
polynomials. A local orthonormal basis of P(TH) is given by

{θK,j : K ∈ TH , j = 1, . . . , J}.

Henceforth, let us denote by ΠH : L2(D)→ P(TH) the L2-orthogonal projection,
which is for any v ∈ L2(D) and K ∈ TH locally defined such that

(ΠHv, w)L2(K) = (v, w)L2(K) (6.4)

holds for all w ∈ P(K). By definition, the L2-projection is locally L2-stable.
Furthermore, there exists Cap > 0 only depending on the polynomial degree p
and the shape regularity of TH such that, for all K ∈ TH and v ∈ Hk(K) with
k ≤ p+ 1, it holds that

∥v − ΠHv∥L2(K) ≤ CapH
k|v|Hk(K), (6.5)
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6 Super-Localized Generalized Finite Element Method

where | · |Hk(K) denotes the Hk(K)-seminorm, cf. [DPE11, Lem. 1.58]. We define
the broken Sobolev space Hk(TH) for k ∈ N0 by

Hk(TH) :=
{
v ∈ L2(D) : v|K ∈ Hk(K), K ∈ TH

}
.

This space can be equipped with the seminorm

| · |2Hk(TH) :=
∑
K∈TH

| · |2Hk(K).

Note that for k = 0, it holds that H0(TH) = L2(D) and | · |H0 = ∥ · ∥L2 .
Since P(TH) is non-conforming with respect to V , we define, similarly to Sec-

tion 3.2, local conforming companions of the functions in P(TH). Given a basis
function θK,j of P(TH), we consider an associated bubble function bK,j ∈ H1

0 (K)
such that ΠHbK,j = θK,j, which satisfies an estimate similar to (3.5) (the con-
stant is now also p-dependent). An existence result for such bubble functions
can be found in [Mai21, Cor. 3.6]. Note that an explicit characterization of the
bubble functions is not required, since they are used for theoretical purposes
only. Similar to (3.6), we can then define the following bubble operator:

BH : L2(D)→ V , v 7→
∑
K∈TH
j=1,...,J

ˆ
K

vθK,j dx bK,j. (6.6)

Note that the operator BH is constructed such that its kernel coincides with
the kernel of ΠH , i.e., kerBH = kerΠH . Furthermore, for all v ∈ L2(K) and
K ∈ TH , it holds that

∥BHv∥L2(K) +H∥∇BHv∥L2(K) ≤ CBH
∥v∥L2(K), (6.7)

where the constant CBH
> 0 depends only on the shape regularity of TH and

the polynomial degree p, cf. [Mai21, Cor. 3.6]. This estimate is the higher order
analogue to (3.7).

6.2.2 Partition of unity

We denote by Λz the continuous TH-piecewise bilinear hat function associated
with the node z ∈ NH , i.e., it holds that Λz(y) = δyz for all y ∈ NH , where δ
denotes the Kronecker symbol. Here, we denoted by NH the set of all (interior
and boundary) nodes of TH . The SL-GFEM uses the hat functions

{Λz : z ∈ NH}

as PU functions. The hat functions satisfy the PU property
∑

z∈NH
Λz ≡ 1 and

have an L∞-norm of one. Their gradients satisfy for all z ∈ NH that

∥∇Λz∥L∞ ≤ CΛH
−1, (6.8)
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6.2 Derivation of multi-scale method

where the constant CΛ > 0 only depends on the shape regularity of TH . Denoting
Sz := suppΛz, the shape regularity of TH also implies that the maximal number
of overlapping supports {Sz : z ∈ NH} is uniformly bounded. More precisely,
the number

Col := max
K∈TH

#{z ∈ NH : K ⊂ Sz} (6.9)

is bounded uniformly as the coarse mesh is refined.

6.2.3 Local approximation spaces

Denoting by Sm
z := Nm(Sz) the m-th order patch of Sz, cf. (3.11), the local

approximation space corresponding to node z ∈ NH is defined by restricting

VH,m,z := span
{
LSm

z
q : q ∈ P(Sm

z )
}
⊂ H1

0 (S
m
z ) (6.10)

to Sz, where LSm
z

denotes the local solution operator on Sm
z , cf. (5.3). Due

to the oversampling, the restricted space has a low effective dimension. This
holds also true after multiplication with the hat function Λz when gluing the
local approximation spaces together. Therefore, we investigate the optimal ap-
proximation of ΛzVH,m,z by n-dimensional subspaces Q(n) ⊂ H1

0 (Sz). Given the
subspace Q(n), the worst-case best approximation error is defined as

sup
v ∈VH,m,z

inf
w∈Q(n)

∥Λzv − w∥a,Sz

∥v∥a,Sm
z

.

The minimal worst-case best approximation error is known as Kolmogorov n-
width, cf. [Pin85], and is defined as

dnz (H,m) := inf
Q(n)⊂H1

0 (Sz)
sup

v ∈VH,m,z

inf
w∈Q(n)

∥Λzv − w∥a,Sz

∥v∥a,Sm
z

. (6.11)

In fact, there exists a corresponding optimal local approximation space of di-
mension n, which we compute explicitly in the following. For this, we solve the
low-dimensional eigenvalue problem, which seeks eigenpairs (v, λ) ∈ VH,m,z × R
such that it holds

aSz(Λzv,Λzw) = λ aSm
z
(v, w) (6.12)

for all w ∈ VH,m,z. This eigenvalue problem has N := dimVH,m,z eigenfunctions
denoted by {vi : i = 1, . . . , N}, where we assume an ordering such that the
corresponding eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. Defining

V n
H,m,z := span{vi : i = 1, . . . , n},

the optimal local approximation space of dimension n is given by ΛzV
n
H,m,z.
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6 Super-Localized Generalized Finite Element Method

6.2.4 Global approximation space

The global approximation space of the SL-GFEM is obtained by gluing together
the above local approximation spaces using the PU, i.e.,

V gfem
H,m,n :=

∑
z∈NH

ΛzV
n
H,m,z.

For measuring the overall error when approximating ΛzVH,m,z by spaces of di-
mension n, we introduce the quantity dn defined by

dn(H,m) := max
z∈NH

dnz (H,m). (6.13)

The SL-GFEM approximation ugfemH,m,n ∈ V gfem
H,m,n is then defined such that

a(ugfemH,m,n, v) = (f , v)L2 (6.14)

holds for all v ∈ V gfem
H,m,n. The following two sections are devoted to the theoretical

investigation of the SL-GFEM. In Section 6.3 we present an a posteriori error
analysis based on SLOD techniques, while in Section 6.4, we present a priori
error bounds using LOD arguments.

6.3 A posteriori error analysis
The subsequent a posteriori error analysis of the SL-GFEM is based on a connec-
tion to a higher order variant of the SLOD, which we will derive in the following.
We emphasize that this higher order variant serves theoretical purposes only and
therefore is not implemented in practice. The higher order SLOD is conceptu-
ally very similar to the SLOD from Chapter 5 with the main difference that
J := dimP(K) basis functions are constructed per mesh element instead of one
for the SLOD.

For the derivation of these basis functions, we fix an element K ∈ TH and
denote its m-th order patch by S := Nm(K). For the sake of readability, we
drop all fixed indices. For the indices j = 1, . . . , J , we construct the prototypical
(global) basis functions associated to the element K by the ansatz φj := Lgj
and denote their localized counterparts by ψj := LSgj. Here, L (resp. LS)
denotes the global (resp. local) solution operator, cf. (2.14) and (5.3). The source
terms gj ∈ P(S) are henceforth determined such that the localization error is
minimal. Denoting Σ := ∂S\∂D, we recall the definitions of the operators
trΣ : V(S) → X ⊂ H1/2(Σ) and tr−1

Σ : X → V(S) in (5.7) and (5.8), where
V(S) = V|S. Transferring identity (5.9) to the higher order setting, we obtain
that the smallness of the localization error is equivalent to the (almost) L2(S)-
orthogonality of gj to the space Y := tr−1

Σ X ⊂ V(S). Similar to (5.11), we
perform a SVD of the operator ΠH,S|Y , where ΠH,S denotes the restriction of ΠH
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6.3 A posteriori error analysis

to the local subspace P(S). The local source terms gj are then obtained as
the left singular vectors corresponding to the J smallest singular values. More
precisely with the notation from (5.11) and R := dimP(S), we choose the source
terms gj for j = 1, . . . , J as

gj := qR−J+j. (6.15)

We emphasize that, by the definition of the SVD, the source terms gj are L2-
normalized. For all j = 1, . . . , J , we obtain that

sup
v∈Y : ∥v∥V(S)=1

(gj , v)L2(S) ≤ σR−J+1,

cf. (5.13). Similar to (5.18), the localization error of the higher order SLOD is
determined by the quantity σ defined as

σ(H,m) := max
K∈TH

σK(H,m), σK(H,m) := σR−J+1. (6.16)

Note that the dependence of σ on the (fixed) polynomial degree p is not made
explicit here.

Numerically, one observes that σ decays rapidly as the oversampling param-
eter m or the polynomial degree p are increased. For a study of the decay of σ
in m, see Sections 5.4 and 5.6. There, for p = 0, numerical experiments have
been performed that suggest a super-exponential decay of σ in m. Pessimistic
exponential decay results for the case p = 0 were proved in Theorem 5.4.3. Note
that also for p > 0, numerical experiments indicate a super-exponential decay
of σ as m is increased. Conversely, for fixed m, a rapid decay of σ in p can be
observed numerically, cf. Figure 6.1.

Since in the remainder the element K ∈ TH is not fixed but variable, it
needs to be included in the notation. Let us denote the source term, the global
basis function, and its localized counterpart corresponding to the element K
by gK,m,j, φK,m,j, and ψK,m,j, respectively. For the error analysis of the SL-
GFEM we use the collocation variant of the higher order SLOD, cf. (5.15). Its
approximation is defined as

uslodH,m :=
∑
K∈TH

cK,j ψK,m,j, (6.17)

where the (cK,j)K∈TH ,j=1,...,J are the coefficients of the expansion of ΠHf in terms
of the local source terms

{gK,m,j : K ∈ TH , j = 1, . . . , J}. (6.18)

We emphasize that, in order to obtain a reasonable approximation, the local
source terms and the corresponding basis functions need to be chosen in a stable
way. Similar to (5.17), we assume that the local source terms (6.18) form a Riesz
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Figure 6.1: Singular values of the operator ΠH,S|Y for a fixed patch S withm = 1
and several values of p for problem (3.36). The dashed horizontal
lines indicate the singular values σR−J+1, which determine the value
of σ defined in (6.16).

basis of P(TH), i.e., there exists Cr(H,m) > 0 depending polynomially on H−1

and m such that

C−1
r (H,m)

∑
K∈TH
j=1,...,J

c2K,j ≤
∥∥∥∥ ∑

K∈TH
j=1,...,J

cK,jgK,m,j

∥∥∥∥2
L2

≤ Cr(H,m)
∑
K∈TH
j=1,...,J

c2K,j. (6.19)

holds for all (cK,j)K∈TH ,j=1,...,J .
The following theorem provides an a posteriori error bound for the SL-GFEM

based on the higher order SLOD. This bound includes the local optimal approx-
imation error dn defined in (6.13), which can be bounded using Theorem 6.3.2.

Theorem 6.3.1 (A posteriori error bound for the SL-GFEM). For any
f ∈ Hs(TH), s ∈ N0, the SL-GFEM approximation (6.14) satisfies for k :=
min{s, p+ 1} that

∥u− ugfemH,m,n∥a
≲ H1+k|f |Hk(TH) +md+1C1/2

r (H,m)
(
σ(H,m) +Hdn(H,m)

)
∥f∥L2 ,

where the hidden constant only depends on α, β, p, and the quasi-uniformity
and shape regularity of TH .

Proof. Applying Céa’s lemma (see, e.g., [EG04, Lem. 2.28]) yields that

∥u− ugfemH,m,n∥a ≤ ∥u− v∥a (6.20)

98



6.3 A posteriori error analysis

for any v ∈ V gfem
H,m,n. We denote by uslodH,l the solution of the higher order colloca-

tion variant of the SLOD for the oversampling parameter l := ⌊m/2⌋, i.e.,

uslodH,l :=
∑
K∈TH
j=1,...,J

cK,jψK,l,j, (6.21)

where the (cK,j)K∈TH ,j=1,...,J are the coefficients of the expansion of ΠHf in terms
of the local source terms {gK,l,j : K ∈ TH , j = 1, . . . , J}, cf. (6.17). Adding and
subtracting uslodH,l in (6.20) and employing the triangle inequality yields that

∥u− ugfemH,m,n∥a ≤ ∥u− u
slod
H,l ∥a + ∥u

slod
H,l − v∥a. (6.22)

The first term is the error of the collocation variant of the higher order SLOD.
Using the approximation property (6.5) of the L2-projection, it is not difficult
to derive a higher order version of Theorem 5.3.2, i.e.,

∥u− uslodH,l ∥a ≲ H1+k|f |Hk(TH) + C1/2
r (H, l)ld/2σ(H, l)∥f∥L2 ,

which gives the desired bound for the first term in (6.22).
For the second term in (6.22), we choose v ∈ V gfem

H,m,n as the sum of functions
vnz ∈ V n

H,m,z to be specified later, i.e.,

v =
∑
z∈NH

Λzv
n
z .

