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ABSTRACT
The degradation of sewer pipes poses significant economical, environmental and
health concerns. The maintenance of such assets requires structured plans to perform
inspections, which are more efficient when structural and environmental features are
considered along with the results of previous inspection reports. The development of
such plans requires degradation models that can be based on statistical and machine
learning methods. This work proposes a methodology to assess their suitability to
plan inspections considering three dimensions: accuracy metrics, ability to produce
long-term degradation curves and explainability. Results suggest that although en-
semble models yield the highest accuracy, they are unable to infer the long-term
degradation of the pipes, whereas the Logistic Regression offers a slightly less ac-
curate model that is able to produce consistent degradation curves with a high
explainability. A use case is presented to demonstrate this methodology and the
efficiency of model-based planning compared to the current inspection plan.
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1. Introduction

1.1. Problem statement

Physical assets in wastewater systems suffer from degradation over time, which trans-
lates into a constant loss from a financial and operational perspective. This deterio-
ration can lead to damages that have health and environmental impacts due to exfil-
trations that degrade the groundwater quality (Bishop et al. 1998; Wolf et al. 2004),
sewer blockages that can lead to overflows (Arthur et al. 2009; Rathnayake and Faisal
Anwar 2019; Owolabi et al. 2022), as well as interactions with other infrastructures
such as roads (Kuliczkowska 2016; Dong et al. 2020), among others.

A key component to prevent such impacts is an efficient operation and mainte-
nance of sewer networks, which can be achieved with the definition of appropriate
inspection strategies. Two main approaches to maintenance can be considered: reac-
tive and proactive. Reactive techniques are based on intervening the assets only when
they stop working, whereas proactive ones use preventive and predictive tools that
anticipate the occurrence of failures (Swanson 2001). Sægrov et al. (1999) suggests
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that proactive techniques have greater “up-front” costs for the inspection, given the
need of developing planning strategies to guide the decision making process, while
greater “follow-up” costs are derived from reactive strategies because failures might
be already present in the assets when inspected. Therefore, a correct application and
performance of proactive maintenance strategies can be more cost-efficient than the
traditional reactive approach (Fenner 2000).

The development of proactive maintenance strategies can also be seen as a planning
system to prioritise what assets require to be inspected. Several authors have worked
with different methodologies to establish prioritisation strategies for sewer asset main-
tenance. Many sewer network operators develop proactive planning strategies based
on defining a fixed interval of years between subsequent inspections. In the case of
Germany, the recommendations for the definition of inspection plans are set by the
DIN EN 13508-1 (DIN-EN 2013), but they are further developed by the states. In the
case of the state of Nordrhein-Westfalen (Germany), the norm recommends to carry
out the first inspection when the pipe is installed, another one after 10 years, and the
rest of the inspections are performed every 15 years (Cremer et al. 2002).

This interval-based proactive or static planning can be restrictive, given that robust
or resilient pipes are being inspected when it is not strictly required, and critical or
frail pipes are subject to inspections when the failure has already occurred. Further-
more, static planning does not take into consideration specific information about the
structural or environmental features of the pipe, and it leaves out valuable information
that arises from CCTV of inspections. Therefore, a dynamic planning or prioritisation
system should be defined to take into account different factors that could cause the
pipe to fail, as well as the information obtained from previous inspections, which shall
be introduced as Dynamic Maintenance (DM). DM can be defined as a set of methods
that use a priori information such as the asset’s age or the result of previous inspec-
tions to update the maintenance plan (Bouvard et al. 2011). To develop a DM plan
for physical assets, a deterioration model is required.

1.2. Objectives

Many statistical and machine learning-based degradation models have been presented
over time, but most of them set their focus only on the accuracy metrics, without
evaluating the ability of their models to produce long-term predictions of the deterio-
ration of the assets. In order to develop DM plans, a long-term aging behaviour should
be inferred from the results of the degradation model. Few examples can be found of
degradation models where this property is assessed, but the results yield unrealistic
behaviours where failure is never reached by the pipes (Salman and Salem 2012), or the
long-term simulations do not show a monotonic deterioration of the assets (Caradot
et al. 2018; Xianfei et al. 2020a), which is an inherent property of civil infrastructure
systems where no maintenance is considered (Prakash et al. 2021).

Additionally, the interpretability of the models should be taken into consideration.
Although significant efforts have been made in recent years to elaborate methodologies
that would allow machine learning models to be interpretable and go beyond the black-
box paradigm (Ribeiro et al. 2016), the rationale behind the predictions cannot be
understood and the internal logic is not transparent to the user or analyst (Guidotti
et al. 2018; Carvalho et al. 2019). Given the lack of interpretability of black-box models,
authors such as Rudin (2019) argue in favor of using inherently interpretable models
in high-stakes decisions, so that the analyst or the user can have a transparent tool to
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decide whether to trust the predictions of the model or not.
Therefore, this work aims to provide a framework for the development of sewer

deterioration models that goes beyond fitness or accuracy metrics. Two additional
aspects should be considered to select a model for the planning of inspections, which
include the generation of consistent long-term simulations that represent the proba-
bility of failure of the pipes along time, as well as its ability to produce interpretable
and transparent results.

