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Abstract
While humans can effortlessly pick a view frommultiple streams, automatically choosing the
best view is a challenge. Choosing the best view frommulti-camera streams poses a problem
regarding which objective metrics should be considered. Existing works on view selection
lack consensus aboutwhichmetrics should be considered to select the best view.The literature
on view selection describes diverse possible metrics. And strategies such as information-
theoretic, instructional design, or aesthetics-motivated fail to incorporate all approaches.
In this work, we postulate a strategy incorporating information-theoretic and instructional
design-based objective metrics to select the best view from a set of views. Traditionally,
information-theoretic measures have been used to find the goodness of a view, such as in 3D
rendering. We adapted a similar measure known as the viewpoint entropy for real-world 2D
images. Additionally, we incorporated similarity penalization to get a more accurate measure
of the entropyof a view,which is one of themetrics for the best view selection. Since the choice
of the best view is domain-dependent, we chose demonstration-based training scenarios as
our use case. The limitation of our chosen scenarios is that they do not include collaborative
training and solely feature a single trainer. To incorporate instructional design considerations,
we included the trainer’s body pose, face, face when instructing, and hands visibility as
metrics. To incorporate domain knowledge we included predetermined regions’ visibility
as another metric. All of those metrics are taken into account to produce a parameterized
view recommendation approach for demonstration-based training. An online study using
recorded multi-camera video streams from a simulation environment was used to validate
those metrics. Furthermore, the responses from the online study were used to optimize the
view recommendation performance with a normalized discounted cumulative gain (NDCG)
value of 0.912, which shows good performance with respect to matching user choices.
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1 Introduction

Learning is an important aspect of everyday life for acquiring new skills, for example, through
some form of instruction or teaching. A typical example of teaching is demonstration-based
training (DBT), where students learn through observation. DBT scenarios are usually face-to-
facemeetings, for example in a classroom setting. However, other types of DBT have become
popular, from interactive manuals to video recordings. For example, millions of instructional
videos can be found online on platforms such as YouTube. Ideally, when co-located, trainees
can communicate with and observe a trainer in a face-to-face manner, supporting direct
communication. Flexibility to change viewpoints in a such face-to-face situation by simply
moving around physically – a typical action in real-world classrooms – is another advan-
tage. This allows for resolving visual ambiguities and invariances [99, 107]. Yet, especially
instruction videos do not support this flexibility. Viewpoints are typically generated by a
single camera, which is usually fixed or worn on the hand or head. Consequently, arbitrary
viewpoints are not supported. This may cause typical issues such as occlusions (e.g., the
instructor occluding the actual object of interest) or a lack of close-up of certain actions.
To solve this, a possible solution is the deployment of multi-camera systems. Such systems
integrate strategically placed static cameras that can be complemented by video streams from
dynamic viewpoints, e.g., a camera connected to the head. Using a front-end such as a web
interface, users can potentially select the best view from all offered views to view the instruc-
tion in an optimal manner. However, especially when the number of cameras increases, this
likely is not ideal: trainees would need to continuously monitor multiple camera feeds quite
similar to security monitoring systems [89] while paying attention to the instructions. This
may be counterproductive for the learning process as attention (cognitive) resources are lim-
ited [67]. Hence, presenting users with the best view or views among a set of views could
be advantageous to reduce issues associated with attention and limited cognitive resources.
Unfortunately, current literature is not conclusive as to what parameters need to be regarded
to select an optimal view from a set of views during a training session. Though literature
exists in the domain of cinematography, observational learning, and illustrative rendering
[37, 54], there is no universally accepted definition of what constitutes the "best view". An
overview of these sources can be found in the related work (Section 2) - we derive require-
ments or guidelines for our system where possible. In related work, views are often judged
by aesthetics or they are ranked depending on viewers’ choices in a specific scenario, rather
than a set of objective metrics, which is not relevant to DBT scenarios.

Therefore, it is essential to identify these objective metrics. The best view could also be
dependent on modeling or prior knowledge of the information content distribution within the
DBT scene. If the scenario changes significantly, the model would need to be updated. More-
over, it might not always be possible to reliably model the scene and underlying semantics.
Hence, a parameterized approach for view selection is desired. However, prior information
about the scene should not be discarded completely as it could be useful for view selection.
Prior knowledge should be incorporated in the best view selection process.

Best views are intended to be shown as a larger image in a web front-end while showing
the rest of the streams as thumbnails. The focus of this paper is on the underlying system, our
recommender system. The front end itself is outside our scope. The recommender system
is driven by image analysis to select two feature views: an action view that is optimized to
view the instructor and operation space and a communication view that shows the face of
the instructor to support direct communication. The action and communication views can be
incorporated into a single view that best represents the scene by optimizing all underlying
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factors. For a group of objects of interest in a scene, the best view can be defined as the
one that provides maximum visibility of the objects, contains most of the information about
the objects, and shows the objects as magnified as possible. For a DBT scenario, the best
view should also show the actions (including gestures) performed by the trainer in the most
informative way, defined by a set of metrics predominantly related to the trainer’s actions.
Namely, in our system, the best views are selected by performing different types of image
analysis related primarily to the trainer’s activities. The system detects motion, the visibility
of body parts, and regions of interest.We do so by calculating the entropy of an image – being
an entity to quantify average information content in a view – by feeding in the metrics of the
image analysis. The Entropy of an image expresses the average information or uncertainty of
its building blocks or the pixels of the image, evaluating the informativeness of the view and
providing the system a measure as to which view to select as the best view. Instead of solely
relying on prior knowledge about the scene, we use a view ranking algorithm that considers
current information content in the scene. However, not all prior knowledge regarding the
training scenario should be discarded. It can be defined as a region of interest, a concept we
also use in our system.

In this paper, we describe the technical system and motivation for the different analyses
that form the basis for the entropy calculation. We discuss what potentially makes up the
best view, and how different analyses can contribute to its calculation. To address if the best
view recommendation matches what users would select, we performed an online user study,
where 43 persons manually tagged the best view from a set of 8 views on a scene and rated
all views individually. We developed a view recommender (explained in Section 5) for the
multi-camera system that automatically selects and presents the best view. We designed the
view recommender to be parameterized, allowing for easy adaptation to varying conditions
in DBT. We compared the ranked lists from the user study with the views selected by our
recommender system, and closely analyzed the role of different types of analysis through user
feedback. The outcomes revealed that our first system iteration matched the view selection
by users well in most cases: a normalized discounted cumulative gain (NDCG) score of 0.906
was achieved. View selection matched the user’s topmost selection 42.4% of the times it was
used. By adjusting the weights based on user feedback, we ran a further iteration, improving
theNDCGscore to 0.912. Toour recollection, this is the first automated view recommendation
system for amulti-camera system used inDBT that deploys carefully selected image analysis.

2 Related work

Development of our view recommender system draws from prior work, which we outline
below.

2.1 Instruction and learning systems

An instructional video is a form of multimedia where targeted instructional material is deliv-
ered using dynamic graphics, i.e., videos and words in the form of speech and background
sound [12, 33]. In DBT, the viewers learn by observing a trainer during task performance.
This type of learning, i.e., learning by visualization of the demonstration being enacted, is
called observational learning [10, 11, 97]. In the case of imitation learning, viewers watch
the relative motion of the demonstrator’s limbs [45, 47]. Thereby, sensorimotor observational
learning can lead to learning in complex tasks [17, 40, 124]. An instructional video can facili-
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tate observational learning [14, 116]. Although the use of instructional videos for educational
purposes is widely used [25, 101, 110], studies generally do not focus on DBT scenarios.
Instructional design theories, describing how to design instructional videos [73, 84, 85, 96]
have been reported on, yet do not necessarily give any guidelines for camera view or angle
setting. Although some approaches mention mixing first-person and third-person camera
views [33, 74], these studies do not offer any heuristics for camera positioning. Instructional
video design guidelines offer some insight into how to present the instructor [73]. Some
research has focused on if the instructor should be shown, what part of the instructor should
be shown, and how it affects different aspects of learning [43]. The presence of the instructor
can influence students’ engagement and learning while seeing the instructor talking engages
viewers more than slides [69]. It has been shown that the instructor’s face visibility allocates
a substantial amount of students’ attention [72, 119, 120]. However, there are mixed opinions
if it does [69] or does not [33] aid learning. A static instructor face can be detrimental to
the learning experience, whereas a gesturing instructor pose helps to learn [73]. Also, the
instructor’s eye gaze has a stronger influence than body orientation on students’ attention
and learning [88]. Hence, it would be beneficial to consider the instructor’s face visibility,
especially when they are giving vocal instructions, and their body pose in the best view.