Using the PU property of the hat functions
∑

z∈NH
Λz ≡ 1, we obtain that

∥uslodH,l − v∥
2

a
=
∥∥∥ ∑

z∈NH

Λz(u
slod
H,l − vnz )

∥∥∥2
a
≤ Col

∑
z∈NH

∥Λz(u
slod
H,l − vnz )∥

2

a,Sz
,

where Col is defined in (6.9) and denotes the maximal number of overlapping
supports Sz. For each z ∈ NH , locally on Sz, we replace uslodH,l with uslodH,l,z

defined by
uslodH,l,z :=

∑
K⊂Sl

z
j=1,...,J

cK,jψK,l,j ∈ H1
0 (S

m
z ),

where the coefficients cK,j are defined in (6.21). As approximation to uslodH,l,z in
the space VH,m,z, cf (6.10), we use

vz :=
∑
K⊂Sl

z
j=1,...,J

cK,jψ̂K,l,j ∈ VH,m,z,

where ψ̂K,l,j := LSm
z
gK,l,j ∈ VH,m,z. Note that the difference between ψK,l,j

and ψ̂K,l,j is the local domain, where the local solution operator is applied to
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6 Super-Localized Generalized Finite Element Method

the common local source term gK,l,j. Due to the rapid decay of ψK,l,j, the
function ψ̂K,l,j is a good approximation to ψK,l,j. We choose vnz ∈ V n

H,m,z as the
not necessarily unique element minimizing ∥Λzvz − Λzv

n
z ∥a,Sm

z
.

Abbreviating
e1z := uslodH,l,z − vz, e2z := vz − vnz

and performing the local replacement mentioned above, we obtain that

∥Λz(u
slod
H,l − vnz )∥

2

a,Sz
≤ 2
(
∥Λze

1
z∥

2

a,Sz
+ ∥Λze

2
z∥

2

a,Sz

)
, (6.23)

where we added and subtracted vz and employed the triangle inequality. Using
the product rule and (6.8), we get for the first term on the right-hand side
of (6.23) that

∥Λze
1
z∥

2

a,Sz
≤ 2β

(
C2

ΛH
−2∥e1z∥

2

L2(Sz)
+ ∥∇e1z∥

2

L2(Sz)

)
. (6.24)

Noting that by e1z ∈ H1
0 (S

m
z ), we can apply Friedrichs’ inequality on Sm

z with
diam(Sm

z ) ≲ mH to estimate the first term in (6.24). We obtain that

∥e1z∥
2

L2(Sz)
≤ ∥e1z∥

2

L2(Sm
z ) ≲ m2H2∥∇e1z∥

2

L2(Sm
z ). (6.25)

For the second term in (6.24), we use the trivial estimate

∥∇e1z∥
2

L2(Sz)
≤ ∥∇e1z∥

2

L2(Sm
z ),

which implies that in order to bound (6.24), it is sufficient to estimate the term
∥∇e1z∥L2(Sm

z ). Denoting Σ := ∂Sl
K\∂D, where Sl

K := Nl(K), we obtain, similar to
the proof of Theorem 5.3.1, for all v ∈ V(Sl

K) the following continuity estimate

∥ tr−1
Σ trΣ v∥V(Sl

K) ≤ (1 + α−1β)∥v∥V(Sl
K).

Using this estimate, one can show that

(gK,l,j , tr
−1
Σ trΣ e

1
z)L2(Sl

K) ≤ (1 + α−1β)σ(H, l)∥e1z∥V(Sl
K). (6.26)

By (5.9) and (6.26), the discrete Cauchy–Schwarz inequality, the finite overlap
of the patches Sl

K , and Friedrichs’ inequality, we obtain that

α∥∇e1z∥
2

L2(Sm
z ) ≤

∑
K⊂Sl

z
j=1,...,J

cK,ja(ψK,l,j − ψ̂K,l,j, e
1
z)

≤ (1 + α−1β)σ(H, l)
∑
K⊂Sl

z
j=1,...,J

|cK,j|∥e1z∥V(Sl
K)

≲ (1 + α−1β)σ(H, l)ld/2J1/2

√√√√ ∑
K⊂Sl

z
j=1,...,J

c2K,j ∥∇e1z∥L2(Sm
z ).
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6.3 A posteriori error analysis

Combining the previous estimate with (6.24) and (6.25) yields a bound for the
first term in (6.23).

To estimate the second term in (6.23), we use the definition of the Kolmogorov
n-width in (6.11), Friedrichs’ inequality on the patch Sm

z with diam(Sm
z ) ≲ mH,

the discrete Cauchy–Schwarz inequality, and that the source terms gK,l,j are L2-
normalized. We obtain that

∥Λze
2
z∥a,Sz

≤ dn(H,m)∥vz∥a,Sm
z
= dn(H,m)

∥∥∥∥LSm
z

∑
K⊂Sl

z
j=1,...,J

cK,jgK,l,j

∥∥∥∥
a,Sm

z

≲ dn(H,m)α−1/2mH

∥∥∥∥ ∑
K⊂Sl

z
j=1,...,J

cK,jgK,l,j

∥∥∥∥
L2(Sm

z )

≲ dn(H,m)α−1/2mH ld/2J1/2

√√√√ ∑
K⊂Sl

z
j=1,...,J

c2K,j.

The desired a posteriori error estimate of the SL-GFEM can then be concluded
by combining all previous estimates and utilizing that∑

z∈NH

∑
K⊂Sl

z
j=1,...,J

c2K,j ≲ md
∑
K∈TH
j=1,...,J

c2K,j ≲ Cr(H,m)md∥f∥2L2 ,

where we used (6.19), the fact that the (cK,j)K∈TH , j=1,...,J are the coefficients
of the expansion of ΠHf in terms of the local source terms, cf. (6.17), and the
L2-stability of ΠH . Finally, for the sake of readability, we replace l = ⌊m/2⌋
with m. Using (5.27), this may introduce additional constants that change the
decay rate of σ by a constant factor.

Subsequently, we derive a bound for the local approximation error dn that
appears in the error bound from Theorem 6.3.1. To do this, we locally use
the higher order SLOD to construct basis functions of the spaces VH,m,z defined
in (6.10). For a fixed node z ∈ NH , we treat the patch Sm

z as the whole domain
and locally apply the higher order SLOD. For l = 1, . . . ,m − 1, this results in
the basis functions

{φ̃K,l,j := LSm
z
g̃K,l,j : K ⊂ Sm

z , j = 1, . . . , J} (6.27)

with the source terms g̃K,l,j ∈ P(S̃l
K), where S̃l

K := Sl
K ∩ Sm

z and l denotes the
local oversampling parameter. Here, we denote Sl

K := Nl(K) and use a tilde
to emphasize that the basis functions and source terms are, in general, not the
same as their counterparts in the global setting. The corresponding localized
basis functions are given by

{ψ̃K,l,j := LS̃l
K
g̃K,l,j : K ⊂ Sm

z , j = 1, . . . , J}, (6.28)
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6 Super-Localized Generalized Finite Element Method

which are also in general different to their counterparts in the global setting.
Similarly as before, we need to measure for all K ⊂ Sm

z the orthogonality of
the source terms {g̃K,l,j : j = 1, . . . , J} on the corresponding space of operator-
harmonic functions, cf. (6.16). Denoting Σ := ∂S̃l

K\∂Sm
z , this space of operator-

harmonic functions is in the local setting given by

tr−1
Σ trΣ

(
H1

0 (S
m
z )|S̃l

K

)
. (6.29)

Furthermore, similar to (5.11) and (6.16), we denote the singular values of ΠH

restricted to (6.29) by σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃K ≥ 0 and define

σ̃(H,m, l) := max
z∈NH

max
K∈TH

σ̃z,K , σ̃z,K := σ̃R−J+1.

Note that the quantity σ̃ is strongly related to its counterpart σ from (6.16).
For fixed H and m, one observes a rapid decay of σ̃ as the local oversampling
parameter l is increased (the parameter l in the local setting plays the role of m
in the global setting), cf. Figures 5.3 and 6.1.

In order to ensure the stability of the local basis, we need to require a local
variant of (6.19), i.e., we assume that for all patches Sm

z the set

{g̃K,l,j : K ⊂ Sm
z , j = 1, . . . , J}

is a Riesz basis of P(Sm
z ), i.e., there is C̃r(H,m, l) > 0 depending polynomially

on H−1,m, and l such that for all z ∈ NH it holds that

C̃−1
r (H,m, l)

∑
K⊂Sm

z
j=1,...,J

c2K,j ≤
∥∥∥∥ ∑

K⊂Sm
z

j=1,...,J

cK,j g̃K,l,j

∥∥∥∥2
L2(Sm

z )

≤ C̃r(H,m, l)
∑

K⊂Sm
z

j=1,...,J

c2K,j

(6.30)
for all (cK,j)K⊂Sm

z ,j=1,...,J .
The following theorem gives a bound of the local approximation error dn that

appears in the error bound of Theorem 6.3.1 using the local higher order SLOD
construction introduced above.

Theorem 6.3.2 (Bound on dn). The Kolmogorov n-width defined in (6.13) can
be estimated for l = 1, . . . ,m− 1 as

dn(H,m) ≲ mld/2H−1C̃1/2
r (H,m, l)σ̃(H,m, l),

where n ≈ ld. The hidden constant only depends on α, β, p, and the quasi-
uniformity and shape regularity of TH .

Proof. For the proof, we fix the node z ∈ NH and the oversampling parameterm.
As an approximation space Q(n) of dimension n ≈ ld, we choose

Q(n) := span{Λzψ̃K,l,j : K ⊂ Sl
z, j = 1, . . . , J}
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6.3 A posteriori error analysis

with the basis functions defined in (6.28). To approximate vz ∈ VH,m,z, we
choose the element wz ∈ Q(n) as

wz = Λz

∑
K⊂Sl

z
j=1,...,J

cK,jψ̃K,l,j,

where the cK,j are the coefficients of the expansion of vz in terms of the basis
functions φ̃K,l,j defined in (6.27). Note that by (6.30), the coefficients cK,j are
uniquely determined. We can estimate the spectral approximation error (6.11)
using the definitions of vz and wz as follows:

dnz (H,m) = inf
Q(n)⊂H1

0 (Sz)
sup

vz ∈VH,m,z

inf
wz∈Q(n)

∥Λzvz − wz∥a,Sz

∥vz∥a,Sm
z

≤ sup
vz ∈VH,m,z

∥Λzvz − wz∥a,Sz

∥vz∥a,Sm
z

. (6.31)

Denoting
ez :=

∑
K⊂Sl

z
j=1,...,J

cK,j

(
φ̃K,l,j − ψ̃K,l,j

)
∈ H1

0 (S
m
z )

and using the product rule, the triangle inequality, and (6.8), we obtain for the
numerator in (6.31) that

β−1/2∥Λzvz − wz∥a,Sz
≤ ∥∇(Λzez)∥L2(Sm

z ) ≤
(
CΛH

−1∥ez∥L2(Sm
z ) + ∥∇ez∥L2(Sm

z )

)
.

Applying Friedrichs’ inequality on the patch Sm
z with diam(Sm

z ) ≲ mH, we can
bound the first term against the second term, i.e.,

∥ez∥L2(Sm
z ) ≲ mH∥∇ez∥L2(Sm

z ).

Note that the estimate (6.26) can be transferred to the local setting with σ̃
instead of σ. Using the finite overlap of the patches S̃l

K , the discrete Cauchy–
Schwarz inequality, and Friedrichs’ inequality on Sm

z , we obtain that

α∥∇ez∥2L2(Sm
z ) ≤

∑
K⊂Sl

z
j=1,...,J

cK,ja(φ̃K,l,j − ψ̃K,l,j, ez)

≤ (1 + α−1β)σ̃(H,m, l)
∑
K⊂Sl

z
j=1,...,J

cK,j∥ez∥H1(S̃l
K)

≲ (1 + α−1β)ld/2σ̃(H,m, l)

√√√√ ∑
K⊂Sl

z
j=1,...,J

c2K,j∥∇ez∥L2(Sm
z ).
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6 Super-Localized Generalized Finite Element Method

Adding the remaining coefficients cK,j from the expansion of vz in terms of
the φ̃K,l,j and employing the local Riesz stability (6.30) yields that

C̃−1
r (H,m, l)

∑
K⊂Sm

z
j=1,...,J

c2K,j ≤
∥∥∥∥ ∑

K⊂Sm
z

j=1,...,J

cK,j g̃K,l,j

∥∥∥∥2
L2(Sm

z )

≤ C2
BH
H−2

∥∥∥∥ ∑
K⊂Sm

z
j=1,...,J

cK,j g̃K,l,j

∥∥∥∥2
H−1(Sm

z )

≤ C2
BH
βH−2∥vz∥2a,Sm

z
,

where we used that by (6.6) and (6.7), it holds for all q ∈ P(Sm
z ) that

∥q∥L2(Sm
z ) = sup

v ∈H1
0 (S

m
z )

(q , v)L2(Sm
z )

∥v∥L2(Sm
z )

≤ CBH
H−1 sup

v ∈H1
0 (S

m
z )

(q , BHv)L2(Sm
z )

∥∇BHv∥L2(Sm
z )

≤ CBH
H−1∥q∥H−1(Sm

z ).