The main requirements that will be considered for the development of a satisfactory
model are that a) it should accurately predict the condition of sewer pipes given a set
of structural and environmental factors, b) the result of the simulation along time of
single pipes must show a monotonic behavior, provided that the condition of the pipes
cannot improve if no maintenance is considered, and c) the model should allow a certain
level of interpretability in order to be able to explain the predictions conditioned on the
inputs of the model. An additional contribution of this research paper is the inclusion
of the length of the upstream network for every sewer pipe, which can be considered
as a surrogate variable that accounts for the volume of water that flows through the
pipes.

The resulting model should be a useful tool for decision-makers and asset managers
to schedule new CCTV inspections based on physical and environmental attributes of
the sewer pipes and the result of previous inspection reports. Based on the probability
of failure of each pipe, the decision-makers can elaborate sewer inspection plans with
different levels of risk. To demonstrate the proposed methodology, a case study of a
German urban area in the state of Nordrhein-Westfalen is presented.

The rest of this work is structured as follows: Section 2 is a literature review that
covers the main contributions of previous works to the development of degradation
models, focusing on statistical and machine learning classification models. In Section
3 we present the data for the use case and the methodology used to define the most
suitable model. Section 4 covers the results of the comparison, as well as an example
of the possible use of the resulting model. Section 5 presents the conclusions of this
work.

2. Related work

Several authors suggested different consequence-based score systems that evaluate the
effect of asset failures in the surrounding environment or in the operation of the sewer
network itself. The higher the score given by this rating system, the greater the need
to inspect and maintain a specific pipe. These methods use many factors such as the
structural and physical characteristics of the pipes, the proximity of the assets to other
critical infrastructures, or their importance within the network, and every variable
has a weight assigned to it that reflects the relevance that it might have regarding
the degradation process. As stated by their proponents, the main limitation of this
approach is that it relies heavily on the subjectivity introduced by the developers of
the model. These works include the ones presented by Arthur et al. (2009), Baah et al.
(2015), Vladeanu and Matthews (2019) or Lee et al. (2021).

Predictive models can overcome the drawback of the mentioned methods since no
previous weights or influences need to be included in the system. Just like the afore-
mentioned score systems, predictive models can include a myriad of factors that may
cause the degradation of the assets. These predictive models are used to map some
explanatory variables such as the physical attributes or the environmental information
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of the pipes to a scoring system that defines the condition of the pipe.

2.1. Logistic Regression

Logistic Regression (LR) models have been widely used in the literature to tackle the
sewer pipe degradation problem. The works of authors such as Salman and Salem
(2012), Sousa et al. (2014), Kabir et al. (2018), Laakso et al. (2019), Robles-Velasco
et al. (2021) or Fontecha et al. (2021) concluded that LR models are outperformed
by more sophisticated machine learning methodologies, although the advantage shown
by this type of statistical model is its transparency and the explainability through its
coefficients. In order to look into the estimation of the coefficients of the LR model,
Kabir et al. (2018) used a Bayesian approach that concluded that sewer age and length
were the dominant drivers for the degradation of cementitious and clay pipes. As for
the explainability on the predictions end, Salman and Salem (2012) proposed the use
of LR for the development of degradation curves by simulating the life cycle of single
pipes. The authors indicate that the degradation profiles show an unrealistic behavior
for some materials, as their probability of failure in some cases reaches 50% after 200
or 300 years.

2.2. Random Forest

Many authors have compared the use of Random Forests (RF) to classify both dichoto-
mous and multiclass response variables that represent the condition of sewer pipes.
The main proponents of this model are Harvey and McBean (2014), Laakso et al.
(2019) and Hansen et al. (2020). Caradot et al. (2018) compared the performance of
different models to predict the condition of sewer pipes using three categories for the
response variable. The authors performed a long-term simulation of the degradation
behavior of individual pipes, noting that the prediction of the probability of failure de-
creased in certain periods of the simulations. They concluded that the interpretations
that could arise from such a simulation could be misleading, as they would imply that
the physical condition of pipes could improve along time even if no maintenance was
carried out. Therefore, the authors recommend to use this approach only for ad-hoc
classification.

2.3. Artificial Neural Networks

Different architectures of Artificial Neural Networks (ANN) have been proposed by
several authors to model the degradation behavior. Among these authors, we include
Tran et al. (2006), Khan et al. (2010), Sousa et al. (2014), Sousa et al. (2019), Xianfei
et al. (2020b) and Xianfei et al. (2020a). From the mentioned works, only Xianfei
et al. (2020a) present deterioration curves for single pipes. The authors show several
examples of long-term simulations for individual pipes and, as previously mentioned
regarding the conclusions presented by Caradot et al. (2018), the degradation curves
that result from this model do not show a continuous deterioration of the pipes.

2.4. Other models

Additional machine learning techniques have been proposed by other authors, although
no degradation curves have been produced. Gradient Boosting models were used by
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Mohammadi et al. (2020) and Fontecha et al. (2021). The latter indicate that this
model outperforms the rest of the prediction models subject to comparison, namely
LR, RF and Decision Trees (DT). Support Vector Machines (SVM) were presented by
Mashford et al. (2011), Sousa et al. (2014) and Sousa et al. (2019), concluding that
although this algorithm showed a high potential in terms of predicting the condition
of sewer pipes, ANNs yielded better results.

As shown in the previous paragraphs, the use of statistical and machine learning
models has been widely explored and compared to predict the condition of sewer pipes
with satisfactory results in terms of accuracy metrics, but there is still a gap in the
assessment of the suitability of such tools for the application of degradation models
that could be useful for the development of DM plans. In other words, it remains
necessary to investigate the capacity of the proposed models to generate reliable and
understandable outcomes, as well as consistent long-term simulations describing the
deterioration of sewer pipes.