2.2 Multi-camera systems

Multi-camera systems have been used in surveillance, education, sports, and mobile systems
[82]. Multi-camera systems can offer more than one view of a scene at a time. This advantage
can potentially mitigate some issues with single view systems, e.g., poor camera placement
or narrow field of view [19, 64]. Tomaximally cover the scene area cameras need to be placed
optimally. Cameras can be placed with heuristic reasoning [68], maximum coverage [18],
and by avoiding dynamic occlusion [90]. Some multi-camera-equipped lecturing systems
have been developed [2, 5, 63, 77, 112]. These systems usually include lecture material
like slides or boards. Multi-camera instructional videos can be more valuable and engaging
compared to single camera-based instructions [117]. Furthermore, a studyon learningmedical
hand procedures showed that multi-camera setups have maximized training effect [16]. Most
systems are concentrated on the lecturer moving in the classroom. Although systems are
capable of capturing the best region of interest depending on lecturer movement [5], audience
activity, or focus of lecture materials, those are not built for detailed procedural knowledge
transfer in a DBT scenario. For example, in [41] two pan-tilt-zoom cameras are placed in a
classroom that offers views such as room overview, speaker view, audience overview, and
questioner view. A screen view is also added by capturing the presentation screen. All of
these views were considered as states in a finite state machine. View switching is done by
considering predefined events (e.g., movement or speech detection) or timeouts. However, it
only detects changes to switch states and does not consider information content in the view
for differentiation. Our system is different from this system because we are using multi-
view from multi-cameras and do not differentiate objective-wise between cameras. Some
approaches try to capture the moving human from the best possible viewpoint by capturing
limb movements. For example, drone cinematography for action scenes can be based on
maximum variance (by eigenvalue decomposition) of body skeleton landmarks [133]. In due
course, a multi-camera view can help with imitation learning [57]. Note we further reflect
upon activity analysis in Section 3.1.
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2.3 Recommender systems

Recommender systems are information filtering systems that predict the preference for an
item of a user. Its main objective is to suggest relevant items to users. Recommender systems
are widely used in e-commerce [4, 132], social media [131], entertainment [98], and other
domains [113]. In e-commerce, it is used to recommend relevant products for a user’s search,
e.g., Amazon, eBay, etc. In social networks, it is used to suggest connections between users.
Recommendation systems are used to generate playlists for video and music streaming ser-
vices, e.g., Netflix, YouTube, Spotify, etc. Recommender systems are of mainly three types:
content-based, collaborative filtering, and hybrid approaches [23, 60], which is a combination
of the first two types. Content-based systems recommend the items based on a model created
from past user-item interactions. Collaborative filtering approaches recommend items based
on inter-users or inter-items rating profiles. By searching items or users in the neighborhood
of the current user or item, they generate similar recommendations. In this work, we want
to develop a recommender system for camera views in a multi-camera scenario. Although
we call it a view recommender, it differs from traditional recommender systems because
it recommends a single view from a limited set of views by rating them. We try to model
the recommender system as a parameterized one that would potentially work for various
scenarios by tuning the parameters (more of it is explained in Section 5).

3 Viewpoint analysis and selectionmethods

The camera view that offers the most informative and useful information about the scene can
be labeled as the best view. Best view finding by viewpoint optimization has been explored
in various domains, including cinematography and robotics. We reflect upon these domains
to derive useful metrics for our best view selection methods.

3.1 Activity analysis

During DBT training, a trainer demonstrates a training procedure while instructing viewers
how to perform the task at hand.These instructionalDBTscenarios generally include different
kinds of procedural tasks like assembly, operation, repair, or maintenance. [65, 130]. In an
instructor-led instructionalDBTscenario, usually, the trainer has all of the required equipment
available. The trainer uses their hands to, for example, pick up or operate some equipment.
These manipulations of objects are regarded as training actions. Sometimes these training
actions involve partial or full body movement of the trainer [57, 124]. Tasks involving those
actions can be categorized into three types: local, spatial, and body-coordinated [100]. Local
tasks are single-handed steps performed by the trainer not changing their location in the
scene. Spatial actions are done by moving from one place to another in the scene. Finally,
body-oriented actions are performed by using their hands, body, and eye coordination in
unison.

In DBT, actions are usually performed along with verbal instructions to explain actions or
describe the strategy for the task. Sometimes this verbal form of communication is accompa-
nied by non-verbal cues, for example, gestures. These include movement of the head, hand,
or parts of the body [22]. Gestures also play an important role in collaborative training ses-
sions [6, 30, 36, 106]. Among different types of gestures [75], pointing and representational
gestures are important [36]. Pointing or deictic gestures involve the speaker pointing to an
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object in the scene and verbally saying this, that, here, there, etc. On the other hand, repre-
sentational or iconic gestures [123] include hand movements that show a perceptual relation
with speech content. For example, a speaker might move their hand sideways to indicate a
flat surface. Gestures - iconic, spatial, kinetic - play a key role in task-oriented dialogues [8,
81]. These gestures offer communication grounding [70], which helps to establish a common
ground among the collaborators. Therefore, gestures realized by limb movements play an
important role in communication during training. Moreover, the visibility of hands is more
effective for learning manual manipulation tasks than just reading manuals [26, 91]. Hence,
it is beneficial to consider the visibility of hands as an important metric for the best view.

There have been ample works for human activity analysis using computer vision tech-
niques [3, 13, 86]. Although we can identify human activities from video, we did not want
to focus on any specific activities. In this work, we relied upon only human pose estimation
[21, 24, 78] so that we can separate the head, body, and limbs from the video stream.

3.2 Entropy

With regards to view analysis, information-theoretic approaches for the evaluation of the
goodness of a viewpoint have been explored based on the notion of information measure or
entropy [109]. Since entropy quantifies the average information content of a variable, it can
be extended to evaluate information associated with a viewpoint. This concept is known as
viewpoint entropy [37], which is also a key aspect of our approach. Viewpoint entropy has
been measured by projecting the visible surface areas of an object on a tessellated sphere
centered on the viewpoint. Viewpoint entropy gives a measure of how much of an object’s
surface polygons are seen from the associated viewpoint and has been used to select the best
viewpoints, e.g., for image rendering [50, 126, 127, 129, 134]. The idea of viewpoint entropy
was extended by adding chrominance, luminance, and weighted object priority to understand
a scene [125]. A relative entropy or Kullback-Liebler (KL) distance-based viewpoint opti-
mization [122] and integration with mesh saliency [29], silhouette and depth attributes [108],
object uniqueness [35] were also introduced. Recent polygon-based view selection surveys
include more of these model-based approaches [15, 49]. Although these methods yielded
good results for 3D models, it was not shown how to extend these methods for comparison
of real-world scenarios. Of further interest are information-theoretic measures that have also
been used for comparison of images [61] and shot cut/fade detection in video sequences
[20]. Although classical entropy has been used for viewpoint optimization [56, 111, 121], it
suffers from a major weakness. The classical definition of entropy has one inherent weak-
ness: it does not consider the spatial distribution of the inputs. Thereby, it cannot measure the
true information content of an image. Some have tried to overcome this weakness [92, 105].
However, these methods are computationally expensive compared to the classical implemen-
tation of entropy measures. It should be mentioned that viewpoint entropy [37] considers
pixels’ spatial relationship to some extent because it groups neighboring pixels that belong
to the same face on an object. Since models of objects are not always known, model-less
approaches for viewpoint selection have been developed [39, 42, 62, 118] in the context of
object recognition.

3.3 Views in virtual cinematography and robotics

Virtual cinematography focuses on aesthetics, cinematographic elements, emotion capture,
and group interactions that capture for example dialogue and gaze formovies, animations, and
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games. However, these approaches are not necessarily focused on humans interacting with
objects. For these reasons, the virtual cinematography approaches are often not adequate for
DBT.However, they could be useful for framing andvisual element placement, by considering
best production practices. In virtual cinematography, view selection or framinghas been based
on continuity of editing by considering stylistic rules [59], visibility of key subjects [76], user
preferences [7], and topology awareness [1]. Inspired by filmmaking practices, constraint-
based editing tools help editors, for example, to pick the best camera positions, framing,
actor’s size on screen, or desired visual features [31]. Example-driven approaches that can
learn from sample movie clips and popular photos that reproduce the camera positioning for
virtual cinematography have also been developed [9, 52, 102]. Instructional video design
guidelines are mainly concentrated on instruction material presentation, showing a trainer in
traditional classroom lectures or online courses. The guidelines do not yet consider how-to
training tasks (e.g., assembly, repair, etc.) that show and explain the procedures step by step.
Also, design guidelines do not clarify where the camera should be placed, which camera
views should be selected, or how to switch between camera views – all of which are vital
for how-to-do procedural DBT scenarios. In virtual cinematography, framing is based on
aesthetics, emotion capture, and gaze estimation of the actors. Although close-up shots allow
for better visibility, no guidelines are offered on how to manage the frame or view in DBT.

In robotics, viewpoint optimization has beenused for object recognition, scene reconstruc-
tion, robot localization, visual inspection, and task planning. Earlier work posed viewpoint
finding as an optimization problem for better viewing of some scene objects’ geometrical
features, which required prior knowledge (e.g., available CAD models). Occlusion avoid-
ance [103] and illumination maximization [66, 104] have been considered where the model
of the task environment is available. Camera placement for a known object model has been
optimized by feature considerations, e.g., visibility, in focus, containment [54, 114, 115].
Some simplistic geometry-based approaches without considering surface textures have also
been proposed for internal modeling [58], and most informative view assessment [27, 55].
Although these methods provide hints of what could be the best viewpoint for an object,
these methods are not practical since they do not consider the surface texture and require a
detailed geometric description.

4 System approach and requirements

In this section, we describe our system requirements and approach for a multi-camera DBT.
We study real-time camera view management for instructional DBT scenarios with remote
viewers. In these scenarios, a trainer is situated on-site with the training equipment while
viewers watch the training from a remote location. We will address how the best view from
all camera views can be selected, mainly based on factors derived from related work.