Combining the above estimates gives the assertion.

Remark 6.3.3 (Choice of parameters). This remark specifies how to choose
the oversampling parameter m and the dimension of the local optimal approx-
imation spaces n in order to preserve the optimal order convergence in The-
orem 6.3.1. For m, the super-exponential decay (5.27) implies the condition
m ≳ (log 1

H
)(d−1)/d. Using Theorem 6.3.2 and that σ̃ has similar decay proper-

ties as σ, we obtain for n the condition n ≳ (log 1
H
)d−1. Note that these choices

require the validity of (5.27), (6.19), and (6.30). For a (pessimistic) choice of
parameters that holds without additional assumptions, see Remark 6.4.4 below.

6.4 (Pessimistic) a priori error analysis
This section presents an a priori error analysis of the SL-GFEM based on a
higher order variant of the LOD that we derive below. Note that the exponential
localization properties of the LOD do not match the practically observed super-
exponential localization properties of the SLOD, cf. (5.27). Nevertheless, the
LOD construction has the decisive advantage that the stability of the basis is
guaranteed by construction and that its exponential localization properties can
be rigorously proved. This allows an a priori analysis without assumptions on
the stability of the basis and without conjectures on the decay of singular values,
cf. (5.27), (6.19), and (6.30).

The construction of the higher order LOD is similar to that of the LOD in
Chapter 3 with the main difference that a different fine-scale space W is used.
More precisely, instead of (2.17), we define W as the kernel of the higher order
L2-orthogonal projection (6.4), i.e.,

W := kerΠH . (6.32)
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6.4 (Pessimistic) a priori error analysis

The constructions of the corrector C, the element correctors CK , the localized
element correctors CK,m, and the localized corrector Cm, cf. (3.1), (3.15), (3.21),
and (3.23), can be performed analogously for the higher order fine-scale space
defined above. The basis functions of the higher order LOD are obtained by
adding localized corrections to the bubble functions from Section 6.2.1, i.e.,

V lod
H,m := span{(id− Cm)bK,j : K ∈ TH , j = 1, . . . , J}.

The approximation ulodH,m ∈ V lod
H,m of the higher order LOD is then defined such

that it holds
a(ulodH,m, v) = (f , v)L2 . (6.33)

for all v ∈ V lod
H,m.

The following theorem gives an a priori error estimate for the SL-GFEM based
on the higher order LOD. Numerical experiments in Section 6.5 suggest that the
derived bound is pessimistic. However, compared to Theorem 6.3.1, it does not
rely on additional assumptions or conjectures.

Theorem 6.4.1 (A priori error bound for the SL-GFEM). For any f ∈ Hs(TH),
s ∈ N0, the SL-GFEM approximation (6.14) satisfies for k := min{s, p+1} that

∥u− ugfemH,m,n∥a ≲ H1+k|f |Hk(TH) +md/2H−1
(
md/2 exp(−Cdm) + dn(H,m)

)
∥f∥L2 ,

where the decay rate Cd > 0 depends only on α, β, p, and the shape regularity
of TH . The hidden constant has the same dependencies as Cd and additionally
depends on the quasi-uniformity of TH .

Proof. We apply Céa’s lemma, which gives for any v ∈ V gfem
H,m,n that

∥u− ugfemH,m,n∥a ≤ ∥u− v∥a. (6.34)

For the oversampling parameter l := ⌊m/2⌋, we define the approximation

ulodH,l := (id− Cl)BHu,

which is not the higher order LOD solution (6.33) but has the same approx-
imation properties. This is an observation used in many proofs showing the
convergence of the LOD method, see, e.g., [Mai21, Thm. 4.4]. Adding and
subtracting ulodH,l in (6.34) and using the triangle inequality yields that

∥u− ugfemH,m,n∥a ≤ ∥u− u
lod
H,l∥a + ∥u

lod
H,l − v∥a. (6.35)

The approximation properties of ulodH,l mentioned above yield for the first term
in (6.35) that

∥u− ulodH,l∥a ≲ H1+k|f |Hk(TH) + ld/2H−1 exp(−Cdl)∥f∥L2
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6 Super-Localized Generalized Finite Element Method

with the decay rate Cd > 0. Note that Cd is not equal to, but has the same
dependencies as the decay rate in Lemma 3.3.1, and additionally depends on
the polynomial degree p.

To estimate the second term in (6.35), we choose v ∈ V gfem
H,m,n as the sum of

functions vnz ∈ V n
H,m,z to be specified later, i.e.,

v =
∑
z∈NH

Λzv
n
z .

Using the PU property of the hat functions
∑

z∈NH
Λz ≡ 1, we then obtain that

∥ulodH,l − v∥
2

a
=
∥∥∥ ∑

z∈NH

Λz(u
lod
H,l − vnz )

∥∥∥2
a
≤ Col

∑
z∈NH

∥Λz(u
lod
H,l − vnz )∥

2

a,Sz
,

where Col defined in (6.9) denotes the maximal number of overlapping sup-
ports Sz. For any z ∈ NH , we can replace ulodH,l locally on Sz with

ulodH,l,z := (id− Cl)(BHu|Sl
z
).

Hence, we define vnz ∈ V n
H,m,z as the (not necessarily unique) element minimizing

the expression ∥Λzvz − Λzv
n
z ∥a,Sm

z
, where

vz := (id− C̃z,m)(BHu|Sl
z
)

is an approximation to ulodH,l,z. Denoting Wz,m := {v ∈ W : supp(v) ⊂ Sm
z }, we

define the corrector C̃z,m : V → Wz,m used above such that

aSm
z
(C̃z,mv, w) = aSm

z
(v, w) (6.36)

holds for all w ∈ Wz,m. Note that it holds vz ∈ VH,m,z, which is a non-trivial
observation that can be concluded from Lemma 3.1.1.

Abbreviating
e1z := ulodH,l,z − vz, e2z := vz − vnz ,

we obtain after performing the local replacement mentioned above that

∥Λz(u
lod
H,l − vnz )∥

2

a,Sz
≤ 2
(
∥Λze

1
z∥

2

a,Sz
+ ∥Λze

2
z∥

2

a,Sz

)
. (6.37)

Similar to (6.24), in order to bound the first term in (6.37), it suffices to bound
∥e1z∥L2(Sz)

and ∥∇e1z∥L2(Sz)
. It holds that

e1z = (Cl − C̃z,m)(BHu|Sl
z
) ∈ Wz,m,

which in particular implies that e1z has vanishing element averages. Therefore,
we obtain by Poincaré’s inequality, cf. (2.25), that

∥e1z∥
2

L2(Sz)
≲ H2∥∇e1z∥

2

L2(Sz)
.
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6.4 (Pessimistic) a priori error analysis

Hence, it is sufficient to estimate ∥∇e2z∥L2(Sz)
to obtain a bound for the first term

in (6.37). Given a function that is supported on Sl
z (e.g., BHu|Sl

z
) the correction

operator Cl coincides with the localization of C̃z,m to l-th order patches. Thus,
we can apply a higher order version of the localization error estimate from
Lemma 3.3.3, here in the oversampling parameter l. Using (6.7), it follows that

∥∇e1z∥
2

L2(Sz)
≤ ∥∇(Cl − C̃z,m)(BHu|Sl

z
)∥2

L2(Sm
z )

≲ ld exp(−Cdl)
2∥∇(BHu|Sl

z
)∥2

L2(Sm
z )

≤ C2
BH
H−2ld exp(−Cdl)

2∥u∥2L2(Sl
z)
.

For the second term in (6.37), we obtain by the definition of the Kolmogorov
n-width, the stability of id − C̃z,m (recall that by [Szy06], the operators C̃z,m
and id− C̃z,m have the same operator norms), and (6.7) that

∥Λze
2
z∥a,Sz

≤ dn(H,m)∥vz∥a,Sm
z
≤ β1/2dn(H,m)∥∇(BHu|Sl

z
)∥

L2(Sm
z )

≤ CBH
H−1βdn(H,m)∥u∥L2(Sl

z)
.

We note that by Friedrichs’ inequality (recall that D is scaled to unit size), it
holds that

∥u∥L2 ≲ ∥∇u∥L2 ≲ α−1∥f∥L2 .

Combining the previous estimates, using the finite overlap of the patches Sl
z and

replacing l = ⌊m/2⌋ with m, which introduces additional constants and changes
the exponential decay rate Cd by a constant factor, the assertion follows.

Remark 6.4.2 (Numerical pollution). In the error estimate of Theorem 6.4.1,
there is a factor of H−1 in front of the localization and local approximation
error. In the proof, this factor is caused by the use of the operator BH and
the corresponding estimate (6.7). Indeed, numerical experiments confirm the
presence of numerical pollution, see Section 6.5. For the LOD, we were able
to avoid such pollution by using a quasi-interpolation operator, cf. Chapter 3.
Note that such techniques are not directly applicable to the SL-GFEM, due
to difficulties arising from the combination of the PU approach and the quasi-
locality of the operator. Nevertheless, using a more sophisticated construction
of the local approximation spaces (6.10), it may be possible to eliminate the
pollution also for the SL-GFEM.

The following theorem gives an a priori bound of dn that is fully explicit in H
and m. This is the analogue of Theorem 6.3.2, which does not rely on any
additional assumptions or conjectures. Numerical experiments suggest that this
estimate is pessimistic.

Theorem 6.4.3 (Bound of dn). The Kolmogorov n-width defined in (6.13) can
be estimated for l = 1, . . . ,m− 1 as

dn(H,m) ≲ mld/2 exp(−Cdl),
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where n ≈ ld. The constant Cd is the same as in Theorem 6.4.1 and the hidden
constant depends only on α, β, p, and the quasi-uniformity and shape regularity
of TH .

Proof. We consider a fixed node z ∈ NH and oversampling parameter m. Using
Lemma 3.1.1, it can be shown that for any v ∈ VH,m,z it holds that

v = (id− C̃z,m)BHv,

where C̃z,m denotes the correction operator defined in (6.36). Furthermore, we
define the localized correction operator C̃l :=

∑
K⊂Sm

z
C̃K,l with respect to the

patch Sm
z . Here, denoting W̃K,l := {v ∈ W : supp(v) ⊂ Sl

K ∩ Sm
z }, the element

correctors C̃K,l : H
1
0 (S

m
z )→ W̃K,l are defined such that

aSm
z
(C̃K,lv, w) = aK(v, w)

holds for all w ∈ W̃K,l.
As an approximation space Q(n) of dimension n ≈ ld, we choose

Q(n) := span{Λz(id− C̃l)bK,j : K ⊂ Sl
z, j = 1, . . . , J}

and as approximation wz ∈ Q(n) of the function vz ∈ VH,m,z, we employ

wz = Λz(id− C̃l)(BHvz|Sl
z
).

Using the approximation space Q(n) and the above defined choice of wz, we can
bound the Kolmogorov n-width as follows:

dnz (H,m) = inf
Q(n)⊂H1

0 (Sz)
sup

vz ∈VH,m,z

inf
wz∈Q(n)

∥Λzvz − wz∥a,Sz

∥vz∥a,Sm
z

≤ sup
vz ∈VH,m,z

∥Λzvz − wz∥a,Sz

∥vz∥a,Sm
z

.

Abbreviating
ez := (C̃l − C̃z,m)BHvz,

we can estimate the numerator using (6.8) and

Λz(id− C̃l)(BHvz|Sl
z
) = Λz(id− C̃l)BHvz,

since

β−1/2∥Λzvz − wz∥a,Sz
≤ ∥∇Λzez∥L2(Sz)

≤
(
CΛH

−1∥ez∥L2(Sz)
+ ∥∇ez∥L2(Sz)

)
.

It holds that ez ∈ Wz,m, which implies that e1z has vanishing element averages.
Thus, by Poincaré’s inequality, cf. (2.25), we get that

∥ez∥L2(Sz)
≲ H∥∇ez∥L2(Sz)

.
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Applying a localization error estimate similar to Lemma 3.3.3 to show that C̃l
approximates C̃z,m exponentially well and using (6.7) as well as Friedrichs’ in-
equality on the patch Sm

z with diam(Sm
z ) ≲ mH, we get that

∥Λzvz − wz∥a,Sz
≤ β1/2(CΛ + 1)∥∇ez∥L2(Sm

z )

≲ β1/2(CΛ + 1)ld/2 exp(−Cdl)∥∇BHv∥L2(Sm
z )

≲ CBH
mld/2α−1/2β1/2(CΛ + 1) exp(−Cdl)∥vz∥a,Sm

z
.