Table 1 shows a collection of the explanatory variables used by the mentioned
authors in order to model the degradation of sewer pipes. For a more detailed review
of the most influential factors in this field, we recommend the reviews conducted by
Malek Mohammadi et al. (2020) and Salihu et al. (2022).
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Table 1. List of reviewed research papers, including the explanatory factors and the techniques used to model the degradation of sewer pipes.
Authors Explanatory variables Models

Mashford et al. (2011) Diameter, age, road class, slope, Up/down invert elevation, material, grade, angle, soil corrosivity, sulfate
soil/groundwater

Support Vector Machine

Salman and Salem (2012) Size, length, slope, age, depth, road class, material, sewer function Logistic Regression

Sousa et al. (2014) Material, diameter, length, depth, slope, age, flow velocity
Logistic Regression

Support Vector Machines
Artificial Neural Networks

Sousa et al. (2019) Material, diameter, sewer reaches, length, age, depth, slope, flow velocity
Support Vector Machines

Artificial Neural Networks

Kabir et al. (2018) Age, diameter, length, slope, depth, rim elevation, up and down invert Bayesian Logistic Regression

Robles-Velasco et al. (2021) Age, diameter, length, sewer function, soil type, shape, exposure to hydrogen sulphide, number of previous
failures

Logistic Regression

Harvey and McBean (2014) Material, age, installation era, type of sewer, diameter, length, slope, slope change, up and down invert
elevation, orientation change, depth, road coverage, watermain breaks, land use, census tract

Random Forest Classifier

Laakso et al. (2019) Slope, sewage flow, age, length, build year, coordinates, construction class, diameter, distance to trees, pipe
type, material, depth, road class, stormwater pipe intersection, waterpipe intersection

Logistic Regression

Random Forest

Hansen et al. (2020) Size, material, pipe function, land use, previous rehabilitations, distance to buildings, distance to trees, soil
type, road class, position, slope, groundwater level

Random Forest

Caradot et al. (2018) Age, material, shape, effluent type, district, length, width, depth, soil type, groundwater level, backwater,
distance to trees

Random Forest

Tran et al. (2006) Size, age, depth, slope, tree-count, hydraulic condition, location, soil type, moisture index Artificial Neural Network

Khan et al. (2010) Length, diameter, material, age, bedding material, depth Artificial Neural Network

Xianfei et al. (2020b) Waste type, diameter, length, slope, water flow capacity, history of repairs, pipe function, material, age Artificial Neural Network

Xianfei et al. (2020a) Age, diameter, length, material, slope, average neighborhood LOF, Waste type, Up/down stream depth, repair
history, Up/down invert elevation, water flow capacity, pipe function

Artificial Neural Network

Mohammadi et al. (2020) Age, material, diameter, depth, slope, length, soil type, soils sulfate, soil pH, groundwater level, soil hydraulic
group, soil corrosivity, water flow

Gradient Boosting Trees

Fontecha et al. (2021) Weather, population, previous failures, elevation, land use, slope, number of trees, gully pots, manholes, sewer

pipes, streets, type of pipeline (local/main), pipe function (stormwater/sanitary)

Logistic Regression
Decision Trees

Random Forest
Gradient Boosting Trees
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3. Materials and methods

3.1. Data

The use case that we present on this study is based on an urban area in the state of
Nordrhein-Westfalen (Germany) with a population of around 25,000 inhabitants. The
dataset is comprised by two main components, namely the physical and environmental
attributes of the individual pipes, and the assessment of the condition of the sewer
pipes carried out by experts based on CCTV inspections performed between the years
2000 and 2021.

Table 2. Main statistics of the numerical predictors.

Variable Min. Max. Mean SD
Age 0 74 30.199 16.705

Length 1.43 175.27 34.082 16.190
Size 100 2500 399.905 259.854
Depth 0.394 7.22 2.316 0.924
Slope -0.309 67.333 0.979 2.177

Connection surface 0.568 1263.832 170.077 113.118
Upstream length 1.876 72009.122 1812.761 6205.549
Coordinates (X) 0 1 0.348 0.1466
Coordinates (Y) 0 1 0.547 0.219

The database initially consisted of 12,832 inspections corresponding to 11,650 sewer
pipe segments. Incomplete assessments or reports that contained missing values were
left out of the analysis. As for the sewer pipes, house connections were not taken into
consideration because although an inspection was carried out, no assessment on the
condition was performed. The house connections account for 40.93% of the inspections
and 49.18% of the pipes. Materials with less than 5 samples were excluded from the
analysis, as no generalization could be drawn from such small groups. Finally, pipes
that were given a very negative score despite being recently installed were dismissed,
and the same goes for pipes that were installed 80 years prior to the inspection but were
given the highest score in terms of condition (1.24% of the inspections, 1.32% of the
pipes). These considerations resulted in a dataset with 6,279 inspections corresponding
to 4,899 sewer pipe segments.