4.1 Camera placement

Camera placement ideally is optimized for visibility by considering trainer movement, object
manipulation, performed actions, scene geometric features, and the illumination of the scene
[18, 53, 68, 90]. It is desirable that at least one of the cameras should be able to cover the
trainer’s action for the task at hand, e.g., local, spatial, or body-coordinated [100]. It should
be mentioned that, initially, we assume the cameras in the training scene to be static. Other
scenarios where a camera can be re-positioned dynamically to generate a better view can
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be envisioned by including a camera on a robot arm or worn on the head of the trainer, yet
these are not considered in the frame of this paper. Also, it should be mentioned that we limit
our requirement analysis to a single trainer-based scenario and not to multiple trainer-based
collaborative ones.

4.2 View analysis and selectionmetrics

A view recommender system should analyze the different camera views and show appropri-
ate content in the same view or in different views simultaneously [41]. Metrics for best view
selection can be derived from literature, and inherently rely on a close-to-optimal placement
of cameras. For the best view, firstly, the overall scene should be clearly visible and well
illuminated (A), to afford an overall understanding of the scene, including the location (and
change thereof) of objects over time. Secondly, the trainer’s pose, defined by the configura-
tion of body parts, should be visible or clearly understood during the instruction, especially
those body parts relevant to the instruction (hand, arms, and potentially upper body) and
communication (face) (B). With respect to the visibility of objects relevant to the training
exercise, objects that are being interacted with during the instruction should be clearly visible
(C). Finally, the combination of (B) and (C) results in the visibility of specific actions (D),
being the movement of body parts and associated objects during an instruction. The com-
munication view basically considers the visibility of the face of the instructor. Ideally, the
full face is visible while facing toward the camera. The best view can be extracted from the
available camera views for every timestep. However, the best view might change frequently,
which could fail to convey any meaningful information. Moreover, measuring the best views
on every consecutive timestep might not be possible due to limited computational resources.
Hence, there should be a maximum frequency at which the views should change, an issue
we focus on in our user study.

4.3 View strategy

The main objective of the view selection is to provide remote viewers with the optimal cam-
era view from the set of views to maximize learning by observation. However, a single view
may not necessarily capture the necessary information related to the actions and communi-
cation of the instructor. During instruction, both aspects can be separated (e.g., the instructor
performing an action without speaking) and integrated (e.g., speaking while operating on an
object). While vocal communication will be heard at all times, irrespective of a view, some
actions during performing an action or communication may not be captured by a single view
in an optimal manner. For example, a close-up may be the most appropriate view to show
an action, limiting the view of the instructor’s face. As such, both types of views could be
considered separately to allow for higher flexibility in observing instructions. For the discus-
sion that follows it is important to keep in mind that during an "action", an actual operation
is performed on an object, whereas during "communication" this is not necessarily the case.

We refer to the view associated with showing the trainer’s action as the action view.
The action view should clearly show the trainer’s body in relation to objects that are being
operated, and other relevant scene objects that provide context for that action. For example,
in a welding operation, the parts are to be joined together and the torch should be visible to
understand the operation of the torch in relation to the object it is operated on.This view should
show object geometry optimally, with minimum occlusion, and with proper illumination [66,
103, 104].
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During training, the trainer will likely provide vocal instructions to aid the viewers’ under-
standing. The vocal instructions tell the viewers about how to perform the training actions or
give other relevant information. The trainer can give vocal instructions when not perform-
ing an action. They can be related to gestures the trainer makes to establish the context of
subsequent actions that are going to be made [36, 75]. It may include pointing to explain the
relevant action or representational gestures for communication grounding before the action
is performed. To make the transfer of instructions to the remote viewer, we call the view with
the trainer’s face, but also part of the body, and hands that make gestures the communication
view. This view will also be important during direct communication between the instructor
and observers. On the other hand, vocal instructions can also be given while performing
an action. The trainer’s face and eye gaze are important for these situations as they inform
the viewer about a specific object or action of interest. Note that the view may hold similar
content as the action view. The difference is that the communication viewwill always include
the trainer’s face and hands for gestures, whereas this is not necessarily the case with the
action view, which mainly considers the action itself.

5 System

In this section, we describe the scenario and system by which our view recommendation is
achieved and evaluated.

5.1 Scenario simulation and camera placement

Our system has been developed and tested with both real-world and simulated footage. To
assess our system in controlled, comparable conditions between all participants in our user
study, we created a simulated environment tailored for the study. The simulation deployed a
diesel engine assembly operation. Since the diesel engine parts are too big to fit on one table,
they are spread over three tables. The trainer collects the parts from these tables and performs
a series of assembly operations, including placing and carrying objects, and using tools.
Thereby, the trainer performs all three types of tasks: local, spatial, and body-coordinated
as suggested in [100], which cover all types of tasks in a DBT. Hence, our simulation setup
can be regarded as representative of DBT. The trainer also describes his current actions
using vocal instructions. In due course, we set the object and camera positions, as well as
scene properties, e.g., illumination, and texture. Fundamentally, the images coming from the
simulation have the same relevant properties as real-world imagery that are required as input
to the system, even though the scene is less realistic. Eight cameras were strategically placed,
their locations being optimized by pilot testing with 4 users. While our initial placement was
based on our metrics, the users were not bound by these metrics to avoid potential biases. As
can be seen in Fig. 1, as a result, some cameras are set for capturing overall actions on the
table, some are placed closer to the objects for closeups, and a single camera is placed as an
overview camera (rightmost on the second row).

5.2 High-level architecture

Based on the analysis presented in Section 4, we developed the view recommender system.
Its components are depicted in Fig. 2. The recommender system will feed a web front-end
similar to a conference call tool to show the best action and communication view. As this
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Fig. 1 Eight cameras are placed in the virtual diesel engine assembly scene. Camera placement is shown in
the lower image. Views from the eight cameras are shown in smaller images on top

front end is not the focus of this paper, it is not handled further here. Multiple camera views,
tracking information of predetermined regions of interest, and scene audio provide input to
the system. The view recommender should provide the best view stream of the DBT session
in real-time in a coherent manner as output. The camera views are acquired from multiple
cameras strategically placed in the scene (see Fig. 1). Predetermined regions of interest and
some scene objects’ surfaces that are important for training are usually decided by the trainer
or someone with domain knowledge of the training scenario. These regions – the regions of
interest we will discuss in Section 5.4 – are usually fed by a tracking system into the view
recommender as tracking information. In our case,we grab the predetermined regions directly
from the simulation. Since we are dealing with 2D images, this information is delivered as

Predetermined ROIs

Motion detection

Pose estimation Entropy
measurement

Weighted view
selector Best view

Camera views

Scene audio

ROI

Voice activity
detection

Face, hands, and
body visibility

View recommender

Fig. 2 Flow diagram of best view recommender system
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2D image coordinates. Finally, scene audio for the trainer’s voice activity detection is also
sent as input. Voice activity detection only tells us if there was a presence or absence of
human speech in the audio.

To detect activities, the system requires a motion detector, a human pose estimator, and a
voice activity detector. The motion detector detects the region of motion in the input views
while the pose estimator detects the trainer’s pose by separating the image regions of the
trainer’s head, body, and hands from the input video stream (see Section 5.4). It detects
the region of interest (ROI) for a single camera view from the union of scene motion, the
trainer’s body pose, and the predetermined regions. To find the amount of information in the
ROI, it is fed into the entropy measurement unit. For the best view selection, the entropy
measure of the ROI, the trainer’s face, hands, body visibility from each of the camera views,
and voice activity detection are taken into account to calculate a weighted score (shown in
Section 5.3). As calculations are compute-intensive and computational resources are usually
limited, different modules of the view recommender (Fig. 2) update at different frequencies.
For example, both the motion detection and pose estimation modules (See next section) run
at 3.6 Hz at our workstation (a thread-ripper with 128 threads). However, the weighted view
selector module runs at a higher frequency that is at the frames per second of the input
camera streams. This is done so that a smooth best view stream is delivered to the viewer.
Since we are running the same computation steps for all of the view streams, we try to
make the process as lightweight as possible. For example, to process the regions, instead of
using detailed contours of detected motion and body poses to delineate detected motion and
pose regions in the image, we prefer bounding boxes to improve computation performance.
Moreover, bounding boxes include some of the non-detected pixels that would give some
context about how the detected pixels are related to neighboring pixels, thereby facilitating
better understanding by the viewer [83]. In the next sections, we will look more closely at
the different sub-components of the system.

5.3 Camera view score calculation and selection

To find out the score associated with a camera view, the entropy, face visibility, hands vis-
ibility, voice activity, and predefined ROI visibility are multiplied with associated weights,
and their weighted average is taken. This score measurement is shown in Equation 1.

score = 1
∑5

i=0 αi

(

α0H + α1(pbody) + α2 p f ace

+ α3(p f ace)(pvoice) + α4(phands) + α5(ppRO Is)(pbody)

) (1)

Here, the weighing parameters are αi ∈ {0, 1}, i = 0, ..., 5. We will describe in our user
study (Section 6) how these values will be compared with the ones found in our study. The
scores from all the camera views are compared, where the maximum valued camera stream is
our best view. In case two ormore cameras have equal scores, one should be chosen randomly.
From Equation 2 (described in detail in Section 5.4) and Equation 1, it can be seen that our
best view selection takes into consideration the following: information content in the ROI of
scene motion, trainer’s body pose, and predetermined regions. It also considers the trainer’s
face and hands visibility, face visibility while giving instructions, and predetermined ROI
visibility when the trainer is detected within the view. The information content of an ROI is
higher withmore visual features from scene geometry, larger features, and better illumination
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conditions. To capture gestures made by the trainer, the visibility of the face is important
when vocal instructions are provided. Hence, in Equation 1, p f ace and pvoice are multiplied.
Likewise, predetermined ROIs are only important for a camera view if the trainer is visible in
that view. Hence, ppRO Is is multiplied by pbody in Equation 1. The weighted metric values
are divided by the sum of the weights (

∑5
i=0 αi ) so that the score is a weighted average of

all the objective metrics. In the next sections, we will have a closer look at the ROI, image
analysis, and entropy calculation.