After combining the previous estimates, the assertion follows.

Remark 6.4.4 (Pessimistic choice of parameters). This remark specifies how
to choose the oversampling parameter m and the dimension of the local optimal
approximating spaces n in order to guarantee optimal order convergence in
Theorem 6.4.1. Form, we obtain the oversampling conditionm ≳ log( 1

H
), which

is the same as for the LOD, cf. Theorem 3.4.2. Furthermore, by Theorem 6.4.3
we get for the dimension of the local approximation spaces that n ≳ (log 1

H
)d.

We emphasize that these choices ofm and n guarantee, without any assumptions
or conjectures, optimal order convergence of the SL-GFEM. However, numerical
experiments suggest that these conditions are pessimistic. The choices from
Remark 6.3.3 seem to be more accurate in practice.

6.5 Numerical experiments
This section is devoted to the numerical study of the SL-GFEM. Similar to the
LOD in Section 3.5 and the SLOD in Section 5.5, we need to perform a fine-scale
discretization of the SL-GFEM in order to obtain a practical implementation.
Denoting by Th a fine mesh obtained by uniform refinement of TH , we replace
the infinite-dimensional space V in the definition of the SL-GFEM by its finite-
dimensional fine-scale FE counterpart with respect to Th. Similar to Section 3.5
for the LOD, we expect that the theoretical results of the SL-GFEM remain
valid in the fully discrete setting. The SL-GFEM is implemented in the Python
library gridlod [HK17]. The source code can be found at [Fre+22b]. Note that,
similar to the LOD and SLOD, all patch problems can be solved independently.
The implementation takes advantage of this by solving all local patch problems
in parallel. Note that the provided implementation supports computation on
large parallel clusters.

In all numerical experiments we consider the domain D = (0, 1)2 equipped
with uniform Cartesian meshes TH , where the mesh size denotes the side length
of the elements instead of their diameter. For the fine-scale discretization, we
use the uniform Cartesian mesh T2−10 , which resolves all fine-scale features of
the considered coefficients. In the following, all errors are relative errors with
respect to the energy norm. The fine-scale FE solution is used as the reference
solution for the error computation.

109



6 Super-Localized Generalized Finite Element Method

2−5 2−4 2−3 2−2
10−5

10−4

10−3

10−2

10−1

H

re
l.
en
er
g
y
er
ro
r

SL-GFEM, n = 10, m = 1
SL-GFEM, n = 50, m = 1
SL-GFEM, n = 10, m = 2
SL-GFEM, n = 50, m = 2
SL-GFEM, n = 10, m = 3
SL-GFEM, n = 50, m = 3
SLOD, m = 1
SLOD, m = 2
SLOD, m = 3
slope 2

Figure 6.2: Errors of the SL-GFEM and SLOD for multiple choices of n and m
as functions of H. The dotted line indicates the expected rate of
convergence.

Optimal order convergence

To numerically verify the optimal order convergence properties of the SL-GFEM,
we consider an elliptic model problem posed on the domain D = (0, 1)2 with
homogeneous Dirichlet boundary conditions. The considered coefficient A is
piecewise constant with respect to the mesh T2−8 and has element values, which
are realizations of independent uniformly distributed random variables in the
interval [1, 100], see Figure 3.3 for a depiction of a similar coefficient. Similar to
the previous chapters, we use the smooth source term defined by

f(x1, x2) = (x1 + cos(3πx1)) · x32. (6.38)

In Figure 6.2, we observe second order convergence of the SL-GFEM provided
that the dimension of the local approximation space n and the oversampling pa-
rameter m are chosen sufficiently large. Recalling that f ∈ H1(D), this is in line
with the theoretical predictions in Theorems 6.3.1 and 6.4.1. Note that, similar
to the SLOD, also the SL-GFEM shows numerical pollution for fixed values of m
and n. The presence of pollution has already been predicted by Theorem 6.4.1,
see also Remark 6.4.2. To obtain optimal order approximations, the parame-
ters m and n need to be increased with the mesh size H, see Remarks 6.3.3
and 6.4.4. Notably, the errors of the SL-GFEM are smaller by nearly one order
of magnitude compared to the errors of the SLOD. Since this effect only ap-
pears for non-trivial coefficients A, it is most likely related to the contrast of the
coefficient. More numerical experiments investigating the contrast dependence
can be found in the remainder of this section.

110



6.5 Numerical experiments

1 2 3 4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

m

re
l.

en
er

gy
er

ro
r

SL-GFEM, n = 10, p = 0
SL-GFEM, n = 15, p = 0
SL-GFEM, n = 20, p = 0
SL-GFEM, n = 30, p = 0
SL-GFEM, n = 40, p = 0
SLOD

Figure 6.3: Error of the SL-GFEM for multiple choices of n as a function of m
for the fixed coarse mesh T2−5 . As reference, also the respective
errors of the SLOD are shown.

Super-exponential localization

In this numerical experiment, we investigate the localization properties of the
SL-GFEM. For this, we use the same setting as in the previous numerical exper-
iment, but this time with the source term f ≡ 1. As a result of this choice, the
optimal order term in Theorems 6.3.1 and 6.4.1 vanishes and only the localiza-
tion error and the approximation error dn are present. Figure 6.3 shows a rapid
decay of the localization error in m and n, which is in line with Theorems 6.3.1
and 6.4.1. Note that the parameter m determines the theoretically achievable
error, while n determines the actual error within the range of achievable er-
rors. For the SLOD, the super-exponential decay of the localization error can
be observed, cf. (5.27). It can be observed that the SL-GFEM is able to achieve
localization errors similar in magnitude to that of the SLOD, provided that n
is chosen sufficiently large.

High-contrast channeled coefficients

One of the major challenges for multi-scale methods is their sensitivity to
high-contrast channeled coefficients. To study the contrast dependence of the
SL-GFEM, we consider for a given γ > 0 the coefficient Aγ, which is constructed
by adding four channels of conductivity γ to the coefficient used in the previ-
ous numerical experiments. For an illustration of the coefficient, we refer to
Figure 6.4. In this numerical experiment we again study the localization of the
SL-GFEM and therefore consider the same setup as in the previous localization
experiment. Figure 6.5 shows that the SL-GFEM is largely unaffected by large
values of γ. In contrast, for the SLOD, the best practical realization known until
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6 Super-Localized Generalized Finite Element Method

Figure 6.4: Coefficients A104 (left) and A107 (right) with a maximum contrast of
104 and 107, respectively. Some of the channels touch the boundary,
while others stop before.

now (cf. Section 5.5) yields a basis with deteriorating stability as γ is increased.
This corresponds to growing constants in (5.17) or (6.19) and (6.30) and explains
the worse performance of the SLOD for γ = 107 compared to γ = 104. Notably,
compared to Section 6.5, the SL-GFEM does not require a higher dimension
of the local approximation spaces n in order to retain a good approximation
quality, suggesting that the choice of n is not affected by the contrast.

Higher order polynomials

One key benefit of the proposed method is its flexibility with regard to the
choice of polynomial degree, i.e., the construction of higher order methods is
straightforward. While the previous numerical experiments have investigated
the performance of the SL-GFEM for the polynomial degree p = 0, this experi-
ment also considers higher polynomial degrees. We use the setup from the first
numerical experiment with the non-polynomial source term (6.38). Figure 6.6
shows that, for n and m sufficiently large, the SL-GFEM of degree p converges
with an order of p+2. Recalling that f is sufficiently smooth, this is in line with
the theoretical predictions in Theorems 6.3.1 and 6.4.1. Note that the choice
of n needs to be adapted to p. More precisely, we observe that n needs to be
increased linearly with p. Also an adaptive choice of n based on the size of the
eigenvalues of problem (6.12) seems possible.
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Figure 6.5: Errors of the SL-GFEM and SLOD as functions of m for the fixed
coarse mesh T2−5 . As coefficients, we use the high-contrast channeled
coefficients A104 (left) and A107 (right).
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Figure 6.6: Error of the higher order SL-GFEM for p = 0, 1, 2 as a function
of H for multiple choices of n and m. The dotted lines indicate the
respective expected orders of convergence.
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7 Reduced Basis Super-Localized
Orthogonal Decomposition for
reaction–convection–diffusion
problems

Given a parameter-dependent PDE, reduced basis (RB) methods are a remark-
able tool for computing approximations for arbitrary parameter values at low
computational cost, see, e.g., the textbooks [QMN15; HRS16]. As approxi-
mation space, RB methods use a typically low-dimensional space spanned by
global snapshots of the problem under consideration. For any parameter value,
the approximation is then obtained by performing a Galerkin approach in this
snapshot space. The online complexity of RB methods typically depends mainly
on the dimension of the snapshot space.

However, for parameter-dependent multiscale PDEs, RB methods based on
global snapshot computations can easily become intractable. To overcome such
limitations, this chapter introduces the Reduced Basis Super-Localized Orthog-
onal Decomposition (RB-SLOD), using the reaction–convection–diffusion prob-
lem with parameter-dependent multi-scale coefficients as a model problem. For
any given parameter value, the RB-SLOD allows one to quickly generate coarse-
scale models of the considered problem. These coarse-scale models accurately
capture the effective behavior of the problem and thus provide reliable approxi-
mations even in underresolved regimes. Due to their typically small dimension,
the coarse-scale models can be solved at low computational cost.

The RB-SLOD is a combination of the SLOD from Chapter 5 with the RB
method. More specifically, we use the RB to accelerate the typically expensive
(local) SLOD basis computation, while we use the SLOD to efficiently compress
the PDE operator into a coarse-scale model. Note that the unique localization
properties of the SLOD allow one to perform the snapshot computation of the
RB on particularly small patches, which is key to the low offline and online
complexity of the algorithm. A major strength of the RB-SLOD is that it is
affected only by the parameters appearing in the PDE operator and not by
parametric, possibly non-affine, source terms. For such source terms, classical
RB approaches require appropriate interpolation methods such as the empirical
interpolation method [Bar+04], which adds to the overall computational cost.

The ability of the RB-SLOD to tackle challenging parametric multi-scale
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PDEs is due to its local snapshot computation. We emphasize that a lo-
cal snapshot computation can also be achieved by domain decomposition ap-
proaches or other multi-scale methods. Approaches based on domain decompo-
sition include the Reduced Basis Element method [MR02; KOH11; APQ16;
HKP12; IQR12], the Localized Reduced Basis Multiscale method [Alb+12;
OS15], and the Arbitrary Local Modifications method [Buh+17]. Other ap-
proaches that use multi-scale methods to localize the snapshot computation
include the RB-MsFEM [HZZ15], the RB-HMM [AB12; AB13], and the RB-
LOD [AH15; KR21]. For an overview of localized model reduction techniques
for parametric PDEs, see [Buh+21].

The content and presentation of the following chapter is primarily based on
the preprint article

[BHP22] F. Bonizzoni, M. Hauck, and D. Peterseim. “A reduced basis
super-localized orthogonal decomposition for reaction–convection–
diffusion problems”. In: arXiv preprint 2211.15221 (2022)

7.1 Parametric reaction–convection–diffusion
problem

Let D ⊂ Rd be a bounded polytopal Lipschitz domain, which is assumed to be
scaled to unit size. Furthermore, letM⊂ Rp, p ∈ N be a compact parameter set
with parameters denoted by µ. We consider a parametric reaction–convection–
diffusion problem posed on D with parameters fromM, i.e.,

− div(Aµ∇uµ) + cµ · ∇uµ + rµuµ = f, (7.1)

where rµ, cµ, and Aµ denote the reaction, convection, and diffusion coefficients,
respectively and f ∈ L2(D) is a parameter-independent source term. We as-
sume that rµ ∈ L∞(D) and cµ ∈ L∞(D,Rd) with L∞-norms bounded uni-
formly in the parameter µ. Furthermore, we assume that the diffusion coeffi-
cient Aµ ∈ L∞(D,Rd×d) is symmetric and uniformly positive definite, i.e., there
exist parameter-independent constants λ, Λ with 0 < λ ≤ Λ <∞ such that

λ|ξ|2 ≤ ξ · (Aµ(x)ξ) ≤ Λ|ξ|2 (7.2)

holds for almost all x ∈ D and all µ ∈ M and ξ ∈ Rd, where | · | denotes the
Euclidean norm of Rd.