3.1.1. Variable selection

The list of variables considered for the development of the degradation model are
shown in table 3. Many of the variables taken into consideration such as the pipe
length, the material or the average depth, have been considered previously by several
authors. Additionally, this work proposes the use of the geographical coordinates of
the sewer pipes’ centroids as a surrogate variable for unobservable covariates such as
groundwater fluctuations, soil compactation or interaction with infrastructures present
in the surface, as suggested by Balekelayi and Tesfamariam (2019). To add further
information about unobserved phenomena, this work includes the count and the length
of upstream pipes, which can be considered a surrogate variable for the flow running
through the pipes. Before training the models, the numerical variables have been
properly scaled using a MinMax scaling. Table 2 shows the main descriptive statistics
of the explanatory variables selected for this work. Note that the coordinates of the
centroids of the pipes have been anonymized.
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Table 3. Input variables considered for the development of the model.
Variable name Type Description

Age Numerical Time elapsed between installation of the pipe and the inspection in
years

Length Numerical Length of the pipe segment in meters

Size Numerical Height of the pipe segment in millimeters
Depth Numerical Average depth of the pipe segment in meters

Slope Numerical Slope of the pipe segment in percentage

Connection surface Numerical Surface of the connection between the pipe and the manholes in
squared meters

Upstream length Numerical Length of the upstream pipes in meters

Upstream pipes Numerical Count of upstream pipes
Coordinates Numerical X and Y Geographical coordinates of the centroid of the pipe, ex-

pressed in degrees
Material Categorical Material of the pipe segment

Waste type Categorical Type of waste conducted by the pipe (wastewater, stormwater, mixed)

3.1.2. Response variable

The output variable is modelled based on the results of inspections carried out by
experts. These inspections are performed according to the methodology provided by
the ATV-M143-2 (DWA 1999) and the DIN EN 13508-2 (DIN-EN 2011), which state
the guidelines for the interpretation and coding of damages using CCTV inspections.
Based on these coding systems, the data provider uses an internal classification system
from 1 to 6, where 6 indicates that the pipe is as good as new, and 1 means that
the pipe should be replaced immediately. In order to simplify the modelling of such
a variable, and to overcome the problem of class imbalance, the output has been
binarized in such a way that classes 5 and 6 are considered non-defective, and the
rest correspond to defective pipes. The binarization of the classes corresponding to
different levels of structural or operational damage of sewer pipes can be found in
previous works (Salman and Salem 2012; Harvey and McBean 2014; Mohammadi
et al. 2020). Figure 1 shows the result of the mentioned binarization, where it can
be seen that there is a clear correlation between the pipe age and the damage class.
Damage classes 5 and 6 account for 41% of the observations as seen in the right-hand
side of figure 1. Considering these two categories under the same class (non-defective)
helps to overcome the problem of class imbalance.

Figure 1. a) Box plot showing the distribution of pipe age within damage classes. b) Count of inspections
that fall within each damage class.

The main descriptive statistics can be seen in figure 2. Figure 2(a) shows that the
dataset mainly consists of concrete (63.53%) and clay (25.20%) pipes. As for the age
of the pipes (figure 2c), 68.15% of the samples were inspected before age 40, and only

9



3.69% of the inspections correspond to pipes that were inspected after age 60, which
implies a considerable bias towards pipes that were inspected shortly or moderately
after their installation.

Figure 2. Descriptive statistics of the main variables considered for the development of the model. (VC:

Vitrified clay, PP: Ploypropylene, CI: Cast iron, PVC: Polyvinyl chloride, PRC: Polymer concrete, GRP: Glass

reinforced plastic, PE: Polyethylene, PVCU: Unplasticised PVC)

3.2. Methodology

As stated in previous sections of this work, the aim is to provide a predictive model
that uses physical and environmental attributes of sewer pipes, as well as the results of
prior assessments carried out after the performance of CCTV inspections, that is able
to produce long-term degradation curves in order to develop DM strategies. To carry
out such a task, two main assumptions will be made: a) the model should be able to
accurately predict the condition of sewer pipes given the specified attributes and the
response variable, and b) given that no maintenance, repairs or rehabilitation works
are considered in the available inspections, the degradation curves that result from the
simulation of the life cycle of the pipes should increase monotonically. Additionally
the resulting model should be able to produce interpretable predictions based on the
inputs. Figure 3 shows a flowchart with the proposed methodology.
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Figure 3. Flowchart of the proposed methodology
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To achieve this goal, a set of statistical and machine learning models will be trained
on the processed dataset. The performance of the models will be assessed under two
criteria, namely the classification metrics specified on section 3.2.1 and the temporal
consistency of the degradation curves produced by the models.

3.2.1. Models

Logistic Regression

The Logistic Regression (LR) is a statistical model that applies an inverse logit function
to map a linear estimator to a binary outcome, having as a result the probability P of
a sample xi of belonging to the positive class (in the case of this work, the defective
class), with a set of coefficients β. The linear estimator is composed by a matrix X
that contains the values of the variables for each sample and a column vector β which
expresses the coefficients of said linear estimator. A link function σ is applied on it, so
the result of the estimator is constrained to the [0, 1] domain.

P (xi;β) =
1

1 + e−βxi
(1)

LR models are inherently explainable, and they give information about the statisti-
cal power of the explanatory variables, as well as their effect on the response variable.
Assuming that the model shows global significance, i.e. at least one of the coefficients
is non-zero according to the result of the chi-square test, we must take into consider-
ation the significance of the individual variables. The significance of the explanatory
variables comes from applying a z-test to the standardized coefficients, and it shows
the statistical power that a specific factor has to explain an event.

Once a variable is considered significant, the coefficients can be interpreted by means
of the Odds Ratio (OR). For an input variable j with a coefficient βj , the OR is
exp(βj), and it can be interpreted as the odds that an outcome will occur given the
presence of a specific factor, compared to the odds of the outcome occurring without
that factor being present (Szumilas 2010). For a variable with an OR>1, an increase
in 1 unit of that factor will increase the probability of occurrence of the outcome. A
formal definition and the interpretation of the results of the LR model can be found
in DeMaris (1995).