The weighted view selector determines a score for each of the camera views. After con-
sidering spatiotemporal coherency it outputs the best view in real-time. It uses Equation 1
(see Section 5.3) to calculate the score of each of the camera views. It selects the camera
view with the maximum score as the best view at that instant. However, if the weighted
view selector always selected the best view based on the score at that instant, the view might
change too frequently to be meaningful to the viewer. To avoid frequent switching between
views, the view selector needs to maintain spatiotemporal coherency for the viewer. It should
only switch the view if for some predefined time (consecutive number of frames) a view gets
selected as the best view. To do so, the system uses a low-pass filter to reduce frequent view
switching. It uses a window of fixed duration (Tw). We choose 2 seconds, which contains all
the previously selected camera view IDs with maximum value scores. For the best view, the
most frequent camera ID within this duration is selected. This way the view selector selects
a camera view that is scoring maximum in the last Tw seconds. The trade-off of this low
pass filtering operation is that it potentially causes a delay of Tw

2 seconds for the best view
switching. The choice of this Tw is dependent on the training scenario. If a DBT has a lot
of densely packed actions then this can be a small value, otherwise, it can be set to a bigger
value.

5.4 Region of interest

To analyze the different views, the system identifies an ROI. An ROI is a bounding box in
a camera image that is fed into the entropy measurement component. We denote the ROI
of detected motion as RO Imotion , and the estimated pose region as RO I pose. Prior to the
training, some regions or parts of the training objects that are important, e.g., a surface or
front side of a tool or machine, can be specified as predetermined ROI (RO I pdet ). The trainer
or expert specifies a rectangle (or, a polygon) with a surface normal specifying the inverse of
its preferred view direction in 3D space. When looking at the rectangle from the side with a
surface normal and in its opposite direction, it can be clearly seen. In a real-world scene, it
can for example be marked by four markers on the vertices of the rectangular region to afford
marker tracking. This way the trainer or expert can incorporate their domain knowledge in
the best view selection. The union of RO I pdet , RO Imotion , and RO I pose is the region of
interest (ROI) view for the current frame, shown in Equation 2.

RO I = RO I pdet ∪ RO Imotion ∪ RO I pose (2)

The ROI includes the pixels associated with predetermined surfaces that are vital dur-
ing training. It also includes detected motion regions, i.e., all moving objects’ parts and
the trainer’s moving limbs and body pose regions like the face, hands, arms, torso, and
legs. We use entropy (H ) to measure information content in this ROI (see Section 5.7).
Moreover, the pose estimation module also provides information regarding face and hands
visibility. A voice activity detector is used to detect if the trainer is giving any instructions
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vocally. The body pose visibility (pbody), face visibility (p f ace), hands visibility (phands),
predetermined ROIs visibility (ppRO Is), and voice activity (pvoice) are probability values,
i.e., pbody, p f ace, phands, ppRO Is, pvoice ∈ [0, 1]. These values can also be Boolean values
({0, 1}) depending on the detector output.

In Fig. 3, two example images ofmotion detection, pose estimation, andROI determination
is shown. A bounding box is used to encapsulate the detected regions. Since we are interested
in specific parts of the body skeleton of the trainer, those regions are encapsulated in separate
bounding boxes. In Fig. 3a, the skeleton from pose estimation is shown. The face points are
inside a light blue bounding box, the hands are in dark blue bounding box. The overall body
pose is encapsulated to be used as RO Ibody in Equation 2, shown in a red bounding box
in Fig. 3. All the ROIs are shown in Fig. 3b. The estimated pose region is shown in a red
bounding box. The detected motion region is shown by a green bounding box. Predetermined
regions fed by a tracking system as image coordinates are shown in a blue bounding box.
The union of all the ROIs, as in Equation 2, is shown in a black bounding box. The detection
of the ROIs is important for our approach. Sometimes due to the partial view of the trainer,
the pose estimation can be noisy. Due to the movement of shadows, movement detection can
also include false positives. Hence, depending on the performance of the pose estimation or
motion detection modules, sometimes the detected ROIs can be noisy. In those cases, it is
recommended to fine-tune the parameters of the pose estimation or motion detectionmodules
to increase their accuracy.

5.5 Image analysis

Image analysis is performed for motion and pose estimation to support ROI extraction. These
operations are performed for all of the video streams. For motion detection, we have used

Fig. 3 Union of scene motion, trainer’s pose, and predetermined ROIs results in ROI. Scene motion is detected
along with pose estimation in the left image. Detected face and hands are shown in blue bounding boxes. By
combining these regions with predetermined ROIs, the overall ROI is determined. In the right image, the pose
and ROI are shown in red, the predetermined ROI in blue, the motion in green, and the encapsulating overall
ROI is shown in black
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OpenCV’s 1 motion detection (GSOC) implementation [34]. We create an instance of a
background subtractor that first learns the background from the input video stream. After
that, when a new frame is fed into it, it separates the foreground. The background model
is updated continuously depending on the previous frames. The foreground is encapsulated
into a bounding box, which is the motion-detected ROI. For pose estimation, we have used
Google’s Mediapipe library [24] 2. It uses the BlazePose [44] convolutional neural network
for human pose estimation. It detects 33 body keypoints from an input image on demand.
Subsequently, it estimates these keypoints by predicting these landmarks and segmentation
masks, which makes it ideal for videos with low computation overhead. We need to run
multiple (8) instances of this pose estimator simultaneously. Hence, we have chosen it for the
real-time performance version. After the 33 body landmarks are detected by the BlazePose
model, face and hand regions are predicted. From the hand, face predicted regions, face,
and hand landmarks are extracted, which results in a total of 543 landmarks (33 pose, 468
face, 21 x 2 hand landmarks). For predetermined ROI, we do not perform any image-based
analysis. It is given as an input bounding box (a set of 2D image coordinates) from the known
simulation environment to the view recommender.

5.6 Voice activity detection

For our simulation environment, it was knownwhen the trainer was giving vocal instructions.
As such, it was used as a Boolean input to the weighted view selector. For a real-world
scenario, described in Section 6.6, we have used voice activity detection (VAD) [38, 135].
A sliding window of 2 seconds is used to collect frames with PCM (Pulse-code modulation)
data from 48KHz audio input. An instance of VAD, which is part of WebRTC 3 module
detects if there was voice activity in that audio segment. This Boolean value was next fed to
the weighted view selector.

5.7 Entropy calculations

Entropy is often used as an information measure for the content of images [109]. Entropy is
expressed by the Equation 3. For a discrete random variable X with possible outcomes in the
set a1, a2, ..., an , entropy is defined as

H(x) = −
n∑

i=1

pi log(pi ) (3)

where, probability of ai is pi = P[X = ai ]. For continuity, 0 log(0) = 0 is assumed. In other
words, entropy gives an average of information content for every possible outcome. Using
this formula (3), entropy can be measured from image pixels’ intensity values. However, this
formula disregards the spatial relationship of pixels. This formula for entropy calculation will
provide the same result in case the image pixels are shuffled. Since the pixel-wise shuffled
image is a different image, the spatial relationship of pixels in the entropy measure needs to
be accommodated.

In previous work, while calculating viewpoint entropy the spatial relationship of pixels
has been incorporated to some extent by considering entropy based on visible object’s faces

1 https://opencv.org/
2 https://github.com/google/mediapipe.git
3 https://webrtc.org/
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[37, 50, 126, 127, 129, 134]. This was done by grouping neighboring pixels on visible object
faces. However, by doing so this viewpoint entropy disregarded the texture information.
Moreover, these approaches needed a 3D model of the scene in question. For a scene S, a
viewpoint p was placed in the center of a sphere and defined viewpoint entropy I by:

I (S, p) = −
N f∑

i=0

Ai

At
log

Ai

At
(4)

Here, N f is the total number of visible faces, Ai is the projection of face i on the sphere,
At is the total area of a sphere, and A0 is the projection area of the background. Adding
background projection A0 enables normalization.

In this section, for ease of describing the entropy calculation, we assume the ROI encom-
passes the whole input image. Hence, we would not mention ROI separately; we would refer
to the ROI as the input image. In a scene, pixels corresponding to the same surface have
similar values when we disregard the high-frequency texture information. We consider those
pixels as a single group of pixels or a superpixel. Superpixels can be defined as similar-valued
pixel clusters that retain an object’s shape. In other words, a whole image is a collection of
tessellated superpixels. In Fig. 4b, each of those blobs is considered a superpixel. These
superpixels convey the geometric structural nature of the scene to a viewer and discard high-
frequency texture information. Our entropy formula is adopted from 4 by replacing objects’
faces areas with superpixels’ areas. If we consider an image to be a collection of superpixels
where all the information it conveys is enclosed inside the image, we can define an area-based
entropy Ha as from Equation 3 and 4:

Ha = −
N∑

i=0

p(Si ) log(p(Si )) = −
N∑

i=0

ASi

Aimage
log(

ASi

Aimage
) (5)

Fig. 4 An example of an input image and its color segmentation. Although after color segmentation, some
high-frequency texture details are lost, it still retains the object surfaces’ shape

123



Multimedia Tools and Applications

Where p(Si ) is the probability of finding a superpixel Si in the image. We can measure
p(Si )by comparing Si ’s areawith the area of the image.Here, the area of a superpixel or image
means howmanypixels it has. ASi is the area of a superpixel Si , Aimage is the area of the image.
Since, the whole image is a collection of N number of superpixels, Aimage = ∑N

i=0 ASi . The
flow diagram (Fig. 5) shows the specific steps that are taken for view evaluation.