For the well-posedness of the problem (7.1), we need to impose suitable bound-
ary conditions. We consider a decomposition of the boundary ∂D into the closed
boundary segments Γ1,Γ2, and Γ3, i.e., ∂D = Γ1∪Γ2∪Γ3, where the intersection
of the interior of the components is pairwise disjoint. Given this decomposition,
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we impose the mixed boundary conditions

(Aµ∇uµ) · ν = 0 on Γ1,

(Aµ∇uµ) · ν + dµu = 0 on Γ2,

uµ = 0 on Γ3,

(7.3)

where ν denotes the outer unit normal vector and dµ ∈ L∞(Γ2) is a non-negative
function with L∞-norm uniformly bounded in µ.

As solution space of the above reaction–convection–diffusion problem, we use

V := {v ∈ H1(D) : v|Γ3 = 0}.

We equip V with the standard H1-inner product and the corresponding induced
norm, denoted by (· , ·)V and ∥ · ∥V , respectively, cf. (2.1). For fixed parameter
values µ ∈M, the weak formulation of (7.1) with the boundary conditions (7.3)
seeks uµ ∈ V such that

aµ(uµ, v) = (f , v)L2 (7.4)

holds for all v ∈ V , where the bilinear form aµ : V × V → R is given by

aµ(u, v) := (Aµ∇u , ∇v)L2 + (cµ · ∇u , v)L2 + (rµu , v)L2 + (dµu , v)L2(Γ2)
.

Under standard assumptions on the coefficients dµ, rµ, and cµ (see, e.g., the
textbook [KA03, Ch. 3.2]), one can prove the uniform coercivity and continuity
of the bilinear form aµ, i.e., there exist parameter-independent constants α, β
with 0 < α ≤ β <∞ such that

aµ(v, v) ≥ α∥v∥2V , aµ(v, w) ≤ β∥v∥V∥w∥V (7.5)

holds for all v, w ∈ V . If these conditions hold, the well-posedness of (7.4) for
any parameter value follows directly using the Lax–Milgram theorem (see, e.g.,
[Alt16, Thm. 6.2]).

As usual in the RB context, we assume that the bilinear form aµ can be
affinely decomposed into Q ∈ N terms as follows:

aµ(u, v) =

Q∑
q=1

θq(µ)bq(u, v) (7.6)

with parameter-independent continuous bilinear forms bq : V ×V → R and mea-
surable functions θq :M→ R. Note that theoretically there are no restrictions
on the number of summands Q in (7.6). However, for RB methods, there are
typically practical limitations on Q and smoothness requirements with respect
to µ, see, e.g., [QMN15, Ch. 5]. In fact, for large Q or lack of smoothness, the
offline phase of RB methods (including the RB-SLOD) becomes increasingly
expensive due to the large amount of precomputation required. In such cases,
RB approaches may not be worthwhile.
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Note that if an affine decomposition of aµ is not available, one can use the em-
pirical interpolation method [Bar+04] to compute affine approximations of the
PDE coefficients dµ, rµ, cµ, and Aµ. The RB-SLOD can then be applied to these
approximated coefficients. Note that the number of terms in such approximate
affine decompositions depends on the smoothness of the coefficient with respect
to µ, i.e., for a given accuracy, smoother coefficients can be approximated by
sums of fewer terms.

Let us recall some notation that we will use frequently in the remainder of
this chapter. In the following, we denote by V ′ the dual space of V (recall that
we only consider real functions). For a fixed parameter µ ∈ M, we further
denote by Lµ : V ′ → V the solution operator associated with the problem (7.4),
cf. (2.14). Furthermore, for subsets S ⊂ D we denote by aS,µ(·, ·), bS,q(·, ·),
(· , ·)V(S), and ∥ · ∥V(S) the restrictions of aµ(·, ·), bq(·, ·), (· , ·)V , and ∥ · ∥V to S,
cf. Section 2.1. Recalling the definition of the local solution space VS in (5.2),
we define for any parameter value the local solution operator LS,µ : V ′

S → VS
analogously to (5.3). Here, V ′

S denotes the dual space of VS.

7.2 Reinterpretation of prototypical
approximation

This section motivates the definition of the prototypical operator-adapted ap-
proximation spaces in Chapter 2 by a RB approach in the source term. We fix
the parameter µ ∈ M and consider the source term fϑ ∈ Hs(D), s ∈ [0, 1] de-
pending on another parameter ϑ. Besides its Hs-regularity, the source term fϑ
can be a general parameter-dependent function, which depends on ϑ in a non-
smooth and non-affine way. For non-affine source terms, one typically computes
an approximate affine decomposition using appropriate interpolation techniques,
e.g., the empirical interpolation method, cf. [Bar+04]. Note that sophisticated
interpolation methods such as the empirical interpolation method may be inef-
fective here due to the lack of smoothness. The L2-orthogonal projection onto
TH-piecewise constants denoted by Π0

H : L2(D) → P0(TH), cf. (2.23), has opti-
mal approximation properties for general Hs-regular functions. Therefore, we
use the following approximate affine decomposition:

Π0
Hfϑ =

∑
K∈TH

(Π0
Hfϑ)|K 1K .

The general parameter dependence of fϑ motivates to choose the RB space
as LµP0(TH), which is exactly the prototypical operator-adapted trial space
from Chapter 2, cf. (2.15). This space is not adapted to the parameter depen-
dence of fϑ and therefore suited for approximating all Hs-regular source terms.
Since one can only expect an algebraic decay of the approximation error in the
number of basis functions, cf. Lemma 2.3.3, the dimension of the above RB space
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is typically large. Moreover, its canonical basis functions {Lµ1K : K ∈ TH} are
non-local and decay very slowly, cf. Figure 2.2. Therefore, such approaches are
infeasible in practice without modification.

In the following, we will again concentrate on parameter-dependent PDE
operators and omit the parameter dependence in the source term. The next
section presents a variant of the SLOD that can be used to localize the basis
computation, thereby deriving a practical method.

7.3 Super-Localized Orthogonal Decomposition
revisited

For a fixed parameter value µ ∈ M, this section introduces a variant of the
SLOD that will prove particularly useful in the RB context. This variant will
be used in Section 7.4 as the basis for deriving the RB-SLOD.

First, we introduce some preliminaries regarding the explicit computation of
norms associated with traces and conormal derivatives. For this, we fix the
element K ∈ TH and abbreviate its m-th order patch by S := Nm(K). We as-
sume that the patch S does not coincide with the whole domain D. Denoting
Σ := ∂S\∂D, we recall the definition of the trace operator trΣ and its image X
from (5.7). As a subspace of H1/2(Σ), we can endow X with the norm

∥w∥X := inf{∥v∥V(S) : v ∈ V(S), trΣv = w}. (7.7)

Note that, by the definition of the X-norm, the operator trΣ is continuous
independent of the patch geometry, i.e., it holds that

∥trΣv∥X ≤ ∥v∥V(S) (7.8)

for all v ∈ V(S). The X-norm of a function w ∈ X can be computed explicitly
by generalizing the textbook result from [BF91, Ch. III.1, Eq. (1.5)]. One can
prove the identity ∥uw∥V(S) = ∥w∥X , where uw ∈ V(S) is the weak solution to
the following boundary value problem:

−∆uw + uw = 0 in S,
uw = w on Σ,

∇uw · ν = 0 on ∂S ∩ (Γ1 ∪ Γ2),

uw = 0 on ∂S ∩ Γ3.

The proof of this result is rather standard and can be found in [BHP22, Lem. 3.1].
A direct consequence of this result is that the right-inverse of trΣ defined by
tr−1

Σ : X → V(S), tr−1
Σ w := uw is continuous with

∥tr−1
Σ w∥V(S) = ∥w∥X (7.9)
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for all w ∈ X. Furthermore, this representation of the X-norm allows one
to explicitly compute the X ′-norm of a functional q ∈ X ′. Generalizing the
textbook result [BF91, Ch. III.1, Eq. (1.8)], we obtain that

∥uq∥V(S) = ∥q∥X′ , (7.10)

where uq ∈ V(S) is the weak solution to the following boundary value problem:
−∆uq + uq = 0 in S,
∇uq · ν = q on Σ,

∇uq · ν = 0 on ∂S ∩ (Γ1 ∪ Γ2),

uq = 0 on ∂S ∩ Γ3.

(7.11)

The proof of this result again uses rather standard arguments and can be found
in [BHP22, Lem. 3.2].

In the remainder of this section, we use the tools introduced above to derive
the proposed variant of the SLOD. Since we consider a fixed elementK ∈ TH , we
drop all fixed indices if they are not explicitly needed. Similar to Section 5.2, the
global SLOD basis function φ associated with the fixed elementK is given by the
ansatz φ = Lµg, where g ∈ P0(S) is an L2-normalized local source term to be
determined, cf. (5.5). The corresponding localized basis function ψ is obtained
by replacing the global solution operator by the local one, i.e., ψ := LS,µg ∈ VS,
cf. (5.6).

The conormal derivative of ψ at the boundary segment Σ is a functional in X ′,
which is defined for all w ∈ X by

⟨Aµ∇ψ · ν, w⟩X′×X = aS,µ(ψ, tr
−1
Σ w)− (g , tr−1

Σ w)L2(S), (7.12)

where ⟨·, ·⟩X′×X denotes the duality pairing. Note that the conormal derivative
is independent of the choice of the extension operator tr−1

Σ . There is a close
relation between the conormal derivative of ψ and the size of the localization
error. More precisely, it holds that

aµ(ψ − φ, v) = aS,µ(ψ, v)− (g, v)L2(S) = ⟨Aµ∇ψ · ν, trΣ v|S⟩X′×X (7.13)

for all v ∈ V . For the sake of notation, we introduce the operator R, which
maps g to the function uq solving (7.11) for q = Aµ∇ψ · ν ∈ X ′ (recall that
ψ = LS,µg ∈ VS), i.e.,

R : P0(S)→ V(S), g 7→ uq. (7.14)

We choose the local source term g as the solution to the minimization problem

g ∈ argmin
p∈P0(S)

∥Rp∥2V(S)
∥p∥2L2(S)

, (7.15)

which, by (7.10) and (7.13), guarantees a small localization error. Regarding
the possible non-uniqueness of the choice (7.15), we refer to Section 5.2, where
this was discussed for the SLOD.
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7.3 Super-Localized Orthogonal Decomposition revisited

Remark 7.3.1 (Comparison to the SLOD from Chapter 5). In this remark we
use the notation from Section 5.2, i.e., tr−1

Σ denotes the local operator-harmonic
extension defined in (5.8). Then, the choice (7.15) for g can be rewritten as the
solution to the following minimization problem:

argmin
g∈P0(S) : ∥g∥L2(S)=1

sup
w∈X : ∥w∥X=1

|(g, tr−1
Σ w)L2(S)|.

This alternative characterization allows one to see the subtle difference to the
choice (5.12) of the SLOD from Chapter 5. While there the supremum was
taken over local operator-harmonic functions, here the supremum is taken over
traces. Although one can identify traces with operator-harmonic functions and
vice versa, the difference lies in the norms being considered, which are equivalent
but not the same.

Note that solving the problem (7.15) is equivalent to computing the eigen-
vector corresponding to the smallest eigenvalue of the generalized eigenvalue
problem

Cx = λDx. (7.16)

Denoting by J the number of coarse elements in S, the matrices C, D ∈ RJ×J

are defined by

Cij = (R1Kj
, R1Ki

)V(S), Dij := (1Kj
, 1Ki

)
L2(S)

,

where {Kj : j = 1, . . . J} is some numbering of the coarse elements in S.
Similar to (5.18), we measure the localization error when replacing φ with its

local counterpart ψ using the local error indicator

σK,µ = σK,µ(H,m) := ∥Rg∥V(S).

It coincides with the X ′-norm of the conormal derivative of ψ. Taking the
maximum over all elements, we get the following error indicator for the overall
localization error of the method:

σµ = σµ(H,m) := max
K∈TH

σK,µ. (7.17)

We emphasize that the decay results in Section 5.4 also apply to σµ. This means
that we practically observe a super-exponential decay of σµ in m and that we
can prove an exponential decay in m, cf. (5.27) and (5.39). In the following, we
denote the local source term, the global basis function, and its localized counter-
part associated with the element K by gK,m,µ, φK,m,µ, and ψK,m,µ. The proposed
SLOD variant uses the collocation ansatz of (5.15), i.e., denoting by (cK)K∈TH
the coefficients of the expansion of Π0

Hf in terms of the basis functions gK,m,µ,
we define its approximation as

uslodH,m,µ =
∑
K∈TH

cK ψK,m,µ. (7.18)
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7 Reduced Basis SLOD for reaction–convection–diffusion problems

Since no inner products between basis functions need to be computed, the as-
sembly of the coarse system is very cheap. This makes the collocation approach
well suited for RB applications.

7.4 Reduced Basis Super-Localized Orthogonal
Decomposition

This section introduces the RB-SLOD, which combines the SLOD variant pre-
sented in the previous section with a RB approach. For any parameter value, the
RB-SLOD is able to quickly generate accurate coarse scale models of the para-
metric multi-scale PDE under consideration. The RB-SLOD algorithm consists
of an offline phase and an online phase. The offline phase is run only once and
performs precomputations that are used in the online phase to quickly compute
the RB-SLOD approximations.