Decision Trees

Decision Trees (DT) are sequential models introduced by Breiman et al. (2017) that
perform a series of tests to find the optimal decision threshold for each variable in order
to classify a sample. Each test is performed on a node, and each possible outcome of the
test points out to a child node, where another test might be carried out. Subsequent
tests are performed until a leaf is reached, which is a node without children (Kingsford
and Salzberg 2008).

The tests carried out in the nodes can be simplified as yes-no questions, which
make the logical rules followed by the model easy to understand. Therefore, DTs can
be considered inherently explainable models, as the logical process that they follow to
produce results is explicit (Kotsiantis 2013).
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Random Forest Classifier

A Random Forest (RF) is an ensemble method introduced by Breiman (2001) that
combines the prediction results of several decision trees by means of averaging them.
In terms of binary classification problems, RFs are constructed using a set of tree-
structured predictors that cast a unit vote, and the output will fall into one of the two
possible categories {0, 1}. For every input xi from the collection of samples X, the
most popular predicted class ŷi among the tree classifiers will be assigned.

RF models use Variable Importance (VI) as a measure of the relevance of an ex-
planatory variable. A popular VI criterion is the Gini impurity, which is a metric used
to decide the splits of the tree-structured predictors. Relevant predictors will have
a higher decrease of the Gini impurity, and therefore, will have a higher VI (Archer
and Kimes 2008). For a formal definition of this model, we recommend the works of
Breiman (2001) and Biau and Scornet (2016).

Extreme Gradient Boosting

Gradient Boosting (GB) machines are part of the boosting methods family. While
classical ensemble techniques like RFs build predictions based on weak estimators,
boosting methods add new models to the ensemble sequentially (Natekin and Knoll
2013). In this sense, the model initially proposed by Friedman (2001) aims at se-
quentially building new base-learners to be maximally correlated with the negative
gradient of the loss function. The GB model used in this work is based on the XG-
Boost library, developed by Chen and Guestrin (2016), which presents an efficient and
scalable implementation of this technique.

Similarly to RFs, GBs can give a measure of the relevance of the inputs to generate
the output variable. This is done through the gain, which is a metric used to optimize
the splits of the boosted trees. A variable that increases the gain is more decisive for
the development of the model, and therefore, it is more relevant to explain the output.

Support Vector Machine

Support Vector Machines (SVM) were initially introduced by Boser et al. (1992) as
an algorithm to find the optimal decision boundary between classes. For the two-
class discrimination problem, SVMs determine a separating hyperplane (or decision
boundary) in a high-dimensional space, relying on maximizing the margin or minimal
distance between the hyperplane and the closest data points to it (Mammone et al.
2009). An advantage presented by such a model is the possibility of selecting different
kernels, which are mathematical devices that project the data samples from a low-
dimensional space to a space of higher dimension. This transformation allows the data
to become separable in the higher space by means of the aforementioned hyperplane
(Noble 2006).

Artificial Neural Networks

Artificial Neural Networks (ANN) are a set of models that correspond to the fam-
ily of deep learning techniques and are widely used for pattern recognition problems.
The structure of ANNs is composed of an input layer where the features of the data
samples are introduced, a set of hidden layers, and an output layer, where the target
value is approximated. These layers are made of neurons, which are computational or
processing units that apply linear or non-linear transformations (activation functions)
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to the information coming from previous layers during the feedforward step. The opti-
mization of the parameters of the ANNs comes from the backpropagation step, which
takes into consideration the error of the prediction during the feedforward step, and
updates the values of the parameters to yield a better estimate of the outputs given
the inputs. For a better understanding of this type of models, we recommend the work
of Krogh (2008), and for a formal definition of neural networks, we suggest Jain et al.
(1996).

In the context of this work, an ANN with 2 hidden layers consisting of 100-50
neurons respectively with a Rectified Linear Unit (ReLU) as the activation function
was used. The output layer consists of a single neuron with a sigmoid activation
function, since the aim of the model is to discriminate between two classes.

3.2.2. Model quality metrics

Several classification metrics have been used to compare the performance of the mod-
els. Given a binary outcome, 4 possible predictions can arise after training a model,
namely true positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN), assuming that in this context, a positive value would represent a defective
pipe.

The accuracy (equation (2)) represents the proportion of correct predictions with
respect to the sample size. It is a good estimator of the performance of a model, but
it does not give information about the bias of the model in terms of leaning towards
FNs or FPs.

Accuracy =
TN + TP

TN + TP + FN + FP
(2)

The precision (equation (3)) or positive predictive value is the proportion of TPs over
the total positive predictions. That is, in this context, the precision would represent
the rate of samples that were correctly predicted as damaged with respect to the total
amount of samples that were considered damaged by the model.

Precision =
TP

TP + FP
(3)

The recall (equation (4)) or true positive rate shows the proportion of TPs with
respect to the known positives. In the context of this work, it would represent the
rate of observations that were considered damaged (positive) with respect to all the
samples that were actually damaged.