In a natural scene, extracted superpixels can vary in size and shape. For the high-frequency
components removal (A) wemainly focused on the geometric features, e.g., edges, shapes, or
contours of objects in the scene. Since the viewer has to recognize and track the objects used
for training, we assume that due tomotion blur, the shape of the objects ismore important than
high-frequency textures. We filter out the high-frequency components of the input images
based on the assumptions for DBT that scene geometrical features and color information are
prominent ormost visible, and texture information is not prominent during action recognition.

A median filter is used to blur the input image to filter out the high-frequency components
(A). After performing this low-pass filtering on the image, a color-based segmentation (B) is
performed by clustering the pixels.We perform color-based segmentation because it assumes
similarly colored pixels correspond to the same clusters. It thus conserves the shape of
different surfaces in the image compared to other techniques, e.g., semantic segmentation.
As low-pass filtering is done prior to segmentation, the output is a posterized representation
of the input image. In Fig. 4b, segmented parts are shown by centroid colors for the input
image (Fig. 4a). These segments are used as superpixels. K-means clustering is used for
color segmentation. To save execution time, a fixed number of clusters is used. Depending
on the scene and required accuracy, 6-15 number of clusters are selected. By definition, in a
superpixel, all of the pixels have the same color. To calculate the probability of a superpixel
(C), the number of pixels inside the superpixel is taken as its area and divided by the number
of the overall pixels in an image. At this point, every superpixel in our segmented image
is assumed to be unique in shape. Hence, they are considered separate symbols. Using the
Formula 5, the primary entropy measure Ha of the image is calculated (D).

Next, the entropy for similarity measures among superpixels is updated. If there are repeti-
tive, mirrored, or similar components in an image, its primary entropy, Ha should be reduced.
It should be done because redundant components inside the image reduce the information
content or complexity. Hence, the image entropy should be reduced. It should be noted that
only similarities on the same scale or size level are relevant. If two regions in an image
have a similar shape but differ in size they are considered dissimilar. For faster computing,
grayscaling, and downsampling the input image is done prior to similarity extraction (E). As
we look for similarities of shapes at equal sizes, only intensity levels are important. Hence,
a grayscaled image is used for this step. Similarities can be present at different scales. Since
there is no prior information about the image contents, it is needed to determine the similarity

Input image

B - Color
segmentation

A - High frequecy
components removal

C - Probability of
each super-pixels

Final entropy
measure

E - Grayscaling and
downsampling 

F - Entropy values of
incremental windowed

convolution

G - Uniqueness
multiplier based on

similarity

D - Primary entropy
measure

H - Penalize for
similarity

Fig. 5 Steps for incremental convolution-based uniqueness multiplier determination for entropy reduction
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measures in different scales. To make this operation faster, a very low resolution (e.g., the
highest image width or height is 20 pixels) downsampled image is used.

To find the degree of similarities an incremental windowed convolution is performed.
The low-resolution image is convolved with an incremental normalized averaging kernel
(F). When an averaging kernel or box-blur kernel is applied, it replaces each pixel with
the average value of neighboring pixels. If an image has similar regions of the size of the
averaging kernel, these would produce similar values. Hence, an averaging kernel of size
k is used to convolve over a 2D image. If this image has similar regions of width k, it
would produce similarly valued intensity peaks in the convolution output. As a result, a
classical entropy measure, as in Equation 3 of this 2D convolved output will produce less
entropy compared to the image before convolution. We use an incremental kernel of size,

k = 3, 5, ..., �max(widthimage,heightimage)

2 �. We use odd kernel size because the input grayscale
values are spread within an equal-length span around the output pixel. The size of the kernel
starts from a minimum possible length of 3 until the maximum possible length which is half
of its shorter side length.

K = 1

k2

⎡

⎢
⎣

1 ... 1
...

. . .
...

1 ... 1

⎤

⎥
⎦

kxk

(6)

Equation 6, shows the formula for box kernel. For a low-resolution image of a maximum
side (width or height) of 20 pixels, k = 3, 5, 7, 9. Using the classical equation of entropy as
in Equation 3, we calculate the entropy profile for the convolution output, Hk . In Fig. 6, each
row shows the convolution output for the incremental kernel sizes of 3, 5, 7, and 9 for some
test images. If we observe carefully, for ’machine’s collection’, in the third row, Hk=9 is the
lowest entropy. This happens because at k = 9 size, the low-resolution image has similarity
present in it.

If multiple kernel sizes are used, the least entropy of the convolved output will be found
when the kernel size is equal to the similarity size. Likewise, the most entropy will be found
when the kernel size fails to capture any similarity. Hence, we can use these two kernel sizes
to find the reduction factor by which the primary entropy Ha of the image should be reduced.

Fig. 6 Shows the convoluted output with incremental kernel size, k = 3, 5, 7, 9 on low resolution grayscaled
image. From the convolutions, the uniqueness multiplier is determined. For better depiction, the convolutions
have been shown after histogram equalization
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We call it the uniqueness multiplier of the image. We define the uniqueness multiplier as the
ratio of the maximum similarity kernel size to the minimum similarity kernel size (G). The
uniqueness multiplier (d, where 0 ≤ d ≤ 1) is expressed by Equation 7.

d = min(Hk)

max(Hk)
(7)

In Fig. 6, we found that the motor flange has a maximum uniqueness multiplier compared
to the diesel engine and machine’s collection. The motor flange is circular in shape, i.e., it is
the most similar region. As a result, it has the maximum uniqueness multiplier value.

By multiplying the primary entropy Ha with this uniqueness multiplier the final entropy
value (HROI ) is determined (H). It is shown in Equation 8.

HROI = Ha ∗ d (8)

Finally, until now, we have described how to determine the entropy of an image. But in
the view recommendation, the entropy of the whole image is not of interest, but rather the
entropy of the ROI. Hence, we denote the image entropy value as HROI . However, the ROI
is a subset of the view. Hence, to determine the entropy of the view, we want to include a
scaling factor for the entropy. A scaling factor is included by multiplying the entropy of the
ROI with the ratio of the ROI area to the whole view area, shown in Equation 9.

Hview = HROI ∗ AROI

Aview
(9)

In Equation 9, AROI is area of ROI and Aview is area of the camera view, AROI ≤ Aview.

6 User study

In this section, we report on a crowd-sourced user study to compare manually selected views
with the ones from our automated selection method and get insights on the metrics that
contribute to the best view selection.

6.1 Goals

We compared the user-selected best view choice with the automated recommendation view
by our system. In our simulation environment, there were eight views from eight cameras. In
a first pass, the results (rank list from ratings) were compared with the best views selected by
our system to see to what extent they match. Furthermore, to address the definition of what
constitutes a "best view" study participants were asked to rate our initial set of metrics as well
as provide indications for further aspects that can be analyzed. Based on these statements,
the weights of our metrics were adjusted, and an additional comparison was performed to
address potential performance improvements.

6.2 Procedure and design

The user study was designed as an online experiment in which users watched eight video
streams and selected the best view at predefined intervals. Participants only rated action views,
i.e., the views that show the trainer’s actions in the scene. Based on the scenario described in
Section 5.1, we produced a video in which all eight generated, equal-sized views would be
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seen at once (similar to the top two rows in Fig. 1). Each view was sized equally in the video
which had a resolution of 1920x1080 (Full HD). We produced a single tiled view of all eight
camera views, instead of recording eight views, to avoid potential synchronization issues. The
placement of the cameras was fine-tuned in a pilot study with 4 participants who critically
observed the camera footage. This placement was not bound by the metrics we selected as
part of our recommendation system: users were free to make suggestions based on any kind
of criteria. Audio was included in the video, with aural instructions of the different steps in
the montage scenario. Participants selected the best view every five seconds, resulting in 59
measurement points in our video (4:55 minutes).

The best view selection was a three-step process: users first selected the best view from
the eight camera views, then rated their confidence in the selection (7-point Likert scale,
7 being the best), followed finally by an initial assessment of the quality of each camera
view, again on a 7-Point Likert scale. The video would only continue after all cameras were
rated. We did not instruct the user to base their judgment of the best view on any specific
criteria: instructions were provided prior to the experiment that only included the general goal
of selecting the best view on the basis of best understanding the instruction by the trainer.
As a result, users selected the best view that depicted the trainer’s actions optimally. After
finishing all 59 trials, a final questionnaire appeared. This questionnaire included demography
questions and a set of specific questions about best view selection. The view selection-related
questions were divided into several main categories: overall scene geometry visibility and
scene illumination, visibility of objects and body parts relevant to the instructions, visibility of
predetermined regions, and the visibility of specific actions. These categories are in line with
how we determine the best view using our metrics. To allow users to suggest further metrics,
we included open questions at the end that specifically asked for other aspects that users felt
contributed to their selection of the best view. The online experiment was performed on a
website hosted by one of the authors. We used Prolific as a crowd-sourcing host service to
source the experiment to participants worldwide. On average, the experiment took around 37
minutes to finish. Participants were awarded around 5 Euros for their participation, calculated
along with best-practice guidelines provided by Prolific.