7.4.1 Offline phase

We now return to the local perspective and consider the element K ∈ TH with
its patch S := Nm(K). Given a parameter µ ∈ M, most of the computational
time for computing the SLOD basis function ψ and its associated local source
term g is spent on computing the set

{χT,µ : T ⊂ S},
where for all elements T ⊂ S, we define

χT,µ := LS,µ1T . (7.19)

We derive a RB approach to obtain approximations of χT,µ that can be evaluated
quickly. From now on we also fix the element T ⊂ S and omit the corresponding
subscript for better readability.

Initialization

In RB approaches, one usually first selects a training set of parameters, denoted
by Mtr ⊂ M, of prescribed size M ∈ N. Possible options for selecting its
elements are random sampling approaches or structured grids. We also initialize
the sets of RB parameters Mrb and functions Wrb, which will be used later
to store iteratively selected important parameter and function pairs. For a
pseudocode implementation, see Algorithm 1.

Error estimation

Suppose we have already chosen the following sets of RB parameters and cor-
responding RB functions:

Mrb = {µ1, . . . , µL}, Wrb = {χµ1 , . . . , χµL
}.
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7.4 Reduced Basis Super-Localized Orthogonal Decomposition

Algorithm 1 Offline – Initialization with starting parameters.
1: Mtr ← {µ1, . . . , µM} with selected parameters fromM
2: Mrb ← {µ1}
3: Wrb ← {χµ1} with χµ1

:= LS,µ11T

Given a new parameter µ ∈Mtr\Mrb, we then need to

1. compute an approximation χrb
µ to χµ = LS,µ1T in the span of Wrb and

2. efficiently estimate the corresponding approximation error.

An approximation of χµ is obtained by computing the Galerkin projection onto
the span of Wrb, i.e., we seek χrb

µ =
∑L

l=1 clχµl
∈ spanWrb such that

aS,µ(χ
rb
µ , w) = aS,µ(χµ, w) = (1T , w)L2(S) (7.20)

holds for all w ∈ spanWrb. By choosing the elements of Wrb as test functions
in (7.20), we get a small linear system with the unknowns (cl)Ll=1. Note that χµ

itself is not needed to compute the approximation.
To estimate the error made when approximating χµ by χrb

µ , we use the Riesz
representation τµ ∈ VS of the residual functional, which satisfies

(τµ , w)V(S) = aS,µ(χ
rb
µ , w)− (1T , w)L2(S) (7.21)

for all w ∈ VS. We then define the a posteriori error estimator

∆µ := ∥τµ∥V(S), (7.22)

which is proved to be reliable and efficient in the following lemma.

Lemma 7.4.1 (Reliability and efficiency of the estimator). For any parameter
µ ∈ Mtr\Mrb, the RB error can be bounded from below and above by ∆µ, i.e.,
it holds that

β−1∆µ ≤ ∥χµ − χrb
µ ∥V(S) ≤ α−1∆µ.

Proof. We define e := χµ − χrb
µ . Using (7.5) and (7.21) together with VS ⊂ V ,

we obtain that

∥τµ∥2V(S) = aS,µ(χ
rb
µ , τµ)− (1T , τµ)L2(S) = −aS,µ(e, τµ) ≤ β∥e∥V(S)∥τµ∥V(S),

which, after dividing by ∥τµ∥V(S), implies the first inequality. Similarly, we get
for the second inequality that

α∥e∥2V(S) ≤ aS,µ(e, e) = (1T , e)L2(S) − aS,µ(χrb
µ , e) ≤ ∥τµ∥V(S)∥e∥V(S).
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7 Reduced Basis SLOD for reaction–convection–diffusion problems

Using the affine decomposition (7.6) and recalling that χrb
µ =

∑L
l=1 clχµl

, the
a posteriori error estimator can be computed efficiently as

τµ =

Q∑
q=1

θq(µ)
L∑
l=1

clsq,l − p, (7.23)

where the sq,l ∈ VS are defined such that

(sq,l , w)V(S) = bS,q(χT,µl
, w) (7.24)

holds for all w ∈ VS, and p ∈ VS is defined such that it holds

(p , w)V(S) = (1T , w)L2(S) (7.25)

for all w ∈ VS.
Denoting for any q the sets that store the functions {sq,l : l = 1, . . . , L} by Sq,

we can initialize the Riesz representations as shown in Algorithm 2.

Algorithm 2 Offline – Initialization of Riesz representations.
1: for q = 1, . . . , Q do
2: Sq ← {sq,1} with sq,1 solving (7.24)
3: end for
4: compute p by (7.25)

Greedy search

The greedy search algorithm iterates through the parameters µ ∈ Mtr\Mrb

and, for each µ, estimates the error made when approximating χµ by χrb
µ us-

ing the error estimator ∆µ from (7.22). It selects the parameter µ for which
the estimator is largest and adds it to the set Mrb. We also compute the cor-
responding function χµ by (7.19) and add it to the set Wrb. For numerical
stability reasons, we perform an orthogonalization with respect to (· , ·)V(S) us-
ing a Gram–Schmidt-type algorithm. Note that due to the typically small size
of Wrb, numerical stability issues of the Gram–Schmidt algorithm are not no-
ticeable in practice. Given a tolerance tol > 0, this procedure is then repeated
until the training error satisfies the relative stopping criterion

trerr(L) :=
maxµ∈Mtr ∆µ

∥p∥V(S)
≤ tol (7.26)

with p defined in (7.25). Note that it is justified to use p instead of χµ since

∥p∥V(S) = ∥1T∥V ′
S
≈ ∥χµ∥V(S),
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7.4 Reduced Basis Super-Localized Orthogonal Decomposition

Algorithm 3 Offline – Greedy search.

1: while
max

µ∈Mtr
∆µ

∥p∥V(S)
> tol do

2: L← #Mrb

3: // compute error estimators
4: for µ ∈Mtr\Mrb do
5: compute χrb

µ by (7.20)
6: compute τµ by (7.23)
7: ∆µ ← ∥τµ∥V(S) by (7.22)
8: end for
9: // select element with largest estimator

10: µL+1 ← argmax
µ∈Mtr\Mrb

∆µ

11: Mrb ←Mrb ∪ µL+1

12: compute χµL+1
by (7.19)

13: Wrb ←Wrb ∪ {χµL+1
}

14: // update Riesz representations
15: for q = 1, . . . , Q do
16: Sq ← Sq ∪ {sq,L+1} with sq,L+1 by (7.24)
17: end for
18: end while

which means that both quantities have the same scaling in H. Note that the
hidden constants only depend on α and β. Algorithm 3 shows an implementation
of the greedy search in pseudocode.

Note that the computation of χrb
µ in Line 5 of Algorithm 3 can be accelerated

using the affine decomposition (7.6). After selecting an element µL+1, adding it
toMrb, and computing χµL+1

, one can precompute the inner products

(1T , χµL+1
)
L2(S)

, bS,q(χµl
, χµL+1

)

for all q = 1, . . . , Q and l = 1, . . . , L. Such precomputations are essential since
the training set Mtr is typically large and the small linear system (7.20) in
Line 5 must therefore be solved many times. By precomputation, we are able
to reduce the complexity of Line 5 to polynomial complexity in J , where J is
the number of coarse elements in S.

In practice, provided that the bilinear form aµ depends smoothly on the pa-
rameter µ, one typically observes a (sub-)exponential decay of the training er-
ror (7.26), i.e., there exist γ > 0 and a constant C > 0, such that

trerr(L) ≲ exp(−CLγ) (7.27)

holds for all L ∈ N. For a numerical demonstration of the decay, see Sec-
tion 7.6. The theoretical derivation of such explicit decay rates is difficult, see,
e.g., [Buf+12; AH15; OR16] for some theoretical results.
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7 Reduced Basis SLOD for reaction–convection–diffusion problems

Note that the above computations need to be repeated for all T ⊂ Nm(K)
and all K ∈ TH , which can be done in parallel. Hence, the final output of the
offline phase is a collection of sets of RB functions Wrb.

7.4.2 Online phase

Given an arbitrary parameter value µ ∈M, the online phase quickly computes
approximate SLOD basis functions and corresponding approximate local source
terms using the computations performed in the offline phase. The RB-SLOD
approximation is then obtained by solving a sparse coarse linear system.

Basis computation

Next, we use the RB techniques introduced above to construct a rapidly com-
putable approximation of the SLOD basis function ψ corresponding to the ele-
ment K. This approximation, denoted by ψrb, is given by

ψrb :=
∑
T⊂S

cTχ
rb
T,µ, (7.28)

where we denote by χrb
T,µ the RB approximation of χT,µ, cf. (7.20). To determine

the coefficients (cT )T⊂S above, we will use an approach similar to (7.15). Note,
however, that due to the RB approximation, ψrb in general does not have an
L2-regular source term with respect to the local PDE operator. Since the L2-
regularity is necessary to define a conormal derivative in the sense of (7.12), a
straightforward application of the approach of Section 7.3 is not possible.

We denote by grb an analogue to the non-existent local source term. It can
be defined as

grb :=
∑
T⊂S

cT1T , (7.29)

where the coefficients are the same as in (7.28). Recalling the definition of the
extension operator tr−1

Σ : V(S) → X in (5.7), we can define an analogue to the
conormal derivative of ψrb for all w ∈ X as follows:

⟨Aµ∇ψrb · ν, w⟩X′×X := aS,µ(ψ
rb, tr−1

Σ w)− (grb, tr−1
Σ w)L2(S). (7.30)

This functional is an element of X ′ which, unlike (7.12), depends on the choice
of the extension operator, i.e., for two different extension operators, the respec-
tive functionals in general do not coincide. However, we will prove that the
X ′-norm of their difference is bounded by the tolerance of the greedy search
algorithm (7.26); see the proof of Theorem 7.5.1. Hence, the functionals corre-
sponding to different extension operators (almost) coincide for small tolerances.

We introduce the operator Rrb, which maps grb to uq ∈ V(S) solving (7.11)
for q = Aµ∇ψrb · ν ∈ X ′, i.e.,

Rrb : P0(S)→ V(S).
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7.4 Reduced Basis Super-Localized Orthogonal Decomposition

Similar to (7.15), we then choose the local source term grb as the solution to the
minimization problem

grb ∈ argmin
p∈P0(S)

∥Rrbp∥2V(S)
∥p∥2L2(S)

, (7.31)

where we again refer to Section 5.2 regarding possible non-uniqueness issues.
Note that the above problem is again equivalent to a low-dimensional eigen-

value problem similar to (7.16). The low-dimensional matrices in the eigenvalue
problem can be quickly assembled using a suitable approximation of the X ′

norm. Such approximations are discussed in Section 7.4.3. We refer to Fig-
ure 7.5 for a illustration of grb and ψrb for different parameter choices.

The above basis computation needs to be repeated for all K ∈ TH . For an
implementation of the basis computation in pseudocode, see Algorithm 4. The

Algorithm 4 Online – RB-SLOD basis computation.
1: B, G ← {}
2: for K ∈ TH do
3: // compute RB approximations
4: for T ⊂ Nm(K) do
5: compute χrb

T,µ by (7.20)
6: end for
7: // compute and save basis functions
8: compute grbK,m,µ by (7.31)
9: G ← G ∪ {grbK,m,µ}

10: obtain ψrb
K,m,µ by (7.28) with coefficients from (7.29)

11: B ← B ∪ {ψrb
K,m,µ}

12: end for

algorithm collects the RB-SLOD basis functions and the corresponding local
source terms in the sets B and G. This information will be used during the
coarse solve for the computation of the RB-SLOD approximation.

Coarse solve

In the following, ψrb
K,m,µ ∈ B and grbK,m,µ ∈ G denote the RB approximations of

the basis function and local source term corresponding to the element K ∈ TH ,
cf. (7.28) and (7.31). For the RB-SLOD approximation we use the collocation
ansatz of (5.15), i.e., denoting by (cK)K∈TH the coefficients of the expansion
of Π0

Hf in terms of the local source terms grbK,m,µ, we define

urbH,m,µ :=
∑
K∈TH

cKψ
rb
K,m,µ. (7.32)

In Algorithm 5 we denote by G ∈ R#TH×#TH the matrix whose columns are
the element values of the TH-piecewise constant functions in G. Furthermore, f

127



7 Reduced Basis SLOD for reaction–convection–diffusion problems

denotes the load vector with the element values of Π0
Hf as entries. Note that

due to the collocation ansatz, no inner products between basis functions need
to be computed in Algorithm 5.

Algorithm 5 Online – Coarse solve.
1: assemble G from G
2: compute f
3: solve c = G\f
4: compute urbH,m,µ by (7.32) with the coefficients (ci)i=1,...,#TH

It is noteworthy that the source term f first appears in Algorithm 5, i.e., the
offline phase and the basis computation are completely independent of f . This
feature makes the RB-SLOD method suitable for applications where the solution
for different source terms is of interest. In particular, parameter-dependent and
possibly non-affine source terms do not pose any further difficulties. In the
implementation, the source term parameters only affect the coarse solve, and
the actual RB approach is independent of these parameters, see also Section 7.2
and the numerical example in Section 7.6.