Recall =
TP

TP + FN
(4)

Finally, the Area Under the Curve (AUC) is used as a metric for the performance
of the models. This metric comes from the Receiver Operating Characteristic (ROC)
curve, which shows, for different thresholds, the relationship between the TP ratio and
the FP ratio. A perfect classifier would have a ROC curve that reaches a value of 1
for the TP ratio and 0 for the FP ratio simultaneously, and therefore, the AUC would
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have a value of 1. For a more detailed description of the presented metrics, we suggest
the review presented by Lever (2016).

3.2.3. Monotonicity

As stated in previous sections, degradation curves are expected to increase
monotonously with respect to time, given that no maintenance tasks are considered.
To check whether this condition is fulfilled by the tested models, a simple algorithm
will be ran to compute if, at a certain age t, the probability of being defective P (xt)
is higher than the same probability one year before. If P (xt) < P (xt−1), the behavior
will not be considered monotonous.

4. Results and discussion

4.1. Performance metrics

The performance of the proposed models is compared using cross-validation. 90%
of the data is selected for training and validation purposes, and 10% is held-out to
assess their ability to generalize to unseen samples. The cross-validation is applied
on the first batch (training and validation set) so that 70% of the samples are used
for training and 30% are for validation. This process is repeated across 10 folds, and
in every iteration, the performance metrics are calculated on the held-out (test) set.
The cross-validation (figure 4) shows that there is a significant difference between the
performance of the ensemble models (XGB and RF) with respect to the rest of the
tested techniques, as suggested by authors such as Laakso et al. (2019) or Fontecha
et al. (2021). The mentioned models show a higher accuracy, but also a higher variance
than other models. No significant difference can be seen on average between the ANN
and the SVM models, although the SVM shows a much lower variance. The LR shows
a high robustness in its predictions, but its accuracy is lower than that shown by the
SVM and the ANN. Finally, the DT shows the lowest accuracy on average, and it
presents a variance comparable to that of the ensemble models or the ANN.

Figure 4. Cross-validated accuracy scores of the models on the held-out test set.

A similar pattern can be observed regarding the rest of the performance metrics.
RF shows a higher recall, precision and AUC than the rest of the models, followed
closely by the XGB. This means that not only the ensemble models outperform the
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Table 4. Comparison of the average performance metrics (and standard deviation) of the tested models.

Random Forest yields the best results for all the metrics.

Model Accuracy Recall Precision AUC
LR 76.995 (0.254) 81.921 (0.595) 78.721 (0.321) 0.849 (9.59× 10−4)
DT 76.704 (0.998) 80.904 (1.229) 78.908 (1.047) 0.759 (1.045× 10−2)
SVM 77.657 (0.544) 89.039 (0.921) 76.014 (0.652) 0.863 (1.926× 10−3)
XGB 82.827 (1.063) 90.734 (1.317) 81.382 (0.873) 0.898 (4.995× 10−3)
ANN 77.689 (0.763) 86.779 (3.244) 77.185 (1.893) 0.869 (6.576× 10−3)
RF 83.311 (0.533) 91.356 (1.058) 81.666 (1.023) 0.911 (3.455× 10−3)

rest in terms of accuracy, but they also provide more reliable predictions, given the
balance between the rates of FNs and FPs. SVM shows a similar recall to the one
yielded by the ensemble methods, but it has the lowest precision, which means that
the model is biased towards predicting more FPs than FNs. The result given by the
SVM implies that the model would be prone to suggest that a pipe is defective when
it is not. As seen in figure 4, the LR shows a comparable accuracy to the DT, the
SVM or the ANN, although it outperforms the last 2 models in terms of precision.
The LR model also shows a lower variance in the performance metrics, thus rendering
this model more robust in terms of its predictions.

Despite the inherent difficulty to perform comparisons across different studies (dif-
ferent target values, uncertainty of the pipe condition inspections and metrics, different
input variables, etc.), the results that have been obtained in this research work are
consistent with the literature review. Laakso et al. (2019) and Fontecha et al. (2021)
show that ensemble models such as XGB or RF outperform simpler models like the
LR.

4.2. Degradation curves

To illustrate the differences between models in terms of their capability of generat-
ing degradation curves, figure 5 shows the results of the simulation of 100 years of
4 different pipes. These pipes are selected after carrying out the monotonicity test
(table 5), and represent the samples with the highest amount of decreases in terms
of the probability of failure along time. Figure 5(a) shows the sewer pipe where DTs
yield more shifts, figure 5(b) represents the same for the SVM model, figure 5(c) for
the XGB and figure 5(d) for the RF.

The DT model only captures the extreme probability values, i.e. 1 and 0, which
makes it an unsuitable for the prediction of probabilities, as it only produces binary
values, and they are not consistent with the aging behavior.

The ensemble models, i.e. XGB and RF, show similar behaviors as the probability
of failure increases along time, but both of them fail to show a monotonic degradation
curve. XGB shows a spiky curve with a sudden drop in the probability of failure
after 70 years, and after a short period it rises up again to reach a probability of
failure of 100%. As for the RF, the probability of failure only reaches 100% in the
case of figure 5(b), and even if it shows a general upward trend, the model suggests an
improvement of the condition of the pipes at different ages. This result is in line with
the findings presented by Caradot et al. (2018), where the authors indicate that this
long-term forecast could be misleading, since it would be suggesting that the pipe will
improve its structural and operational condition along time.

LR and SVM models show a similar pattern in the predicted degradation behavior.
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Figure 5. Degradation curves showing the probability of failure of four different sewer pipes according to the

trained models.

Table 5. Metrics of the models in terms of the monotonicity of the degradation curves compared across
every sample in the dataset.