6.3 Results

A total of 43 participants (age 18-40, 20 female, 22 male, 1 non-binary) took part in the study.
We analyzed the aggregated data from all of the participants by summarizing and comparing
it with the recommender system-generated view selection. A total of 20,296 ratings were
fed in the analysis, produced by the 43 participants at 59 intervals for 8 cameras. All of the
participants had also mentioned a best view camera ID for all timesteps, thus generating
additional 2537 datapoints, which were also used in the data analysis. The dataset includes
the best view camera ID, and view rating for all of the camera IDs collected every 5 seconds.
We have summarized the data from all participants into a single summary dataset. The
summary of best view camera IDs was selected by taking the most frequently selected one at
each timestep. The summary of all the individual camera view ratings at each timestep was
created by taking the median of those ratings. This was done to avoid outliers in the measure
of central tendency. From our automated view recommender system, we also have the best
view selection and scores for all the camera views. These scores from Equation 1 can be
interpreted as ratings/relevance of the camera views at each timestep. We call them view-
recommender ratings. To evaluate the view-recommender system, wewould apply different
techniques to compare and correlate user ratings with view-recommender ratings. However,
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in Equation 1, initially the coefficients (αi ) are unknown. Hence, initially, we assume all the
αi values are 1. Based on the insights gained from the questionnaire, we updated these values
subsequently.

The summary user ratings are comparedwith view-recommender ratings for each timestep.
We do so by using Normalized Discounted Cumulative Gain (NDCG). NDCG is a measure
of ranking quality. NDCG is the ratio of the Discounted Cumulative Gain (DCG) [51, 79] of
recommended order to the DCG of ideal order (I DCG). The following formula illustrates
this principle:

NDCGp = DCGp

I DCGp
= (

p∑

i=0

reli
log2 (i + 1)

)/(

|REL p |∑

i=1

2reli

log2 (i + 1)
) (10)

In Equation 10, NDCGp is the normalized DCG accumulated at rank position p, REL p

is an ordered list of items according to their monotonically decreasing relevance until rank
position p, from which Ideal DCG (I DCGp) is measured. In our experiment, we consider
NDCG for all of the eight camera ranking at any timestep, i.e., p = 8. If we consider
data from each of the timestep as a sample, then the overall NDCG score is M=0.906,
med=0.92, SD=0.07,where 0 ≤ NDCG ≤ 1.This highNDCGscore shows that evenwith no
adjustments of the coefficients (αi ) values in Equation 1, the view recommendation performs
very well as it reaches 90.6% effectiveness of the best possible ranking. We are unaware
of any other work using NDCG for describing the performance of view recommendation,
hence, we could not compare it against a baseline. In Fig. 7, the NDCG score for the duration
of the whole experiment is shown. It shows that the NDCG score is mostly high with some
outliers in the last quarter of the simulation video. We found that the topmost ranked camera
ID by the view-recommender matches the topmost ranked camera ID from the summary of
user rating 42.4%, the 2nd most ranked 11.9%, and the 3rd most ranked 10.2% times.

We show the percent of different camera views chosen as the best view and how the
view-recommender performs before and after optimization (of coefficients in Equation 1)
compared to the summary or representative ratings by the users in Fig. 8. In that figure,
we show all of the user’s ranked views, and the topmost view-recommender ranked camera

Fig. 7 Optimization of weights of metrics shows a slight improvement in NDCG values. NDCG values for all
of the timesteps, when αi = 1 and with optimization of the alpha values (see Section 6.4)
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Fig. 8 View choice percent made by participants (n=43)

IDs over time. We also show a custom recommendation score over the video timeline. This
custom recommendation scorewas given 7.0 if the topmost rankedview-recommender ranked
camera ID matched the topmost, 6.0 if it matched 2nd ranked, 5.0 if it matched 3rd ranked
in summary user ranking, and so on. Before optimization, described in Section 6.4, this
recommendation score was found to be: M=5.03, med=6.0, SD=2.16 (see 4th sub-figure in
Fig. 8), and with optimization it improves: M=5.11, med=6.0, SD=2.09 (see 6th sub-figure in
Fig. 8). The topmost sub-figure in Fig. 8, shows the percent of different camera views chosen
as the best view at every timestep. Although there has been a general consensus about the best
view in the first 1.3 minutes of the videos, the users have chosen different views in the middle
part of the training, and in the last 1.4 minutes, there was basically a bi-modal distribution
for the view choice. The summary user rank does not capture this, because it is obtained
from the view rating of individual camera views. From the recommendation score in Fig. 8,
it is clear the view-recommender has worked well when there was a general consensus about
the best view among the participants. It also performed well when basically two views were
almost equally prominent. However, when the participants could not reach a consensus about
the best view, the recommendation score was worse. From those recommendation scores, we
can say that the recommended view is almost always one of the first three best views rated
by the users (Fig. 8).

We present all the survey questions regarding view selection choices in Table 1. In Section
6.4, we choose a subset of the questions to determine the weights of the metrics for view
recommendation. To better understand the contribution of each of our metrics for view
selection, we calculated the NDCG scores with a single coefficient equal to 1 and all others
to zero, i.e., αi = 1, α j = 0, where i = {0, ..., 5}, j = {0, .., 5}/i in Equation 1. This way
we can analyze how each of the metrics contributes to the best view selection. Table 2 shows
that the trainer’s hands visibility and information measure of ROI contributes most to the
view recommendation, whereas predetermined regions in the trainer’s presence contribute
least. The metrics are not independent of each other, e.g., with the visibility of the trainer’s
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body pose, the probability of the visibility of the face is high. For this reason, in Table 2 we
see that the NDCG scores do not drastically change even if only one metric is considered.

As a next step, we used the summary ranked list of user view and view-recommender
ranked list at each timestep and performed Kendall’s τ and Spearman’s ρ correlation tests
at each of the intervals to find if both of these ranked lists are correlated. The correlation is
found frequently (p-value < 0.05) in the first quarter of the experiment, while for the rest of
the time it is rare (Kendall’s τ : M=0.311, SD=0.286), Spearman’s ρ: M=0.413, SD=0.359)).
Since the camera view IDs are constants rather than natural numbers, the correlation tests
did not perform very well.

Because the camera IDs are constants, the best view time series is a sequence of constants.
Hence, we decided to use edit distance [95] to distinguish between different best view series.
The summary user-selected best view series is a sequence where each of the camera IDs
at a timestep is the most frequently chosen one. Similarly, we also extracted a sequence
from the best view from the view-recommender output. Between these two sequences, out
of 59 timesteps, 26 times camera IDs matched. To compare these two sequences, we use
the Demerau-Levenshtein distance[46]. This distance is measured over a small window of 2
to 5 timestep (the equivalent of 10 to 25 seconds) because there might be a temporal delay
before the two sequences show similar values. We found a Demerau-Levenshtein distance
of M=0.587, SD=0.064. This distance is representative of the outcome that 58.7% of the
time the best view-recommendation did not match the summary best view by users. This
improves a little when we used windows of different sizes with interval numbers of 2 to
5 to plot the Demerau-Levenshtein distance to compensate for the temporal noise in view
selection.

6.4 Implementation adjustment and results

Until now, all the valueswere calculatedwith equalweight or coefficients (αi = 1) inEquation
1. However, it is important to know the optimal values of these weights (αi ) that maximize
the view recommendation performance, i.e., maximize the NDCG score. This section reports
on various approaches for optimization of the NDCG score, shown in Table 4. As a first step,
we grouped a subset of the questions, mentioned in Table 1, into categories that are aligned
with our determined metrics for view recommendation. We normalized the responses on a
scale of 0 to 1 and average them to find the coefficients for Equation 1, shown in Table 3. This
table shows there are six main factors that contribute to view selection. All of the sub-factor
values are from the questionnaire with the responses normalized. First, the mean of different
factors from Table 3 was used in Equation 1 to optimize the view recommendation score.

After plugging in the value of the factors, an improved NDCG score was achieved:
M=0.912, med=0.923, SD=0.063 (the initial NDCG score was (0.906)). A slight improve-
ment in the recommendation score was seen: M=5.12, med=6, SD=2.09 (see Fig. 8). We
also repeated the correlation tests. With the optimized view recommendation, the cor-
relation test results are Kendall’s τ : M=0.383, med=0.429, SD=0.293), Spearman’s ρ:
M=0.479, med=0.5, SD=0.347). The correlations show an improvement over the previ-
ous analysis. The Demerau-Levenshtein distance with the optimized view recommendation
is M=0.59, SD=0.048, showing again a slight improvement over the previous distance.
Interestingly, note that from all optimizations, this simple approach actually was the most
successful.