7.4.3 Practical implementation

For the practical implementation, we note that the RB-SLOD inherits the basis
stability issues of the SLOD. Consequently, the practical implementation of the
SLOD presented in Section 5.5, which solves these stability issues, can also be
used for the RB-SLOD.

Furthermore, to discretize the infinite-dimensional patch problems (7.19),
(7.21), (7.24), and (7.25), we need to perform a fine-scale discretization. Simi-
larly to Section 3.5, we consider the fine mesh Th obtained by uniform refinement
of TH and replace the infinite-dimensional space V in the definition of the RB-
SLOD by its finite-dimensional fine-scale FE counterpart with respect to Th.
Consequently, the above patch problems are posed in local finite-dimensional
subspaces of the global fine-scale FE space.

Practical basis computation

We denote by ψrb
h the fully discrete RB-SLOD basis function associated with

the element K ∈ TH . It is a linear combination of the fully discrete RB ap-
proximations {χrb

T,µ,h : T ⊂ S}, cf. (7.28). The local source term grbh ∈ P0(S) is
defined analogously to (7.29). Exploiting the fact that the conormal derivative
of ψrb

h exists in the L2(∂S) sense, one can derive alternative choices to (7.31)
with reduced computational cost.

For example, instead of minimizing the X ′-norm of (7.30), one may minimize
the L2(Σ)-norm of the conormal derivative (Aµ∇ψrb

h · ν)|Σ. Here, one may also
omit the diffusion tensor, i.e., we minimize the normal derivative (∇ψrb

h · ν)|Σ
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7.4 Reduced Basis Super-Localized Orthogonal Decomposition

instead of the conormal derivative (Aµ∇ψrb
h ·ν)|Σ. This is justified since, by (7.2),

a small norm of the normal derivative implies a small norm of the conormal
derivative. In the practical implementation, we choose grbh as the solution to the
minimization problem

grbh ∈ argmin
p∈P0(S)

∥Rrb
h p∥

2

L2(Σ)

∥p∥2L2(S)

, (7.33)

where Rrb
h : P0(S) → L2(Σ) denotes the operator mapping grbh to the normal

derivative (∇ψrb
h · ν)|Σ of the fully discrete RB-SLOD basis function. Such

an approach has for example been used in [BFP22] for convection-dominated
diffusion problems.

In practice, one solves (7.33) by considering the equivalent generalized eigen-
value problem Cx = λDx given in (7.16), whereR is replaced byRrb

h . Note that
the assembly of the matrix C can be drastically accelerated by precomputing
the following four-dimensional array in the offline phase:

(∇χTj ,µn · ν , ∇χTi,µl
· ν)

L2(Σ)
,

where l = 1, . . . , Li, n = 1, . . . , Lj, and i, j = 1, . . . , J . Here, Li and Lj denote
the cardinality of the parameter sets Mrb corresponding to the elements Ti
and Tj and J denotes the number of coarse elements in S. Note that the
matrix D is parameter-independent and thus only needs to be assembled once.

Complexity

Due to the precomputations in the offline phase, no (local or global) fine-scale
solves are needed in the online phase. More precisely, the only fine-scale opera-
tions in the online phase are (i) the addition of (local) fine-scale functions in the
computation of the RB-SLOD basis (see Algorithm 4, Line 5 and 10) and (ii)
the addition of the RB-SLOD basis functions using the coefficients computed
by solving a coarse linear system (see Algorithm 5, Line 4).

Note that if one is only interested in the coarse QOIs of the solution, fine-
scale operations can be completely avoided in the online phase. For this, one
additionally computes the element averages of the fine-scale functions in Algo-
rithm 3, Line 12 in the offline phase. This information can then be used in
the online phase to compute the element averages of the SLOD basis functions
without fine-scale operations. By adding up the element averages of the SLOD
basis functions using the same coefficients as in Algorithm 5, Line 4, one obtains
a TH piecewise constant approximation to the solution without performing any
fine-scale operations in the online phase.
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7 Reduced Basis SLOD for reaction–convection–diffusion problems

7.5 Error analysis
This section presents an a posteriori error analysis of the RB-SLOD. Similar
to the SLOD in (5.17), we have to assume also for the RB-SLOD that the set
{grbK,m,µ : K ∈ TH} is a Riesz stable basis of P0(TH). This assumption guar-
antees the well-posedness and stability of the method. In practice, the Riesz
stability can be ensured a posteriori as described in Section 5.5. For the follow-
ing error analysis we assume that there exists Cµ > 0 depending polynomially
on H−1 and m such that

C−1
µ (H,m)

∑
K∈TH

c2K ≤
∥∥∥ ∑

K∈TH
cKg

rb
K,m,µ

∥∥∥2
L2
≤ Cµ(H,m)

∑
K∈TH

c2K (7.34)

holds for all (cK)K∈TH .
The following theorem gives an a posteriori error estimate for the RB-SLOD.

It differs from the one for the SLOD in Theorem 5.3.2 since it additionally
takes into account the RB error and therefore includes a term depending on the
tolerance of the greedy search algorithm.

Theorem 7.5.1 (Convergence of the RB-SLOD). For any f ∈ Hk(D), k ∈
{0, 1}, the RB-SLOD approximation (7.32) satisfies that

∥uµ − urbH,m,µ∥V ≲
(
H1+k|f |Hk + C1/2

µ (H,m)md/2(σµ(H,m) + tolmd/2)∥f∥L2

)
,

where the hidden constant depends on α, β, and the quasi-uniformity and shape
regularity of TH .

Proof. Let µ ∈ Mtr be arbitrary but fixed. We first add and subtract the
function ũµ := LµΠ

0
Hf ∈ VH,µ and apply the triangle inequality to obtain that

∥uµ − urbH,m,µ∥V ≤ ∥uµ − ũµ∥V + ∥urbH,m,µ − ũµ∥V .

For the first term, one can show using the definition of ũµ, (7.5), and (2.25) that

α∥uµ − ũµ∥V ≤ sup
v∈V

aµ(uµ − ũµ, v)
∥v∥V

= sup
v∈V

(f − Π0
Hf , v − Π0

Hv)L2

∥v∥V
≲ π−1H∥f − Π0

Hf∥L2 .

For the second term, we define

φ̃K,m,µ := Lµg
rb
K,m,µ

and denote by (cK)K∈TH the coefficients of the expansion of Π0
Hf in terms of

the source terms grbK,m,µ. Using these coefficients, ũµ can be expanded as

ũµ =
∑
K⊂S

cKφ̃K,m,µ.
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Abbreviating e := urbH,m,µ − ũµ, using (7.5) and the definition of the collocation
solution (7.32), we obtain that

α∥e∥2V ≤ aµ(e, e) =
∑
K∈TH

cKaµ(ψ
rb
K,m,µ − φ̃K,m,µ, e). (7.35)

Next, we consider one fixed summand corresponding to an element K ∈ TH
and abbreviate S := Nm(K). We omit the fixed indices K,m, and µ of the
functions φ̃K,m,µ and ψrb

K,m,µ and denote the trace and extension operators with
respect to Σ = ∂S\∂D by trΣ and tr−1

Σ , respectively, cf. (7.8) and (7.9). Defining
ψ̃ := LS,µg

rb and using (7.30) and e− tr−1
Σ trΣ e ∈ VS yields that

aµ(ψ
rb − φ̃, e) = aµ(ψ

rb, e)− (grb , e)L2(S)

= aS,µ(ψ
rb, tr−1

Σ trΣe)− (grb , tr−1
Σ trΣe)L2(S) + aS,µ(ψ

rb − ψ̃, e− tr−1
Σ trΣe)

= ⟨Aµ∇ψrb · ν, trΣe⟩X′×X + aS,µ(ψ
rb − ψ̃, e− tr−1

Σ trΣe). (7.36)

For the bound of the first term in (7.36), we denote by g ∈ P0(S) the L2-
normalized SLOD source term from (7.15). We define

ψ̂rb :=
∑
T⊂S

g|Tχrb
T,µ, ψ := LS,µg

with χrb
T,µ defined in (7.20). Using (7.10), the definition of the conormal deriva-

tive (7.13), the definitions of grb and σµ in (5.18) and (7.31), respectively, as
well as (7.5) and the continuity of tr−1

Σ in (7.9), we obtain that

∥Aµ∇ψrb · ν∥X′ = ∥Rrbgrb∥V(S) ≤ ∥Rrbg ∥V(S)
= sup

w∈X : ∥w∥X=1

|aµ(ψ̂rb, tr−1
Σ w)− (g , tr−1

Σ w)L2(S)|

≤ ∥Aµ∇ψ · ν∥X′ + sup
w∈X : ∥w∥X=1

|aµ(ψ̂rb − ψ, tr−1
Σ w)|

≤ σµ(H,m) + β ∥ψ̂rb − ψ∥V(S). (7.37)

Using that the norm of p in (7.26) can be bounded as

∥p∥V(S) = ∥1T∥V ′
S
≤ ∥1T∥L2(S),

we obtain for the second term in (7.37) that

∥ψ̂rb − ψ∥V(S) ≤
∑
T⊂S

|g|T |∥χrb
T,µ − χT,µ∥V(S) ≤ α−1tol

∑
T⊂S

g|T∥1T∥L2(S)

≲ α−1tolmd/2.

(7.38)

Here, we used that the number of elements in S is bounded by md, Lemma 7.4.1,
the stopping criterion (7.26), the discrete Cauchy–Schwarz inequality, and the
normalization condition ∥g∥L2(S) = 1.
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For the second term in (7.36), we obtain using the continuity of trΣ and tr−1
Σ

in (7.8) and (7.9) that

aS,µ(ψ
rb − ψ̃, e− tr−1

Σ trΣ e) ≤ β∥ψrb − ψ̃∥V(S)∥e− tr−1
Σ trΣ e∥V(S)

≤ 2β∥ψrb − ψ̃∥V(S)∥e∥V(S).

Here, the first norm on the right-hand side can be estimated similarly to (7.38) by

∥ψrb − ψ̃∥V(S) ≲ α−1tolmd/2

using that ∥grb∥L2(S) = 1.
Finally, using the above estimates, we are able to return to estimate (7.35).

Summing over all elements K ∈ TH , using (2.24) and (7.34), and the finite
overlap of the patches Nm(K), we obtain that

α∥e∥2V ≤
∑
K∈TH

cKaµ(ψ
rb
K,m,µ − φ̃K,m,µ, e)

≲ md/2
(
σµ(H,m) + tol βα−1md/2

)√∑
K∈TH

c2K ∥e∥V

≲ C1/2
µ (H,m)md/2

(
σµ(H,m) + tol βα−1md/2

)
∥f∥L2∥e∥V .

The assertion follows immediately.

Remark 7.5.2 (Choice of parameters). This remark specifies how to choose
the oversampling parameter m and the number L of elements in Mrb to pre-
serve the optimal orders of convergence in Theorem 7.5.1. For the choice
of m, the super-exponential decay result (5.27) implies the oversampling con-
dition m ≳ (log 1

H
)(d−1)/d. Furthermore, for the choice of L, we recall that

the training error of the greedy search algorithm, defined in (7.26), decays
(sub-)exponentially in L, cf. (7.27). This yields the condition L ≳ (log m

H
)1/γ,

where γ denotes the exponent of L in the sub-exponential decay.

7.6 Numerical experiments
This section numerically investigates the RB-SLOD for a parametric elliptic
model problem and a parametric reaction–convection–diffusion problem. We
consider uniform Cartesian meshes of the domain D = (0, 1)2, where the mesh
size denotes the side length of the elements instead of their diameter. The
RB-SLOD is implemented as described in Section 7.4.3 taking into account the
remarks on the practical basis computation and the fine-scale discretization. We
emphasize that, similar to Section 3.5 for the LOD, we expect the theoretical
results of the RB-SLOD to remain valid in the fully discrete setting.

132



7.6 Numerical experiments

0 10 20 30

10−1

10−3

10−5

10−7

10−9

L

tr
a
in
in
g
er
ro

r

H = 2−3, m = 1

H = 2−3, m = 2

H = 2−3, m = 3

H = 2−4, m = 1

H = 2−4, m = 2

H = 2−4, m = 3

H = 2−5, m = 1

H = 2−5, m = 2

H = 2−5, m = 3

Figure 7.1: Training error as a function of the size L ofMrb for different patch
configurations.