Model Count Mean Max
LR 0 0 0
DT 8,224 1.33 4
SVM 16,504 2.67 14
XGB 44,033 7.12 15
ANN 0 0 0
RF 54,593 8.82 24

Both models generate S shaped curves that show a smooth increase in the probability
of failure, although the predictions produced by the SVM do not always reach a prob-
ability of failure of 100%, and the curve showed in figure 5(b) shows a decay in the
degradation rate, which would imply an improvement in the condition of the asset.

As seen on table 5, ANNs yield monotonic degradation curves for all the simulations,
although the predicted behavior is more irregular than the one showed by the LR or
the SVM.

4.3. Interpretability

Among the two models that produce degradation curves that show a monotonic in-
crease of the probability of failure, the LR is the only one that yields an interpretable
result based on the coefficients of its linear estimator. By means of these coefficients,
it is possible to know what is the size of the effect of the input variables with respect
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to the output, as well as its sign and its statistical significance. Table 6 shows the
coefficients obtained from training the LR model.

As stated in section 3.2.1, the interpretation of the LR can be done by analyzing its
coefficients and the ORs. The results of the analysis show that, as reported in previous
studies, pipe age and structural features such as its length or size are highly significant
factors when it comes to sewer pipe degradation. Observing the OR of the pipe age,
it can be seen that an increase of 1 year of age rises the chances of the pipe being
defective by a ratio of 1.095.

The function of the pipe only appears to be significant when they transport stormwa-
ter. Its negative coefficient and its OR <1 indicate that mixed use and sewage pipes
are more prone to degradation than stormwater pipes. This result is highly depen-
dant on the maintenance strategies carried out by the water utility. As seen in Davies
et al. (2001) and Baur and Herz (2002), the degradation of mixed use sewers is lower
due to higher engineering, construction and maintenance efforts, whereas the results
obtained by Salman and Salem (2012) show that sanitary pipes are more resilient to
deterioration. On the contrary, the size of the pipe, represented in this analysis by the
height, shows a statistically significant negative effect on the outcome, which suggests
that bigger pipes are more resilient, which is in line with the conclusions of authors
such as Salman and Salem (2012) or Bakry et al. (2016).

The length of the pipes slightly increases the probability of failure. Authors such
as Ana et al. (2009), Khan et al. (2010) or Laakso et al. (2019) explain this effect
arguing that longer pipes have more joints, which are vulnerable to failure, and are
more exposed to structural defects such as bending. The length of the upstream pipes
has a similar effect on the outcome, showing that the probability of failure could be
correlated with the volume of water flowing through the pipes, considering that down-
stream pipes will receive a higher volume. As stated previously, this result depends
on the particular characteristics of the studied network and the asset management
strategies performed by the water utility, and it should not be confused with the effect
of the flow rate on the degradation of the pipes. According to authors like Tran et al.
(2006) or Salman and Salem (2012), steep slopes cause higher flow rates, which lead
to higher deterioration rates, whereas lower slopes can cause sedimentation due to the
low velocity of the water (Laakso et al. 2019). Given the lack of statistical significance
of the slope in the presented experiment, no conclusion about the correlation between
flow rate and sewer degradation can be extracted for this particular use case.

Finally, the X and Y coordinates of the centroid of the pipe show opposite effects on
the response variable. The OR of the X coordinates suggests that an increase in 1 unit
of this variable lowers the chances of the pipe being defective (OR < 1), meaning that
pipes that are situated in eastern areas of the studied area show a slower degradation
rate. The coefficient related to the Y coordinates indicates exactly the opposite: pipes
situated in the North are more prone to failure (OR > 1). This difference can be better
explained by looking at figure 6, where it can be clearly seen that region A, which lays
in the Northwest of the studied area, has a higher density of population, and therefore,
a higher density of sewer pipes and a higher volume of water. On the contrary, Region
C (Southwest) is less populated than its counterparts, and it has a less complex sewer
network. For the same simulated age, this area shows lower probabilities of failure,
confirming the intuition behind the size and the sign of the coefficients regarding the
coordinates of the centroids of the pipes and the length of the upstream pipes.
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Table 6. Coefficient estimates, significance and Odds Ratios of the variables used in the Logistic Regression model.

Coefficients Odds Ratio

Variable Estimate Std. error z value P(>|z|) Significance Estimate CI 2.50% CI 97.50 %

Pipe age 9.141×10−2 2.795×10−3 32.706 <2× 10−16 *** 1.095 1.089 1.101
Upstream length 2.818× 10−2 6.367× 10−3 4.426 7.391× 10−6 *** 1.028 1.016 1.041
Pipe length 9.915× 10−3 3.212× 10−3 3.087 2.024× 10−3 ** 1.009 1.003 1.016
Pipe size -1.527 0.183 -8.310 < 2× 10−16 *** 0.217 0.151 0.312
Connection surface 1.284× 10−3 5.392× 10−4 2.381 1.775× 10−2 * 1.001 1.000 1.002
Depth 3.824× 10−2 5.955× 10−2 0.642 0.521 1.038 0.924 1.167
Slope 5.231× 10−3 8.681× 10−3 0.603 0.546 1.005 0.987 1.024
Material

Asbestos 0.643 0.534 1.204 0.228 1.903 0.683 5.576
Concrete 0.216 0.412 0.524 0.600 1.241 0.562 2.851
CI -4.469 0.481 -9.275 < 2× 10−16 *** 1.146× 10−2 4.484× 10−3 2.977× 10−2