As a next step, to find the coefficients of the metrics in Equation 1, a confirmatory factor
analysis (CFA) was used for the information measure of ROI, the trainer’s body pose, and
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Table 1 Mean and standard deviation of all the survey questions

Questions Responses (1-7)
Mean (M) Std (SD)

I have selected the best view by

... understanding of scene geometry 5.12 1.59

... illumination of operation area 4.74 1.59

... an unobtrusive view of the operation area 6.21 1.32

I have selected the best view by the visibility of

... the trainer’s hands 5.58 1.35

... the trainer’s face 3.63 1.77

... the trainer’s upper-body 4.28 1.67

... the trainer’s full-body 3.37 1.75

... the tools that were used when an action was performed 6.47 0.63

... the trainer’s actions 6.63 0.58

... the trainer’s upper-body movement while performing an action 5.09 1.32

... the trainer’s full-body movement in the scene 4.26 1.43

I prefer to have in my view,

... other objects that are relevant to the instruction given 2.07 2.00

or,

... other objects that the instructor is operating on 4.81 2.25

I have rated low the views where I could not see

... the hands performing some action 6.35 1.15

... the face when instruction was given 3.47 1.64

... the table that the training was performed upon 5.12 1.89

... the tool that was used for training 6.28 1.32

I could follow the instructions/explanations given by the trainer 5.67 1.34

I have selected the best view by

... better understanding of the trainer’s actions 6.35 0.87

... the anticipation of the movement of the scene elements (trainer,

objects, etc.) in the next several frames 5.33 1.41

When switching between viewpoints

... camera viewpoint differences should be kept minimum 4.86 1.60

... trainer should be included in the consecutive views 5.00 1.29

... operation area should be included in the consecutive views 5.35 1.21

... both the trainer and operation area should be included in

the consecutive views 5.14 1.39

... there should be minimum or no movement in the action area

i.e., it should only switch after the current action is finished 5.00 1.79

Note: All of the responses are on a Likert scale where 1 is minimum and 7 is maximum
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Table 2 Contribution of each metric separately for view recommendation interpreted in terms of NDCG score

Condition Contributing metric NDCG
M Med. SD

α0 = 1, αi = 0, i �= 0 Information measure of ROI 0.908 0.914 0.068

α1 = 1, αi = 0, i �= 1 Trainer’s body pose 0.838 0.838 0.066

α2 = 1, αi = 0, i �= 2 Face 0.884 0.914 0.075

α3 = 1, αi = 0, i �= 3 Face with voice 0.853 0.848 0.065

α4 = 1, αi = 0, i �= 4 Hands visibility 0.910 0.939 0.079

α5 = 1, αi = 0, i �= 5 Predetermined ROIs with trainer 0.824 0.830, 0.073

Note: M: mean, Med.: median, SD: standard deviation

Table 3 Normalized responses from the questionnaire are averaged to be used in Equation 1

Metrics Related questions Values Mean

Scene geometry 0.69

Information measure of ROI Scene illumination 0.62 0.73

Unobtrusive view 0.87

View of upper body 0.55

Trainer’s body pose View of full body 0.40 0.54

View of upper body movement 0.68

View of full body movement 0.54

Face Face visibility 0.43 0.43

Face with voice Face view when instruction given 0.41 0.41

Trainer’s hands view 0.76

Tools in action view 0.91

Hands Trainer’s action view 0.94 0.84

Hands performing actions 0.89

Tools view 0.88

Understanding of actions 0.89

Operated objects view 0.64

Table view 0.69

Predetermined ROIs with trainer Relevant objects view 0.17 0.43

hands. Since some of themetrics did not have at least three items, i.e., face, facewith voice and
predetermined ROIs with the trainer, a factor model could not be used for those because they
would be under-determined. The average values for those factors found in Table 3 were used.
For the other metrics: information measure of ROI, the trainer’s body pose, and hands, the
factor loadings from the CFA model were averaged. We found that NDCG score of M=0.91,
med=0.92, SD=0.061; Demerau-Levenshtein distance of M=0.604, SD=0.055; Correlation
test results: Kendall’s τ M=0.256, med=0.357, SD=0.293, Spearman’s ρ M=0.462, med=0.5,
SD=0.347.Until now,wehaveusedpsychometric analysis tofindout the values of coefficients
in Equation 1. We wanted to perform numerical analysis to find out αi that optimize view
recommendation in terms of NDCG score. In other words, the optimized weights should
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Table 4 Summary plot for view evaluation coefficients and performance metrics

Method α0 α1 α2 α3 α4 α5 NDCG τ ρ DL dist.

Equal weight 1.00 1.00 1.00 1.00 1.00 1.00 0.906 0.31 0.42 0.59

Simple average 1.00 0.75 0.60 0.57 1.16 0.60 0.912 0.38 0.48 0.59

Factor analysis 1.00 0.95 0.66 0.62 0.58 0.65 0.910 0.26 0.46 0.60

Function approx. 1.00 0.43 0.28 1.28 0.13 0.65 0.908 0.31 0.41 0.61

Note: τ , ρ are correlation coefficients, the former one is Kendall’s τ and the later one is Spearman’s ρ

reflect users’ choices as closely as possible.Using theCFAmodelwe found the approximately
same NDCG score as in the simple average method reported in Table 4.

Since we have a summary dataset from users’ selection, it can be compared with view
selection with randomized coefficient (αi ) values in Equation 1 to create a set of (αi , NDCG)
pairs. This randomized αi with resulting NDCG values can be used as input-output pairs to
model the goodness of view selection. Because it is a highly non-linear process, we opted to
use a neural network for this purpose. In Fig. 9, the basic mechanism is shown. The αi values
are given as input to both the view recommender and a neural network. The αi values are used
to calculate NDCG values by comparing view recommendations with people’s ratings which
is again compared with the neural network to produce an error signal. This error signal is used
to update the neural network’s weights. It was a fully connected two-layered network with 20
rectified linear unit (ReLu) activated neurons on each layer. After optimizing it with Adam
[128] and a learning rate of 0.001, we obtained a validation error of 0.39. Our dataset was
small with only 30 samples (we took 30 random alpha values), which was further divided into
an 80% training set and a 20% test set. A better approximation could likely be achieved with
a larger training set. Next, we performed a search by performing BFGS [80] optimization
in the alpha space that maximizes the NDCG score. We found the following values of αi

respectively: 0.93, 0.4, 0.26, 1.19, 0.12, 0.6. For these αi , we found that NDCG score of
M=0.908, med=0.913, SD=0.06; Demerau-Levenshtein distance of M=0.605, SD=0.059;
Correlation test results:Kendall’s τ M=0.305,med=0.286, SD=0.29, Spearman’sρ M=0.414,
med=0.476, SD=0.346. We were not able to approximate the NDCG score given the alpha
values as the global optimum was not reached, as for most views users did not agree on a

Fig. 9 A neural network has been used to model the goodness of view selection, which optimizes the NDCG
value of view recommendation with user ratings
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single best view (seen in Fig. 8). The performance of this neural network-based approach
was comparable to the simple average method reported in Table 4.

To visualize the performance of all the reported approaches, Table 4 was included. It
summarizes the different methods for determining the coefficients, i.e., αi in view evaluation
Equation 1. Since Equation 1 mainly measures a weighted average, we can multiply the αi

in such a way that their ratio holds. In this case, for a specific method, we have divided each
of the αi by the α0, i.e., the coefficient related to information measure. Other performance
metrics are also mentioned for comparison. In Table 4, we see that the simple average method
has performed best, and ’Hands’ was the most important metric.

As a final remark, we also asked the participants in the post-experiment questionnaire how
often the view should be switched. Of all the participants, 46% voted for every 10 seconds,
23.3% for 5 seconds, 16.3% for 30 seconds, 11.6% for 3 seconds, and only 2.3% for every
minute. However, our view recommender used a moving window approach, described in
Section 5.2. Currently, it selects the view which has been selected the maximum number of
times in the last 2 seconds. Although most people think that the view should switch every 10
seconds, sometimes the time between consecutive actions by the trainer are shorter, hence,
in this case, it would probably be better to switch the view quicker.

6.5 Comparison with other implementations

Ourwork represents the first attempt to integrate viewentropywith instructional design guide-
lines to determine a parameterized score for view ranking in DBT. Furthermore, we are not
aware of any other studies utilizing NDCG to assess the performance of view recommenda-
tion. As a result, it was not feasible to compare our approach against a view recommendation
approach for DBT. Moreover, a comparative analysis with viewpoint entropy [37] is difficult
because viewpoint entropy is developed for 3D image-based rendering and it does not say
how to extend it to 2D images. Although later texture handling was introduced for viewpoint
entropy [126], it still requires a 3D model of the scene and does not work with 2D images.
It should be mentioned that viewpoint entropy does not consider similarity, which is incor-
porated into our approach. Moreover, the viewpoint entropy approaches have not considered
human presence, which we do for DBT scenarios. All these reasons make it difficult to com-
pare our approach with viewpoint entropy. We compared our entropy measure with classical
entropy implementation [109]. Results of this comparison are shown in Table 5.

The first condition in Table 5 represents the case where the full frame was considered
as the region of interest (ROI), and only entropy was taken into account, disregarding other
parameters. This is the usual condition when classical entropy is used for view selection.
Out of 59 view ranking trials, 53 times the view recommender’s output did not match the

Table 5 Comparison with classical entropy implementation

Condition Entropy NDCG τ ρ DL dist.

(1) ROI=full, α0 = 1, αi = 0, i �= 0 Classical 0.923 0.47 0.59 0.84

(2) Opt. ROI, α0 = 1, αi = 0, i �= 0 Classical 0.914 0.46 0.57 0.57

(3) Opt. ROI, Opt. αi Classical 0.924 0.44 0.55 0.55

(4) Opt. ROI, α0 = 1, αi = 0, i �= 0 Ours 0.906 0.31 0.42 0.59

(5) Opt. ROI, Opt. αi Ours 0.912 0.38 0.48 0.59

Note: Opt. means Optimal
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users’ choice. The first rank was a match with users’ rank 13.56 times, the second rank 49.15
times, and the third rank 23.72 times. However, we found high NDCG for this condition
despite the big DL distance. It was mainly because the second rank was matched quite a high
number of times. In the second condition, we have introduced the optimal ROI described in
our approach (see Section 5.4), as opposed to the first condition. As a result, the DL distance
was reduced. Next, in the third condition, we have used the optimal αi found by the simple
average method in Table 4, which yielded the maximumNDCG scores. In the fourth and fifth
conditions, we have put the results from our approach with only entropy and optimal entropy
respectively. Upon comparison, it was found that the combination of classical entropy with
our instructional design parameters outperformed our method (Condition 3). However, it is
important to note that this approach does not consider the spatial entropy and similarity of
the information content.