Parametric elliptic model problem

The first numerical experiment is taken from [AH15, Sec. 4.1]. It considers a
parametric diffusion problem with homogeneous Dirichlet boundary conditions.
Its anisotropic multi-scale diffusion tensor exhibits oscillations on various scales
with the smallest being 2−6 (see the reference for the exact definition of the
coefficient). The bilinear form of the problem admits an affine decomposition
as in (7.6) with Q = 4 terms, where the parameter space is M = [0, 5]. As
training setMtr, we use 100 equidistantly distributed points. For the fine-scale
discretization we consider the uniform Cartesian mesh T2−8 . In the following,
all errors are relative errors with respect to the energy norm defined in (3.37),
which are computed using the fine-scale FE solution as the reference solution.

Decay of training error

To demonstrate the decay of the training error (7.26) in the greedy search al-
gorithm, we consider representative patches Nm(K) in the coarse mesh TH for
different mesh sizes H and oversampling parameters m. Figure 7.1 shows the
sub-exponential decay of the training error for several patch configurations as
the number L of elements in Mrb is increased, which is consistent with the
prediction (7.27). Note that the discretization parameters H and m have only
a small effect on the size of the training error. Given the discretization param-
eters H and m and a tolerance tol, one can use Figure 7.1 to estimate the size
of the setsMrb needed to achieve the given tolerance.
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Figure 7.2: Errors of the RB-SLOD and SLOD as functions ofH for several over-
sampling parameters m and tolerances tol for the elliptic problem.
The dotted line indicates the expected rate of convergence.

Optimal order convergence

To numerically verify the optimal order convergence properties of the RB-SLOD,
we consider the above parametric elliptic model problem with the source term

f(x1, x2) = (x1 + cos(3πx1)) · x32, (7.39)

which, for consistency, is the same as in the convergence experiments in the pre-
vious chapters. We compute the RB-SLOD solution for the parameter µ ≈ 2.129,
which is not contained in the training setMtr. Provided that the oversampling
parameter m is chosen sufficiently large, Figure 7.2 shows second order conver-
gence of the RB-SLOD. Recalling that f ∈ H1(D), this is consistent with the
theoretical prediction in Theorem 7.5.1. Furthermore, one observes the expected
behavior that the RB-SLOD error curve approaches the SLOD error curve as
tol is decreased. Note that in this numerical experiment we use slightly larger
oversampling parameters than in the numerical experiments for the SLOD in
Section 5.6. This is consistent with the general observation that the colloca-
tion variant of the SLOD (used for the construction of the RB-SLOD) requires
slightly larger oversampling parameters to achieve the same accuracy as the
Galerkin variant of the SLOD.

Super-exponential localization

In this numerical experiment we consider the same problem as in the previous
numerical experiment, but with the source term f ≡ 1. Note that for such source
terms, only the localization error and the RB error are present in Theorem 7.5.1,
and the optimal order term vanishes. We emphasize that the basis functions of
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Figure 7.3: Errors of the RB-SLOD and SLOD as functions of m for several
tolerances tol for H = 2−3 (left) and H = 2−4 (right) for the elliptic
problem.

the RB-SLOD are independent of the actual source term f . Thus, we can use
the same basis functions as in the previous numerical experiment and only need
to repeat the cheap coarse solve in Algorithm 5, Line 3. In Figure 7.3 one can
observe the super-exponential decay of the localization error, provided that tol
is chosen sufficiently small, cf. Section 5.4. In the left plot of Figure 7.3, the
error curve of the SLOD is reached for the tolerance tol = 10−6, whereas in the
right plot of Figure 7.3, an even smaller tolerance would have been necessary.
In general, one can observe that the error curve of the RB-SLOD approaches
the error curve of the SLOD as tol is decreased. Note that in the left plot in
Figure 7.3 only oversampling parameters m less than or equal to 3 are consid-
ered. This is due to the assumption in the construction of the RB-SLOD that
no patch coincides with the entire domain.

Note that a direct comparison of the RB-SLOD with the RB-LOD from [AH15]
is difficult. For the only source term f ≡ 1 considered in [AH15], the RB-SLOD
is unbeatable, since only the localization error and the RB error are present. In
contrast, the RB-LOD also has a spatial approximation error due to a differ-
ent construction of the approximation space. Therefore, it seems reasonable to
compare the size of the errors of the RB-SLOD for the non-polynomial source
term (7.39) with the one of the RB-LOD for the constant source term. It can
be observed that for the same magnitude of errors, the RB-SLOD requires con-
siderably smaller oversampling parameters than the RB-SLOD. For example,
given H = 2−4, both methods achieve a relative error of the order of 10−2 with
m = 2 for the RB-SLOD (2.04×10−2) and m = 4 for the RB-LOD (2.83×10−2,
cf. [AH15, Tbl. 1]). This allows a sparser coarse system of equations and a more
localized computation of the basis functions.
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7 Reduced Basis SLOD for reaction–convection–diffusion problems

Parametric mass transfer with non-affine source

Next, we consider a parametric reaction–convection–diffusion problem taken
from [QMN15, Ch. 8.4]. The parameters in the problem determine the magni-
tude of the diffusion, the direction of the convection, and the shape of the non-
affine Gaussian source term. The corresponding five-dimensional parameter vec-
tor µ ∈ R5 has the components µ1 ∈ [0.01, 0.1], µ2 ∈ [0, 2π), µ3, µ4,∈ [0.25, 0.75],
and µ5 ∈ [0.1, 0.25]. The strong formulation of the problem under considera-
tion is

−µ1∆u− bµ · ∇u+ u = fµ in D := (0, 1)2,

µ1∇u · ν = 0 on ∂D

with
bµ = (cos(µ2), sin(µ2))

T

and
fµ(x1, x2) = exp

(
− (x1 − µ3)

2 + (x2 − µ4)
2

µ2
5

)
.

This problem is challenging for several reasons. First, the nature of the
problem is strongly dependent on the magnitude of the diffusion µ1, i.e., the
proposed RB method must be able to handle both the diffusion-dominated
and the convection-dominated regime simultaneously. Second, the parameter
space is relatively high-dimensional, which typically makes RB methods quite
expensive. Third, the chosen source term does not admit an affine decom-
position, which prevents the straightforward application of standard RB ap-
proaches and typically requires additional tools, such as the empirical interpo-
lation method [Bar+04], at additional computational cost.

For such numerical examples the RB-SLOD has the decisive advantage that
it has a built-in RB approach in the source term, cf. Section 7.2. More specifi-
cally, the source term parameters are only important for the coarse solve in Al-
gorithm 5 and can be ignored in the actual RB approach in Section 7.4.1. In
addition, since the considered coefficients are constant in space (and therefore
in particular periodic with respect to TH), only O(md) patches need to be con-
sidered for the computations. The remaining patches can be handled by trans-
lation, which drastically reduces the computational cost. Furthermore, in the
implementation we use a training set Mtr of 400 points on a Cartesian grid of
the two-dimensional parameter setM = [0.01, 0.1]× [0.2π], where we ignore the
parameters coming from the source term. For the fine-scale discretization of the
patch problems we use the grid T2−8 .

Decay of training error

In this numerical experiment, we investigate the training error (7.26) for the
above reaction–convection–diffusion problem. In Figure 7.4 we observe a fast
decay of the training error as the number L of elements in Mrb is increased.
However, compared to Figure 7.1, the magnitude of the training errors is sig-
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Figure 7.4: Training error as a function of the size L ofMrb for different patch
configurations.

nificantly larger due to the more complicated nature of the underlying problem.
Note that for this numerical example, the magnitude of the error depends on
the choice of H and m in the sense that for patches with a large diameter, also
the training error is large.

Numerical results and illustration of basis functions

Consider the coarse mesh with mesh size H = 2−4 and oversampling parameter
m = 2. For this choice of discretization parameters, the largest patches occupy
at most 10% of the total domain volume and the maximum number of elements
in the setsMrb is 34. In Figure 7.5 we plot a RB-SLOD basis function ψrb

K,m and
the corresponding source term grbK,m for three different parameter values of µ1

and µ2. Note that the basis functions are independent of the parameters µ3, µ4,
and µ5 of the source term fµ.

Figure 7.6 shows the RB-SLOD solutions and the absolute value of the differ-
ence between the RB-SLOD solutions and the fine-scale FE reference solutions
for the same parameter pairs as in Figure 7.5. The remaining parameters µ3, µ4,
and µ5 are randomly chosen. Note that all plots in the same row have the same
color scale. From left to right, the relative V-norm errors are 5.62 × 10−2,
4.53× 10−2, and 6.29× 10−2. For this numerical experiment, a direct compar-
ison to [QMN15, Ch. 8.4] is again difficult. There, the parameters µ1 and µ5

are fixed, which simplifies the resulting problem. In particular, the nature of
the problem no longer depends on the choice of the parameters (the magni-
tude of the diffusion µ1 is fixed). We emphasize that the RB-SLOD is able to
avoid the additional difficulties with non-affine source terms f that classical RB
approaches have, cf. [Bar+04].
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µ1 ≈ 0.048, µ2 ≈ 5.118 µ1 ≈ 0.090, µ2 ≈ 5.391 µ1 ≈ 0.027, µ2 ≈ 2.046

Figure 7.5: RB-SLOD basis functions (top) and the corresponding local source
terms (bottom) for three different parameter pairs.
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Figure 7.6: RB-SLOD solutions (top) and the absolute value of the errors (bot-
tom) for three different parameter choices.
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8.1 Conclusion
In this thesis, we have presented recent advances in the field of LOD-based nu-
merical homogenization. As a starting point, we first introduced the LOD in a
general setting and showed that the LOD is able to achieve optimal approxima-
tion orders without having to globally resolve the underlying coefficients. The
LOD approach was then extended to the multi-resolution setting by the MR-
LOD, where we uses the Helmholtz problem as a model problem. The MRLOD
allows one to improve the accuracy of an existing LOD approximation by adding
additional discretization levels. We have presented a rigorous wavenumber-
explicit stability and error analysis of the method showing its pollution-free op-
timal order convergence properties under mild assumptions on the discretization
parameters, see Theorems 4.4.1 and 4.4.2. The resulting coarse system matrix
of the MRLOD is block-diagonal, and all but the first small block can be solved
with a standard iterative solver within a few iterations, see Theorem 4.5.1.

Moreover, we have introduced the SLOD, a novel LOD-based numerical ho-
mogenization method that identifies basis functions which are significantly more
local than those of the LOD. As a result, the computational cost of the basis
computation is lower and the coarse system matrix is sparser. These properties
are a consequence of the practically observed super-exponential decay of the
localization error, see Section 5.4. While a proof of the super-exponential decay
of the localization error is still open, we have proved that the localization error
decays at least exponentially using LOD arguments, see Theorem 5.4.3. In a
general setting, we have also performed a rigorous stability and error analy-
sis of the SLOD, where the stability of the basis is quantified a posteriori, see
Theorems 5.3.1 and 5.3.2.

For high-contrast channeled coefficients, for example, the SLOD may suffer
from basis stability issues, resulting in a degradation of its approximation qual-
ity, see Section 6.5. To overcome this problem, we combined the SLOD with
a partition of unity approach, resulting in the SL-GFEM. From an application
point of view, the SL-GFEM is conceptually simple and easy to implement.
We have provided a rigorous a posteriori and a priori error analysis of the SL-
GFEM showing that its approximation quality is at least as good as that of
the SLOD, see Theorem 6.3.1, and at the same time not worse than that of the
LOD, see Theorem 6.4.1. Furthermore, we have derived higher order versions
of the SL-GFEM that achieve higher order convergence rates using only the
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regularity of the source term. Finally, we introduced the RB-SLOD, which is a
local RB technique for parameter-dependent multi-scale problems. This method
integrates an RB approach into the SLOD framework, allowing for the efficient
generation of accurate coarse-scale models of the problem. An a posteriori error
analysis of the RB-SLOD, in the spirit of that of the SLOD, is presented in
Theorem 7.5.1. Due to the unique localization properties of the SLOD, the RB
snapshot computation can be performed on particularly small patches, resulting
in a relatively low offline and online complexity of the method.

8.2 Outlook
The work presented in this thesis provides many opportunities for future re-
search. One important open point is the proof of the super-localization prop-
erty of the SLOD, see Section 5.4. This may be done using techniques related
to spectral geometry, which however usually require strong assumptions on the
regularity of the coefficients and the boundary, cf. [HL01; PST15; GT16].

Another possible follow-up is the combination of the SLOD with a multi-
resolution approach similar to the MRLOD. However, in order to obtain a de-
coupling of scales, additional constraints must be placed on the basis functions,
which could potentially affect their localization properties.

A further future project is the extension of the SL-GFEM to Helmholtz prob-
lems. Based on previous experience with the LOD and the SLOD for Helmholtz
problems, no major challenges are expected. Moreover, the SL-GFEM could
be combined with a multi-resolution approach to improve the accuracy of the
approximation while keeping the size of the subdomains fixed.

Given the effectiveness of the SLOD in treating Helmholtz problems, it may be
worthwhile to explore its applicability to other time-harmonic wave propagation
problems, such as elastic wave propagation and Maxwell-type problems.
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