PE -13.882 2.854× 102 −4.924× 10−2 0.961 9.372× 10−7 4.523× 10−135 3.787× 10−115

PP -2.043 0.602 -3.393 6.983× 10−4 *** 0.129 3.828× 10−2 0.411
PRC -13.623 19.703 −6.928× 10−2 0.9448 1.215× 10−6 5.175× 10−102 8.901× 10−89

PVC -0.845 0.476 -1.773 7.623× 10−2 . 0.429 0.171 1.110
PVCU -0.549 0.739 -0.743 0.457 0.577 0.126 2.356
Clay -0.199 0.427 -0.468 0.640 0.818 0.361 1.934

Sewer type
Combined sewer 8.704× 10−2 9.129× 10−2 0.952 0.341 1.091 0.912 1.305
Stormwater -0.359 0.126 -2.858 4.271× 10−3 ** 0.698 0.545 0.893

Coordinates
X -10.2 1.542 -6.611 3.812× 10−11 *** 3.741× 10−5 1.803× 10−6 7.620× 10−4

Y 1.432 0.226 6.435 1.241× 10−10 *** 4.187 2.710 6.487

‘***’: p<0.001; ‘**’: p<0.01; ‘*’: p<0.05; ‘.’: p< 0.1

4.4. Current inspection strategy vs. model-based strategy

Once the best option is selected among the proposed models, a comparison can be
made between the current inspection plan and the one that can be drawn from ex-
ploiting the model. The advantage of using the proposed model is that it provides
flexibility in setting probability thresholds. By adjusting the threshold, the planner
can determine the acceptable level of risk and allocate inspection resources accord-
ingly. This flexibility allows for a more efficient inspection plan, focusing resources on
pipes with higher probabilities of failure.

Figure 7. a) Comparison of alternative scenarios considering different probability thresholds with the current

scenario b) Difference of pipe ages at inspection between the current strategy and the results of a model with
a probability threshold of 50%.
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Figure 7a shows a comparison of 4 different scenarios where 3 possible probability
thresholds are defined against a scenario where no model is used. For example, in
Scenario 1, a conservative threshold is set, resulting in a large number of pipes being
inspected. This approach prioritizes safety but may lead to unnecessary inspections
and increased costs. In Scenario 2, a moderate threshold is used, reducing the number
of inspections compared to Scenario 1 while still maintaining an acceptable level of risk.
Scenario 3 represents a more risk-tolerant approach with a higher threshold, resulting
in even fewer inspections.

When comparing Scenario 4 (no model) and Scenario 2 (with a probability threshold
of 50%), approximately half of the network is inspected after around 27 years. By
subtracting the predicted failure age of the pipes from the actual age of inspection (as
shown in Figure 2b), we obtain a distribution where some pipes are inspected before
the predicted cutoff point (negative side) and others are inspected later than required
(positive side).

In this case, according to the model and the selected probability threshold, 49.11%
of the pipes are inspected later than required, which could lead to higher maintenance
and reparation costs. A more restrictive strategy such as the one proposed in Scenario
1 would lead to a proportion of 68.23% of the pipes inspected too late, and Scenario 3
would result in a rate of 28.71% of this quantity. Therefore, to optimize the operation
and maintenance of the sewer network, the decision boundary (probability threshold)
needs to be adjusted accordingly. This adjustment should take into account the needs
and resources of the managing authority to strike a balance between timely inspections
and cost-effectiveness.

5. Conclusions

This work presented a comparison of different statistical and machine learning methods
to assess their suitability to tackle the problem of modelling the degradation of sewer
pipes. The analysis has been carried out considering three main elements, namely the
accuracy of the models, their ability to produce consistent long-term simulations based
on the probability of failure of single pipes, and their interpretability.

The results showed that ensemble methods such as Random Forests or Gradient
Boosting Trees yield the best results in terms of accuracy metrics, but their long-term
simulations do not produce monotonous degradation curves, which implies that they
cannot be used to develop reliable dynamic maintenance plans in the presented sce-
nario. Support Vector Machines and Artificial Neural Networks show similar accuracy
metrics, but the former is not able to generate coherent long-term simulations, and
the latter lacks the interpretability that was seeked during the presentation of the re-
quirements of this work. The Logistic Regression showed slightly less accurate results,
but it produced degradation curves that fulfilled the monotonicity requirement, and
is inherently explainable by means of its coefficients, rendering it the most suitable
model for the development of dynamic inspection plans for the presented use case.

After obtaining these findings, a simulation was conducted to compare the exist-
ing situation (without a model) with three alternative scenarios employing various
thresholds for the probability of failure of single pipes. This simulation demonstrated
the effectiveness of a data-driven model to prevent a high proportion of pipes of the
network from being inspected later than required.

This study has provided a framework to assess different statistical and machine
learning models for creating inspection plans that consider long-term failure simu-

20



lations and model interpretability. However, further research is needed to make the
methodology more reliable. This can be achieved by analyzing larger datasets that
include more variables affecting sewer pipe deterioration and comparing the costs of
different inspection plans to the current scenario.
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Figure 6. The map shows the density of population of the area under study, represented by the approximated

count of inhabitants in each pixel. The color of the pipes represent the probability of failure at age 20 of each

pipe. Pipes located in the upper left part of figure show a higher probability of failure than the ones located in
the opposite side of the area under study. Population density map provided by WorldPop (Tatem 2017).
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