Fig. 10 An example of view-recommendation. The recommended view is shown below the camera views in
a bigger window. Courtesy of Opdenhoff Technologie GmbH
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6.6 Real-world scenario

Next to our simulation environment, we have also applied our algorithm to real-world videos.
In Fig. 10, we show a snapshot of a real-world scenario. It shows 9 views from different
cameras placed around a cabinet being installed. The best view is shown in the lower (large)
image. Figure 11 depicts a set of views at different timesteps with the recommended view
highlighted in a red rectangular boundary. The views in each of the rows are from same the
timestep, often showcasing informative views. It should be mentioned that in the real-world
scenario, we did not define any predetermined region. Hence, the multiplying coefficient
with ppRO Is , i.e., α5 in Equation 1 was zero. The view recommender still worked well.

7 Conclusion

Hereafter, we discuss the results of our approach and study. Afterward, we reflect upon our
limitations and potential future work.

7.1 Contributions and reflection

Viewpoint entropy can be used well for evaluating views from 2D images in real-time.
In previous work, best view selection was mostly concentrated on cases where the 3D scene
or object geometry was known [15]. Some earlier work has dealt with better visibility of
geometrical features [27, 55], the least amount of occlusion [103], and better illumination
[66, 104]. Later on, information-theoretic approaches, e.g., viewpoint entropy [37] or KL
distance based [122] were introduced. They gave a way of measuring the goodness of a
view. Although viewpoint entropy gives a way to compare views, previous works [37, 94]
did not address how to apply it to real-world images where the scene geometry is unknown.
We took inspiration from the viewpoint entropy [37] and extended it for real-world images.
Our results show that it is useful as a universal way of comparing views, since, we can
compare information content in two or more views regardless of their projection types, e.g.,
orthographic or perspective. Unlike earlier approaches [127, 129, 134], for our approach we
do not need the 3D models of the objects in a camera view, required to find the projections

Fig. 11 Several examples of recommended views are highlighted in red. Courtesy of Opdenhoff Technologie
GmbH
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of objects’ faces. To circumvent this, we have introduced the use of posterization. We used
color segmentation to find surface projections of the scene objects onto the view. Although
we lose high-frequency details, e.g., texture information for doing this, it gives us a way
to incorporate spatial relationship of pixels in the image, which is missing in the classical
entropy definition [109]. It should bementioned thatwe can control howmanyhigh-frequency
components would be considered by increasing the cluster numbers for segmentation. We
also incorporated a similarity measure in entropy. We penalized the entropy of the view with
local and global similarities. Previous work did not focus on penalizing the view entropy
measure for similarity. We found empirical evidence that it can compensate for underlying
local or global similarities in a view. However, a rigorous analytical analysis should occur
in future work to more closely elaborate on this. Finally, our approach is also fast and
can be implemented for real-time view evaluation performance. Regarding runtime, color
segmentation is the most expensive step. Since we are using k-means for color segmentation,
real-time view evaluation becomes achievable.

View management in a DBT scenario requires useful metrics for analysis. Some
research and commercial systems are available for live lecture capturing [2, 5, 112], instruc-
tional design guidelines are available for lecture videos [73, 84, 85, 96] and DBT [116].
However, we are unaware of previous work on view recommendations for real-time ’how-
to-do’ demonstration-based tutorial videos with real-world physical objects. These videos
not only need to show the geometrical features and textures of the relevant scene objects
clearly but also require to show the trainer performing actions on them. Although some view
recommendation studies compared first person and over-the-shoulder view in DBT scenarios
[32, 48, 74], these studies are limited by only considering two views. In our work, we targeted
to overcome this gap by formulating suitable metrics covering scene geometric features, pre-
determined regions, trainer’s face, hands, and body visibility with emphasis on face during
vocal instructions for multi-view systems that offer a multitude of cameras. We formulated
a view recommendation score, which can be used to compare view goodness. Using all of
those metrics for the view selection scenario, we found out that our approach has a high
NDCG score (0.912), which mimics viewers’ choice well overall.

Image sub-metrics are not equally important, weighting shows slightly improved
results. The score Equation 1 uses a weighted average of the metrics from a view. We have
tested how these factors contribute to view visibility score when considered in isolation (see
in Table 2). However, not all of these metrics might contribute equally to view selection. We
experimented to find out the metrics’ relative importance and also how those individually
affect the views recommendation. It is not surprising to find that the viewers mostly decided
the view selection solely based on the visibility of hands (NDCG=0.910, Table 2), since hands
are directly contributing to actions by the trainer. Hands are also vital for communication
using gestures [6, 30, 36, 106]. Hence, the visibility of the trainer’s hands performing actions
is of utmost importance. In our system, the ROI covers the trainer’s pose, the image regions
of scene motion, and predetermined ROIs. The trainer’s pose conveys information through
gestures and demonstration of actions. Scene motion captures the information change in the
camera view which enables viewers to find out what is going on in the training scene. The
predetermined ROI includes any region which the trainer had determined prior to the train-
ing. Hence, the entropy solely from ROI (NDCG=0.908, Table 2) basically measures how
much information is within it. The face visibility of the trainer is also important in instruc-
tional videos [69, 72, 119, 120] aligning with the trainer’s face visibility score in our study
(NDCG=0.884, Table 2). Accordingly, the face is incorporated in the communication view
during vocal instructions. The trainer’s face also shows eye gaze during instruction, which is
important during training [88]. The face visibility during instructions (NDCG=0.853, Table
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2) also had a moderate score. The trainer’s body visibility can influence the learning effect
[87] and had a slightly lower score (NDCG=0.838, Table 2). The visibility of predetermined
regions also had a good score (NDCG=0.824, Table 2). However, these regions only matter
when the trainer is also visible in the camera view. When all of these metrics are assumed to
have equal importance, the NDCG score was found to be 0.906 or when optimized (in Table
3) 0.912, which reflects that the determined objective metrics already reflect people’s choice.

7.2 Limitations and future work

Our developed view recommender is able to mimic people’s choices well. We have improved
and extended the idea of viewpoint entropy to measure information content in a view. How-
ever, some limitations can be noted. First, a comparative analysis could not be performed
between our entropy implementation and viewpoint entropy [37] (explained in Section 6.5).
However, we have compared our entropy measure with classical entropy implementation
[109] (see in Section 6.5). Secondly, the posterization by color segmentation of the input
streams can be a weakness under certain conditions. We have used k-means with a predeter-
mined number of clusters, which potentially can be an issue if the input image has a lower
number of intensity clusters. In this case, our method can overestimate or underestimate the
number of cluster centers, which in turn can be detrimental to the posterization process. The
number of clusters has to be decided based on the scene. To improve upon this, an adaptive
clustering method (e.g., k-means++ [71]) can be used without extending execution time so
that the camera views could be segmented properly. Furthermore, we have considered ges-
tures for view selection, which has translated into the inclusion of the trainer’s limb visibility
in the objective metrics. However, in the determined metrics, we did not consider a pointing
gesture specifically, which is often highly relevant for instructions. We intend to consider the
trainer’s pointing gestures, and eye gaze in future iterations for better performance. Another
factor we did not directly consider that may affect learning is attention. In the future, it would
be interesting to extend the analysis by using eye tracking and addressing which camera view,
body parts, and activities the user focuses on, and for how long. With our current analysis,
this could not be addressed. In due course, further performance metrics could be introduced.
For example, it will be of interest to correlate learning progress, cognitive load [93], and
situation awareness measures [28] to more deeply understand the underlying perceptual
and cognitive mechanisms during a training session. With respect to instructors, different
training scenarios may introduce new challenges, in particular when multiple instructors –
each with a different role – will require switching between instructors. Finally, although
NDCG scores are high in our online study, the correlation of best-selected camera IDs with
the chosen camera IDs by the study participants has some fluctuations (discussed in Sec-
tion 6.3). A probable cause is the smoothing out of high-frequency camera switching for
maintaining spatiotemporal coherency. To circumvent this issue we have also tried out the
Demerau-Levenshtein distance between these two camera ID streams, which is also found to
be high. To compensate for the delay of view switching, we also tried this distance measure
with a 2-5 instance length of window size. However, none of this yielded closer distance
measures.

In conclusion, in this paper, we reported on what objective metrics could be introduced for
view selection in a DBT scenario. We found that information content in the ROI, comprising
of scene motion, trainer’s body region, and predetermined regions, is one of those metrics.
To measure this information content or entropy, we have adapted and improved the idea of
viewpoint entropy. Our entropy implementation improves over the classical and viewpoint
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entropy by extending it from3Dmodels to 2D images and incorporates similarity penalization
or uniqueness consideration. In DBT scenarios, our study indicated our method already
achieved high accuracy in selecting the best views. Further adjustments can likely achieve
even higher matching, based on the specific training scenario requirements. The degree of
posterization via clustering could be adjusted for deciding the level of detail to be considered.
We do not explicitly consider occlusion. If the amount of occlusion is known that could be
added as a penalty factor. Having more well-defined predetermined regions could improve
the determination of regions of interest. Currently, our approach only considers the face view
of the trainer, which could be improved if a directly communicating face view is considered.
Finally, modeling the view recommendation with more participants would reduce the noise
which could lead to better performance.
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